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Abstract – We describe the software architecture of a rendering system that 
follows a pragmatic approach to integrating and bundling the power of different low-
level rendering systems within an object-oriented framework. The generic rendering 
system provides higher-level abstractions to existing rendering systems and serves as 
a framework for developing new rendering techniques. It wraps the functionality of 
several, widely used rendering systems, defines a unified, object-oriented application 
programming interface, and provides an extensible, customizable apparatus for 
evaluating and interpreting hierarchical scene information. As a fundamental property, 
individual features of a specific rendering system can be integrated into the generic 
rendering system in a transparent way. The system is based on a state machine, called 
engine, which operates on rendering components. Four major categories of rendering 
components constitute the generic rendering system: shapes represent geometries; 
attributes specify properties assigned to geometries and scenes; handlers encapsulate 
rendering algorithms, and techniques represent evaluation strategies for rendering 
components. As a proof of concept, we have implemented the described software 
architecture by the Virtual Rendering System which currently wraps OpenGL, 
Radiance, POV Ray, and RenderMan.  

Index Terms – Rendering systems, object-oriented graphics, generic rendering, rendering framework, multi-pass rendering.  

1 INTRODUCTION 

Rendering systems represent the basis for computer graphics applications in such diverse fields as 
CAD, CAE, medical and scientific visualization, and entertainment. Rendering systems differ with 
respect to the type of illumination model (e.g., local illumination models vs. global illumination 
models), support for geometric modeling (e.g., polygon-based modeling, implicit surfaces, volume-
based modeling), and support for animation and interaction. In the last 15 years, many rendering sys-
tems emerged, but only few of them have been matured and established themselves as industry stan-
dards.  

Rendering systems result from long and complex analysis, design, and implementation processes, 
and thus embody a huge amount of both practical and theoretical work: The implementation of a ren-
dering system requires efficient algorithms and data structures for rendering, modeling, optimization, 
and animation; a deep knowledge of the underlying principles of illumination and geometry; and ex-
pert knowledge about specialized graphics hardware. In addition, designing the software architecture 
of a rendering system is becoming more complex due to manifold developments of new real-time, 
photorealistic, and non-photorealistic rendering techniques. It would be not feasible to write one new, 
object-oriented rendering system from scratch that supports the whole bandwidth of rendering tech-
niques and graphics hardware covered by existing rendering systems. This has been the motivation 
for us to design the generic rendering system which wraps the functionality of existing rendering 
systems in an object-oriented way, defines a generic, object-oriented interface that does not suppress 
but preserve their individual features, and provides an extensible and easy to customize apparatus for 
constructing and evaluating hierarchical scene descriptions.  

The generic rendering system defines a generic and extensible class model for rendering compo-
nents, based on a generalized rendering pipeline that defines rendering as a recursive process of in-
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terpretation and evaluation of rendering components. Rendering components encompass shapes 
which represent 2D and 3D geometries, attributes which describe the visual and geometric properties 
such as the appearance of shapes and scenes, handlers which represent rendering algorithms, and 
techniques which represent strategies for interpreting and evaluating rendering components. Engines 
manage the evaluation process; they use techniques to select appropriate handlers and delegate the 
tasks of interpretation and evaluation to them.  

The whole system is more than its parts: the generic rendering system can also extend rendering 
and modeling techniques originally not available in a low-level rendering system. The built-in func-
tionality helps to reduce the implementation effort, and the handler and technique design patterns 
make it possible to abstract and encapsulate complex rendering algorithms and data structures, for 
example, shadow algorithms, real-time lighting and shading techniques, or image-based CSG model-
ing. To integrate unique features of a low-level rendering system, the core set of rendering compo-
nents can be extended; there is no preference for built-in rendering components. Applications can use 
the generic rendering system, for example, for both high-quality rendering and real-time rendering 
within one single framework and without having to modify the source code or loosing unique fea-
tures of the concrete rendering systems. Consequently, the generic rendering system improves the 
usability and extensibility of today's low-level rendering systems. 

To prove the feasibility of the described software architecture, we have developed the Virtual 
Rendering System. VRS, a portable C++ toolkit, is currently wrapping OpenGL [42], the lighting 
simulation and rendering system Radiance [40], POV-Ray [26], and Pixar's RenderMan [38]. In par-
ticular, the extensive adaptation for OpenGL provides a higher level of abstraction for complex 
OpenGL programming techniques such as multitexturing, bump mapping, and shadow maps. There is 
no significant performance penalty compared to programs directly using OpenGL.  

Figure 1 shows two snapshots produced by VRS. They are taken from a movie, which explains, 
visualizes and animates a complex polyhedron, one of the so-called Coxeter Polyhedra; the polyhe-
dron has hidden symmetries, which become visible when rotating and projecting the polyhedron's 
edges onto a plane. The application uses the generic rendering system to model and render the scene 
based on a single scene graph. The OpenGL engine is used for designing the animation, whereas the 
POV-Ray engine is used to produce the final video sequence. 

The remainder of this paper is structured as follows: Section 2 discusses related work; Section 3 
introduces the software architecture of the generic rendering system; Section 4 defines the rendering 
components of our approach; Section 5 and Section 6 explains how rendering components are evalu-
ated and hierarchically modeled; Section 7 gives details about integrating new shape types; Section 8 
discusses details of the design of attributes; Section 9 extends our approach towards multi-pass ren-
dering; Section 10 illustrates applications of the generic systems; and Section 11 gives conclusions. 

 

Figure 1. A scene modeled with the generic rendering system, rendered with the OpenGL engine (left) and 
with the POV-Ray engine (right). The images have been produced based on the same source code by ex-
changing the rendering engines; the scene graph contains attributes specific to OpenGL and POV-Ray.  
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2 RENDERING SYSTEMS – AN OVERVIEW 

This section discusses related work. We briefly summarize the characteristics of standard rendering 
systems and analyze the major limitations of their software architecture.  

2.1 Rendering Systems 
White-box rendering systems document their internal design and provide access to their implementa-
tion. In general, they are delivered as libraries or frameworks, which can be extended and redesigned. 
Black-box rendering systems, in contrast, hide their software architecture and can be used exclusively 
through a well-defined programming interface such as a scene description language. Gray-box ren-
dering systems do not give full access to the system's design and implementation. In general, devel-
opers can extend at least some parts of a gray-box system, for example, by implementing derived 
classes. A detailed reference for object-oriented and component-oriented software engineering can be 
found in Szyperski [36].  

Vision [32] provides an extensible white-box framework for implementing rendering techniques 
focusing on global illumination calculations. The Vision architecture completely separates geometry 
objects and their attribute objects using object-oriented design even at a low level in the system archi-
tecture [31]. In our work, the separation between geometric primitives and attributes has been ex-
tended: The generic rendering system provides a generic attribute management for handling render-
ing-system dependent and rendering-technique dependent attribute types. In addition, we separate 
rendering algorithms from shape classes and attribute classes. Furthermore, we provide a generic 
concept for evaluating scene graphs. 

GRAMS [11], an object-oriented white-box rendering framework, appears to be the first system 
explicitly supporting different rendering techniques (e.g., real-time rendering, ray-tracing). It distin-
guishes between a rendering layer and a graphics layer. This separation ensures that new functional-
ity can be added to a layer without altering the other layer. The GRAMS architecture separates ren-
dering algorithms from geometric primitives. Rendering algorithms are selected for a target low-level 
rendering system using rendering efficiency as criterion [12]. The generic rendering system extends 
the separation towards algorithms evaluating attributes and multi-pass rendering techniques.  

Generic3D [4] defines an extensible, object-oriented white-box rendering library. It consists of a 
collection of classes which can be combined and subclassed to implement application-specific ren-
dering systems, so called customized graphics kernels. Generic uses OpenGL for real-time rendering, 
but does not support any other third-party rendering system; it is intended as a framework for imple-
menting new rendering systems.  

The BOOGA project [1] develops a white-box component-based software architecture for graph-
ics applications. The system defines three layers, a basis layer, a framework layer, and a component 
layer. The system provides a high degree of extensibility because each layer can be extended inde-
pendently using inheritance or template instantiation. For example, the evaluation strategy for scene 
graphs is based on the visitor design pattern and implemented by so called renderer components.  

