
- Draft -

1

A Generic Rendering System

Jürgen Döllner and Klaus Hinrichs

Abstract – We describe the software architecture of a rendering system that
follows a pragmatic approach to integrating and bundling the power of different low-
level rendering systems within an object-oriented framework. The generic rendering
system provides higher-level abstractions to existing rendering systems and serves as
a framework for developing new rendering techniques. It wraps the functionality of
several, widely used rendering systems, defines a unified, object-oriented application
programming interface, and provides an extensible, customizable apparatus for
evaluating and interpreting hierarchical scene information. As a fundamental property,
individual features of a specific rendering system can be integrated into the generic
rendering system in a transparent way. The system is based on a state machine, called
engine, which operates on rendering components. Four major categories of rendering
components constitute the generic rendering system: shapes represent geometries;
attributes specify properties assigned to geometries and scenes; handlers encapsulate
rendering algorithms, and techniques represent evaluation strategies for rendering
components. As a proof of concept, we have implemented the described software
architecture by the Virtual Rendering System which currently wraps OpenGL,
Radiance, POV Ray, and RenderMan.

Index Terms – Rendering systems, object-oriented graphics, generic rendering, rendering framework, multi-pass rendering.

1 INTRODUCTION

Rendering systems represent the basis for computer graphics applications in such diverse fields as
CAD, CAE, medical and scientific visualization, and entertainment. Rendering systems differ with
respect to the type of illumination model (e.g., local illumination models vs. global illumination
models), support for geometric modeling (e.g., polygon-based modeling, implicit surfaces, volume-
based modeling), and support for animation and interaction. In the last 15 years, many rendering sys-
tems emerged, but only few of them have been matured and established themselves as industry stan-
dards.

Rendering systems result from long and complex analysis, design, and implementation processes,
and thus embody a huge amount of both practical and theoretical work: The implementation of a ren-
dering system requires efficient algorithms and data structures for rendering, modeling, optimization,
and animation; a deep knowledge of the underlying principles of illumination and geometry; and ex-
pert knowledge about specialized graphics hardware. In addition, designing the software architecture
of a rendering system is becoming more complex due to manifold developments of new real-time,
photorealistic, and non-photorealistic rendering techniques. It would be not feasible to write one new,
object-oriented rendering system from scratch that supports the whole bandwidth of rendering tech-
niques and graphics hardware covered by existing rendering systems. This has been the motivation
for us to design the generic rendering system which wraps the functionality of existing rendering
systems in an object-oriented way, defines a generic, object-oriented interface that does not suppress
but preserve their individual features, and provides an extensible and easy to customize apparatus for
constructing and evaluating hierarchical scene descriptions.

The generic rendering system defines a generic and extensible class model for rendering compo-
nents, based on a generalized rendering pipeline that defines rendering as a recursive process of in-

2

terpretation and evaluation of rendering components. Rendering components encompass shapes
which represent 2D and 3D geometries, attributes which describe the visual and geometric properties
such as the appearance of shapes and scenes, handlers which represent rendering algorithms, and
techniques which represent strategies for interpreting and evaluating rendering components. Engines
manage the evaluation process; they use techniques to select appropriate handlers and delegate the
tasks of interpretation and evaluation to them.

The whole system is more than its parts: the generic rendering system can also extend rendering
and modeling techniques originally not available in a low-level rendering system. The built-in func-
tionality helps to reduce the implementation effort, and the handler and technique design patterns
make it possible to abstract and encapsulate complex rendering algorithms and data structures, for
example, shadow algorithms, real-time lighting and shading techniques, or image-based CSG model-
ing. To integrate unique features of a low-level rendering system, the core set of rendering compo-
nents can be extended; there is no preference for built-in rendering components. Applications can use
the generic rendering system, for example, for both high-quality rendering and real-time rendering
within one single framework and without having to modify the source code or loosing unique fea-
tures of the concrete rendering systems. Consequently, the generic rendering system improves the
usability and extensibility of today's low-level rendering systems.

To prove the feasibility of the described software architecture, we have developed the Virtual
Rendering System. VRS, a portable C++ toolkit, is currently wrapping OpenGL [42], the lighting
simulation and rendering system Radiance [40], POV-Ray [26], and Pixar's RenderMan [38]. In par-
ticular, the extensive adaptation for OpenGL provides a higher level of abstraction for complex
OpenGL programming techniques such as multitexturing, bump mapping, and shadow maps. There is
no significant performance penalty compared to programs directly using OpenGL.

Figure 1 shows two snapshots produced by VRS. They are taken from a movie, which explains,
visualizes and animates a complex polyhedron, one of the so-called Coxeter Polyhedra; the polyhe-
dron has hidden symmetries, which become visible when rotating and projecting the polyhedron's
edges onto a plane. The application uses the generic rendering system to model and render the scene
based on a single scene graph. The OpenGL engine is used for designing the animation, whereas the
POV-Ray engine is used to produce the final video sequence.

The remainder of this paper is structured as follows: Section 2 discusses related work; Section 3
introduces the software architecture of the generic rendering system; Section 4 defines the rendering
components of our approach; Section 5 and Section 6 explains how rendering components are evalu-
ated and hierarchically modeled; Section 7 gives details about integrating new shape types; Section 8
discusses details of the design of attributes; Section 9 extends our approach towards multi-pass ren-
dering; Section 10 illustrates applications of the generic systems; and Section 11 gives conclusions.

Figure 1. A scene modeled with the generic rendering system, rendered with the OpenGL engine (left) and
with the POV-Ray engine (right). The images have been produced based on the same source code by ex-
changing the rendering engines; the scene graph contains attributes specific to OpenGL and POV-Ray.

3

2 RENDERING SYSTEMS – AN OVERVIEW

This section discusses related work. We briefly summarize the characteristics of standard rendering
systems and analyze the major limitations of their software architecture.

2.1 Rendering Systems
White-box rendering systems document their internal design and provide access to their implementa-
tion. In general, they are delivered as libraries or frameworks, which can be extended and redesigned.
Black-box rendering systems, in contrast, hide their software architecture and can be used exclusively
through a well-defined programming interface such as a scene description language. Gray-box ren-
dering systems do not give full access to the system's design and implementation. In general, devel-
opers can extend at least some parts of a gray-box system, for example, by implementing derived
classes. A detailed reference for object-oriented and component-oriented software engineering can be
found in Szyperski [36].

Vision [32] provides an extensible white-box framework for implementing rendering techniques
focusing on global illumination calculations. The Vision architecture completely separates geometry
objects and their attribute objects using object-oriented design even at a low level in the system archi-
tecture [31]. In our work, the separation between geometric primitives and attributes has been ex-
tended: The generic rendering system provides a generic attribute management for handling render-
ing-system dependent and rendering-technique dependent attribute types. In addition, we separate
rendering algorithms from shape classes and attribute classes. Furthermore, we provide a generic
concept for evaluating scene graphs.

GRAMS [11], an object-oriented white-box rendering framework, appears to be the first system
explicitly supporting different rendering techniques (e.g., real-time rendering, ray-tracing). It distin-
guishes between a rendering layer and a graphics layer. This separation ensures that new functional-
ity can be added to a layer without altering the other layer. The GRAMS architecture separates ren-
dering algorithms from geometric primitives. Rendering algorithms are selected for a target low-level
rendering system using rendering efficiency as criterion [12]. The generic rendering system extends
the separation towards algorithms evaluating attributes and multi-pass rendering techniques.

Generic3D [4] defines an extensible, object-oriented white-box rendering library. It consists of a
collection of classes which can be combined and subclassed to implement application-specific ren-
dering systems, so called customized graphics kernels. Generic uses OpenGL for real-time rendering,
but does not support any other third-party rendering system; it is intended as a framework for imple-
menting new rendering systems.

The BOOGA project [1] develops a white-box component-based software architecture for graph-
ics applications. The system defines three layers, a basis layer, a framework layer, and a component
layer. The system provides a high degree of extensibility because each layer can be extended inde-
pendently using inheritance or template instantiation. For example, the evaluation strategy for scene
graphs is based on the visitor design pattern and implemented by so called renderer components.

OpenInventor [33] represents a sophisticated object-oriented rendering library for interactive 3D
graphics designed as a gray-box system. It has introduced the classical concept of a scene graph,
which has been adopted by many other systems (e.g., Java3D). As a common characteristic, order
and arrangement of rendering primitives in the scene graph reflect the order in which rendering
primitives are sent through the rendering pipeline. OpenInventor concentrates on real-time rendering
and does not support other low-level rendering systems or rendering techniques (e.g., photorealistic
and non-photorealistic rendering).

