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ABSTRACT 
Image-based CSG rendering algorithms for standard graphics hardware rely on multipass rendering that includes 
reading and writing large amounts of pixel data from and to the frame buffer. Since the performance of this data 
path has hardly improved over the last years, we describe new implementation techniques that efficiently use 
modern graphics hardware. 1) The render-to-texture ability is used to temporarily store shape visibility, avoiding 
the expensive copy of z-buffer content to external memory. Shape visibility is encoded discretely instead of 
using depth values. Hence, the technique is also not susceptible to artifacts in contrast to previously described 
methods. 2) We present an image-based technique for calculating the depth complexity of a CSG shape that 
avoids reading and analyzing pixel data from the frame buffer. Both techniques optimize various CSG rendering 
algorithms, namely the Goldfeather and the layered Goldfeather algorithm, and the Sequenced-Convex-
Subtraction (SCS) algorithm. This way, these image-based CSG algorithms now operate accelerated by graphics 
hardware and, therefore, represent a significant improvement towards real-time image-based CSG rendering for 
complex models. 
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1. INTRODUCTION 
CSG modeling, i.e. 3D-shape modeling by means of 
volumetric Boolean operations, is a powerful tool in 
many areas of applications, e.g., manufacturing, 
engineering, and 3D-interactive sculpting. For inter-
active manipulation and display of CSG shapes, 
image-based CSG rendering algorithms are most 
suitable. To this category belong the Goldfeather 
algorithm [Gol86a, Gol89a, Wie96a], the layered 
Goldfeather algorithm [Ste98a], and the SCS 
(Sequenced Convex Subtraction) algorithm [Ste00a, 
Ste02a].  

We identified as main bottleneck of these algorithms, 
as described in previous publications, reading pixel 
data from the frame buffer to external memory. This 

operation is needed due to:  

• Visibility transfer: The algorithms determine the 
visibility of CSG primitives and store the 
corresponding depth values in a temporary depth 
buffer. To hold a copy of the main depth buffer 
and to merge the temporary depth values with the 
main depth buffer, depth buffers are saved to 
external memory and restored from it. 

• Depth-complexity calculation: The algorithms, 
in general, calculate the depth complexity of a 
CSG shape by counting the overdraw in the 
stencil buffer, and then reading the stencil values 
to find the maximum overdraw.  

Today, the performance of image-based CSG 
rendering is mainly bound by the throughput of this 
data path. 

In our approach, we propose a solution for per-
forming visibility transfer and depth-complexity 
calculation by the graphics hardware on its own. 
Thereby, the overall performance of CSG algorithms 
is drastically improved. In addition, our solution for 
visibility transfer is insusceptible to artifacts in 
contrast to previous methods. 
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Section 2 summarizes related work and introduces 
basic concepts of image-based CSG. Section 3 dis-
cusses our technique for visibility transfer. Section 4 
explains the technique calculating depth complexity. 
Section 5 gives a detailed performance analysis for 
test models, and Section 6 draws conclusions. 

2. RELATED WORK 
Constructive Solid Geometry (CSG) represents a 
powerful and expressive approach to geometric 3D 
modeling [Req80a]. In CSG, complex shapes are 
built from simple shapes by volumetric Boolean 
operations, i.e., union, intersection, and subtraction. 
A complex shape is specified by a CSG expression, 
which is commonly stored as a CSG tree whose leaf 
nodes represent basic shapes (primitives such as 
sphere, cylinder, and box) and inner nodes denote 
Boolean operations (see Figure 1). 

Image-based CSG algorithms are a category of 
algorithms for z-buffer graphics hardware that 
generate “just the image” of a CSG shape without 
calculating a description of the final object geometry. 
Compared to object-based algorithms, image-based 
CSG algorithms offer a number of advantages in 
many areas of applications. For example, they allow 
for interactively composing and manipulating a CSG 
shape. In general, they also produce less visual 
artifacts than a possibly approximated 3D geometry. 