OpenInventor [33] represents a sophisticated object-oriented rendering library for interactive 3D 
graphics designed as a gray-box system. It has introduced the classical concept of a scene graph, 
which has been adopted by many other systems (e.g., Java3D). As a common characteristic, order 
and arrangement of rendering primitives in the scene graph reflect the order in which rendering 
primitives are sent through the rendering pipeline. OpenInventor concentrates on real-time rendering 
and does not support other low-level rendering systems or rendering techniques (e.g., photorealistic 
and non-photorealistic rendering).  

Java 3D [35], a gray-box rendering library, defines classes for graphical attributes and geometric 
objects focusing on real-time computer graphics. Java 3D’s high-level constructs (e.g., scene graph, 
view model based on physical body and physical environment, geometry compression, spatial sound 
etc.) are designed for constructing virtual worlds and are well suited for interactive 3D graphics. Java 
3D defines a core set of shapes but does not permit one to add new types of shapes unless they are 
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reduced to elementary shapes of Java3D, i.e., there is no access to the capabilities of the underlying 
low-level 3D rendering library. This, however, restricts the extensibility, in particular if application-
specific shape types are supported by the 3D hardware or the low-level 3D rendering system. New 
rendering techniques cannot be integrated into Java 3D because the evaluation process applied to a 
scene graph cannot be redefined or specialized. Java 3D claims to be a “fourth-generation” 3D API 
[23] and to synthesize its low-level graphics constructs from the best ideas found in low-level APIs 
such as Direct3D, OpenGL, QuickDraw3D, and XGL. The implied restriction is that sophisticated 
3D graphics applications requiring advanced features of, say OpenGL, can hardly be implemented 
because there is no access to specialized but important rendering features, e.g., OpenGL P-buffer 
rendering, per-fragment operations, and multi-texturing.  

Many other white-box rendering systems apply object-oriented software design principles. Ex-
amples include the MRT [14] toolkit or TBAG [13], a functional approach to interactive and ani-
mated graphics programming, and GROOP [6], a system concentrating on simplicity using an actor-
stage metaphor in the object model.  

There is a large number of black-box rendering systems, for which less is known about their 
software architecture, for example, the Blue Moon Rendering Tools [15] implementing the Pixar 
RenderMan [38] standard or POV-Ray, a popular ray-tracing system. RenderMan established a well-
defined, powerful scene description specification, concentrating on an abstract specification of scene 
objects and their attributes; RenderMan makes no assumption about the concrete rendering technique 
used to render a scene. The RenderMan interface has influenced strongly our shape and attribute de-
sign. 

2.2 Limitations of the Software Architecture of Rendering Systems 

As a common characteristic, the aforementioned white-box and gray-box rendering systems provide 
efficient object models aligned towards the implementation of their underlying rendering paradigm. 
Limitations resulting from this include: 

Restricted Portability. Graphics applications based on one rendering system cannot be adapted 
easily to another rendering system because the source code must be redesigned completely. For ex-
ample, an application based on OpenInventor cannot be transformed to RenderMan’s RIB scene de-
scription language. Consequently the application developer will less likely experiment with different 
rendering systems and techniques. 

Restricted Extensibility. The software architecture of most rendering systems assumes a specific 
kind of rendering technique. In general, the integration of new rendering techniques, for example 
non-photorealistic rendering techniques, can be achieved neither technically nor economically be-
cause too many aspects of the system architecture would have to be redesigned. Most rendering sys-
tems do not support extensibility by integrating external libraries. This is only possible if the render-
ing system has an open architecture and provides a plug-in concept. Otherwise, extensibility is re-
stricted and external rendering libraries cannot be reused. 

Complex application programming interface. The application programming interfaces of low-
level rendering systems consist of a multitude of low-level data structures and commands (e.g. 
OpenGL [42], Direct3D [22]) which developers have to realize, to read and to understand. Thus, im-
plementing applications on top of existing rendering systems requires deep and detailed knowledge 
of the specific interface of the system.  

 
The object model of the generic rendering system is not aligned to a specific rendering paradigm. 

Instead, the generic rendering system identifies similarities in the object models of gray-box and 
white-box rendering systems and presents a uniform and generic software architecture. It is designed 
as a white-box rendering system that will most likely be used as gray-box system.  

To support portability, the generic rendering system encapsulates different, autonomous low-
level rendering systems under a uniform application programming interface. To support extensibility, 
the generic rendering system allows developers to integrate new rendering techniques and rendering 
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libraries in a straightforward way. Thus, developers can take advantage of many specialized, sophis-
ticated rendering libraries, e.g., collision detection libraries, OpenGL related extensions such as 
OpenGL Optimizer [30] and the tubing and extrusion library GLE [39], or geometric modeling soft-
ware such as blob trees [37]. To support ease of use, the generic rendering system concentrates on an 
object-oriented and declarative application programming interface. Object-oriented software architec-
tures have proved themselves useful for higher-level rendering systems [6] and form a prerequisite 
for component-based software architectures. Declarative interfaces are generally easier to understand 
and less bound to a specific implementation. As a side effect, the generic rendering system simplifies 
the understanding and usage of the integrated low-level rendering systems.  
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3 SOFTWARE ARCHITECTURE OF THE GENERIC RENDERING SYSTEM 

In this section, we briefly define key terminology and introduce the software architecture of the ge-
neric rendering system.  

3.1 Terminology 

The software architecture of a software system describes that system in terms of software compo-
nents, their composition, and the interactions among those components [29]. The architecture is 
specified by models consisting of model elements that describe static, dynamic, and physical aspects 
of the software system. In general, models defined by the Unified Modeling Language UML [27] are 
deployed to specify the architecture of object-oriented software systems; we will use the UML nota-
tion throughout the paper.  

By rendering system we understand software and hardware that synthesize images based on the 
geometric descriptions of real or imaginary objects. A rendering system can be implemented as ren-
dering library or rendering framework. A rendering library provides a collection of general-purpose 
classes and functions used to develop potentially any kind of graphics application. Examples include 
OpenInventor, Java3D, and OpenGL. A rendering framework consists of a collection of classes and 
functions that cooperate in order to implement a certain kind of application. To build an application, a 
framework is specialized and extended. Examples include the BOOGA framework, the Vision 
framework, or the Generic-3D framework.  

By rendering we understand, in a wider sense, the translation of data from one representation 
into another representation. In computer graphics, rendering denotes the process of synthesizing im-
ages, i.e., the translation of geometry, controlled by associated graphics attributes, to the image me-
dium. More general, rendering includes interpretation and evaluation of rendering components for a 
target medium. The strategy for interpreting and evaluating rendering components depends on that 
target medium. This broader definition of rendering conforms to the original meaning of 'to render', 
to cause to be or become or to translate.  

We introduce the term generic rendering system to denote a kind of rendering system that gener-
alizes a number of lower-level rendering systems, expressing their commonalties and differences 
within a framework. “Generic” is used in its original meaning of “relating to, characteristic of a 
whole group or class” (Webster's New Encyclopedic Dictionary). To implement the generic render-

Generic Rendering System

Core Rendering Components
OpenGL Adapter Components

RenderMan Adapter Components

Shapes

Attributes

Engines

Handlers

Techniques

TechniquesAttributes

Handlers

Scene Graph

Shapes

TechniquesAttributes

HandlersShapes

OpenGL

RIB

 

Figure 2. Main software packages of the generic rendering system. 
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ing system, lower-level rendering systems need to be integrated into the framework that defines the 
key abstractions and key design patterns to incorporate and access the individual features of a lower-
level rendering system.  

3.2 Software Architecture 

The main packages that constitute the software architecture of the generic rendering system and their 
dependencies are outlined in Figure 2. The generic rendering system consists of a package of core 
rendering components common to all low-level rendering systems, and packages that contain special-
ized rendering components for a given low-level rendering system.  

Among the core rendering components, shapes, attributes, and scene graph components represent 
the components used by application developers. Their implementation is based on handlers (i.e., ren-
dering algorithms), techniques (i.e., rendering strategies), and engines. Shapes, attributes and engines 
are hierarchically organized and aggregated, composed by a scene graph. Handlers and techniques, 
however, are typically managed by engines and thus are not visible to the developer. Handlers are 
responsible for interpreting and evaluating shapes and attributes. Shapes and attributes do not know 
which handlers will be applied to them. To extend the capabilities and functionality of the generic 
rendering system, new components may be introduced in all sub packages.  