Java 3D [35], a gray-box rendering library, defines classes for graphical attributes and geometric
objects focusing on real-time computer graphics. Java 3D’s high-level constructs (e.g., scene graph,
view model based on physical body and physical environment, geometry compression, spatial sound
etc.) are designed for constructing virtual worlds and are well suited for interactive 3D graphics. Java
3D defines a core set of shapes but does not permit one to add new types of shapes unless they are

4

reduced to elementary shapes of Java3D, i.e., there is no access to the capabilities of the underlying
low-level 3D rendering library. This, however, restricts the extensibility, in particular if application-
specific shape types are supported by the 3D hardware or the low-level 3D rendering system. New
rendering techniques cannot be integrated into Java 3D because the evaluation process applied to a
scene graph cannot be redefined or specialized. Java 3D claims to be a “fourth-generation” 3D API
[23] and to synthesize its low-level graphics constructs from the best ideas found in low-level APIs
such as Direct3D, OpenGL, QuickDraw3D, and XGL. The implied restriction is that sophisticated
3D graphics applications requiring advanced features of, say OpenGL, can hardly be implemented
because there is no access to specialized but important rendering features, e.g., OpenGL P-buffer
rendering, per-fragment operations, and multi-texturing.

Many other white-box rendering systems apply object-oriented software design principles. Ex-
amples include the MRT [14] toolkit or TBAG [13], a functional approach to interactive and ani-
mated graphics programming, and GROOP [6], a system concentrating on simplicity using an actor-
stage metaphor in the object model.

There is a large number of black-box rendering systems, for which less is known about their
software architecture, for example, the Blue Moon Rendering Tools [15] implementing the Pixar
RenderMan [38] standard or POV-Ray, a popular ray-tracing system. RenderMan established a well-
defined, powerful scene description specification, concentrating on an abstract specification of scene
objects and their attributes; RenderMan makes no assumption about the concrete rendering technique
used to render a scene. The RenderMan interface has influenced strongly our shape and attribute de-
sign.

2.2 Limitations of the Software Architecture of Rendering Systems

As a common characteristic, the aforementioned white-box and gray-box rendering systems provide
efficient object models aligned towards the implementation of their underlying rendering paradigm.
Limitations resulting from this include:

Restricted Portability. Graphics applications based on one rendering system cannot be adapted
easily to another rendering system because the source code must be redesigned completely. For ex-
ample, an application based on OpenInventor cannot be transformed to RenderMan’s RIB scene de-
scription language. Consequently the application developer will less likely experiment with different
rendering systems and techniques.

Restricted Extensibility. The software architecture of most rendering systems assumes a specific
kind of rendering technique. In general, the integration of new rendering techniques, for example
non-photorealistic rendering techniques, can be achieved neither technically nor economically be-
cause too many aspects of the system architecture would have to be redesigned. Most rendering sys-
tems do not support extensibility by integrating external libraries. This is only possible if the render-
ing system has an open architecture and provides a plug-in concept. Otherwise, extensibility is re-
stricted and external rendering libraries cannot be reused.

Complex application programming interface. The application programming interfaces of low-
level rendering systems consist of a multitude of low-level data structures and commands (e.g.
OpenGL [42], Direct3D [22]) which developers have to realize, to read and to understand. Thus, im-
plementing applications on top of existing rendering systems requires deep and detailed knowledge
of the specific interface of the system.

The object model of the generic rendering system is not aligned to a specific rendering paradigm.

Instead, the generic rendering system identifies similarities in the object models of gray-box and
white-box rendering systems and presents a uniform and generic software architecture. It is designed
as a white-box rendering system that will most likely be used as gray-box system.

To support portability, the generic rendering system encapsulates different, autonomous low-
level rendering systems under a uniform application programming interface. To support extensibility,
the generic rendering system allows developers to integrate new rendering techniques and rendering

5

libraries in a straightforward way. Thus, developers can take advantage of many specialized, sophis-
ticated rendering libraries, e.g., collision detection libraries, OpenGL related extensions such as
OpenGL Optimizer [30] and the tubing and extrusion library GLE [39], or geometric modeling soft-
ware such as blob trees [37]. To support ease of use, the generic rendering system concentrates on an
object-oriented and declarative application programming interface. Object-oriented software architec-
tures have proved themselves useful for higher-level rendering systems [6] and form a prerequisite
for component-based software architectures. Declarative interfaces are generally easier to understand
and less bound to a specific implementation. As a side effect, the generic rendering system simplifies
the understanding and usage of the integrated low-level rendering systems.

6

3 SOFTWARE ARCHITECTURE OF THE GENERIC RENDERING SYSTEM

In this section, we briefly define key terminology and introduce the software architecture of the ge-
neric rendering system.

3.1 Terminology

The software architecture of a software system describes that system in terms of software compo-
nents, their composition, and the interactions among those components [29]. The architecture is
specified by models consisting of model elements that describe static, dynamic, and physical aspects
of the software system. In general, models defined by the Unified Modeling Language UML [27] are
deployed to specify the architecture of object-oriented software systems; we will use the UML nota-
tion throughout the paper.

By rendering system we understand software and hardware that synthesize images based on the
geometric descriptions of real or imaginary objects. A rendering system can be implemented as ren-
dering library or rendering framework. A rendering library provides a collection of general-purpose
classes and functions used to develop potentially any kind of graphics application. Examples include
OpenInventor, Java3D, and OpenGL. A rendering framework consists of a collection of classes and
functions that cooperate in order to implement a certain kind of application. To build an application, a
framework is specialized and extended. Examples include the BOOGA framework, the Vision
framework, or the Generic-3D framework.

By rendering we understand, in a wider sense, the translation of data from one representation
into another representation. In computer graphics, rendering denotes the process of synthesizing im-
ages, i.e., the translation of geometry, controlled by associated graphics attributes, to the image me-
dium. More general, rendering includes interpretation and evaluation of rendering components for a
target medium. The strategy for interpreting and evaluating rendering components depends on that
target medium. This broader definition of rendering conforms to the original meaning of 'to render',
to cause to be or become or to translate.

We introduce the term generic rendering system to denote a kind of rendering system that gener-
alizes a number of lower-level rendering systems, expressing their commonalties and differences
within a framework. “Generic” is used in its original meaning of “relating to, characteristic of a
whole group or class” (Webster's New Encyclopedic Dictionary). To implement the generic render-

Generic Rendering System

Core Rendering Components
OpenGL Adapter Components

RenderMan Adapter Components

Shapes

Attributes

Engines

Handlers

Techniques

TechniquesAttributes

Handlers

Scene Graph

Shapes

TechniquesAttributes

HandlersShapes

OpenGL

RIB

Figure 2. Main software packages of the generic rendering system.

7

ing system, lower-level rendering systems need to be integrated into the framework that defines the
key abstractions and key design patterns to incorporate and access the individual features of a lower-
level rendering system.

3.2 Software Architecture

The main packages that constitute the software architecture of the generic rendering system and their
dependencies are outlined in Figure 2. The generic rendering system consists of a package of core
rendering components common to all low-level rendering systems, and packages that contain special-
ized rendering components for a given low-level rendering system.

Among the core rendering components, shapes, attributes, and scene graph components represent
the components used by application developers. Their implementation is based on handlers (i.e., ren-
dering algorithms), techniques (i.e., rendering strategies), and engines. Shapes, attributes and engines
are hierarchically organized and aggregated, composed by a scene graph. Handlers and techniques,
however, are typically managed by engines and thus are not visible to the developer. Handlers are
responsible for interpreting and evaluating shapes and attributes. Shapes and attributes do not know
which handlers will be applied to them. To extend the capabilities and functionality of the generic
rendering system, new components may be introduced in all sub packages.

To integrate a low-level rendering system into the generic rendering system, specialized handlers,
techniques, and possibly attributes must be defined; they are called adapter components. In general,
these specialized classes inherit from base classes defined in the core package. Specialized handlers
may interpret existing attribute classes and shapes classes, as well as specialized attribute classes and
shape classes. Each adapter package uses the appropriate programming interface of the corresponding
low-level rendering system, e.g., the OpenGL application programming interface or the RenderMan
interface RIB.

8

4 RENDERING COMPONENTS

This section introduces the rendering components of the generic rendering system. The key design
elements are the object-based state machine, represented by the engine, and handlers and techniques,
which separate rendering algorithms from shapes and attributes.

The major categories of rendering components of the generic rendering system are classified into
a few categories depending on similar behavior, i.e., the categories are based on a logical (and not
implementation-driven) decomposition. The categories and their uses-relationships are depicted in
Figure 3.

Shapes

Shapes denote objects that are perceived as entities of the target medium. For a visual medium, these
objects are geometric objects; in a sound rendering system, shapes would be sounds. Typical shape
classes include 2D and 3D geometries such as polygonal meshes, free-form surfaces, curves, and
images. Shape classes, however, do not define or reference the rendering algorithms that map them to
a low-level rendering system, nor do they define the attributes that control or specify the mapping
process.

Attributes

Attributes denote modifiers that control or specify the evaluation of shapes for a target medium. For a
visual medium, attributes include all kinds of graphical attributes such as color, texture, or material
properties. Geometric transformations are specialized attributes that control the transformation of
shapes. Attribute classes, however, do not define or reference the rendering algorithms that map them
to a low-level rendering system. The rendering technique used to evaluate a collection of rendering
components determines which attributes are actually considered and how they are interpreted.

Handlers

Handlers denote rendering algorithms that interpret shapes and attributes. A handler class is respon-
sible for a specific shape or attribute class, called its target, and provides a kind of rendering func-
tionality, called the service. A sphere rendering algorithm, for example, has sphere shapes as targets
and provides the service 3D-rendering. Handlers are represented as independent objects; they de-
couple rendering functionality from class descriptions of shapes and attributes. A handler encapsu-
lates an algorithm, i.e., a fragment of code, in an object that can be plugged into and removed from
the generic rendering system. Since handlers can be created and associated with engines dynamically,
handlers shift also the binding of rendering functionality to shapes and attributes from compile time
to run time.

