
Rendering Techniques for Hardware-Accelerated
Image-Based CSG

Florian Kirsch Jürgen Döllner

Hasso-Plattner-Institute for Software Systems Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

{kirsch,doellner}@hpi.uni-potsdam.de

ABSTRACT
Image-based CSG rendering algorithms for standard graphics hardware rely on multipass rendering that includes
reading and writing large amounts of pixel data from and to the frame buffer. Since the performance of this data
path has hardly improved over the last years, we describe new implementation techniques that efficiently use
modern graphics hardware. 1) The render-to-texture ability is used to temporarily store shape visibility, avoiding
the expensive copy of z-buffer content to external memory. Shape visibility is encoded discretely instead of
using depth values. Hence, the technique is also not susceptible to artifacts in contrast to previously described
methods. 2) We present an image-based technique for calculating the depth complexity of a CSG shape that
avoids reading and analyzing pixel data from the frame buffer. Both techniques optimize various CSG rendering
algorithms, namely the Goldfeather and the layered Goldfeather algorithm, and the Sequenced-Convex-
Subtraction (SCS) algorithm. This way, these image-based CSG algorithms now operate accelerated by graphics
hardware and, therefore, represent a significant improvement towards real-time image-based CSG rendering for
complex models.

Keywords
Constructive Solid Geometry, CSG Rendering, Image-Based Rendering, Rendering Algorithms, Solid Modeling

1. INTRODUCTION
CSG modeling, i.e. 3D-shape modeling by means of
volumetric Boolean operations, is a powerful tool in
many areas of applications, e.g., manufacturing,
engineering, and 3D-interactive sculpting. For inter-
active manipulation and display of CSG shapes,
image-based CSG rendering algorithms are most
suitable. To this category belong the Goldfeather
algorithm [Gol86a, Gol89a, Wie96a], the layered
Goldfeather algorithm [Ste98a], and the SCS
(Sequenced Convex Subtraction) algorithm [Ste00a,
Ste02a].

We identified as main bottleneck of these algorithms,
as described in previous publications, reading pixel
data from the frame buffer to external memory. This

operation is needed due to:

• Visibility transfer: The algorithms determine the
visibility of CSG primitives and store the
corresponding depth values in a temporary depth
buffer. To hold a copy of the main depth buffer
and to merge the temporary depth values with the
main depth buffer, depth buffers are saved to
external memory and restored from it.

• Depth-complexity calculation: The algorithms,
in general, calculate the depth complexity of a
CSG shape by counting the overdraw in the
stencil buffer, and then reading the stencil values
to find the maximum overdraw.

Today, the performance of image-based CSG
rendering is mainly bound by the throughput of this
data path.

In our approach, we propose a solution for per-
forming visibility transfer and depth-complexity
calculation by the graphics hardware on its own.
Thereby, the overall performance of CSG algorithms
is drastically improved. In addition, our solution for
visibility transfer is insusceptible to artifacts in
contrast to previous methods.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Section 2 summarizes related work and introduces
basic concepts of image-based CSG. Section 3 dis-
cusses our technique for visibility transfer. Section 4
explains the technique calculating depth complexity.
Section 5 gives a detailed performance analysis for
test models, and Section 6 draws conclusions.

2. RELATED WORK
Constructive Solid Geometry (CSG) represents a
powerful and expressive approach to geometric 3D
modeling [Req80a]. In CSG, complex shapes are
built from simple shapes by volumetric Boolean
operations, i.e., union, intersection, and subtraction.
A complex shape is specified by a CSG expression,
which is commonly stored as a CSG tree whose leaf
nodes represent basic shapes (primitives such as
sphere, cylinder, and box) and inner nodes denote
Boolean operations (see Figure 1).

Image-based CSG algorithms are a category of
algorithms for z-buffer graphics hardware that
generate “just the image” of a CSG shape without
calculating a description of the final object geometry.
Compared to object-based algorithms, image-based
CSG algorithms offer a number of advantages in
many areas of applications. For example, they allow
for interactively composing and manipulating a CSG
shape. In general, they also produce less visual
artifacts than a possibly approximated 3D geometry.