To integrate a low-level rendering system into the generic rendering system, specialized handlers, 
techniques, and possibly attributes must be defined; they are called adapter components. In general, 
these specialized classes inherit from base classes defined in the core package. Specialized handlers 
may interpret existing attribute classes and shapes classes, as well as specialized attribute classes and 
shape classes. Each adapter package uses the appropriate programming interface of the corresponding 
low-level rendering system, e.g., the OpenGL application programming interface or the RenderMan 
interface RIB.  
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4 RENDERING COMPONENTS 

This section introduces the rendering components of the generic rendering system. The key design 
elements are the object-based state machine, represented by the engine, and handlers and techniques, 
which separate rendering algorithms from shapes and attributes.  

The major categories of rendering components of the generic rendering system are classified into 
a few categories depending on similar behavior, i.e., the categories are based on a logical (and not 
implementation-driven) decomposition. The categories and their uses-relationships are depicted in 
Figure 3. 

Shapes 

Shapes denote objects that are perceived as entities of the target medium. For a visual medium, these 
objects are geometric objects; in a sound rendering system, shapes would be sounds. Typical shape 
classes include 2D and 3D geometries such as polygonal meshes, free-form surfaces, curves, and 
images. Shape classes, however, do not define or reference the rendering algorithms that map them to 
a low-level rendering system, nor do they define the attributes that control or specify the mapping 
process.  

Attributes 

Attributes denote modifiers that control or specify the evaluation of shapes for a target medium. For a 
visual medium, attributes include all kinds of graphical attributes such as color, texture, or material 
properties. Geometric transformations are specialized attributes that control the transformation of 
shapes. Attribute classes, however, do not define or reference the rendering algorithms that map them 
to a low-level rendering system. The rendering technique used to evaluate a collection of rendering 
components determines which attributes are actually considered and how they are interpreted.  

Handlers 

Handlers denote rendering algorithms that interpret shapes and attributes. A handler class is respon-
sible for a specific shape or attribute class, called its target, and provides a kind of rendering func-
tionality, called the service. A sphere rendering algorithm, for example, has sphere shapes as targets 
and provides the service 3D-rendering. Handlers are represented as independent objects; they de-
couple rendering functionality from class descriptions of shapes and attributes. A handler encapsu-
lates an algorithm, i.e., a fragment of code, in an object that can be plugged into and removed from 
the generic rendering system. Since handlers can be created and associated with engines dynamically, 
handlers shift also the binding of rendering functionality to shapes and attributes from compile time 
to run time.  

 
Core Rendering Components 

* 

* 

Evaluation Interpretation Interpretation 

* 

Evaluation 

Shape Handler Attribute 

Technique 

Engine Rendering 
Context 

1 

 

Figure 3. Uses associations and part-of associations between core rendering components. 
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Techniques 

Techniques denote strategies to process a sequence of rendering components. Techniques determine 
suitable handlers for shapes and attributes sent to an engine, and delegate the execution to these han-
dlers. Techniques define when which services are called. Techniques are represented as independent 
objects; they enable the generic rendering system to model any kind of evaluation for a sequence of 
rendering components. A typical evaluation process is the image synthesis process: image synthesis 
techniques search for painting services and control the image generation. 

Engines  

Engines manage the rendering context and serve as a compact interface to the generic rendering sys-
tem. They trigger the evaluation of shapes and manage attributes. Nodes of a scene graph send their 
content objects, i.e., the rendering objects they contain, to an engine; the engine has the role of a visi-
tor traversing through the scene graph. The tasks performed by an engine to process rendering com-
ponents are illustrated in the object diagram in Figure 4. 

push/popeval install/deinstall

: Rendering Context

Attribute Table Handler Table

Service

Target

Attribute

Attribute Category
: Shape

: Attribute

: Engine

: Handler

Low-level Rendering System

store/retrieve

inquiry

: Technique

active
Technique

 

Figure 4. Tasks of an engine to process rendering components.  
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5 EVALUATING RENDERING COMPONENTS 

The rendering components constitute the atoms of the generic rendering system. This section explains 
how sequences of rendering components are evaluated; the next Section will explain how sequences 
of rendering components result from a hierarchical modeling scheme.  

5.1 Rendering Context 

An engine maintains a collection of active attributes and handlers, stored in an associated rendering 
context. The rendering context consists of an attribute table and a handler table. The engine delegates 
the evaluation of shapes as well as the activation respectively deactivation of attributes to its active 
technique, which in turn delegates these tasks to appropriate handlers. Both, handlers and techniques 
are generally interfaced with a specific low-level rendering system. Engines are represented as inde-
pendent objects to enable the generic rendering system to model rendering strategies explicitly.  

The attribute table allocates for each attribute category an object container (Figure 5). In general, 
the attribute category corresponds to the class an attribute object belongs to. For example, a material 
attribute belongs to the category "material". Specialized attributes can be stored in a single container, 
if they define a common attribute category; subclasses of attributes can be bundled this way. For ex-
ample, point lights, spotlights, area lights, and directional lights, which are represented by attributes, 
share the attribute category "light-source".  

The attribute table distinguishes between mono attributes and poly attributes. Only the most re-
cently stored mono attribute of a category is considered to be active. For each category of mono at-
tributes the rendering context allocates a separate attribute stack. Poly attributes of a specific category 
can be active in any number. For each category of poly attribute, the rendering context allocates a 
unique set. An attribute is either a mono attribute or a poly attribute. The most recently stored mono 
attributes of each category and the currently included poly attributes of each category at a given point 
in time represent the current context of an engine.  

The handler table allocates for each (service, target) pair a handler stack (Figure 5). Handlers are 
treated like mono attributes except that two parts, the service and the target determine, their category. 
Conceptually, the handler table is a two-dimensional array of stacks, addressed by service and target 
identifiers, but not all array elements are actually used. In general, the handler table of an engine is 
set up at construction time and can be modified later, i.e., engines can be reconfigured at run-time. 

The rendering context allocates appropriate containers automatically if a new attribute category, 
service or target is detected. The generic management of attributes and handlers is essential for the 
generic rendering system, because otherwise we would have to freeze the set of supported attribute 
categories and handlers which would restrict the modeling of individual features of a wrapped render-
ing system or rendering technique. 

 

* Category MonoAttribute 

PolyAttribute 

Handler 

Attribute 

Category 

(Service,Target) 

* 

* 

Stack<MonoAttribute> 

UniqueSet<PolyAttribute> 

Stack<Handler> 

Rendering 
  

Context 
category() : Class 

service() : Id 
target() : Class 

 

Figure 5. Class model of the rendering context. 
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OpenGL whose architecture is based on a state machine has motivated the design for the render-
ing context. A state machine provides the finest possible control over rendering attributes because it 
allows an application to modify exactly those attribute values which are different from the current 
attribute values and to store/restore attribute values temporarily using stacks. We have extended this 
concept to an object-based, generic state machine: The rendering context stores all state-related at-
tribute objects and handler objects, and automatically creates stacks or sets for new attribute catego-
ries. 

The generic rendering system models shapes and attributes independently and uses the rendering 
context for their association. The concrete handler used to evaluate a shape decides which of the at-
tributes of the current context to deploy. As a consequence, shapes need not store attribute values, 
i.e., they are small in terms of memory usage. The lightweight design [5] ensures that shape objects 
and attribute objects are as small as possible, and that they can be used in large numbers and imple-
mented efficiently [20]. 

5.2 Evaluation Strategies 

The engine does not implement any strategy for evaluating rendering components; this is modeled 
separately by techniques. The interface of the engine class (Figure 6) serves as primary interface to 
the generic rendering system. It can take advantage of the coarse subdivision of rendering compo-
nents in shapes, mono attributes, poly attributes, handlers, and techniques to reduce the number of 
methods: There are only methods for pushing and popping mono attributes, for adding and removing 
poly attributes, installing and deinstalling handlers, and evaluating shapes. Each engine has an active 
technique; it can be replaced or temporarily substituted at run-time. 

We distinguish two kinds of techniques: techniques that depend on the low-level rendering and 
techniques that are independent from a concrete low-level rendering system.  