Core Rendering Components

*

*

Evaluation Interpretation Interpretation

*

Evaluation

Shape Handler Attribute

Technique

Engine Rendering
Context

1

Figure 3. Uses associations and part-of associations between core rendering components.

9

Techniques

Techniques denote strategies to process a sequence of rendering components. Techniques determine
suitable handlers for shapes and attributes sent to an engine, and delegate the execution to these han-
dlers. Techniques define when which services are called. Techniques are represented as independent
objects; they enable the generic rendering system to model any kind of evaluation for a sequence of
rendering components. A typical evaluation process is the image synthesis process: image synthesis
techniques search for painting services and control the image generation.

Engines

Engines manage the rendering context and serve as a compact interface to the generic rendering sys-
tem. They trigger the evaluation of shapes and manage attributes. Nodes of a scene graph send their
content objects, i.e., the rendering objects they contain, to an engine; the engine has the role of a visi-
tor traversing through the scene graph. The tasks performed by an engine to process rendering com-
ponents are illustrated in the object diagram in Figure 4.

push/popeval install/deinstall

: Rendering Context

Attribute Table Handler Table

Service

Target

Attribute

Attribute Category
: Shape

: Attribute

: Engine

: Handler

Low-level Rendering System

store/retrieve

inquiry

: Technique

active
Technique

Figure 4. Tasks of an engine to process rendering components.

10

5 EVALUATING RENDERING COMPONENTS

The rendering components constitute the atoms of the generic rendering system. This section explains
how sequences of rendering components are evaluated; the next Section will explain how sequences
of rendering components result from a hierarchical modeling scheme.

5.1 Rendering Context

An engine maintains a collection of active attributes and handlers, stored in an associated rendering
context. The rendering context consists of an attribute table and a handler table. The engine delegates
the evaluation of shapes as well as the activation respectively deactivation of attributes to its active
technique, which in turn delegates these tasks to appropriate handlers. Both, handlers and techniques
are generally interfaced with a specific low-level rendering system. Engines are represented as inde-
pendent objects to enable the generic rendering system to model rendering strategies explicitly.

The attribute table allocates for each attribute category an object container (Figure 5). In general,
the attribute category corresponds to the class an attribute object belongs to. For example, a material
attribute belongs to the category "material". Specialized attributes can be stored in a single container,
if they define a common attribute category; subclasses of attributes can be bundled this way. For ex-
ample, point lights, spotlights, area lights, and directional lights, which are represented by attributes,
share the attribute category "light-source".

The attribute table distinguishes between mono attributes and poly attributes. Only the most re-
cently stored mono attribute of a category is considered to be active. For each category of mono at-
tributes the rendering context allocates a separate attribute stack. Poly attributes of a specific category
can be active in any number. For each category of poly attribute, the rendering context allocates a
unique set. An attribute is either a mono attribute or a poly attribute. The most recently stored mono
attributes of each category and the currently included poly attributes of each category at a given point
in time represent the current context of an engine.

The handler table allocates for each (service, target) pair a handler stack (Figure 5). Handlers are
treated like mono attributes except that two parts, the service and the target determine, their category.
Conceptually, the handler table is a two-dimensional array of stacks, addressed by service and target
identifiers, but not all array elements are actually used. In general, the handler table of an engine is
set up at construction time and can be modified later, i.e., engines can be reconfigured at run-time.

The rendering context allocates appropriate containers automatically if a new attribute category,
service or target is detected. The generic management of attributes and handlers is essential for the
generic rendering system, because otherwise we would have to freeze the set of supported attribute
categories and handlers which would restrict the modeling of individual features of a wrapped render-
ing system or rendering technique.

* Category MonoAttribute

PolyAttribute

Handler

Attribute

Category

(Service,Target)

*

*

Stack<MonoAttribute>

UniqueSet<PolyAttribute>

Stack<Handler>

Rendering

Context
category() : Class

service() : Id
target() : Class

Figure 5. Class model of the rendering context.

11

OpenGL whose architecture is based on a state machine has motivated the design for the render-
ing context. A state machine provides the finest possible control over rendering attributes because it
allows an application to modify exactly those attribute values which are different from the current
attribute values and to store/restore attribute values temporarily using stacks. We have extended this
concept to an object-based, generic state machine: The rendering context stores all state-related at-
tribute objects and handler objects, and automatically creates stacks or sets for new attribute catego-
ries.

The generic rendering system models shapes and attributes independently and uses the rendering
context for their association. The concrete handler used to evaluate a shape decides which of the at-
tributes of the current context to deploy. As a consequence, shapes need not store attribute values,
i.e., they are small in terms of memory usage. The lightweight design [5] ensures that shape objects
and attribute objects are as small as possible, and that they can be used in large numbers and imple-
mented efficiently [20].

5.2 Evaluation Strategies

The engine does not implement any strategy for evaluating rendering components; this is modeled
separately by techniques. The interface of the engine class (Figure 6) serves as primary interface to
the generic rendering system. It can take advantage of the coarse subdivision of rendering compo-
nents in shapes, mono attributes, poly attributes, handlers, and techniques to reduce the number of
methods: There are only methods for pushing and popping mono attributes, for adding and removing
poly attributes, installing and deinstalling handlers, and evaluating shapes. Each engine has an active
technique; it can be replaced or temporarily substituted at run-time.

We distinguish two kinds of techniques: techniques that depend on the low-level rendering and
techniques that are independent from a concrete low-level rendering system.

• A rendering technique synthesizes images for a concrete low-level rendering system. It maps
attributes and shapes to appropriate constructs of a low-level rendering system, e.g., OpenGL or
RenderMan.

• The ray-picking technique determines object-ray intersections using ray-tracing. It is used, for
example, to determine which object has been picked by the user.

• The collision-detection technique determines which objects collide. It skips most attributes and
checks for collision only those shapes that are tagged to be relevant for collision detection.

• The attribute-search technique records the current context for a given shape, i.e., it records which
attributes would have been actually applied to that shape.

Engine

push(ma : MonoAttribute, category : Class)
pop(category : Class)
monoAttribute(category : Class) : MonoAttribute

add(pa : PolyAttribute, category : Class)
remove(pa : PolyAttribute, category : Class)
polyAttributes(category : Class) : List<PolyAttribute>

install(h : Handler)
deinstall(h : Handler)
handlerTable(service : Id, target : Class) : Handler

eval(s : Shape)

Technique

execPush(ma : MonoAttribute, e : Engine) {abstract}
execPop(ma: MonoAttribute, e : Engine) {abstract}

execAdd(pa : PolyAttribute, e : Engine) {abstract}
execRemove(pa : PolyAttribute, e : Engine) {abstract}

execEval(s : Shape, e : Engine) {abstract}

tryShapeService(s : Shape, e : Engine, service : Id) : bool
handleShape(s : Shape, e : Engine, service : Id) : bool
tryAttributeService(a : Attribute, e : Engine, service : Id, unExec : bool) : bool
handleAttribute(a : Attribute, e : Engine, service : Id, unExec : bool) : bool

activeTechnique 1

OpenGLRendering RayTestPicking

CollisionDetection

AttributeSearch

RenderManRendering ImageInformation

Figure 6. Class interfaces of engines and techniques.

12

• The image-information technique calculates the position and extension of a given shape in the
view plane.

The non-rendering techniques do not synthesize images and therefore do not depend on any low-level
rendering system. In general, they can skip most attributes and shapes that are not relevant to them.

If an attribute is sent to an engine, the engine stores the attribute in its rendering context. Then,
the engine delegates the evaluation of the attribute to its active technique. The technique will look up
an appropriate handler. For example, if a material attribute is sent to an engine, it is stored in the ma-
terial attribute stack of the rendering context. Then, the technique searches for a handler with the ser-
vice "attribute deployment" and the target "material"; the handler, if found, could map the attribute to
equivalent commands of a low-level rendering system.

If a shape is sent to an engine, the engine delegates the evaluation to its active technique, which
searches for a suitable handler and delegates the evaluation to it. For example, the OpenGL rendering
technique searches for handlers with the service "OpenGL painting" and the shape class as target.