We are concentrating only on those image-based
CSG algorithms that can be implemented on standard
graphics hardware, because we aim at massive
hardware-acceleration available on today’s GPUs.
Algorithms that rely on specialized graphics
hardware, such as the Trickle algorithm [Eps89a], are
not considered.

The Goldfeather Algorithm
Goldfeather et al. presented a CSG rendering
algorithm for the Pixel-Planes graphics hardware
[Gol86a, Gol89a]. Their work includes the notion of

tree normalization, a set of equations to transform a
generic CSG tree into an equivalent union of one or
more partial products, whereby a partial product is
built by intersection and subtraction of an arbitrary
number of primitives. The normalization ensures that
CSG expressions can be rendered effectively using z-
buffer supported graphics hardware. Today, all
image-based CSG rendering algorithms rely on it.

Goldfeather et al. also observed that only front faces
of intersected and back faces of subtracted primitives
in a partial product are potentially visible. The
Goldfeather algorithm separately tests the visibility
of each potentially visible depth layer L of a
(possibly concave) primitive P. If P is convex, ob-
viously only one depth layer of P must be
considered.

Visibility testing of L works as follows: The z-values
of L are rendered into a temporary z-buffer. Then, a
parity test is performed for all other primitives Q in
the partial product to discard fragments of L that are
not visible. The parity test counts the number of front
and back depth layers of Q with less or equal depth
as L. For visible parts of L, that number must be odd
if Q is intersected, and similarly it must be even if Q
is subtracted. When all parity tests for L have been
performed, the temporary z-buffer contains the
correct z-values for visible fragments of L. The z-
values are merged with the content of the main z-
buffer using a “z-less” test. The Goldfeather algo-
rithm has a quadratic runtime behavior with respect
to the number of primitives in a partial product.

Stewart et al. [Ste98a] observed that the depth
complexity k of the primitives in a partial product is
typically much smaller than the number of primitives
n, and they proposed the layered Goldfeather algo-
rithm that takes advantage of this fact. The idea is to
test the visibility of a depth layer of the partial
product instead that of a single primitive. The theo-
retical runtime of this algorithm is O(n⋅k). The

 −

−

∩

(a) (b) (c) (d)
Figure 1: A sample CSG tree (a). It consists of four primitives; the sphere and the box are intersected; the

cylinders are subtracted. The intermediate results (b, c) and the final image of the CSG expression (d).

problem of rendering artifacts that commonly
occurred was solved later [Erh00a] (also see Section
3).

Recently Guha et al. applied two-sided depth testing
– enabled by hardware support of shadow mapping
on modern graphics hardware – to a variant of the
layered Goldfeather algorithm [Guh03a]. By depth
peeling [Eve01a], their algorithm applies the parity
test for depth layers of the partial product in front to
back order, whereby a stencil mask rejects visibility
updates where the visibility of a CSG layer already
has been determined.

The SCS Algorithm
Stewart et al. [Ste00a] developed the SCS algorithm
and they later described a refined version [Ste02a] to
which we will refer to. The SCS Algorithm directly
handles convex primitives only; concave primitives
can be processed if they are subdivided into a set of
convex primitives.

To determine the z-values of a partial product, the
SCS algorithm uses three stages:

• First, the front surface of all intersected
primitives in the partial product is determined.
Two principles are applied to achieve this task:
First, the visible front face of the intersection
must be further away from the viewer than all
other front faces of intersected shapes. Second, n
back faces of intersected shapes must be behind
the furthest front face; otherwise the furthest
front face is not visible.

• In the next stage, a sequence of subtracted
primitives is subtracted from the z-buffer. A
subtraction removes a primitive P from a
temporary front surface, i.e., where the front
surface of the subtracted primitive P is closer
and the back surface further away than the
temporary surface, the z-values are replaced by
the z-values of the back surface of P. In general,
the sequence of subtracted primitives must
ensure that all permutations of primitives reside
in the sequence in sorted order, such that all
possible dependencies of primitives are correctly
handled. A sequence that has this property is
called permutation embedding.

• At last, z-values of the subtracted primitives are
clipped to the back faces of the intersected
primitives. This is necessary because currently
visible back faces of subtracted primitives can be
situated behind the back of the intersection of all
intersected primitives in the partial product. To
mark these spots as invisible, it is necessary to
render all back faces of the intersected
primitives, resetting the z-value of fragments
that are closer than the current z-value.