• A rendering technique synthesizes images for a concrete low-level rendering system. It maps 
attributes and shapes to appropriate constructs of a low-level rendering system, e.g., OpenGL or 
RenderMan.  

• The ray-picking technique determines object-ray intersections using ray-tracing. It is used, for 
example, to determine which object has been picked by the user.  

• The collision-detection technique determines which objects collide. It skips most attributes and 
checks for collision only those shapes that are tagged to be relevant for collision detection.  

• The attribute-search technique records the current context for a given shape, i.e., it records which 
attributes would have been actually applied to that shape.  

Engine

push(ma : MonoAttribute, category : Class)
pop(category : Class)
monoAttribute(category : Class) : MonoAttribute

add(pa : PolyAttribute, category : Class)
remove(pa : PolyAttribute, category : Class)
polyAttributes(category : Class) : List<PolyAttribute>

install(h : Handler)
deinstall(h : Handler)
handlerTable(service : Id, target : Class) : Handler

eval(s : Shape)

Technique

execPush(ma : MonoAttribute, e : Engine) {abstract}
execPop(ma: MonoAttribute, e : Engine) {abstract}

execAdd(pa : PolyAttribute, e : Engine) {abstract}
execRemove(pa : PolyAttribute, e : Engine) {abstract}

execEval(s : Shape, e : Engine) {abstract}

# tryShapeService(s : Shape, e : Engine, service : Id) : bool
# handleShape(s : Shape, e : Engine, service : Id) : bool
# tryAttributeService(a : Attribute, e : Engine, service : Id, unExec : bool) : bool
# handleAttribute(a : Attribute, e : Engine, service : Id, unExec : bool) : bool

activeTechnique  1

OpenGLRendering RayTestPicking

CollisionDetection

AttributeSearch

RenderManRendering ImageInformation

 

Figure 6. Class interfaces of engines and techniques. 
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• The image-information technique calculates the position and extension of a given shape in the 
view plane.  

The non-rendering techniques do not synthesize images and therefore do not depend on any low-level 
rendering system. In general, they can skip most attributes and shapes that are not relevant to them. 

If an attribute is sent to an engine, the engine stores the attribute in its rendering context. Then, 
the engine delegates the evaluation of the attribute to its active technique. The technique will look up 
an appropriate handler. For example, if a material attribute is sent to an engine, it is stored in the ma-
terial attribute stack of the rendering context. Then, the technique searches for a handler with the ser-
vice "attribute deployment" and the target "material"; the handler, if found, could map the attribute to 
equivalent commands of a low-level rendering system.  

If a shape is sent to an engine, the engine delegates the evaluation to its active technique, which 
searches for a suitable handler and delegates the evaluation to it. For example, the OpenGL rendering 
technique searches for handlers with the service "OpenGL painting" and the shape class as target.  

If a technique cannot find a handler for evaluating an attribute or shape, it tries to find simplifiers 
for that attribute or shape. If no simplifiers are available, we repeat the search using the parent class 
of the object to be evaluated as target for the handler table. If no handler can be found at all, the ap-
plication-specific error handling undertakes the task. The technique base class Technique provides 
methods that implement this scheme for handler look-up. For shapes, the method handleShape im-
plements the recursive look-up for services. The methods for attributes are implemented analogously; 
we have to distinguish, however, between activation of an attribute (e.g., push or add) and deactiva-
tion (e.g., pop or remove). An implementation of the shape related methods is outlined below:  

 
void OpenGLRendering::execEval(Shape s, Engine e) { 
  if(handleShape(s, e, OPENGLPAINTING)==false) { 
    error handling for missing service 
  } 
} 
 
bool Technique::handleShape(Shape s, Engine e, Id service) { 
  Class target = s.Class(); 
  while (target!=NULL) { 
    Handler h = e.context().handlerTable(service, target); 
    if(h!=NULL) {  
      h.exec(s,e); 
      return true; 
    } 
 
    h = e.context().handlerTable(SIMPLIFICATION, target); 
    if(h!=NULL) {  
      h.exec(s,e); 
      return true; 
    } 
 
    // no success, find handlers for parent class 
    target = target.parentClass(); 
  } 
 
  // no suitables handlers found 
  return false; 
} 
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5.3 Integrating Rendering Algorithms  

Handler classes implement any kind of rendering algorithm; they complement the implementation of 
shapes and attributes. Consequently, the engine, shape, and attribute classes are kept simple, leading 
to lightweight rendering components. The most important services defined by the generic rendering 
system, whose class model is depicted in Figure 7, include: 

• Shape Simplification: A shape simplifier is responsible for decomposing a complex shape into a 
collection of less complex rendering components. This allows low-level rendering systems to 
draw complex shapes without having to support that type of geometry. For example, a torus sim-
plifier may convert a torus into a triangle mesh. If a technique deploys a simplifier, it calls the en-
gine recursively for the resulting rendering components.  

• Shape Painting: A shape painter is responsible for mapping a shape to constructs of a low-level 
rendering system. The shape painter may consider the current context to decide how to map the 
shape. For example, the OpenGL painter for triangle meshes outputs OpenGL triangle lists; if the 
context contains a texture, it activates the texture and sends additional texture coordinates for 
each triangle. For one shape class, handlers for different low-level rendering systems (and ver-
sions) may be provided, e.g., shape painters for OpenGL 1.1 and OpenGL 1.2. 

• Attribute Simplification: An attribute simplifier is responsible for decomposing a complex attrib-
ute into a collection of less complex attributes. An attribute that is specific to one low-level ren-
dering system can be mapped to appropriate attributes of another rendering system. For example, 
the plastic attribute used for the RenderMan system could be mapped to a color attribute and a 
material attribute used for OpenGL.  

• Attribute Painting: An attribute painter is responsible for mapping an attribute to appropriate con-
structs of a low-level rendering system. Like a shape painter, an attribute painter is specific to a 
low-level rendering system. For example, the OpenGL color painter modifies the color of the cur-
rent OpenGL context. 

• Ray Intersection: A ray intersector intersects a ray with shapes. If for a given shape as target the 
rendering context does not contain a ray intersector, the shape is simplified, and the ray intersec-
tion is performed recursively on the result of the simplification.  

Handler

exec(r : RenderingComponent, e : Engine) {abstract}

service() : Id {abstract}
target() : Class {abstract}

ShapeSimplifier

RayIntersection

SphereRayIntersection

TorusRayIntersection

SphereSimplifier

TorusSimplifier

SpherePainterGL

SpherePainterRIB

BillboardingSimplifier

MaterialPainterGL

MaterialPainterRIB

AttributeSimplifier

exec(a : Attribute, e : Engine) {abstract}
unexec(a : Attribute, e : Engine) {abstract}

exec(s : Shape, e : Engine) {abstract}

ShapePainter

exec(s : Shape, e : Engine) {abstract}

AttributePainter

exec(a : Attribute, e : Engine) {abstract}
unexec(a : Attribute, e : Engine) {abstract}

 

Figure 7. Class model of the handler hierarchy. 
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Normally, handlers and techniques are not visible to developers using the generic rendering sys-
tem, because the engine constructor sets up the rendering context with appropriate handlers. If devel-
opers want to provide customized (e.g., new or optimized) handlers, they can implement new handler 
classes and register them in the rendering context of an engine at any time. The registration can be 
automated, i.e., each handler class can declare for which engine classes it will become a default han-
dler.  