We are concentrating only on those image-based 
CSG algorithms that can be implemented on standard 
graphics hardware, because we aim at massive 
hardware-acceleration available on today’s GPUs. 
Algorithms that rely on specialized graphics 
hardware, such as the Trickle algorithm [Eps89a], are 
not considered. 

The Goldfeather Algorithm 
Goldfeather et al. presented a CSG rendering 
algorithm for the Pixel-Planes graphics hardware 
[Gol86a, Gol89a]. Their work includes the notion of 

tree normalization, a set of equations to transform a 
generic CSG tree into an equivalent union of one or 
more partial products, whereby a partial product is 
built by intersection and subtraction of an arbitrary 
number of primitives. The normalization ensures that 
CSG expressions can be rendered effectively using z-
buffer supported graphics hardware. Today, all 
image-based CSG rendering algorithms rely on it. 

Goldfeather et al. also observed that only front faces 
of intersected and back faces of subtracted primitives 
in a partial product are potentially visible. The 
Goldfeather algorithm separately tests the visibility 
of each potentially visible depth layer L of a 
(possibly concave) primitive P. If P is convex, ob-
viously only one depth layer of P must be 
considered.  

Visibility testing of L works as follows: The z-values 
of L are rendered into a temporary z-buffer. Then, a 
parity test is performed for all other primitives Q in 
the partial product to discard fragments of L that are 
not visible. The parity test counts the number of front 
and back depth layers of Q with less or equal depth 
as L. For visible parts of L, that number must be odd 
if Q is intersected, and similarly it must be even if Q 
is subtracted. When all parity tests for L have been 
performed, the temporary z-buffer contains the 
correct z-values for visible fragments of L. The z-
values are merged with the content of the main z-
buffer using a “z-less” test. The Goldfeather algo-
rithm has a quadratic runtime behavior with respect 
to the number of primitives in a partial product. 

Stewart et al. [Ste98a] observed that the depth 
complexity k of the primitives in a partial product is 
typically much smaller than the number of primitives 
n, and they proposed the layered Goldfeather algo-
rithm that takes advantage of this fact. The idea is to 
test the visibility of a depth layer of the partial 
product instead that of a single primitive. The theo-
retical runtime of this algorithm is O(n⋅k). The 
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Figure 1: A sample CSG tree (a). It consists of four primitives; the sphere and the box are intersected; the 

cylinders are subtracted. The intermediate results (b, c) and the final image of the CSG expression (d). 



problem of rendering artifacts that commonly 
occurred was solved later [Erh00a]  (also see Section 
3). 

Recently Guha et al. applied two-sided depth testing 
– enabled by hardware support of shadow mapping 
on modern graphics hardware – to a variant of the 
layered Goldfeather algorithm [Guh03a]. By depth 
peeling [Eve01a], their algorithm applies the parity 
test for depth layers of the partial product in front to 
back order, whereby a stencil mask rejects visibility 
updates where the visibility of a CSG layer already 
has been determined.  

The SCS Algorithm 
Stewart et al. [Ste00a] developed the SCS algorithm 
and they later described a refined version [Ste02a] to 
which we will refer to. The SCS Algorithm directly 
handles convex primitives only; concave primitives 
can be processed if they are subdivided into a set of 
convex primitives.  

To determine the z-values of a partial product, the 
SCS algorithm uses three stages:  

• First, the front surface of all intersected 
primitives in the partial product is determined. 
Two principles are applied to achieve this task: 
First, the visible front face of the intersection 
must be further away from the viewer than all 
other front faces of intersected shapes. Second, n 
back faces of intersected shapes must be behind 
the furthest front face; otherwise the furthest 
front face is not visible.  