The first and the last stage have linear runtime; the
subtraction stage has quadratic runtime with respect
to the number of subtracted primitives n because of
the size of the permutation-embedding sequence.
When the depth complexity k of the subtracted
primitives is known, a shorter subtraction sequence
of n⋅k primitives can be used [Ste00a]. Furthermore,
the object-space arrangement of subtracted primitives
can be analyzed to shorten the subtraction sequence
in certain cases [Ste03a].

3. VISIBILITY TRANSFER
Both the Goldfeather and the SCS algorithms use
two z-buffers: a temporary z-buffer used to compute
the depth image of (part of) a partial product, and a
final z-buffer to accumulate the results. But standard
z-buffer graphics hardware does not support two
simultaneous z-buffers for a single fragment.
Wiegand proposed a workaround for the Goldfeather
algorithm [Wie96a], which was later also applied to
SCS: His method saves the main z-buffer into main
memory. After calculating the visibility of some CSG
primitives, it restores the z-buffer and merges the
temporary result. Unfortunately, this solution has
important shortcomings:

• In general, the original z-values do not exactly
match the copied z-values, since the OpenGL
standard does not guaranty such exactness (due
to the conversion of the data format). As a
consequence, z-artifacts occur [Erh00a].

• Z-values are temporarily copied from graphics
memory to main memory. Even under ideal
circumstances, performance of this approach
will be moderate due to bandwidth limitations.
We expect that the throughput of this data path
will hardly increase in future hardware (For
measurements of the throughput on today’s
graphics hardware see Section 5).

Erhart and Tobler omit z-buffer copies. Instead, they
copy IDs for shapes that are stored in the stencil-
buffer [Erh00a]. This solves the z-artifacts problem;
it does not solve the performance constraint since
stencil-buffer copies are not significantly faster than
z-buffer copies.

Render-To-Texture
In our technique, visibility transfer is based on p-
buffers [Wyn01a], which represent off-screen frame
buffers. Rendering processes linked to other frame
buffers can use the p-buffer color channel as 2D-
texture. This functionality, commonly denoted as
render-to-texture, omits copying color data between
main memory and graphics memory and, therefore, is
well suited for real-time rendering.

For our purpose, the p-buffer has the same size as the
frame buffer1. Using automatically generated texture
coordinates, the texture that corresponds to the p-
buffer can be projected on the frame buffer in such a
way that every texel in the texture has a one-to-one
mapping to a pixel in the frame buffer. This idea has
been previously applied to depth-textures to
implement depth-peeling [Eve01a].

ID Textures for Visibility of Primitives
For convex primitives, only the front face of
intersected primitives and the back face of subtracted
primitives are potentially visible. This means that the
visibility information of a convex primitive can be
encoded by marking the position with a unique bit
code ultimately.

3.2.1 SCS Algorithm
For the SCS algorithm, our technique uses p-buffers
to determine the pixel positions at which a primitive
in a partial product is visible. Thereby, we use the
alpha channel of the p-buffer to store temporary
results, i.e., the alpha value of a pixel in the p-buffer
indicates which primitive is visible at a position. For
this purpose, each primitive in the partial product is
assigned a unique ID. Every time the depth buffer is
updated to denote visibility of a primitive, we also
store the ID of the primitive in the alpha buffer.
Where no primitive is visible at all, we store the
special ID 0.

After computing the partial product, the alpha
channel of the p-buffer holds all necessary visibility
information for the primitives in the partial product.
For the visibility transfer, we use the alpha channel
of the p-buffer as texture, and we project this texture
on the main frame buffer. Then, with “z-less” test,
we render all potentially visible layers of primitives
in the partial product (i.e., back or front faces),
discarding all fragments with an alpha texture-value
that differs from the ID of the current primitive. This
is easily done with the alpha test. Finally, the z-
buffer in the back buffer contains the z-values for all
partial products computed so far.