5.4 Using the Engine Interface 

The following examples1 exemplify the evaluation of rendering components by engines. In the first 
example, a torus is rendered, associated with a material attribute and transformed by a rotation attrib-
ute. In the case of an OpenGL rendering technique, the eval method would use a simplifier handler to 
decompose the torus into polygons, and render the resulting polygons.  

 
void example(Engine e) { 
  Material mat = new Material(...); 
  Rotation rot = new Rotation(...); 
  Torus ts = new Torus(...); 
 
  e.push(mat, mat.category()); 
  e.push(rot, rot.category()); 
  e.eval(ts); 
  e.pop(mat.category()); 
  e.pop(rot.category()); 
} 
 

The next example demonstrates how specific rendering algorithms can be temporarily associated with 
shapes. Assume, we develop a specialized OpenGL painter for torus shapes that provides a more effi-
cient implementation than the simplifier approach of the previous example. Only an OpenGL render-
ing technique uses that painter, otherwise it has no effect, i.e., the command sequence remains ge-
neric.  

 
void example(Engine e) { 
  Torus ts = new Torus(...); 
  TorusPainterOpenGL tspainter = new TorusPainterGL(); 
 
  e.install(tspainter); 
  e.eval(ts); 
  e.deinstall(tspainter); 
} 
 

The third example demonstrates attribute simplification. It uses a billboarding transformation, which 
transforms the current model-view matrix such that a specified axis (e.g., the z axis) points towards 
the camera. The billboarding transformation cannot be calculated in advance because it depends on 
the current model-view matrix. The calculation is performed by the billboarding simplifier, which has 
access (like all handlers) to the engine’s context. The billboarding simplifier produces a sequence of 
elementary transformations, which, again, are sent to the engine. 

 
void BillboardingSimplifier::exec(b : Billboarding, e : Engine) { 
  List<Transformation> Tb = new List<Transformation>(); 
  Tb ← createTransformations(b, e); 
  for each t in Tb { 
    e.push(t, t.category()); 

                                                
1 The examples are given in a notation similar to C++ and Java. Note that memory management issues are ignored.  
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  } 
} 
 
void BillboardingSimplifier::unexec(b : Billboarding, e : Engine) { 
  for each t in Tb { 
    e.pop(t.category()); 
  } 
} 
 

The billboarding attribute, however, can be used like an elementary attribute from a developer's point 
of view.  

 
void example(Engine e) { 
  Billboarding bb = new Billboarding(...); 
  Torus ts = new Torus(...); 
 
  e.push(bb, bb.category()); 
  e.eval(ts); 
  e.pop(bb.category()); 
} 
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6 HIERARCHICAL MODELING OF RENDERING COMPONENTS 

The generic rendering system supports the hierarchical modeling of rendering components by scene 
graphs. It can be implemented in a straightforward manner: The nodes contain rendering components, 
engines traverse the graph, and nodes send the rendering components to the engine. We briefly out-
line a scene graph implementation. Based on the generic rendering system, different schemes for 
scene modeling can be implemented as well. For a discussion of hierarchical graphical scenes, see 
[3]. 

The scene graph of the generic rendering system is composed of scene graph nodes and rendering 
objects (Figure 8). Scene graph nodes organize rendering components in a hierarchical manner; they 
can also generate and constrain rendering components.  

We can distinguish two types of scene graph traversals: evaluation and inspection. The evalua-
tion traversal uses an engine to interpret rendering components contained in scene graph nodes (e.g., 
for image synthesis). In contrast, the inspection traversal only explores the scene graph, its contents 
and graph structure (e.g., for scene graph storage). Both traversals are implemented based on the visi-
tor design pattern.  

6.1 Generic Scene Graph Node 
A scene graph node stores rendering components and references to subgraphs in a single, inhomoge-
neous list. During evaluation, scene graph nodes send shapes and attributes to the current engine and 
initiate the recursive traversal of subgraphs. The implementation below outlines the node class:  

 
class Node { 
private: List<Object> contentObjects; 
public:  
  void evaluate(e : Engine) { 
    unapply(apply(contentObjects,e),e); 
  } 
  void inspect(v : Visitor) { 
    for each c in contentObjects do { 
      v.explore(c) 
      if(c is a node) { c.inspect(v); } 
    } 
  } 
}; 
 
Stack apply(L : List<Object>, e : Engine) { 
  S : Stack = {}; 
  for each c in L { 
    if(c is a node) { c.evaluate(e); } 
    else if(c is a shape) { e.eval(c); } 
    else { 
      S.push(c); 
      if(c is a mono attribute) { e.push(c, c.category()); } 
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Figure 8. Class diagram of the scene graph of the generic rendering system. 
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      else if(c is a poly attribute) { e.add(c, c.category()); } 
      else if(c is a handler) { e.install(c); } 
    } 
  } 
  return S; 
} 
 
void unapply(S : Stack<Object>, e : Engine) { 
  while (S not empty) { 
    c ß S.pop() 
    if(c is a mono attribute) e.pop(c.category()) 
    else if(c is a poly attribute) e.remove(c, c.category()) 
    else if(c is a handler) e.deinstall(c) 
  } 
} 

 

During evaluation, scene graph nodes formulate a "rendering micro program" (Figure 9). Mono at-
tributes are pushed to (popped from) the engine's context; poly attributes are included in (excluded 
from) the collection they belong to; and handlers are installed (de-installed) in the handler table of the 
context. The node class is generic, because all types of content objects can be arbitrarily mixed, 
which leads to compact scene specifications. In any case, the attributes contained in a node affect 
only its children and never its sibling nodes.  

6.2 Interfacing Low-Level Rendering Systems 

The scene graph of the generic rendering system cooperates with different rendering systems. For 
each supported low-level rendering system, the generic rendering system implements the handlers for 
built-in shapes and attributes, the attributes for system-specific features, and a specialized rendering 
engine. 

Attribute types differ to a high degree among rendering systems. Therefore, the scene graph per-
mits to store any attribute type. Attributes are not evaluated unless a suitable attribute painter or sim-
plifier is installed. This way, attributes not applicable to a rendering system do not harm. The generic 
rendering system defines a small collection of standard attributes (e.g., appearance and transforma-
tion attributes), and provides specialized attributes for each supported low-level rendering system. 
For example, OpenGL-specific attributes cover most of OpenGL’s functionality. For RenderMan, a 
shader attribute interfaces compiled RenderMan shader files.  

In particular, renderer-specific attributes, which are included as regular attributes in scene graphs, 
facilitate the production of high-quality animations: manual post-processing of exported scene de-
scriptions is no longer necessary because all details of the target rendering system can be expressed 
by the generic rendering system. For all built-in attributes, default conversions are available to map 
the attributes reasonably (e.g., materials and light sources). 

In the sample scene graph in Figure 10, RenderMan attributes (RenderManShader) are specified. 
The scene displays a Wavefront object (WaveFrontObject), rendered by the OpenGL-specific shape 
painter (WaveFrontPainterGL) or simplified (WaveFrontSimplifier) in the case of all other rendering 
systems. The WaveFrontObject also exemplifies higher-level shapes, which the generic rendering 
systems allows us to specify: A scene object in WaveFront format includes geometry data and may 

N1 Node

A1 MonoAttr

N11 Node

HHandler

A2 PolyAttr

SShape

N1.evaluate(E)
e.push(A1)
e.install(H)
N11.evaluate(E)
e.add(A2)
e.eval(S)
e.remove(A2)
e.deinstall(H)
e.pop(A1)

 

Figure 9. A scene graph node and its content objects (left). Resulting engine microprogram (right). 
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assign each geometry part different graphics attributes. Simplification handlers are able to decompose 
a given shape into a sequence of rendering objects that not only contains shapes but also attributes.  

6.3 Characteristics of the Scene Graph  
The following design principles characterize the scene graph of the generic rendering system: 
- Strict separation of shapes and attributes similar to Vision [31]. Furthermore, there is no restric-

tion for the types of attributes – engines provide a generic rendering context. In addition, shapes 
and attributes can depend on the current context (e.g., billboarding simplification). This allows 
for intelligent, automated shapes and attributes. 

- Strict separation of declaration and implementation. Handlers encapsulate all kinds of algorithms 
applied to shapes and attributes. Therefore, algorithms can be substituted in order to introduce 
application-specific implementations or to optimize the default implementation. In addition, han-
dlers may vary from subgraph to subgraph, enabling the application of different algorithms to the 
same class of shape or attribute. 

- Separation of structure and content. Scene graphs provide structure; rendering objects provide 
contents. Both class categories can be extended independently.  

- Scene graphs are understood as parameterized scene content specifications. A scene graph repre-
sents a template that is instantiated if a concrete engine interprets the scene graph. The technique 
associated with the engine and the handlers deployed by the technique determine the kind of ren-
dering.  

CameraMonoAttr

PointLight-1PolyAttr

PointLight-2PolyAttr

Node "floor"

MaterialMonoAttr

RenderManShaderMonoAttr

BoxShape

Node "flamingo-scene"

Node "flamingo"

MaterialMonoAttr

RenderManShaderMonoAttr

WaveFrontPainterGLHandler

WaveFrontSimplifierHandler

WaveFrontObjectShape

 

Figure 10. Example of a scene graph, rendered by OpenGL and RenderMan.  
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7 INTEGRATING SHAPE TYPES AND SHAPE DATA 

The generic rendering system supports the definition and seamless integration of application-specific 
shape types and application data.  