If a technique cannot find a handler for evaluating an attribute or shape, it tries to find simplifiers
for that attribute or shape. If no simplifiers are available, we repeat the search using the parent class
of the object to be evaluated as target for the handler table. If no handler can be found at all, the ap-
plication-specific error handling undertakes the task. The technique base class Technique provides
methods that implement this scheme for handler look-up. For shapes, the method handleShape im-
plements the recursive look-up for services. The methods for attributes are implemented analogously;
we have to distinguish, however, between activation of an attribute (e.g., push or add) and deactiva-
tion (e.g., pop or remove). An implementation of the shape related methods is outlined below:

void OpenGLRendering::execEval(Shape s, Engine e) {
 if(handleShape(s, e, OPENGLPAINTING)==false) {
 error handling for missing service
 }
}

bool Technique::handleShape(Shape s, Engine e, Id service) {
 Class target = s.Class();
 while (target!=NULL) {
 Handler h = e.context().handlerTable(service, target);
 if(h!=NULL) {
 h.exec(s,e);
 return true;
 }

 h = e.context().handlerTable(SIMPLIFICATION, target);
 if(h!=NULL) {
 h.exec(s,e);
 return true;
 }

 // no success, find handlers for parent class
 target = target.parentClass();
 }

 // no suitables handlers found
 return false;
}

13

5.3 Integrating Rendering Algorithms

Handler classes implement any kind of rendering algorithm; they complement the implementation of
shapes and attributes. Consequently, the engine, shape, and attribute classes are kept simple, leading
to lightweight rendering components. The most important services defined by the generic rendering
system, whose class model is depicted in Figure 7, include:

• Shape Simplification: A shape simplifier is responsible for decomposing a complex shape into a
collection of less complex rendering components. This allows low-level rendering systems to
draw complex shapes without having to support that type of geometry. For example, a torus sim-
plifier may convert a torus into a triangle mesh. If a technique deploys a simplifier, it calls the en-
gine recursively for the resulting rendering components.

• Shape Painting: A shape painter is responsible for mapping a shape to constructs of a low-level
rendering system. The shape painter may consider the current context to decide how to map the
shape. For example, the OpenGL painter for triangle meshes outputs OpenGL triangle lists; if the
context contains a texture, it activates the texture and sends additional texture coordinates for
each triangle. For one shape class, handlers for different low-level rendering systems (and ver-
sions) may be provided, e.g., shape painters for OpenGL 1.1 and OpenGL 1.2.

• Attribute Simplification: An attribute simplifier is responsible for decomposing a complex attrib-
ute into a collection of less complex attributes. An attribute that is specific to one low-level ren-
dering system can be mapped to appropriate attributes of another rendering system. For example,
the plastic attribute used for the RenderMan system could be mapped to a color attribute and a
material attribute used for OpenGL.

• Attribute Painting: An attribute painter is responsible for mapping an attribute to appropriate con-
structs of a low-level rendering system. Like a shape painter, an attribute painter is specific to a
low-level rendering system. For example, the OpenGL color painter modifies the color of the cur-
rent OpenGL context.

• Ray Intersection: A ray intersector intersects a ray with shapes. If for a given shape as target the
rendering context does not contain a ray intersector, the shape is simplified, and the ray intersec-
tion is performed recursively on the result of the simplification.

Handler

exec(r : RenderingComponent, e : Engine) {abstract}

service() : Id {abstract}
target() : Class {abstract}

ShapeSimplifier

RayIntersection

SphereRayIntersection

TorusRayIntersection

SphereSimplifier

TorusSimplifier

SpherePainterGL

SpherePainterRIB

BillboardingSimplifier

MaterialPainterGL

MaterialPainterRIB

AttributeSimplifier

exec(a : Attribute, e : Engine) {abstract}
unexec(a : Attribute, e : Engine) {abstract}

exec(s : Shape, e : Engine) {abstract}

ShapePainter

exec(s : Shape, e : Engine) {abstract}

AttributePainter

exec(a : Attribute, e : Engine) {abstract}
unexec(a : Attribute, e : Engine) {abstract}

Figure 7. Class model of the handler hierarchy.

14

Normally, handlers and techniques are not visible to developers using the generic rendering sys-
tem, because the engine constructor sets up the rendering context with appropriate handlers. If devel-
opers want to provide customized (e.g., new or optimized) handlers, they can implement new handler
classes and register them in the rendering context of an engine at any time. The registration can be
automated, i.e., each handler class can declare for which engine classes it will become a default han-
dler.

5.4 Using the Engine Interface

The following examples1 exemplify the evaluation of rendering components by engines. In the first
example, a torus is rendered, associated with a material attribute and transformed by a rotation attrib-
ute. In the case of an OpenGL rendering technique, the eval method would use a simplifier handler to
decompose the torus into polygons, and render the resulting polygons.

void example(Engine e) {
 Material mat = new Material(...);
 Rotation rot = new Rotation(...);
 Torus ts = new Torus(...);

 e.push(mat, mat.category());
 e.push(rot, rot.category());
 e.eval(ts);
 e.pop(mat.category());
 e.pop(rot.category());
}

The next example demonstrates how specific rendering algorithms can be temporarily associated with
shapes. Assume, we develop a specialized OpenGL painter for torus shapes that provides a more effi-
cient implementation than the simplifier approach of the previous example. Only an OpenGL render-
ing technique uses that painter, otherwise it has no effect, i.e., the command sequence remains ge-
neric.

void example(Engine e) {
 Torus ts = new Torus(...);
 TorusPainterOpenGL tspainter = new TorusPainterGL();

 e.install(tspainter);
 e.eval(ts);
 e.deinstall(tspainter);
}

The third example demonstrates attribute simplification. It uses a billboarding transformation, which
transforms the current model-view matrix such that a specified axis (e.g., the z axis) points towards
the camera. The billboarding transformation cannot be calculated in advance because it depends on
the current model-view matrix. The calculation is performed by the billboarding simplifier, which has
access (like all handlers) to the engine’s context. The billboarding simplifier produces a sequence of
elementary transformations, which, again, are sent to the engine.

void BillboardingSimplifier::exec(b : Billboarding, e : Engine) {
 List<Transformation> Tb = new List<Transformation>();
 Tb ← createTransformations(b, e);
 for each t in Tb {
 e.push(t, t.category());

1 The examples are given in a notation similar to C++ and Java. Note that memory management issues are ignored.

15

 }
}

void BillboardingSimplifier::unexec(b : Billboarding, e : Engine) {
 for each t in Tb {
 e.pop(t.category());
 }
}

The billboarding attribute, however, can be used like an elementary attribute from a developer's point
of view.

void example(Engine e) {
 Billboarding bb = new Billboarding(...);
 Torus ts = new Torus(...);

 e.push(bb, bb.category());
 e.eval(ts);
 e.pop(bb.category());
}

16

6 HIERARCHICAL MODELING OF RENDERING COMPONENTS

The generic rendering system supports the hierarchical modeling of rendering components by scene
graphs. It can be implemented in a straightforward manner: The nodes contain rendering components,
engines traverse the graph, and nodes send the rendering components to the engine. We briefly out-
line a scene graph implementation. Based on the generic rendering system, different schemes for
scene modeling can be implemented as well. For a discussion of hierarchical graphical scenes, see
[3].

The scene graph of the generic rendering system is composed of scene graph nodes and rendering
objects (Figure 8). Scene graph nodes organize rendering components in a hierarchical manner; they
can also generate and constrain rendering components.

We can distinguish two types of scene graph traversals: evaluation and inspection. The evalua-
tion traversal uses an engine to interpret rendering components contained in scene graph nodes (e.g.,
for image synthesis). In contrast, the inspection traversal only explores the scene graph, its contents
and graph structure (e.g., for scene graph storage). Both traversals are implemented based on the visi-
tor design pattern.

6.1 Generic Scene Graph Node
A scene graph node stores rendering components and references to subgraphs in a single, inhomoge-
neous list. During evaluation, scene graph nodes send shapes and attributes to the current engine and
initiate the recursive traversal of subgraphs. The implementation below outlines the node class:

class Node {
private: List<Object> contentObjects;
public:
 void evaluate(e : Engine) {
 unapply(apply(contentObjects,e),e);
 }
 void inspect(v : Visitor) {
 for each c in contentObjects do {
 v.explore(c)
 if(c is a node) { c.inspect(v); }
 }
 }
};

Stack apply(L : List<Object>, e : Engine) {
 S : Stack = {};
 for each c in L {
 if(c is a node) { c.evaluate(e); }
 else if(c is a shape) { e.eval(c); }
 else {
 S.push(c);
 if(c is a mono attribute) { e.push(c, c.category()); }

Rendering Component

Shape

Attribute

Engine

Mono Attribute

Poly Attribute

Handler

evaluates

*
Scene Graph

parent - child

Node
root node

interpretation
*

Technique

*

*
1

*

tr
av

er
si

ng
 e

ng
in

e

*

Figure 8. Class diagram of the scene graph of the generic rendering system.

17

 else if(c is a poly attribute) { e.add(c, c.category()); }
 else if(c is a handler) { e.install(c); }
 }
 }
 return S;
}

void unapply(S : Stack<Object>, e : Engine) {
 while (S not empty) {
 c ß S.pop()
 if(c is a mono attribute) e.pop(c.category())
 else if(c is a poly attribute) e.remove(c, c.category())
 else if(c is a handler) e.deinstall(c)
 }
}

During evaluation, scene graph nodes formulate a "rendering micro program" (Figure 9). Mono at-
tributes are pushed to (popped from) the engine's context; poly attributes are included in (excluded
from) the collection they belong to; and handlers are installed (de-installed) in the handler table of the
context. The node class is generic, because all types of content objects can be arbitrarily mixed,
which leads to compact scene specifications. In any case, the attributes contained in a node affect
only its children and never its sibling nodes.