3.2.2 Goldfeather Algorithm
The Goldfeather algorithm cannot deploy shape IDs
in the same way as the SCS algorithm, because it
calculates the visibility of a single primitive at a time.
So it would mark a primitive as potentially visible,
and then the parity test would determine which parts
would be really visible, remarking all other parts as
invisible. In this step, the visibility IDs for primitives

1 If non-power-of-two textures are not supported by the

graphics hardware, we use a greater p-buffer and restrict
application of the texture to that area that is covered by
the frame buffer, by using the texture matrix.

that were calculated earlier would have to be
restored. This is not possible without temporarily
storing them elsewhere, which would impose an
enormous overhead. Because of that, we cannot
reasonably use IDs for primitives in the same way as
in the SCS algorithm.

Instead, we store the visibility information for only a
single primitive in the alpha channel of the p-buffer.
The alpha buffer contains a value of 0 exactly if the
primitive is not visible − the visibility transfer is
possible in the same way as in the SCS algorithm.

We can apply the same approach for concave
primitives. The Goldfeather algorithm calculates
their visibility layer by layer, so if we store the
number of the layer along with the visibility
information, these information suffice for the
visibility transfer into the main z-buffer. More
exactly, for concave primitives, the alpha buffer
contains a value of 0 exactly if the given layer of the
primitive is not visible. In the same way, we deploy
ID textures to the layered Goldfeather algorithm.

3.2.3 RGBA Textures
Besides the alpha channel, we can store visibility
information also in the red, green, and blue color
channels. The algorithm projects an RGBA-texture
onto the frame buffer and needs a kind of ‘alpha
testing based on color values’. That testing is
achieved with the ARB_combine_dot3 extension of
OpenGL. Using the dot product of the texture-color
with a constant color ((1,0,0), (0,1,0), or (0,0,1)),
the texture environment is configured to move the
information of a color channel into the alpha channel.
The alpha test, then, is applied as usual. For the
Goldfeather algorithm, this way one texture encodes
the visibility of four primitives; for the SCS
algorithm, the RGBA-texture even encodes the
visibility of four partial products.

3.2.4 Limitations and Benefits
For the SCS algorithm, ID textures limit the number
of primitives that can be contained in a partial
product to the number of different IDs. An alpha
buffer of 8 bit allows for 255 primitives. If more
primitives are required, the IDs can be spread over
the RGBA channels, allowing for 232−1 different
IDs.

Z-artifacts do not occur with our approach because
ID textures contain binary information only.

4. DEPTH COMPLEXITY
The layered Goldfeather algorithm calculates the
depth complexity k of a partial product to determine
the maximum number of depth layers which must be
handled by the algorithm. In analogy, calculating the
depth complexity is advantageous for the SCS

algorithm because it allows to shorten the length of
the subtraction sequence from n² to n⋅k.
Calculating the depth complexity, as described in
previous publications [Ste98a], is a costly operation:
The overdraw of all pixels is determined by
rendering the primitives of the partial product into
the stencil buffer incrementing stencil values. Next,
the stencil buffer is copied into main memory, and
the maximum value is determined, which finally
represents the maximum depth complexity of the
partial product.

Generic Calculation of Depth Complexity
The occlusion-query capability of today’s graphics
hardware can easily determine the depth complexity
of a partial product without reading back the stencil
buffer. Occlusion queries count the number of
fragments that have passed the stencil test and depth
test while rasterizing a given set of primitives. In
OpenGL, the corresponding NV_occlusion_query
extension [Kil03a] has found widespread support
from different hardware vendors, e.g., from NVidia
and ATI.

To determine the depth complexity k, the partial
product is rendered layer by layer, counting the
number of rendered fragments for each layer. The
number of the initial layer for which the number of
rendered fragments is zero equals k+1.

At first glance, the approach appears to be inefficient
because it requires rendering n⋅k primitives to deter-
mine the depth complexity, instead of only n
primitives with the conventional approach of reading
back the stencil buffer. However, the layered
Goldfeather algorithm requires rendering each layer
of the partial product in any case. Therefore, for this
algorithm an occlusion query can be performed while
rendering the next layer, and, if the number of
fragments in this layer is zero, the algorithm
terminates.

Depth Complexity for SCS
The SCS algorithm, during the subtraction stage,
deploys occlusion queries to test whether the depth
buffer has not changed during rasterization of the last
n primitives. In this case, the subtract-stage is
finished (exit condition), i.e., subtracting the
remaining primitives in the subtraction sequence is
not required anymore. This approach requires to use
an alternative subtraction sequence.