7.1 Integrating Shape Types 

New shape types may become necessary to support new modeling techniques or to support applica-
tion-specific shapes. If new shape types cannot be integrated, i.e., if the collection of built-in shape 
types is not extensible, an application would be forced to convert these shapes to built-in shapes. 
Consider for example an OpenGL application working with large numbers of 3D arrows. We can 
extend the generic rendering system by a new arrow shape class and provide an OpenGL arrow 
painter, possibly optimized for the application's purposes. If we have to convert arrows to built-in 
shapes by combining a cone shape and a cylinder shape then two problems arise: (1) The application 
stores redundant information, i.e., for each arrow a cone shape and a cylinder shape. (2) The arrow 
semantics is lost in the rendering system. The semantics, however, may be useful to optimize render-
ing and intersection algorithms. 

New shape types can be integrated into the generic rendering system by shape classes and corre-
sponding handler classes. A minimal implementation consists of the shape class and a simplifier 
class, which converts shapes of the new type into collections of built-in shapes. A more sophisticated 
implementation of a shape type could provide shape painters for low-level rendering systems and a 
ray-intersection handler. The design pattern for shape types is depicted in Figure 11. 

7.2 Integrating Shape Data 

Shape objects are typically defined by data arrays. For example, polygonal shapes may require a set 
of vertex coordinates, vertex normals, vertex colors, and vertex texture coordinates. The assumption 
that the data of a shape is stored in an array has several drawbacks: applications cannot choose the 
data structure in which they want to represent the shape data (e.g., array or list), and one has to pay 
the costs for converting or copying the data.  
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Shape Painter

Shape-A Simplifier
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Shape-A Painter Y
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Figure 11. Design pattern for shape types. 
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7.2.1 Iterators for Accessing Data 

Shape classes of the generic rendering system use iterators to bind data to shapes. An iterator is an 
object that provides sequential access to data elements. It hides the internal representation of the data, 
which either can be contained in data storage or be functionally generated. Since shapes and iterators 
know nothing about each others implementation, the data of a shape can be stored in different ways 
without affecting the interface of the shape class, and application-specific data structures can be at-
tached to shapes by providing suitable iterators, i.e., algorithms operate directly on shape data con-
tained in application data structures. Since no data are copied into a shape object integrity problems 
cannot arise. Furthermore several iterators may supply the same data to different shape objects. This 
approach has been motivated by the Standard Template Library [24].  

The relationship between shapes, handlers, and iterators is depicted in Figure 12. The base itera-
tor class, conceptually a template class with T as the type of data, embodies methods for resetting the 
iterator to the first element, stepping to the next element, testing for more elements, and accessing the 
current element. The generic rendering system defines iterators for all common container classes such 
as arrays, lists, or queues. This ensures that the iterator approach can be used as simple as possible for 
standard data containers.  

Typical shape classes define their geometric data by means of iterators. For example, a polygon 
shape could require three iterators (Figure 13) that define vertex coordinates, vertex normals, and 
vertex colors (more iterators could be used, for example, for vertex texture coordinates and edge 
flags). When the polygon is sent to an engine the selected handler, e.g. a polygon painter, will use the 
iterators to inquire the data.  

CompositeIterator

IndexedIterator

SkipIterator

Container Iterator Container

data access

data access Iterator

restart() {abstract}
next() { abstract}
valid() : bool {abstract}
current() : T {abstract

ReplicateIterator

RepeatIterator

Constant Iterator

DerivedIterator

Shape

Handler

T

primary
iterator

iterator
components

1

* 1*

T

T

T

T

T

T

T

T
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Figure 12. Class hierarchy of iterators. 
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Figure 13. Iterator-based data integration for generic rendering components. 
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7.2.2 High-Level Iterators 

Based on the iterator class and its use for connecting shapes with data sources, several high-level 
iterator classes enable applications to efficiently represent data sequences with certain characteristics: 

• A constant iterator generates a constant sequence, i.e. a sequence of identical values. It is used to 
reduce the memory requirements.  

• A replicate iterator generates a sequence which results from replicating each data value of an-
other iterator a given number of times, e.g. it generates "aaabbbcccddd..." from the given se-
quence "abcd...". 

• A repeat iterator generates a sequence of data values that results from replicating a segment of a 
given iterator, e.g. it generates "bcdbcdbcdbcd..." from "abcde..." for the interval [1,3]. 

• A skip iterator generates a sequence of data values that results from skipping certain data ele-
ments of another iterator sequence, e.g. it generates "abdeghj..." from "abcdefghij..." when skip-
ping every third element. 

• An indexed iterator represents an indexed sequence of data values specified by a sequence of 
indices and a sequence of source data values, e.g. it generates "acgh..." from "1,3,7,8,..." and "ab-
cdefghijklmno...". 

• A composite iterator represents a sequence that is obtained by combining two or more iterators 
sequentially. 
For example, consider a polygon specified by a list of N vertex coordinates with alternating bi-

nary coloring (blue and white), and constant vertex normals (Figure 14). The polygon shape construc-
tor expects iterators for vertex coordinates, vertex normals, and vertex colors. The vertex iterator re-
turns the data stored in the vertex array, the normal iterator builds a constant sequence of N vectors, 
and the color iterator alternately repeats the two colors N/2+1 times. 

The iterator concept does not have a negative impact on the performance compared to explicitly 
storing shape data in shape objects. For objects whose geometry is static, display lists are used for 
real-time rendering. For objects with dynamic geometry data, the iterator implies only a small run-
time overhead. If a time-critical painter or simplifier for a specific real-time rendering system deter-
mines from the run-time type information that the iterator takes its source data from a memory array, 
it can circumvent the iterator traversal and directly access the memory of the data (e.g., using vertex 
arrays). This approach leads to an efficient and flexible scheme for associating shapes with data. In 
general in computer graphics the functional paradigm provides more flexibility compared to declara-
tive approaches [13]. 

p : Polygon

vertex coords : Array<Vector>
size = N
vc[0] = x0,y0,z0

...
vc[N-1] = xN-1, yN-1, zN-1

vertex-normal : Vector
vn = (nx, ny, nz)

vc : Array<Color>
size = 2
vc[0] = (1.0,1.0,1.0) {white}
vc[1] = (0.0,0.0,0.0) {blue}

shapes data iterators data sources

vcoords-itr : ArrayIterator<Vector>

vn-itr : ConstantIterator<Vector>

vc-itr : RepeatIterator<Color>
repeatFactor = N/2+1

: ArrayIterator<Color>

 

Figure 14. Sample configuration of a shape, data iterators, and data sources. 
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8 ATTRIBUTE DESIGN 

Attributes include all kinds of modifiers that control or specify the evaluation of shapes in a target 
medium. The generic rendering system classifies attributes as follows:  

• Surface shading attributes specify the shading of surfaces, and include color, material, texture 
and styles for facets, lines, and points. 

• Scene attributes specify the rendering of the environment and include fog, depth-cueing, anti-
aliasing, and additional, global rendering properties.  

• Light source attributes represent virtual light sources, which are distinguished in distant lights, 
point lights, spotlights, and area lights.  

• Geometry attributes modify or manipulate the geometry of shapes. Transformations are specified 
by 4×4 matrices. Specialized transformations include perspective projection, orthogonal projec-
tion, scaling, translation, rotation, reflection, direction-of-flight transformation, polar transforma-
tion, billboard transformation, etc.). Geometry attributes include also clipping planes, level-of-
detail attributes, and tessellation attributes. 

In general, rendering systems based on a local illumination model support similar attributes due to 
the same shading techniques; rendering systems based on a global illumination model support more 
complex attributes with respect to reflection, transmission, and emission of light. Therefore, we can-
not define one closed set of attribute types, which would eliminate the support for all non-common 
(i.e., unique) features of low-level rendering systems. Consequently, the generic rendering system 
does not limit the number of attribute categories to enable renderer-specific and application-specific 
attribute classes. For example, VRS provides Radiance and RenderMan attribute types to make the 
specific shading and lighting features of these rendering systems available.  