• In the next stage, a sequence of subtracted 
primitives is subtracted from the z-buffer. A 
subtraction removes a primitive P from a 
temporary front surface, i.e., where the front 
surface of the subtracted primitive P is closer 
and the back surface further away than the 
temporary surface, the z-values are replaced by 
the z-values of the back surface of P. In general, 
the sequence of subtracted primitives must 
ensure that all permutations of primitives reside 
in the sequence in sorted order, such that all 
possible dependencies of primitives are correctly 
handled. A sequence that has this property is 
called permutation embedding. 

• At last, z-values of the subtracted primitives are 
clipped to the back faces of the intersected 
primitives. This is necessary because currently 
visible back faces of subtracted primitives can be 
situated behind the back of the intersection of all 
intersected primitives in the partial product. To 
mark these spots as invisible, it is necessary to 
render all back faces of the intersected 
primitives, resetting the z-value of fragments 
that are closer than the current z-value. 

The first and the last stage have linear runtime; the 
subtraction stage has quadratic runtime with respect 
to the number of subtracted primitives n because of 
the size of the permutation-embedding sequence. 
When the depth complexity k of the subtracted 
primitives is known, a shorter subtraction sequence 
of n⋅k primitives can be used [Ste00a]. Furthermore, 
the object-space arrangement of subtracted primitives 
can be analyzed to shorten the subtraction sequence 
in certain cases [Ste03a].  

3. VISIBILITY TRANSFER 
Both the Goldfeather and the SCS algorithms use 
two z-buffers: a temporary z-buffer used to compute 
the depth image of (part of) a partial product, and a 
final z-buffer to accumulate the results. But standard 
z-buffer graphics hardware does not support two 
simultaneous z-buffers for a single fragment. 
Wiegand proposed a workaround for the Goldfeather 
algorithm [Wie96a], which was later also applied to 
SCS: His method saves the main z-buffer into main 
memory. After calculating the visibility of some CSG 
primitives, it restores the z-buffer and merges the 
temporary result. Unfortunately, this solution has 
important shortcomings: 

• In general, the original z-values do not exactly 
match the copied z-values, since the OpenGL 
standard does not guaranty such exactness (due 
to the conversion of the data format). As a 
consequence, z-artifacts occur [Erh00a].  

• Z-values are temporarily copied from graphics 
memory to main memory. Even under ideal 
circumstances, performance of this approach 
will be moderate due to bandwidth limitations. 
We expect that the throughput of this data path 
will hardly increase in future hardware (For 
measurements of the throughput on today’s 
graphics hardware see Section 5).  

Erhart and Tobler omit z-buffer copies. Instead, they 
copy IDs for shapes that are stored in the stencil-
buffer [Erh00a]. This solves the z-artifacts problem; 
it does not solve the performance constraint since 
stencil-buffer copies are not significantly faster than 
z-buffer copies.  

Render-To-Texture 
In our technique, visibility transfer is based on p-
buffers [Wyn01a], which represent off-screen frame 
buffers. Rendering processes linked to other frame 
buffers can use the p-buffer color channel as 2D-
texture. This functionality, commonly denoted as 
render-to-texture, omits copying color data between 
main memory and graphics memory and, therefore, is 
well suited for real-time rendering. 



For our purpose, the p-buffer has the same size as the 
frame buffer1. Using automatically generated texture 
coordinates, the texture that corresponds to the p-
buffer can be projected on the frame buffer in such a 
way that every texel in the texture has a one-to-one 
mapping to a pixel in the frame buffer. This idea has 
been previously applied to depth-textures to 
implement depth-peeling [Eve01a]. 

ID Textures for Visibility of Primitives 
For convex primitives, only the front face of 
intersected primitives and the back face of subtracted 
primitives are potentially visible. This means that the 
visibility information of a convex primitive can be 
encoded by marking the position with a unique bit 
code ultimately. 

3.2.1 SCS Algorithm   
For the SCS algorithm, our technique uses p-buffers 
to determine the pixel positions at which a primitive 
in a partial product is visible. Thereby, we use the 
alpha channel of the p-buffer to store temporary 
results, i.e., the alpha value of a pixel in the p-buffer 
indicates which primitive is visible at a position. For 
this purpose, each primitive in the partial product is 
assigned a unique ID. Every time the depth buffer is 
updated to denote visibility of a primitive, we also 
store the ID of the primitive in the alpha buffer. 
Where no primitive is visible at all, we store the 
special ID 0.  