6.2 Interfacing Low-Level Rendering Systems

The scene graph of the generic rendering system cooperates with different rendering systems. For
each supported low-level rendering system, the generic rendering system implements the handlers for
built-in shapes and attributes, the attributes for system-specific features, and a specialized rendering
engine.

Attribute types differ to a high degree among rendering systems. Therefore, the scene graph per-
mits to store any attribute type. Attributes are not evaluated unless a suitable attribute painter or sim-
plifier is installed. This way, attributes not applicable to a rendering system do not harm. The generic
rendering system defines a small collection of standard attributes (e.g., appearance and transforma-
tion attributes), and provides specialized attributes for each supported low-level rendering system.
For example, OpenGL-specific attributes cover most of OpenGL’s functionality. For RenderMan, a
shader attribute interfaces compiled RenderMan shader files.

In particular, renderer-specific attributes, which are included as regular attributes in scene graphs,
facilitate the production of high-quality animations: manual post-processing of exported scene de-
scriptions is no longer necessary because all details of the target rendering system can be expressed
by the generic rendering system. For all built-in attributes, default conversions are available to map
the attributes reasonably (e.g., materials and light sources).

In the sample scene graph in Figure 10, RenderMan attributes (RenderManShader) are specified.
The scene displays a Wavefront object (WaveFrontObject), rendered by the OpenGL-specific shape
painter (WaveFrontPainterGL) or simplified (WaveFrontSimplifier) in the case of all other rendering
systems. The WaveFrontObject also exemplifies higher-level shapes, which the generic rendering
systems allows us to specify: A scene object in WaveFront format includes geometry data and may

N1 Node

A1 MonoAttr

N11 Node

HHandler

A2 PolyAttr

SShape

N1.evaluate(E)
e.push(A1)
e.install(H)
N11.evaluate(E)
e.add(A2)
e.eval(S)
e.remove(A2)
e.deinstall(H)
e.pop(A1)

Figure 9. A scene graph node and its content objects (left). Resulting engine microprogram (right).

18

assign each geometry part different graphics attributes. Simplification handlers are able to decompose
a given shape into a sequence of rendering objects that not only contains shapes but also attributes.

6.3 Characteristics of the Scene Graph
The following design principles characterize the scene graph of the generic rendering system:
- Strict separation of shapes and attributes similar to Vision [31]. Furthermore, there is no restric-

tion for the types of attributes – engines provide a generic rendering context. In addition, shapes
and attributes can depend on the current context (e.g., billboarding simplification). This allows
for intelligent, automated shapes and attributes.

- Strict separation of declaration and implementation. Handlers encapsulate all kinds of algorithms
applied to shapes and attributes. Therefore, algorithms can be substituted in order to introduce
application-specific implementations or to optimize the default implementation. In addition, han-
dlers may vary from subgraph to subgraph, enabling the application of different algorithms to the
same class of shape or attribute.

- Separation of structure and content. Scene graphs provide structure; rendering objects provide
contents. Both class categories can be extended independently.

- Scene graphs are understood as parameterized scene content specifications. A scene graph repre-
sents a template that is instantiated if a concrete engine interprets the scene graph. The technique
associated with the engine and the handlers deployed by the technique determine the kind of ren-
dering.

CameraMonoAttr

PointLight-1PolyAttr

PointLight-2PolyAttr

Node "floor"

MaterialMonoAttr

RenderManShaderMonoAttr

BoxShape

Node "flamingo-scene"

Node "flamingo"

MaterialMonoAttr

RenderManShaderMonoAttr

WaveFrontPainterGLHandler

WaveFrontSimplifierHandler

WaveFrontObjectShape

Figure 10. Example of a scene graph, rendered by OpenGL and RenderMan.

19

7 INTEGRATING SHAPE TYPES AND SHAPE DATA

The generic rendering system supports the definition and seamless integration of application-specific
shape types and application data.

7.1 Integrating Shape Types

New shape types may become necessary to support new modeling techniques or to support applica-
tion-specific shapes. If new shape types cannot be integrated, i.e., if the collection of built-in shape
types is not extensible, an application would be forced to convert these shapes to built-in shapes.
Consider for example an OpenGL application working with large numbers of 3D arrows. We can
extend the generic rendering system by a new arrow shape class and provide an OpenGL arrow
painter, possibly optimized for the application's purposes. If we have to convert arrows to built-in
shapes by combining a cone shape and a cylinder shape then two problems arise: (1) The application
stores redundant information, i.e., for each arrow a cone shape and a cylinder shape. (2) The arrow
semantics is lost in the rendering system. The semantics, however, may be useful to optimize render-
ing and intersection algorithms.

New shape types can be integrated into the generic rendering system by shape classes and corre-
sponding handler classes. A minimal implementation consists of the shape class and a simplifier
class, which converts shapes of the new type into collections of built-in shapes. A more sophisticated
implementation of a shape type could provide shape painters for low-level rendering systems and a
ray-intersection handler. The design pattern for shape types is depicted in Figure 11.

7.2 Integrating Shape Data

Shape objects are typically defined by data arrays. For example, polygonal shapes may require a set
of vertex coordinates, vertex normals, vertex colors, and vertex texture coordinates. The assumption
that the data of a shape is stored in an array has several drawbacks: applications cannot choose the
data structure in which they want to represent the shape data (e.g., array or list), and one has to pay
the costs for converting or copying the data.

Engine

Handler

Registration

Shape

Simplification

Shape Simplifier

Shape Painter

Shape-A Simplifier

Shape-A Painter X

Shape-A Painter Y

Engine-X

Engine-Y

Shape-A

Registration

Registration
Rendering

Rendering

RayIntersection

Shape-A RayIntersection

Intersection
Calculation

Figure 11. Design pattern for shape types.

20

7.2.1 Iterators for Accessing Data

Shape classes of the generic rendering system use iterators to bind data to shapes. An iterator is an
object that provides sequential access to data elements. It hides the internal representation of the data,
which either can be contained in data storage or be functionally generated. Since shapes and iterators
know nothing about each others implementation, the data of a shape can be stored in different ways
without affecting the interface of the shape class, and application-specific data structures can be at-
tached to shapes by providing suitable iterators, i.e., algorithms operate directly on shape data con-
tained in application data structures. Since no data are copied into a shape object integrity problems
cannot arise. Furthermore several iterators may supply the same data to different shape objects. This
approach has been motivated by the Standard Template Library [24].

The relationship between shapes, handlers, and iterators is depicted in Figure 12. The base itera-
tor class, conceptually a template class with T as the type of data, embodies methods for resetting the
iterator to the first element, stepping to the next element, testing for more elements, and accessing the
current element. The generic rendering system defines iterators for all common container classes such
as arrays, lists, or queues. This ensures that the iterator approach can be used as simple as possible for
standard data containers.

Typical shape classes define their geometric data by means of iterators. For example, a polygon
shape could require three iterators (Figure 13) that define vertex coordinates, vertex normals, and
vertex colors (more iterators could be used, for example, for vertex texture coordinates and edge
flags). When the polygon is sent to an engine the selected handler, e.g. a polygon painter, will use the
iterators to inquire the data.

CompositeIterator

IndexedIterator

SkipIterator

Container Iterator Container

data access

data access Iterator

restart() {abstract}
next() { abstract}
valid() : bool {abstract}
current() : T {abstract

ReplicateIterator

RepeatIterator

Constant Iterator

DerivedIterator

Shape

Handler

T

primary
iterator

iterator
components

1

* 1*

T

T

T

T

T

T

T

T

T

Figure 12. Class hierarchy of iterators.

Polygon

Polygon(
 coordinates : Iterator<Vector> coords,
 normals : Iterator<Vector> = 0,
 colors : Iterator<Color> = 0
)

Shape

Iterator<Vector>

Iterator<Color>

coordinates,
normals

colors

2

1

Figure 13. Iterator-based data integration for generic rendering components.

21

7.2.2 High-Level Iterators

Based on the iterator class and its use for connecting shapes with data sources, several high-level
iterator classes enable applications to efficiently represent data sequences with certain characteristics:

• A constant iterator generates a constant sequence, i.e. a sequence of identical values. It is used to
reduce the memory requirements.

• A replicate iterator generates a sequence which results from replicating each data value of an-
other iterator a given number of times, e.g. it generates "aaabbbcccddd..." from the given se-
quence "abcd...".

• A repeat iterator generates a sequence of data values that results from replicating a segment of a
given iterator, e.g. it generates "bcdbcdbcdbcd..." from "abcde..." for the interval [1,3].

• A skip iterator generates a sequence of data values that results from skipping certain data ele-
ments of another iterator sequence, e.g. it generates "abdeghj..." from "abcdefghij..." when skip-
ping every third element.

• An indexed iterator represents an indexed sequence of data values specified by a sequence of
indices and a sequence of source data values, e.g. it generates "acgh..." from "1,3,7,8,..." and "ab-
cdefghijklmno...".

• A composite iterator represents a sequence that is obtained by combining two or more iterators
sequentially.
For example, consider a polygon specified by a list of N vertex coordinates with alternating bi-

nary coloring (blue and white), and constant vertex normals (Figure 14). The polygon shape construc-
tor expects iterators for vertex coordinates, vertex normals, and vertex colors. The vertex iterator re-
turns the data stored in the vertex array, the normal iterator builds a constant sequence of N vectors,
and the color iterator alternately repeats the two colors N/2+1 times.