The generic rendering system defines a core set of attribute types that are general enough to pro-
duce reasonable results for different low-level rendering systems. The core attribute set includes col-
ors, geometric transformations, clipping planes, and light sources. The degree to which other attrib-
utes can be evaluated depends on the capabilities of the low-level rendering system. This approach 
allows the generic rendering system to produce images that reflect reasonably well the specified at-
tributes without having to modify the application code when exchanging the rendering system.  

The attributes sent to an engine can be evaluated in two different ways. Either a shape painter 
may directly inquire the values of all relevant current attributes and use these values to set up the con-
text of the low-level rendering system, or an attribute painter, which is called when an attribute is 
pushed to or popped from the engine, sets up the context of the low-level rendering system. In the 
case of OpenGL, attribute painters handle most attributes because there is a direct correspondence 
between attributes and OpenGL context variables.  

Attributes are completely decoupled from shape management, i.e., engines process attributes in-
dependently from shapes. A handler may use the active elements of each attribute category, but at-
tributes are not directly bound to shapes. This ensures that new attribute types can extend the generic 
rendering system without having to modify the shape classes. The painters may migrate and consider 
new attribute types while the shape interfaces remain stable.  
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9 MULTI-PASS RENDERING TECHNIQUES 

Multi-pass rendering refers to a process in which scene objects are evaluated two or more times to 
generate a single image. In particular, real-time rendering uses multi-pass rendering [16] to achieve 
high-quality illumination and shading effects such as reflections [18], bump mapping [17], shadows 
[16], or to apply programmable shading techniques [25] as well as to implement image-based geo-
metric modeling techniques such as constructive solid geometry [41]. 

Consider a 3D scene described by a set of shapes and attributes, which are organized in a di-
rected, acyclic scene graph. During the traversal of the scene description, a sequence of rendering 
components is generated and sent to an engine. Multi-pass rendering techniques need to process the 
sequence of rendering components multiple times. In the generic rendering system, multi-pass ren-
dering can be defined as part of a technique.  

9.1 Control of Rendering Passes 

A technique encapsulates a strategy for processing a sequence of rendering components. A technique 
may evaluate such a sequence only once or multiple times. The methods used to control rendering 
passes are depicted in Figure 15. The start method initializes the run of a technique (e.g., clears 
framebuffer resources); the needsPass method returns whether there are still passes to process; the 
preparePass method checks if the current pass has to be processed based on the context of the en-
gine; the finishPass method terminates a single pass; the nextPass method sets up the technique for 
the next pass; and the stop method terminates the run of a technique.  

The technique decides how many times the sequence of rendering components has to be trav-
ersed. For this, scene graph nodes use techniques to control the evaluation of their content objects. 
That is, if a scene graph node contains a technique, the node hands over local control of the traversal 
to this technique. A prototypical algorithm for processing a sequence of rendering components with a 
technique t for an engine e is shown in Figure 15 (right). 

The technique also specifies how to evaluate shapes and attributes. In general, the exec methods 
of a technique look up and execute suitable handlers. A concrete technique class can optimize the 
execution, for example, by ignoring shape and attribute classes that are not relevant to the current 
pass. 

In general, rendering techniques require one pass. For real-time rendering systems such as 
OpenGL, the rendering technique requires typically two passes. The first pass evaluates opaque ob-
jects only, and the second pass evaluates any transparent objects detected during the first pass. For 
scene anti-aliasing additional passes may become necessary.  

 

Technique 

start(e : Engine) {abstract} 
stop(e : Engine) {abstract} 
needsPass(e : Engine) : bool {abstract} 
nextPass(e : Engine) {abstract} 
preparePass(e: Engine) : bool {abstract} 
finishPass(e: Engine) {abstract} 
 
execPush(ma : MonoAttribute, e : Engine) {abstract} 
execPop(ma: MonoAttribute, e : Engine) {abstract} 
 
execAdd(pa : PolyAttribute, e : Engine) {abstract} 
execRemove(pa : PolyAttribute, e : Engine) {abstract} 
 
execEval(s : Shape, e : Engine) {abstract} 

  t.start(e); 
  while(t.needsPass(e)) { 
    if(t.preparePass(e)) { 
      // send rendering components to e 
      t.finishPass(e); 
    } 
    t.nextPass(e); 
  } 
  t.stop(e); 

 

Figure 15. Technique interface, extended by pass-control methods for support of multi-pass rendering. 
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Non-photorealistic rendering techniques can be integrated seamlessly into the generic rendering 
system by encapsulating them in specialized rendering techniques. Such a technique can be used to 
extract image information into G-buffers [28] such as surface normal information, object identifiers, 
and surface parameterization, which are used later for generating or post-processing an image.  

9.2 Implementing Advanced Graphics Programming Techniques 

Techniques permit a straightforward implementation of the so-called advanced graphics program-
ming techniques using OpenGL [21]. These techniques, which are mostly implemented by multi-pass 
rendering techniques, lead to a higher degree of scene realism and to new rendering styles. The ge-
neric rendering system handles these techniques as high-level attributes, which can be inserted as 
content objects in scene graphs and then apply to certain shapes or parts of a scene. Examples of ad-
vanced OpenGL rendering techniques include: 

• The surface-style technique can draw a shape in enhanced wire-frame styles (e.g., with additional 
silhouette or as haloe line drawing). Basically, this technique uses the stencil buffer and accumu-
lation buffer of OpenGL [21]. 

• The reflection technique implements reflections on planar surfaces. This technique uses the sten-
cil buffer to identify mirroring surfaces in the image, and renders the mirrored scene in an addi-
tional pass [18] in these areas.  

• The shadow technique implements shadows based on the shadow-volume algorithm. In the first 
pass, it constructs the shadow volume for a given set of shadowing objects, and using the stencil 
buffer it applies the shadow to the non-shadow objects and the shadowed objects in the second 
and third pass, respectively [18].  

• The Phong-highlight technique implements texture-based highlight patterns by a two-pass render-
ing algorithm. In the first pass, the rendering components are evaluated without specular lighting; 
in the second pass, the rendering components are evaluated in the blending rendering mode and 
get textured by the highlight pattern.  

Figure 16 illustrates the effects of the surface-style, reflection, and shadow techniques. More tech-
niques such as bump-mapping and rendering of constructive solid geometry expressions can be im-
plemented as well. The concept of techniques gives developers full access to advanced capabilities of 

(a) (b) (c) (d)
 

Figure 16. (a) Rendering with enhanced silhouettes. (b) Haloed wire-frame rendering. (c) Rendering with reflection  
technique. (d) Rendering with reflection and shadow techniques. 
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a low-level rendering system through a transparent, object-oriented design. In particular, techniques 
are well suited to wrap multi-pass rendering techniques of OpenGL in reusable building blocks.  

9.3 Using Techniques as Attributes 

Many techniques are used like attributes, i.e., they define visual, geometric, and conceptual properties 
of shapes. Techniques can be evaluated together with regular attributes such that from the devel-
oper’s point of view there is no distinction between them. A scheme for the recursive evaluation of a 
sequence of rendering components C by an engine E including techniques is outlined below. It re-
places the apply/unapply procedure defined for the node class of Section 6.  

 
void Node::evaluate(Engine e) { 
  // content objects are stored in arrays 
  int to = apply(e, contentObjects, 0); 
  unapply(e, contentObjects, 0, to) 
} 
 
int apply(Engine e, Array C, int from) { 
  int N = C.size(); 
  for(int i=from; i<N; i++) { 
    RenderingComponent c = C[i]; 
    if(c is a node) { c.evaluate(e); } 
    else if(c is a shape) { e.eval(c); } 
    else if(c is a mono attribute) { e.push(c, c.category()); } 
    else if(c is a poly attribute) { e.add(c, c.category()); } 
    else if(c is a handler)        { e.install(c); } 
    else if(c is a technique) { 
        c.start(e); 
        while(c.needsPass(e)) { 
          if(c.preparePass(e)) { 
            int to = apply(e, C, i+1);  // recursive eval 
            unapply(e, C, i+1, to); 
            c.finishPass(e); 
          } 
          c.nextPass(); 
        } 
        c.stop(e); 
        return i-1; 
    } 
  } 
  return N-1; 
} 
 
void unapply(Engine e, Array c, int from, int to) { 
  for(int i=to; i>=from; i--) { 
    RenderingComponent c = C[i]; 
    if(c is a handler) { e.deinstall(c); } 
    else if(c is a mono attribute) { e.pop(c.category()); } 
    else if(c is a poly attribute) { e.remove(c.category()); } 
  } 
} 
 

For example, consider a sequence of rendering components, which are contained in a scene node N, 
consisting of a texture attribute A0, a Phong-highlight technique A1 and a surface style technique A2, 
and a shape S. The sequence C={A0, A1, A2, S} defined by the node component objects is evaluated 
by a nested multi-pass traversal.  