After computing the partial product, the alpha 
channel of the p-buffer holds all necessary visibility 
information for the primitives in the partial product. 
For the visibility transfer, we use the alpha channel 
of the p-buffer as texture, and we project this texture 
on the main frame buffer. Then, with “z-less” test, 
we render all potentially visible layers of primitives 
in the partial product (i.e., back or front faces), 
discarding all fragments with an alpha texture-value 
that differs from the ID of the current primitive. This 
is easily done with the alpha test. Finally, the z-
buffer in the back buffer contains the z-values for all 
partial products computed so far. 

3.2.2 Goldfeather Algorithm 
The Goldfeather algorithm cannot deploy shape IDs 
in the same way as the SCS algorithm, because it 
calculates the visibility of a single primitive at a time. 
So it would mark a primitive as potentially visible, 
and then the parity test would determine which parts 
would be really visible, remarking all other parts as 
invisible. In this step, the visibility IDs for primitives 
                                                           
1 If non-power-of-two textures are not supported by the 

graphics hardware, we use a greater p-buffer and restrict 
application of the texture to that area that is covered by 
the frame buffer, by using the texture matrix.  

that were calculated earlier would have to be 
restored. This is not possible without temporarily 
storing them elsewhere, which would impose an 
enormous overhead. Because of that, we cannot 
reasonably use IDs for primitives in the same way as 
in the SCS algorithm. 

Instead, we store the visibility information for only a 
single primitive in the alpha channel of the p-buffer. 
The alpha buffer contains a value of 0 exactly if the 
primitive is not visible − the visibility transfer is 
possible in the same way as in the SCS algorithm. 

We can apply the same approach for concave 
primitives. The Goldfeather algorithm calculates 
their visibility layer by layer, so if we store the 
number of the layer along with the visibility 
information, these information suffice for the 
visibility transfer into the main z-buffer. More 
exactly, for concave primitives, the alpha buffer 
contains a value of 0 exactly if the given layer of the 
primitive is not visible. In the same way, we deploy 
ID textures to the layered Goldfeather algorithm.  

3.2.3 RGBA Textures    
Besides the alpha channel, we can store visibility 
information also in the red, green, and blue color 
channels. The algorithm projects an RGBA-texture 
onto the frame buffer and needs a kind of ‘alpha 
testing based on color values’. That testing is 
achieved with the ARB_combine_dot3 extension of 
OpenGL. Using the dot product of the texture-color 
with a constant color ( (1,0,0), (0,1,0), or (0,0,1) ), 
the texture environment is configured to move the 
information of a color channel into the alpha channel. 
The alpha test, then, is applied as usual. For the 
Goldfeather algorithm, this way one texture encodes 
the visibility of four primitives; for the SCS 
algorithm, the RGBA-texture even encodes the 
visibility of four partial products.  

3.2.4 Limitations and Benefits    
For the SCS algorithm, ID textures limit the number 
of primitives that can be contained in a partial 
product to the number of different IDs. An alpha 
buffer of 8 bit allows for 255 primitives. If more 
primitives are required, the IDs can be spread over 
the RGBA channels, allowing for 232−1 different 
IDs. 

Z-artifacts do not occur with our approach because 
ID textures contain binary information only. 

4. DEPTH COMPLEXITY 
The layered Goldfeather algorithm calculates the 
depth complexity k of a partial product to determine 
the maximum number of depth layers which must be 
handled by the algorithm. In analogy, calculating the 
depth complexity is advantageous for the SCS 



algorithm because it allows to shorten the length of 
the subtraction sequence from n² to n⋅k.   
Calculating the depth complexity, as described in 
previous publications [Ste98a], is a costly operation: 
The overdraw of all pixels is determined by 
rendering the primitives of the partial product into 
the stencil buffer incrementing stencil values. Next, 
the stencil buffer is copied into main memory, and 
the maximum value is determined, which finally 
represents the maximum depth complexity of the 
partial product.  