The iterator concept does not have a negative impact on the performance compared to explicitly
storing shape data in shape objects. For objects whose geometry is static, display lists are used for
real-time rendering. For objects with dynamic geometry data, the iterator implies only a small run-
time overhead. If a time-critical painter or simplifier for a specific real-time rendering system deter-
mines from the run-time type information that the iterator takes its source data from a memory array,
it can circumvent the iterator traversal and directly access the memory of the data (e.g., using vertex
arrays). This approach leads to an efficient and flexible scheme for associating shapes with data. In
general in computer graphics the functional paradigm provides more flexibility compared to declara-
tive approaches [13].

p : Polygon

vertex coords : Array<Vector>
size = N
vc[0] = x0,y0,z0

...
vc[N-1] = xN-1, yN-1, zN-1

vertex-normal : Vector
vn = (nx, ny, nz)

vc : Array<Color>
size = 2
vc[0] = (1.0,1.0,1.0) {white}
vc[1] = (0.0,0.0,0.0) {blue}

shapes data iterators data sources

vcoords-itr : ArrayIterator<Vector>

vn-itr : ConstantIterator<Vector>

vc-itr : RepeatIterator<Color>
repeatFactor = N/2+1

: ArrayIterator<Color>

Figure 14. Sample configuration of a shape, data iterators, and data sources.

22

8 ATTRIBUTE DESIGN

Attributes include all kinds of modifiers that control or specify the evaluation of shapes in a target
medium. The generic rendering system classifies attributes as follows:

• Surface shading attributes specify the shading of surfaces, and include color, material, texture
and styles for facets, lines, and points.

• Scene attributes specify the rendering of the environment and include fog, depth-cueing, anti-
aliasing, and additional, global rendering properties.

• Light source attributes represent virtual light sources, which are distinguished in distant lights,
point lights, spotlights, and area lights.

• Geometry attributes modify or manipulate the geometry of shapes. Transformations are specified
by 4×4 matrices. Specialized transformations include perspective projection, orthogonal projec-
tion, scaling, translation, rotation, reflection, direction-of-flight transformation, polar transforma-
tion, billboard transformation, etc.). Geometry attributes include also clipping planes, level-of-
detail attributes, and tessellation attributes.

In general, rendering systems based on a local illumination model support similar attributes due to
the same shading techniques; rendering systems based on a global illumination model support more
complex attributes with respect to reflection, transmission, and emission of light. Therefore, we can-
not define one closed set of attribute types, which would eliminate the support for all non-common
(i.e., unique) features of low-level rendering systems. Consequently, the generic rendering system
does not limit the number of attribute categories to enable renderer-specific and application-specific
attribute classes. For example, VRS provides Radiance and RenderMan attribute types to make the
specific shading and lighting features of these rendering systems available.

The generic rendering system defines a core set of attribute types that are general enough to pro-
duce reasonable results for different low-level rendering systems. The core attribute set includes col-
ors, geometric transformations, clipping planes, and light sources. The degree to which other attrib-
utes can be evaluated depends on the capabilities of the low-level rendering system. This approach
allows the generic rendering system to produce images that reflect reasonably well the specified at-
tributes without having to modify the application code when exchanging the rendering system.

The attributes sent to an engine can be evaluated in two different ways. Either a shape painter
may directly inquire the values of all relevant current attributes and use these values to set up the con-
text of the low-level rendering system, or an attribute painter, which is called when an attribute is
pushed to or popped from the engine, sets up the context of the low-level rendering system. In the
case of OpenGL, attribute painters handle most attributes because there is a direct correspondence
between attributes and OpenGL context variables.

Attributes are completely decoupled from shape management, i.e., engines process attributes in-
dependently from shapes. A handler may use the active elements of each attribute category, but at-
tributes are not directly bound to shapes. This ensures that new attribute types can extend the generic
rendering system without having to modify the shape classes. The painters may migrate and consider
new attribute types while the shape interfaces remain stable.

23

9 MULTI-PASS RENDERING TECHNIQUES

Multi-pass rendering refers to a process in which scene objects are evaluated two or more times to
generate a single image. In particular, real-time rendering uses multi-pass rendering [16] to achieve
high-quality illumination and shading effects such as reflections [18], bump mapping [17], shadows
[16], or to apply programmable shading techniques [25] as well as to implement image-based geo-
metric modeling techniques such as constructive solid geometry [41].

Consider a 3D scene described by a set of shapes and attributes, which are organized in a di-
rected, acyclic scene graph. During the traversal of the scene description, a sequence of rendering
components is generated and sent to an engine. Multi-pass rendering techniques need to process the
sequence of rendering components multiple times. In the generic rendering system, multi-pass ren-
dering can be defined as part of a technique.

9.1 Control of Rendering Passes

A technique encapsulates a strategy for processing a sequence of rendering components. A technique
may evaluate such a sequence only once or multiple times. The methods used to control rendering
passes are depicted in Figure 15. The start method initializes the run of a technique (e.g., clears
framebuffer resources); the needsPass method returns whether there are still passes to process; the
preparePass method checks if the current pass has to be processed based on the context of the en-
gine; the finishPass method terminates a single pass; the nextPass method sets up the technique for
the next pass; and the stop method terminates the run of a technique.

The technique decides how many times the sequence of rendering components has to be trav-
ersed. For this, scene graph nodes use techniques to control the evaluation of their content objects.
That is, if a scene graph node contains a technique, the node hands over local control of the traversal
to this technique. A prototypical algorithm for processing a sequence of rendering components with a
technique t for an engine e is shown in Figure 15 (right).

The technique also specifies how to evaluate shapes and attributes. In general, the exec methods
of a technique look up and execute suitable handlers. A concrete technique class can optimize the
execution, for example, by ignoring shape and attribute classes that are not relevant to the current
pass.

In general, rendering techniques require one pass. For real-time rendering systems such as
OpenGL, the rendering technique requires typically two passes. The first pass evaluates opaque ob-
jects only, and the second pass evaluates any transparent objects detected during the first pass. For
scene anti-aliasing additional passes may become necessary.

Technique

start(e : Engine) {abstract}
stop(e : Engine) {abstract}
needsPass(e : Engine) : bool {abstract}
nextPass(e : Engine) {abstract}
preparePass(e: Engine) : bool {abstract}
finishPass(e: Engine) {abstract}

execPush(ma : MonoAttribute, e : Engine) {abstract}
execPop(ma: MonoAttribute, e : Engine) {abstract}

execAdd(pa : PolyAttribute, e : Engine) {abstract}
execRemove(pa : PolyAttribute, e : Engine) {abstract}

execEval(s : Shape, e : Engine) {abstract}

 t.start(e);
 while(t.needsPass(e)) {
 if(t.preparePass(e)) {
 // send rendering components to e
 t.finishPass(e);
 }
 t.nextPass(e);
 }
 t.stop(e);

Figure 15. Technique interface, extended by pass-control methods for support of multi-pass rendering.

24

Non-photorealistic rendering techniques can be integrated seamlessly into the generic rendering
system by encapsulating them in specialized rendering techniques. Such a technique can be used to
extract image information into G-buffers [28] such as surface normal information, object identifiers,
and surface parameterization, which are used later for generating or post-processing an image.

9.2 Implementing Advanced Graphics Programming Techniques

Techniques permit a straightforward implementation of the so-called advanced graphics program-
ming techniques using OpenGL [21]. These techniques, which are mostly implemented by multi-pass
rendering techniques, lead to a higher degree of scene realism and to new rendering styles. The ge-
neric rendering system handles these techniques as high-level attributes, which can be inserted as
content objects in scene graphs and then apply to certain shapes or parts of a scene. Examples of ad-
vanced OpenGL rendering techniques include:

• The surface-style technique can draw a shape in enhanced wire-frame styles (e.g., with additional
silhouette or as haloe line drawing). Basically, this technique uses the stencil buffer and accumu-
lation buffer of OpenGL [21].

• The reflection technique implements reflections on planar surfaces. This technique uses the sten-
cil buffer to identify mirroring surfaces in the image, and renders the mirrored scene in an addi-
tional pass [18] in these areas.

• The shadow technique implements shadows based on the shadow-volume algorithm. In the first
pass, it constructs the shadow volume for a given set of shadowing objects, and using the stencil
buffer it applies the shadow to the non-shadow objects and the shadowed objects in the second
and third pass, respectively [18].

• The Phong-highlight technique implements texture-based highlight patterns by a two-pass render-
ing algorithm. In the first pass, the rendering components are evaluated without specular lighting;
in the second pass, the rendering components are evaluated in the blending rendering mode and
get textured by the highlight pattern.

Figure 16 illustrates the effects of the surface-style, reflection, and shadow techniques. More tech-
niques such as bump-mapping and rendering of constructive solid geometry expressions can be im-
plemented as well. The concept of techniques gives developers full access to advanced capabilities of

(a) (b) (c) (d)

Figure 16. (a) Rendering with enhanced silhouettes. (b) Haloed wire-frame rendering. (c) Rendering with reflection
technique. (d) Rendering with reflection and shadow techniques.