 
Node N = new Node(); 
N.add(A0 = new Texture(...)); 
N.add(A1 = new PhongHighlight(...)); 
N.add(A2 = new SurfaceStyle(...)); 
N.add(S = new Polygon(...)); 
N.eval(engine); 
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10 APPLICATIONS AND EXPERIENCE 

The Virtual Rendering System (VRS) is a proof-of-concept implementation of the generic rendering 
system. It has been implemented as a portable C++ library and provides as built-in features a collec-
tion of shapes, shape simplifiers, shape ray-intersectors, attributes, and techniques.  

The easiest way to integrate a low-level rendering system into VRS is to provide the shape 
painter class for triangle sets and a core set of attribute painters. VRS can map all pre-defined shapes 
to triangle sets. A typical integration will also provide shape painters for those shape types directly 
supported by the low-level rendering system.  

10.1 Wrapping OpenGL 

The VRS adapter for OpenGL provides a collection of OpenGL-specific attributes, handlers and 
techniques, e.g., attributes for controlling the color buffer, depth buffer, stencil buffer, scissor test, 
stencil test, alpha test, polygon offset and texture features. 

For all polygon-based shape classes and standard attribute classes, VRS provides OpenGL 
painter classes to ensure optimal performance. Array iterators used by these painters access the data 
directly. The handling of transformations, modeled as specialized attributes, is directly transferred to 
OpenGL; the engine interface has been extended by transformation methods in analogy to OpenGL. 
Therefore, the overall performance of a graphics application compared to a direct implementation 
based on the C API of OpenGL is not affected significantly: a small overhead results from 2 - 4 vir-
tual function calls per shape necessary to invoke the painter. 

10.2 Plug-Ins 

The functionality of our reference implementation is extended by several plug-ins that incorporate 
graphics and geometry libraries into VRS. These plug-ins include the OpenGL-based tubing and ex-
trusion library GLE [39], the graphics jungle implementation of the soft objects [37], engines for 
VRML, POV Ray, Radiance, and RenderMan, as well as graphical user interface bindings for Qt, 
Tcl/Tk, and Microsoft's MFC.  

10.3 Applications 

VRS is used in a variety of applications. It forms the visualization component for a computer anima-
tion system [7] that uses the OpenGL engine for real-time imaging and the RenderMan engine for 
high-quality output.  

Currently, a real-time geo-visualization system is being developed on top of VRS [9]. In this ap-
plication, digital terrain models are represented by specialized shape classes that provide level-of-
detail modeling based on regular grids and TINs [2]. Specialized techniques implement multitextur-
ing used to texture the terrain surface with multiple information layers [8] and a variety of visual ef-
fects typically used in flight simulation (including lens flares in the view plane and light reflection at 
the surfaces of the water bodies). Snapshots of this application are given in Figure 17.  

Using the iterator concept it is easy to combine external terrain data and shape objects without 
duplicating the data. Due to the large amount of data, the application represents an excellent test case 
for the performance and practicability of our approach.  

The built-in features of VRS simplified the implementation of the geo-visualization system. Es-
pecially useful was the possibility to include application-specific shapes, application-specific paint-
ers, and the design of application-specific rendering techniques. Without this possibility, the level-of-
detail modeling for terrain geometry and the multitexturing of the terrain surface could not have been 
integrated as efficiently as in a native C implementation. As a consequence, many texture-related 
features already moved into the core of VRS since they proved to be generally useful.  
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Figure 17. Real-time terrain rendering based on VRS. Lens flares and hazy sun (left) are modeled as 
OpenGL-specific shapes. Multitexturing attributes are used to display multiple layers of terrain data such as 
a satellite texture and a road-network texture (right). 
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11 CONCLUSIONS 

The generic rendering system represents a pragmatic approach for integrating and bundling the power 
of different rendering systems under a transparent, object-based rendering framework. It raises the 
level of abstraction of 3D graphics programming, enabling the quick and efficient development of 3D 
graphics applications using one or more rendering systems. Its functionality can be extended easily 
and efficiently by existing C and C++ graphics and geometry libraries due to its open architecture. 

The object model of the generic rendering system makes no assumptions about the internal repre-
sentation of graphics data, the internal structure of the rendering pipeline and the internal processing 
of rendering components. In particular, application data structures can be embedded into 3D graphics 
objects in an efficient way using iterators. The main functionality of shapes and attributes is decom-
posed into handlers, which allows the developer to configure and modify the functionality with re-
spect to the visualization requirements of an individual application. The processing of rendering 
components is general enough to encapsulate multi-pass rendering techniques. The generic rendering 
system can be extended by the individual rendering features of an underlying rendering system. Es-
pecially most OpenGL features can be accessed without significant performance overhead. Therefore 
the generic rendering system can be used to implement time-critical graphics applications. 

The demand for a generic rendering system is increasing because rendering systems have ma-
tured at an impressive speed in the past. Now, these systems represent an enormous variety of render-
ing techniques, but they are still difficult to use from a developer’s perspective due to their complex, 
incompatible object models. The generic rendering system may help to overcome these obstacles and 
facilitate the integration of these systems. A reference implementation can be found at the web site of 
the Virtual Rendering System www.vrs3d.org.  
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Appendix A 

Diagram of Core Classes of the Virtual Rendering System (VRS) 
 

Shape 

Attribute 

MonoAttribute 

PolyAttribute 

Transformation 

RenderingComponent 

Polygonal 

Analytic 

Light 

Tessellation 

PolygonSet Points 

Mesh Facet Lines 

TriangleSet 

Disc Box Cylinder Hyperboloid Cone 

Paraboloid Torus Plane SuperQuad Sphere 

NURBS BezierCurve 

Extrusion 

Composite 

BSplineCurve 

IndexedPolygonSet 

PointLight AmbientLight DistantLight SpotLight AreaLight 

PointStyle 
ColorAttribute Fog 

LineStyle Material 

FaceStyle 

Cache 

DOF 

Translation Rotation 

LookAt 

Scaling 

Polar 

Tf 

Perspective Reflection 

Billboard 

Ortho 

Clipplane 

Texture 

Background 

Viewport 

ContextData 

AutoDetail Detail ConstantDetail 

Text3D 

Text2D 

Handler 

Painter 

Simplifier 

RayIntersector 

AttributePainter 

ShapePainter 

AttributeSimplifier 

ShapeSimplifier 

CompositeSimplfier ParaboloidSimplifier 

HyperboloidSimplifier MeshSimplifier 

FacetSimplifier 

ConeSimplifier 

ExtrusionSimplifier 

CylinderSimplifier 

DiscSimplifier Text3DSimplifier 

CurveSimplifier 

BoxSimplifier CacheSimplifier 

TriangleSetSimplifier 

PlaneSimplifier 

SphereSimplifier 

SuperquadSimplifier 

TorusSimplifier PointsSimplifier 

LinesSimplifier 

NoteSimplifier 

Font3D 

Font2D 

DiscRayIntersector 

BoxRayIntersector 

ConeRayIntersector 

CylinderRayIntersector 

ParaboloidRayIntersector 

FacetRayIntersector 

HyperboloidRayIntersector 

MeshRayIntersector 

PolygonSetRayIntersector 

SphereRayIntersector 

Array<T> 

Image PaletteImage FileImage MemoryImage SubImage 

Dictionary<T,S> Queue<T> Stack<T> List<T> 

Iterator<T> ConstantIterator<T> 

CompositeIterator<T,S> ReplicateIterator<T> 

RepeatIterator<T> SkipIterator<T> 

IndexedIterator<T> 

Node 

Engine 

Technique OpenGLRendering CollisionDetection RayTestPicking AttributeSearch ImageInformation 

Context 

RenderingComponent 

LODShape 

Note 

Curved 

Volume 

Camera FilterTag Filter 

 