Generic Calculation of Depth Complexity 
The occlusion-query capability of today’s graphics 
hardware can easily determine the depth complexity 
of a partial product without reading back the stencil 
buffer. Occlusion queries count the number of 
fragments that have passed the stencil test and depth 
test while rasterizing a given set of primitives. In 
OpenGL, the corresponding NV_occlusion_query 
extension [Kil03a] has found widespread support 
from different hardware vendors, e.g., from NVidia 
and ATI. 

To determine the depth complexity k, the partial 
product is rendered layer by layer, counting the 
number of rendered fragments for each layer. The 
number of the initial layer for which the number of 
rendered fragments is zero equals k+1.  

At first glance, the approach appears to be inefficient 
because it requires rendering n⋅k primitives to deter-
mine the depth complexity, instead of only n 
primitives with the conventional approach of reading 
back the stencil buffer. However, the layered 
Goldfeather algorithm requires rendering each layer 
of the partial product in any case. Therefore, for this 
algorithm an occlusion query can be performed while 
rendering the next layer, and, if the number of 
fragments in this layer is zero, the algorithm 
terminates. 

Depth Complexity for SCS 
The SCS algorithm, during the subtraction stage, 
deploys occlusion queries to test whether the depth 
buffer has not changed during rasterization of the last 
n primitives. In this case, the subtract-stage is 
finished (exit condition), i.e., subtracting the 
remaining primitives in the subtraction sequence is 
not required anymore. This approach requires to use 
an alternative subtraction sequence. 

4.2.1 An Alternative Subtraction Sequence 
For subtracting primitives P1, …, Pn Stewart et al. 
propose the following permutation-embedding 
sequence [Ste00a, Ste02a] 

44444444 344444444 21
shapes1

2121-1-2121-1-21
2

...............
+−nn

nnnnnn PPPPPPPPPPPPPP  

However, we use the following sequence: 

1

 times1

2121 .......... PPPPPPPS
n

nnn 44444 344444 21
−

=  

The length of Sn is also n · (n−1) + 1 = n2 − n + 1. 
First, we show by inductive proof that this sequence 
is really permutation embedding. For the induction 
base n = 1 the proposition is evident; and for n = 2 it 
is also because the sequence S2 = P1P2P1 obviously 
contains all permutations of P1 and P2, i.e., P1P2 and 
P2P1. So lets presume that the proposition is true for 
P1, …, Pn−1, i.e., the sequence Sn−1, build by n−1 
times P1…Pn−1 followed by P1, contains all 
permutations of P1, …, Pn−1. The length of Sn−1 is 
(n−1)2 − (n−1) + 1 = n2 − 3n + 3. 
Consider Sn for the primitives P1, …, Pn now. We 
choose an arbitrary primitive Pi. Then we construct a 
sub-sequence S’ of Sn by removing those (at most 
n−1) primitives from Sn that are left of the first 
occurrence of Pi in Sn, and by removing all 
occurrences of Pi. Pi is removed exactly n−1 times if 
i≠ 1; if i=1, Pi is removed n times but then no other 
elements are removed from Sn. So, the size of S’ is at 
least the size of Sn minus 2·(n−1), i.e., it is at least n2 
− n + 1 − 2·(n−1) = n2 − 3n + 3. By construction, the 
beginning of S’ has the same form as Sn−1, and S’ is 
at least as long as Sn−1. Therefore, the first n2 − 3n + 
3 elements of S’ embed all permutations of P1, …, Pn 
without Pi (inductive hypothesis). But S’ is a sub-
sequence of Sn, hence permutations of P1, …, Pn that 
start with Pi are embedded in Sn. Our choice of Pi 
was arbitrary, so all permutations of P1, …, Pn are 
embedded in Sn, which means that Sn is permutation 
embedding.  