4.2.1 An Alternative Subtraction Sequence
For subtracting primitives P1, …, Pn Stewart et al.
propose the following permutation-embedding
sequence [Ste00a, Ste02a]

44444444 344444444 21
shapes1

2121-1-2121-1-21
2

...............
+−nn

nnnnnn PPPPPPPPPPPPPP

However, we use the following sequence:

1

 times1

2121 PPPPPPPS
n

nnn 44444 344444 21
−

=

The length of Sn is also n · (n−1) + 1 = n2 − n + 1.
First, we show by inductive proof that this sequence
is really permutation embedding. For the induction
base n = 1 the proposition is evident; and for n = 2 it
is also because the sequence S2 = P1P2P1 obviously
contains all permutations of P1 and P2, i.e., P1P2 and
P2P1. So lets presume that the proposition is true for
P1, …, Pn−1, i.e., the sequence Sn−1, build by n−1
times P1…Pn−1 followed by P1, contains all
permutations of P1, …, Pn−1. The length of Sn−1 is
(n−1)2 − (n−1) + 1 = n2 − 3n + 3.
Consider Sn for the primitives P1, …, Pn now. We
choose an arbitrary primitive Pi. Then we construct a
sub-sequence S’ of Sn by removing those (at most
n−1) primitives from Sn that are left of the first
occurrence of Pi in Sn, and by removing all
occurrences of Pi. Pi is removed exactly n−1 times if
i≠ 1; if i=1, Pi is removed n times but then no other
elements are removed from Sn. So, the size of S’ is at
least the size of Sn minus 2·(n−1), i.e., it is at least n2
− n + 1 − 2·(n−1) = n2 − 3n + 3. By construction, the
beginning of S’ has the same form as Sn−1, and S’ is
at least as long as Sn−1. Therefore, the first n2 − 3n +
3 elements of S’ embed all permutations of P1, …, Pn
without Pi (inductive hypothesis). But S’ is a sub-
sequence of Sn, hence permutations of P1, …, Pn that
start with Pi are embedded in Sn. Our choice of Pi
was arbitrary, so all permutations of P1, …, Pn are
embedded in Sn, which means that Sn is permutation
embedding.

Therefore, our permutation-embedding sequence is
as effective and efficient as the sequence given by
Stewart et al. Its advantage for our algorithm,
however, is that when n primitives out of the
subtraction sequence have been rendered, n different
primitives have been rendered. We apply this
property, which would be wrong for the sequence of
Stewart et al., for the exit condition of our modified
subtraction algorithm below.

4.2.2 Modified Subtraction Algorithm
In the subtraction stage, we assign a value
P.fragment_count to each subtracted primitive P that
holds the number of rendered fragments. The value is
initialized with zero. Then, for all primitives in the
sequence, the following enhanced subtraction is
performed (additions to the original SCS subtraction
are set in bold):

The front surface of P is rendered, with “z-less” test
and without update of the z-buffer, but setting a
stencil-bit where the z-test passes. Additionally, the
number of fragments that pass the z-test is
counted. Only if this number does not equal the
number stored with P, the back surface of P is
rendered where the stencil-bit is set and with “z-
greater” test, updating z-values where stencil and z-
test pass. Otherwise, the visibility of the front of P
did not change compared to the last subtraction of P,
so that the currently stored z-values already match
the visible back surface of P and updating the z-
buffer is not necessary.

The exit condition can be defined as follows: If for n
consecutive subtractions the z-buffer was not
updated, the subtraction stage is terminated
immediately. In this case, the modified subtraction
sequence has ensured that all n subtracted primitives
in the partial product have been tested without
updating the z-buffer, so that all dependencies
between different subtracted shapes have been
handled.

The pseudo code of our algorithm, which is outlined
in Algorithm 1, can be optimized in an obvious way
by iterating over the stencil reference values from 1
to 255 and only clearing the stencil buffer for every
255th primitive.