25

a low-level rendering system through a transparent, object-oriented design. In particular, techniques
are well suited to wrap multi-pass rendering techniques of OpenGL in reusable building blocks.

9.3 Using Techniques as Attributes

Many techniques are used like attributes, i.e., they define visual, geometric, and conceptual properties
of shapes. Techniques can be evaluated together with regular attributes such that from the devel-
oper’s point of view there is no distinction between them. A scheme for the recursive evaluation of a
sequence of rendering components C by an engine E including techniques is outlined below. It re-
places the apply/unapply procedure defined for the node class of Section 6.

void Node::evaluate(Engine e) {
 // content objects are stored in arrays
 int to = apply(e, contentObjects, 0);
 unapply(e, contentObjects, 0, to)
}

int apply(Engine e, Array C, int from) {
 int N = C.size();
 for(int i=from; i<N; i++) {
 RenderingComponent c = C[i];
 if(c is a node) { c.evaluate(e); }
 else if(c is a shape) { e.eval(c); }
 else if(c is a mono attribute) { e.push(c, c.category()); }
 else if(c is a poly attribute) { e.add(c, c.category()); }
 else if(c is a handler) { e.install(c); }
 else if(c is a technique) {
 c.start(e);
 while(c.needsPass(e)) {
 if(c.preparePass(e)) {
 int to = apply(e, C, i+1); // recursive eval
 unapply(e, C, i+1, to);
 c.finishPass(e);
 }
 c.nextPass();
 }
 c.stop(e);
 return i-1;
 }
 }
 return N-1;
}

void unapply(Engine e, Array c, int from, int to) {
 for(int i=to; i>=from; i--) {
 RenderingComponent c = C[i];
 if(c is a handler) { e.deinstall(c); }
 else if(c is a mono attribute) { e.pop(c.category()); }
 else if(c is a poly attribute) { e.remove(c.category()); }
 }
}

For example, consider a sequence of rendering components, which are contained in a scene node N,
consisting of a texture attribute A0, a Phong-highlight technique A1 and a surface style technique A2,
and a shape S. The sequence C={A0, A1, A2, S} defined by the node component objects is evaluated
by a nested multi-pass traversal.

Node N = new Node();
N.add(A0 = new Texture(...));
N.add(A1 = new PhongHighlight(...));
N.add(A2 = new SurfaceStyle(...));
N.add(S = new Polygon(...));
N.eval(engine);

26

10 APPLICATIONS AND EXPERIENCE

The Virtual Rendering System (VRS) is a proof-of-concept implementation of the generic rendering
system. It has been implemented as a portable C++ library and provides as built-in features a collec-
tion of shapes, shape simplifiers, shape ray-intersectors, attributes, and techniques.

The easiest way to integrate a low-level rendering system into VRS is to provide the shape
painter class for triangle sets and a core set of attribute painters. VRS can map all pre-defined shapes
to triangle sets. A typical integration will also provide shape painters for those shape types directly
supported by the low-level rendering system.

10.1 Wrapping OpenGL

The VRS adapter for OpenGL provides a collection of OpenGL-specific attributes, handlers and
techniques, e.g., attributes for controlling the color buffer, depth buffer, stencil buffer, scissor test,
stencil test, alpha test, polygon offset and texture features.

For all polygon-based shape classes and standard attribute classes, VRS provides OpenGL
painter classes to ensure optimal performance. Array iterators used by these painters access the data
directly. The handling of transformations, modeled as specialized attributes, is directly transferred to
OpenGL; the engine interface has been extended by transformation methods in analogy to OpenGL.
Therefore, the overall performance of a graphics application compared to a direct implementation
based on the C API of OpenGL is not affected significantly: a small overhead results from 2 - 4 vir-
tual function calls per shape necessary to invoke the painter.

10.2 Plug-Ins

The functionality of our reference implementation is extended by several plug-ins that incorporate
graphics and geometry libraries into VRS. These plug-ins include the OpenGL-based tubing and ex-
trusion library GLE [39], the graphics jungle implementation of the soft objects [37], engines for
VRML, POV Ray, Radiance, and RenderMan, as well as graphical user interface bindings for Qt,
Tcl/Tk, and Microsoft's MFC.

10.3 Applications

VRS is used in a variety of applications. It forms the visualization component for a computer anima-
tion system [7] that uses the OpenGL engine for real-time imaging and the RenderMan engine for
high-quality output.

Currently, a real-time geo-visualization system is being developed on top of VRS [9]. In this ap-
plication, digital terrain models are represented by specialized shape classes that provide level-of-
detail modeling based on regular grids and TINs [2]. Specialized techniques implement multitextur-
ing used to texture the terrain surface with multiple information layers [8] and a variety of visual ef-
fects typically used in flight simulation (including lens flares in the view plane and light reflection at
the surfaces of the water bodies). Snapshots of this application are given in Figure 17.

Using the iterator concept it is easy to combine external terrain data and shape objects without
duplicating the data. Due to the large amount of data, the application represents an excellent test case
for the performance and practicability of our approach.

The built-in features of VRS simplified the implementation of the geo-visualization system. Es-
pecially useful was the possibility to include application-specific shapes, application-specific paint-
ers, and the design of application-specific rendering techniques. Without this possibility, the level-of-
detail modeling for terrain geometry and the multitexturing of the terrain surface could not have been
integrated as efficiently as in a native C implementation. As a consequence, many texture-related
features already moved into the core of VRS since they proved to be generally useful.

27

Figure 17. Real-time terrain rendering based on VRS. Lens flares and hazy sun (left) are modeled as
OpenGL-specific shapes. Multitexturing attributes are used to display multiple layers of terrain data such as
a satellite texture and a road-network texture (right).

28

11 CONCLUSIONS

The generic rendering system represents a pragmatic approach for integrating and bundling the power
of different rendering systems under a transparent, object-based rendering framework. It raises the
level of abstraction of 3D graphics programming, enabling the quick and efficient development of 3D
graphics applications using one or more rendering systems. Its functionality can be extended easily
and efficiently by existing C and C++ graphics and geometry libraries due to its open architecture.

The object model of the generic rendering system makes no assumptions about the internal repre-
sentation of graphics data, the internal structure of the rendering pipeline and the internal processing
of rendering components. In particular, application data structures can be embedded into 3D graphics
objects in an efficient way using iterators. The main functionality of shapes and attributes is decom-
posed into handlers, which allows the developer to configure and modify the functionality with re-
spect to the visualization requirements of an individual application. The processing of rendering
components is general enough to encapsulate multi-pass rendering techniques. The generic rendering
system can be extended by the individual rendering features of an underlying rendering system. Es-
pecially most OpenGL features can be accessed without significant performance overhead. Therefore
the generic rendering system can be used to implement time-critical graphics applications.

The demand for a generic rendering system is increasing because rendering systems have ma-
tured at an impressive speed in the past. Now, these systems represent an enormous variety of render-
ing techniques, but they are still difficult to use from a developer’s perspective due to their complex,
incompatible object models. The generic rendering system may help to overcome these obstacles and
facilitate the integration of these systems. A reference implementation can be found at the web site of
the Virtual Rendering System www.vrs3d.org.

ACKNOWLEDGEMENTS

The authors would like to thank Konstantin Baumann, Tobias Gloth, Oliver Kersting, and Florian
Kirsch for their supportive work.

29

REFERENCES
[1] S. Amann, C. Streit, and H. Bieri, “BOOGA - A Component-Oriented Framework for Computer Graphics”, Graphi-

Con ‘97 Proceedings, pp. 193-200, 1997.
[2] K. Baumann, J. Döllner, K. Hinrichs, and O. Kersting, “A Generic Data Structure for Real-Time Terrain Visualiza-

tion”, Proc. IEEE Computer Graphics International ’99, pp. 85-92, 1999.
[3] E. Beier, “Issues on Hierarchical Graphical Scenes”, New Directions in Computer Graphics, R. Veltkamp and E.