Therefore, our permutation-embedding sequence is 
as effective and efficient as the sequence given by 
Stewart et al. Its advantage for our algorithm, 
however, is that when n primitives out of the 
subtraction sequence have been rendered, n different 
primitives have been rendered. We apply this 
property, which would be wrong for the sequence of 
Stewart et al., for the exit condition of our modified 
subtraction algorithm below.  

4.2.2 Modified Subtraction Algorithm 
In the subtraction stage, we assign a value 
P.fragment_count to each subtracted primitive P that 
holds the number of rendered fragments. The value is 
initialized with zero. Then, for all primitives in the 
sequence, the following enhanced subtraction is 
performed (additions to the original SCS subtraction 
are set in bold):  



The front surface of P is rendered, with “z-less” test 
and without update of the z-buffer, but setting a 
stencil-bit where the z-test passes. Additionally, the 
number of fragments that pass the z-test is 
counted. Only if this number does not equal the 
number stored with P, the back surface of P is 
rendered where the stencil-bit is set and with “z-
greater” test, updating z-values where stencil and z-
test pass. Otherwise, the visibility of the front of P 
did not change compared to the last subtraction of P, 
so that the currently stored z-values already match 
the visible back surface of P and updating the z-
buffer is not necessary.  

The exit condition can be defined as follows: If for n 
consecutive subtractions the z-buffer was not 
updated, the subtraction stage is terminated 
immediately. In this case, the modified subtraction 
sequence has ensured that all n subtracted primitives 
in the partial product have been tested without 
updating the z-buffer, so that all dependencies 
between different subtracted shapes have been 
handled. 

The pseudo code of our algorithm, which is outlined 
in Algorithm 1, can be optimized in an obvious way 
by iterating over the stencil reference values from 1 
to 255 and only clearing the stencil buffer for every 
255th primitive.   

5 RESULTS 
The performance of reading and writing pixel data 
from the frame buffer to external memory has been 
hardly accelerated over the last years. The 

measurements (Table 1) show that the older TNT2 
can read pixels as fast as the newer ATI 9700. The 
ATI 9700 is even considerably slower than the TNT2 
writing pixel data. The FX5600 performs better in 
these disciplines, however in comparison to the 
TNT2, the improvements do not come near to the 
comparable increase in fillrate or triangle throughput. 

Pixel transfer 
rate 

(Mpixels/sec) 

NVidia
TNT2 
(1998) 

Nvidia  
FX5600 
(2003) 

ATI 
9700 

(2003) 
Read 26 41 26 
Write 42 118 17 
Table 1: Pixel-transfer rates of different 

generations of graphics hardware. 

Our techniques have been implemented in C++ based 
on OpenGL. The implementation does not contain 
the “frame start optimization” [Wie96a]: For the first 
primitive (respectively partial product) in a frame, 
this optimization omits saving and restoring the z-
buffer, because at this time the main z-buffer does 
not yet contain any data. Even though this is a useful 
optimization, it complicates analyzing the rendering 
performance: Algorithms that perform well for one 
partial product may perform worse for two or more 
partial products.  

We measured the rendering performance at a 
resolution of 800x600, both on the FX5600 and the 
ATI 9700; results are given in frames-per-second. 
The performance results show that the presented 
implementation techniques lead to a drastically better 
performance for all tested CSG algorithms. In 
particular, the Goldfeather algorithm gets about eight 
times faster on the FX5600, and the layered 
Goldfeather as the SCS algorithms with depth-
complexity sampling get about four times faster. The 
performance improvements for the ATI 9700 are not 
shown here in detail, but they are even more evident, 
because due to the slower pixel transfer performance, 
the ATI 9700 is significantly slower than the FX5600 
in the conventional code path.  

In the conventional code path, CSG rendering 
performance is bound by the pixel-transfer 
performance, even on graphics hardware such as the 
FX5600, where pixel transfer is comparably fast: For 
example, the widget model is composed of five 

Figure 2: The widget and the  grid model used for 
performance analysis. 