5 RESULTS
The performance of reading and writing pixel data
from the frame buffer to external memory has been
hardly accelerated over the last years. The

measurements (Table 1) show that the older TNT2
can read pixels as fast as the newer ATI 9700. The
ATI 9700 is even considerably slower than the TNT2
writing pixel data. The FX5600 performs better in
these disciplines, however in comparison to the
TNT2, the improvements do not come near to the
comparable increase in fillrate or triangle throughput.

Pixel transfer
rate

(Mpixels/sec)

NVidia
TNT2
(1998)

Nvidia
FX5600
(2003)

ATI
9700

(2003)
Read 26 41 26
Write 42 118 17
Table 1: Pixel-transfer rates of different

generations of graphics hardware.

Our techniques have been implemented in C++ based
on OpenGL. The implementation does not contain
the “frame start optimization” [Wie96a]: For the first
primitive (respectively partial product) in a frame,
this optimization omits saving and restoring the z-
buffer, because at this time the main z-buffer does
not yet contain any data. Even though this is a useful
optimization, it complicates analyzing the rendering
performance: Algorithms that perform well for one
partial product may perform worse for two or more
partial products.

We measured the rendering performance at a
resolution of 800x600, both on the FX5600 and the
ATI 9700; results are given in frames-per-second.
The performance results show that the presented
implementation techniques lead to a drastically better
performance for all tested CSG algorithms. In
particular, the Goldfeather algorithm gets about eight
times faster on the FX5600, and the layered
Goldfeather as the SCS algorithms with depth-
complexity sampling get about four times faster. The
performance improvements for the ATI 9700 are not
shown here in detail, but they are even more evident,
because due to the slower pixel transfer performance,
the ATI 9700 is significantly slower than the FX5600
in the conventional code path.

In the conventional code path, CSG rendering
performance is bound by the pixel-transfer
performance, even on graphics hardware such as the
FX5600, where pixel transfer is comparably fast: For
example, the widget model is composed of five

Figure 2: The widget and the grid model used for
performance analysis.

Algorithm 1 modified subtraction of P1, …, Pn
Generate sequence Sn from P1, …, Pn
primitives_without_update = 0
for primitives P in Sn do
 Initialize stencil buffer with 0
 Set stencil buffer to 1 where z-values of P.front < z
 begin fragment counting

 Render P
 end fragment counting, fc contains result
 if fc != P.fragment_count then

 Update z where z-values of P.back > z and
 stencil == 1
 Render P
 P.fragment_count = fc
 primitives_without_update = 0

 else
 primitives_without_update++

 end if
 if primitives_without_update >= n then

 exit algorithm (exit condition)
 end if
end for

primitives so that the conventional Goldfeather
algorithm requires to save and restore the depth
buffer five times to render the widget. At a resolution
of 800x600 and 11 fps, these are about 26.4 Mpixels
that are copied in a second. In relation to the
maximum pixel-transfer rate of 41 Mpixels/sec for
reading and 118 Mpixels/sec for writing, the
Goldfeather algorithm spends about 64% of its
rendering time for saving the depth buffer and 22%
for restoring it. Only the remaining 14% are actually
used for rendering in this example.

The SCS algorithm with depth-complexity sampling
performs exceptionally well compared to the
standard SCS algorithm; for the grid model the
performance improvement are apparent. On the other
hand, the widget model generally favours algorithms
that do not determine the depth complexity, because
all primitives overlap. But the SCS algorithm with
depth-complexity sampling is hardly slower than the
standard SCS algorithm. The overhead of the
occlusion queries appear to be very small.
Additionally, we found a similar effect as Guha et al.
in their CSG algorithm [Guh03a]: In practice, the
SCS algorithm with modified subtraction algorithm
often requires rendering far fewer primitives than
expressed by the run-time complexity of O(n⋅k) in
the worst case. This is due to the exit condition that
dynamically detects when the frame buffer has not
been changed for a time long enough.

6 CONCLUSIONS
By taking advantage of features of modern graphics
hardware, we can transfer core tasks in image-based
CSG rendering to graphics hardware. On the one
hand, occlusion queries determine depth complexity,
on the other hand, p-buffers and textures transfer
visibility information.

In terms of performance, both the Goldfeather and
the SCS algorithm benefit from these techniques by a
huge amount. Overall, the SCS algorithm remains
faster. However, the Goldfeather algorithm is
suitable for handling concave primitives which the
SCS algorithm does not support directly.