Blake, eds., Springer-Verlag, pp. 3-12, 1995.
[4] E. Beier and U. Bozzetti, “A Generic Graphics Kernel and a Customized Derivative”, Proc. 6th EuroGraphics Work-

shop on Rendering, 1995.
[5] P.R. Calder and M.A. Linton, “Glyphs: Flyweight Objects for User Interfaces”, Proc. ACM UIST, pp. 92-101, 1990.
[6] S. Cunningham, N. Knolle Craighill, M.W. Fong, and J.R. Brown, Computer Graphics Using Object-Oriented Pro-

gramming. Wiley Professional Computing, 1992.
[7] J. Döllner and K. Hinrichs, “Object-Oriented 3D Modeling, Animation and Interaction”, The Journal of Visualization

and Computer Animation, vol. 8, no. 1, pp. 33-64, 1997.
[8] J. Döllner, K. Baumann, and K. Hinrichs, “Texturing Techniques for Terrain Visualization”, Proc. IEEE Visualiza-

tion, pp. 227-234, 2000.
[9] J. Döllner and O. Kersting, “Dynamic 3D Maps as Visual Interfaces for Spatio-Temporal Data”, Proc. of the 8. ACM

Symposium on Advances in Geographic Information Systems (ACMGIS 2000), ACM Press, pp. 115-120, 2000.
[10] D.J. Duke and I. Herman, “Programming Paradigms in an Object-oriented Multimedia Standard”, Computer Graph-

ics Forum, vol. 17, no. 4, pp. 249-261, 1998.
[11] P.K. Egbert and W.J. Kubitz, “Application Graphics Modeling Support Through Object-Orientation”, IEEE Com-

puter, vol. 25, no. 10, pp. 84-91, 1992.
[12] P.K. Egbert, “Utilizing Renderer Efficiencies in an Object-Oriented Graphics System”, New Directions in Computer

Graphics, R. Veltkamp and E. Blake, eds., Springer-Verlag, pp. 13-22, 1995.
[13] C. Elliot, G. Schechter, R. Yeung, and S. Abi-Ezzi, “TBAG: A High Level Framework for Interactive, Animated 3D

Graphics Applications”, Computer Graphics (Proc. SIGGRAPH `94), pp. 421-434, 1994.
[14] D.W. Fellner, “Extensible Image Synthesis”, Proc. 4th EuroGraphics Workshop on Object-Oriented Graphics, pp. 1-

18, 1994.
[15] L. Gritz and J.K. Hahn, “BMRT: A Global Illumination Implementation of the RenderMan Standard”, Journal of

Graphics Tools, vol. 1, no. 3, pp. 29-47, 1996.
[16] W. Heidrich and H.-P. Seidel, “Realistic, Hardware-accelerated Shading and Lighting”, Computer Graphics (Proc.

SIGGRAPH '99), pp. 171-178, 1999.
[17] M.J. Kilgard, “A Practical and Robust Bump-Mapping Technique for Today's GPUs”, GDC 2000 - Advanced

OpenGL Game Development, 2000.
[18] M.J. Kilgard, “Improving Shadows and Reflections via the Stencil Buffer”, NVIDIA White Paper, 2000.
[19] L. Koved and W.L. Wooten, “GROOP: An object-oriented toolkit for animated 3D graphics”, ACM SIGPLAN

NOTICES OOPSLA '93, vol. 28, no. 10, pp. 309-325, 1993.
[20] M.A. Linton, J.M. Vlissides, and P.R. Calder, “Composing User Interfaces with InterViews”, IEEE Computer, vol.

22, no. 2, pp. 8-22, February 1989.
[21] T. McReynolds, D. Blythe, and B. Grantham, “Advanced Graphics Programming Techniques Using OpenGL”,

SIGGRAPH 99 Course Notes, 1999.
[22] Microsoft, Direct3D.
[23] S. Mohan, “The Fourth Generation of 3D Graphics APIs has arrived!”, Sun Microsystems, Java Markets White Pa-

per, 1998.
[24] D.R. Musser and A. Saini, STL Tutorial and Reference Guide. Addison-Wesley, 1996.
[25] M.S. Peercy, M. Olano, J. Airey, and J. Ungar, “Interactive Multi-Pass Programmable Shading”, Computer Graphics

(Proc. SIGGRAPH 2000), pp. 425-432, 2000.
[26] POV Team, Persistency of Vision Ray Tracer (POV-Ray). Version 1.0, Technical Report, 1991.
[27] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Manual. Addison-Wesley, 1997.
[28] T. Saito and T. Takahashi, “Comprehensible Rendering of 3-D Shapes”, Computer Graphics (Proc. SIGGRAPH

’92), vol. 24, no. 4, pp. 197-206.
[29] M. Shaw and D. Garlan, Software Architecture. Perspectives on an Emerging Discipline. Prentice Hall, 1996.

30

[30] Silicon Graphics Inc, OpenGL Optimizer Programmer’s Guide: An Open API for Large-Model Visualization, 1998.
[31] P. Slusallek and H.-P. Seidel, “Object-Oriented Design for Image Synthesis”, Programming Paradigms in Computer

Graphics, Springer, pp. 23-34, 1995.
[32] P. Slusallek and H.-P. Seidel, “VISION – An Architecture for Global Illumination Calculations”, IEEE Transactions

on Visualization and Computer Graphics, vol. 1, no. 1, pp. 77-96, 1995.
[33] P. Strauss and R. Carey, “An Object-Oriented 3D Graphics Toolkit”, Computer Graphics (Proc. SIGGRAPH '92),

vol 26, no. 2, pp. 341-349, 1992.
[34] H. Sowizral, “Scene Graphs in the New Millennium”, IEEE Computer Graphics and Applications, vol. 20, no. 1, pp.

56-57, 2000.
[35] Sun Microsystems, Java 3D API Specification. Version 1.1, July 1998.
[36] C. Szyperski, Component Software. Beyond Object-Oriented Programming. Addison-Wesley, 1998.
[37] M. Tigges and B. Wyvill, “Texture mapping the blob-tree”, Proceedings of the Third Eurographics Workshop on

Implicit Surfaces, pp. 123-130, 1998.
[38] S. Upstill, The RenderMan Companion. A Programmer's Guide to Realistic Computer Graphics. Addison-Wesley,

1989.
[39] L. Vepstas, The GLE Tubing and Extrusion Fact Sheet. http://linas.org/gle
[40] G.J. Ward, “The RADIANCE Lighting Simulation and Rendering System”, Computer Graphics (Proc. of

SIGGRAPH '94), pp. 459-472, 1994.
[41] T.F. Wiegand, “Interactive Rendering of CSG Models”, Computer Graphics forum, vol. 15, no. 4, pp. 249-261, 1996.
[42] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL Programming Guide, 3rd ed. Addision-Wesley, 1999.

31

Jürgen Döllner received his diploma in mathematics 1993 from the University of Siegen, Germany, and his Ph. D. in 1997
from the University of Münster, Germany. He is a professor at the Hasso Plattner Institute at the University of Potsdam. His
research interests include 3D rendering, information visualization, geo visualization, and 3D maps as well as software
engineering and software architecture of computer graphics systems. He is a member of the IEEE.

Klaus Hinrichs received his diploma in mathematics with a minor in computer science in 1979 from the University of Han-
nover, Germany, and his Ph. D. in 1985 from the Swiss Federal Institute of Technology (ETH) in Zurich. He is a full profes-
sor of computer science at the University of Münster, Germany. His main research interests are in the areas of algorithms
and data structures, especially for geometric computation, spatial data bases and visualization. He is a member of the
ACM and the IEEE Computer Society.

Adresses

J. Döllner
Hasso-Plattner-Institute
University of Potsdam
Helmert-Str. 2-3, 14482 Potsdam, Germany
E-mail doellner@hpi.uni-potsdam.de
Phone ++49 331 5509 171
Fax ++49 331 5509 189

K. Hinrichs
Institute for Computer Science
University of Münster
Einsteinstr. 62, 48149 Münster, Germany
E-mail khh@uni-muenster.de
Phone ++49 251 8333752
Fax ++49 251 8333755

32

Appendix A

Diagram of Core Classes of the Virtual Rendering System (VRS)

Shape

Attribute

MonoAttribute

PolyAttribute

Transformation

RenderingComponent

Polygonal

Analytic

Light

Tessellation

PolygonSet Points

Mesh Facet Lines

TriangleSet

Disc Box Cylinder Hyperboloid Cone

Paraboloid Torus Plane SuperQuad Sphere

NURBS BezierCurve

Extrusion

Composite

BSplineCurve

IndexedPolygonSet

PointLight AmbientLight DistantLight SpotLight AreaLight

PointStyle
ColorAttribute Fog

LineStyle Material

FaceStyle

Cache

DOF

Translation Rotation

LookAt

Scaling

Polar

Tf

Perspective Reflection

Billboard

Ortho

Clipplane

Texture

Background

Viewport

ContextData

AutoDetail Detail ConstantDetail

Text3D

Text2D

Handler

Painter

Simplifier

RayIntersector

AttributePainter

ShapePainter

AttributeSimplifier

ShapeSimplifier

CompositeSimplfier ParaboloidSimplifier

HyperboloidSimplifier MeshSimplifier

FacetSimplifier

ConeSimplifier

ExtrusionSimplifier

CylinderSimplifier

DiscSimplifier Text3DSimplifier

CurveSimplifier

BoxSimplifier CacheSimplifier

TriangleSetSimplifier

PlaneSimplifier

SphereSimplifier

SuperquadSimplifier

TorusSimplifier PointsSimplifier

LinesSimplifier

NoteSimplifier

Font3D

Font2D

DiscRayIntersector

BoxRayIntersector

ConeRayIntersector

CylinderRayIntersector

ParaboloidRayIntersector

FacetRayIntersector

HyperboloidRayIntersector

MeshRayIntersector

PolygonSetRayIntersector

SphereRayIntersector

Array<T>

Image PaletteImage FileImage MemoryImage SubImage

Dictionary<T,S> Queue<T> Stack<T> List<T>

Iterator<T> ConstantIterator<T>

CompositeIterator<T,S> ReplicateIterator<T>

RepeatIterator<T> SkipIterator<T>

IndexedIterator<T>

Node

Engine

Technique OpenGLRendering CollisionDetection RayTestPicking AttributeSearch ImageInformation

Context

RenderingComponent

LODShape

Note

Curved

Volume

Camera FilterTag Filter

