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Abstract. Depicting dynamics offers manifold ways to visualize dynamics in 
static media, to understand dynamics in the whole, and to relate dynamics of 
the past and the future with the current state of a 3D scene. The depiction strat-
egy we propose is based on visual elements, called dynamic glyphs, which are 
integrated in the 3D scene as additional 2D and 3D geometric objects. They are 
derived from a formal specification of dynamics based on acyclic, directed 
graphs, called behavior graphs. Different types of dynamics and corresponding 
mappings to dynamic glyphs can be identified, for instance, scene events at a 
discrete point in time, transformation processes of scene objects, and activities 
of scene actors. The designer or the application can control the visual mapping 
of dynamics to dynamic glyphs, and, thereby, create own styles of dynamic de-
piction. Applications of dynamic glyphs include the automated production of 
instruction manuals, illustrations, and storyboards.  

1   Introduction 

Depicting dynamics represents a challenging task for smart graphics: It is a powerful 
tool, deployed in arts and science yet for a long time as technique to illustrate dynam-
ics of actors, objects, and processes in static media. As underlying principle, illustra-
tions encode in images more than 3D scenery – abstract elements, for instance, ar-
rows indicating a direction of movement, rays symbolizing an extraordinary event, or 
clouds containing descriptions of thoughts of an actor. This way, depictions of dy-
namics in images enable observers to understand dynamics of 3D scenery even in 
static images, to relate dynamics of the past and the future with the current state of a 
3D scene, and to communicate all kinds of non-geometric information such as ten-
sion, danger, and feelings.  

3D computer graphics provides a wealth of modeling and rendering techniques, 
which represent the technical basis upon which smart graphics technology can be 
built. In that direction, we propose a concept for augmenting images of 3D scenes by 
visual elements that abstract and symbolize dynamics (s. Fig 1). It is (1) based on the 
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formal hierarchical specification of dynamics by behavior graphs; (2) performs the 
visual mapping of behavior graphs to dynamic glyphs for a given point in time or time 
interval; and (3) uses non-photorealistic rendering as an appropriate rendering style 
to produce illustrations of 3D scenes and their dynamics.  

The concept of depicting dynamics in images of 3D scenes can be applied to many 
application areas. For instance, it can be used to implement a system for digital 3D 
storyboards generating a collection of representative images of 3D scenes with visu-
ally encoded dynamics summarizing part of a story. Another application area includes 
systems for producing illustrations of instruction manuals in an automated way. Fur-
thermore, the concept can be applied to generate visual indices of linear media such 
as movies. 

2   Specifying Dynamics 

To specify dynamics of a 3D scene in a formal way, we construct behavior graphs. A 
behavior graph is a directed acyclic graph (DAG) that specifies time-dependent and 
event-dependent behavior of scene objects. A scene graph, in contrast, formally 
specifies geometry and appearance of scene objects [1]. 

Figure 1: Screen aligned arrows as dynamic glyphs depict the animation of a ball 
bouncing on the ground (left). The conceptual structure to generate dynamic glyphs is 
given in a diagram (right). After analyzing the behavior graph, depiction rules build 
scene subgraphs that represent dynamic glyphs.  

 

Scene Graph Behavior Graph 

Sequence { [0,20], [20,50] } 

TimeCt [0,20] 
    Curve0: t→ (x, y, z) 

Translation 

TimeCt [0,30] 
    Curve1: t→ (x, y, z) 

Sphere {Ball} 

Polygon {Ground} 

Path {Ball, [7,19]} 

Path {Ball, [21,29]} 

SnapShot {Ball, [30]}

Path {Ball, [31,42]} 

Interpretation 

Analyze 

Generate 
Scene 
Subgraphs 

symbolizePath {Ball} (7,19) 
symbolizePath {Ball} (21,29) 
symbolizeState {Ball} (30) 
symbolizePath {Ball} (31,42) 

Depiction Rules 

Dynamic Glyphs
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Nodes of behavior graphs manage time layouts, calculate lifetimes, and control 
time assigned to child nodes. In addition, they maintain time-dependent constraints 
for elements of associated scene graphs. 

Of course, both scene graphs and behavior graphs are tightly related: Scene graph 
elements define visual aspects of scene objects, whereas behavior graph elements 
define dynamic aspects of scene objects. In general, a single scene graph may have a 
number of behavior graphs associated with it. 

2.1 Time Moments and Time Requirements 

We define the following temporal abstract data types to manage the time flow in 
behavior graphs: 
� Moments. A moment M = (t0, t1, t) represents a point t in a time interval [t0, t1]. A 

moment assigned to a behavior node determines the node’s lifetime interval and 
the current point in time within this interval. Moments are essential for behavior 
nodes that specify processes. Based on the knowledge about their lifetime, be-
havior nodes can plan their activity. The point in time t contained in a moment M 
communicates the current time to behavior nodes.  

� Time Requirements. A time requirement R = (Tnatural, Tmax, Tmin, A) describes the 
time demand of a behavior node. It consists of the natural (i.e. desired, optimal) 
duration Tnatural, the minimal duration Tmin, and the maximal duration Tmin. A time 
requirement can also specify that the natural duration is infinite. Furthermore, it 
defines a time alignment A, which determines how to position a shorter moment 
within a longer moment. With A = 0.0, the shorter moment starts at the same time 
as the longer moment; A = 1.0 causes both moments to end at the same time; and 
A = 0.5 centers the shorter moment within the longer moment.  

Behavior nodes do not include time requirements by default. We add these re-
quirements by a special kind of behavior nodes in the behavior graph, called time 
setters, or calculate them implicitly through behavior groups.  