Algorithm 1 modified subtraction of P1, …, Pn 
Generate sequence Sn from P1, …, Pn 
primitives_without_update = 0 
for primitives P in Sn do 
 Initialize stencil buffer with 0 
 Set stencil buffer to 1 where z-values of P.front < z
 begin fragment counting 

 Render P 
 end fragment counting, fc contains result 
 if fc != P.fragment_count then 

 Update z where z-values of P.back > z and 
                                     stencil == 1 
 Render P 
 P.fragment_count = fc 
 primitives_without_update = 0 

 else  
 primitives_without_update++ 

 end if 
 if primitives_without_update >= n then 

 exit algorithm (exit condition) 
 end if 
end for  

 



primitives so that the conventional Goldfeather 
algorithm requires to save and restore the depth 
buffer five times to render the widget. At a resolution 
of 800x600 and 11 fps, these are about 26.4 Mpixels 
that are copied in a second. In relation to the 
maximum pixel-transfer rate of 41 Mpixels/sec for 
reading and 118 Mpixels/sec for writing, the 
Goldfeather algorithm spends about 64% of its 
rendering time for saving the depth buffer and 22% 
for restoring it. Only the remaining 14% are actually 
used for rendering in this example.  

The SCS algorithm with depth-complexity sampling 
performs exceptionally well compared to the 
standard SCS algorithm; for the grid model the 
performance improvement are apparent. On the other 
hand, the widget model generally favours algorithms 
that do not determine the depth complexity, because 
all primitives overlap. But the SCS algorithm with 
depth-complexity sampling is hardly slower than the 
standard SCS algorithm. The overhead of the 
occlusion queries appear to be very small. 
Additionally, we found a similar effect as Guha et al. 
in their CSG algorithm [Guh03a]: In practice, the 
SCS algorithm with modified subtraction algorithm 
often requires rendering far fewer primitives than 
expressed by the run-time complexity of O(n⋅k) in 
the worst case. This is due to the exit condition that 
dynamically detects when the frame buffer has not 
been changed for a time long enough. 

6 CONCLUSIONS 
By taking advantage of features of modern graphics 
hardware, we can transfer core tasks in image-based 
CSG rendering to graphics hardware. On the one 
hand, occlusion queries determine depth complexity, 
on the other hand, p-buffers and textures transfer 
visibility information.  

In terms of performance, both the Goldfeather and 
the SCS algorithm benefit from these techniques by a 
huge amount. Overall, the SCS algorithm remains 
faster. However, the Goldfeather algorithm is 
suitable for handling concave primitives which the 
SCS algorithm does not support directly. 

The required graphics capabilities are included on 
current and future graphics hardware. The 
ARB_occlusion_query extension has been included 
in the OpenGL 1.5 specification; rendering to a 
texture will be exposed and optimized by ARB 
superbuffers [Mac03a]. Therefore, the presented 
techniques are well suited for real-time enabled 
image based CSG rendering on future graphics 
hardware.  
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3d-model: 
widget 

FX5600 
conven-
tional 

FX5600 
new 

ATI 
9700 
new 

Goldf. 11 81 114 
Lay. Goldf. 8.2 36 40 

SCS 41 124 228 
SCS (DS) 25 117 220 
Table 2: Performance results for the widget 

model. 

3d-model: 
grid 

FX5600 
conven-
tional 

FX5600 
new 

ATI9700 
new 

Goldf. 2.0 16 24 
Lay. Goldf. 8.9 38 50 

SCS 18 24 73 
SCS (DS) 25 95 198 

Table 3: Performance results for the grid model. 

 
Figure 3: Cassette of a bicycle. This CSG model is 

composed of 150 primitives. With the SCS 
algorithm and depth-complexity sampling, the 

model is rendered interactively with 12fps on the 
GeForce FX5600.  
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