The required graphics capabilities are included on
current and future graphics hardware. The
ARB_occlusion_query extension has been included
in the OpenGL 1.5 specification; rendering to a
texture will be exposed and optimized by ARB
superbuffers [Mac03a]. Therefore, the presented
techniques are well suited for real-time enabled
image based CSG rendering on future graphics
hardware.

7 REFERENCES
[Eps89a] Epstein, D., Jansen, F., and Rossignac, J.

Z-Buffer Rendering from CSG: The Trickle
Algorithm. IBM Research Report RC 15182,
1989.

[Erh00a] Erhart, G., and Tobler, R.F. General
Purpose Z-Buffer CSG Rendering with Consumer
Level Hardware. VRVis Technical Report 003,
2000.

[Eve01a] Everitt, C. Interactive order-independent
transparency. Technical report, NVidia
Corporation, 2001.

[Gol86a] Goldfeather, J., Hultquist, J. P. M., and
Fuchs, H. Fast Constructive Solid Geometry

3d-model:
widget

FX5600
conven-
tional

FX5600
new

ATI
9700
new

Goldf. 11 81 114
Lay. Goldf. 8.2 36 40

SCS 41 124 228
SCS (DS) 25 117 220
Table 2: Performance results for the widget

model.

3d-model:
grid

FX5600
conven-
tional

FX5600
new

ATI9700
new

Goldf. 2.0 16 24
Lay. Goldf. 8.9 38 50

SCS 18 24 73
SCS (DS) 25 95 198

Table 3: Performance results for the grid model.

Figure 3: Cassette of a bicycle. This CSG model is

composed of 150 primitives. With the SCS
algorithm and depth-complexity sampling, the

model is rendered interactively with 12fps on the
GeForce FX5600.

Display in the Pixel-Powers Graphics System.
ACM Computer Graphics (SIGGRAPH '86
Proceedings), 20(4):107-116, 1986.

[Gol89a] Goldfeather, J., Molnar, S., Turk, G., and
Fuchs, H. Near Realtime CSG Rendering Using
Tree Normalization and Geometric Pruning.
IEEE Computer Graphics and Applications,
9(3):20-28, 1989.

[Guh03a] Guha, S., Krishnan, S., Munagala, K., and
Venkatasubramanian, S. Application of the Two-
Sided Depth Test to CSG Rendering. ACM
SIGGRAPH 2003 Symposium on Interactive 3D
Graphics, 177-180, 2003.

[Mac03a] Mace, R. OpenGL ARB Superbuffers.
2003.
http://developer.nvidia.com/docs/IO/
8230/GDC2003_OGL_ARBSuperbuffers.pdf.

[Kil03a] Kilgard, M. J. (editor). NVIDIA OpenGL
Extension Specifications, June 2003.
http://developer.nvidia.com.

[Req80a] Requicha, A. A. G. Representations for
Rigid Solids: Theory, Methods, and Systems.
ACM Computing Surveys, 12(4):437-464, 1980.

[Ste98a] Stewart, N., Leach, G., and John, S. An
Improved Z-Buffer CSG Rendering Algorithm.
1998 Eurographics / SIGGRAPH Workshop on
Graphics Hardware, ACM, 25-30, 1998.

[Ste00a] Stewart, N., Leach, G., and John, S. A CSG
Rendering Algorithm for Convex Objects.
Journal of WSCG, 8(2):369-372, 2000.

[Ste02a] Stewart, N., Leach, G., and John, S. Linear-
time CSG Rendering of Intersected Convex
Objects. Journal of WSCG, 10(2):437-444, 2002.

[Ste03a] Stewart, N., Leach, G., and John, S.
Improved CSG Rendering using Overlap Graph
Subtraction Sequences. Proceedings of
GRAPHITE 2003, 47-53, 2003.

[Wie96a] Wiegand, T.F. Interactive Rendering of
CSG Models. Computer Graphics Forum,
15(4):249-261, 1996.

[Wyn01a] Wynn, C. Using P-Buffers for Off-Screen
Rendering in OpenGL. Technical report, NVidia
Corporation, 2001.