2.2   Managing Lifetimes 

One of its fundamental tasks of a behavior graph is to define lifetimes of activities 
and point in times of events. To organize the overall structure of the time flow, we set 
up time groups, whereas the local time flow can be modified by time modifiers. We 
are going to explain both types of behavior nodes in the following.  

2.2.1   Time Groups 
Time groups represent a major category of nodes that constitute a behavior graph. A 
time group node calculates the individual lifetimes of its child nodes based on the 
children’s time requirements and its own time-layout strategy. If a time group node 
receives a time event, it checks which child nodes to activate or deactivate. It syn-
chronizes all active child nodes to the new time, and assigns new moments to them. 
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A number of time group nodes implement specific time layouting strategies. Ex-
amples for those classes include: 
� Time Sequence. Defines the total time requirements as sum of the time require-

ments of its child nodes. It distributes a received moment proportionally to the 
child nodes. The moments assigned to the child nodes are sequential and disjoint. 
Only one child node is alive at any given time during the lifetime of the se-
quence. 

� Time Simultaneity. Defines the total time requirement as the maximum of the 
time requirements of the child nodes. It distributes a received moment to the 
child nodes if their natural duration is equal to the duration of the moment. If not, 
the simultaneity layout tries to shrink or stretch the time requirements of the child 
nodes to fit the duration. If they still do not match it aligns the lifetime of the 
child nodes within the moment. 

� Time Table. Defines for each child node an explicit time requirement. It man-
ages activation and deactivation of child nodes according to it own lifetime.  

Since time groups automate distribution and alignment of time intervals, designers 
are relieved from calculating absolute times in specifications of dynamics. Time 
groups also take care of the discrete nature of points in time. If a new point in time is 
reached, they take care not to forget discrete events being scheduled for the past time 
interval. As main feature, time groups facilitate hierarchical specifications of activi-
ties and events at a high level of abstraction similar to specifications in storybooks.  

Fig. 2 shows how time groups can compose activities, and how time requirements 
get evaluated. The behavior nodes A1, A2, and Si are processed sequentially. Behavior 
node Si consists of two simultaneous behavior nodes, A3a and A3b. D1, D2, and D3 
define infinitely stretchable time requirements of 1, 2, and 1 seconds; they are not 
shrinkable. The sequence Se is prefixed with a duration D of 100 seconds. If Se actu-
ally gets from its parent 100 seconds, it distributes this moment proportionally to its 
child nodes, i.e. A1 and Si get 25 seconds each, and A2 50 seconds. Since A3a can last 
at most (1+14) = 15 seconds, Si centers the lifetime of A3a within the 25 seconds. Se 
activates in turn A1, A2 and Si, A3a and A3b are activated by Si. 

 
TimeDuration D  
(100, +0, -0)

TimeSequence Se 

TimeDuration D3 
(1, +∞, -0) 

TimeDuration D2 
(2, +∞, -0) 

TimeDuration D1 
(1, +∞, -0) 

TimeSimultaneity Si

A3b TimeDuration D4 
(1, 14, -0; 0.5) 

A3a 

A1 A2 

Time Requirement:(Tnatural, Tmaximal, Tminimal [; alignment])  
Figure 2. Example of a behavior graph. 
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2.3   Activities and Events 

Constraint nodes represent activity and events as core elements of dynamic specifica-
tions. A generic class takes care of most variants of constraints:  
� TimeCt. Associates a time-to-value mapping with a property of a scene object. 

For example, a time-constraint can constrain the position of an object associating 
a time-to-vector mapping with the object’s midpoint.   

Technically, constraint nodes control time-varying parameters of objects contained in 
scene graphs, for instance, position, direction, color, or size of a scene object. For 
each of the time-varying parameters, constraint nodes require a time-to-parameter 
mapping. Whenever a constraint node receives a new moment, it calculates new pa-
rameter values, and assigns these values to its constrained scene objects. A number of 
classes implement specific time-to-parameter mappings. Examples for those classes 
include: 
� Constant Map. Assigns a constant value to constrained objects. 
� Linear Map. Assigns a value that results from linear interpolation of specified 

values.  
� Curve Map. Assigns a value that results from calculating a point of a parameter-

ized curve by interpreting time as curve parameter.  
� Method Map. Assigns a value that results from a method call.  
� Function Map. Assigns a value that results from a function call.  

2.2.2   Modifying Local Time Flows 
As additional building blocks to specify dynamics, we define a number of time modi-
fier nodes, which transform local time received by child nodes. Mathematically, these 
nodes define a time-to-time mapping that is applied to all moments passed through 
the node. Among the kinds of transformations (s. Fig. 3) are:  
� Constant Transformation. It assigns a constant time to its child nodes regard-

less of the time progress communicated to the time modifier node.  
� Discrete Transformation. It defines a conceptually discontinuous time progress. 

The available lifetime interval is decomposed in piecewise constant time inter-
vals. Using this kind of time modifier, for instance, jerky movements can be 
modeled.  

� Repeat Transformation. It maps a moment modulo a time interval, and passes 
the resulting moment to its child nodes. For example, to model an activity that 
lasts 5 seconds and that should be repeated permanently, we specify an infinite 
duration followed by a time repeater with the modulo moment [0, 5sec]. 

� Reverse Transformation. It inverts the direction of the time progress for the 
child nodes. Time reversal nodes are useful to model invert activities (provided 
that the underlying time constraints are invertible).  

� Creep Transformation. It defines a creeping time progress, i.e., the time pro-
gress is slow in the beginning and speeds up at the end of a time interval. Alter-
natively, the time progress can be speed up in the beginning and slow down at 
the end.  
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Figure 3. Examples of time-modifier functions. 

3   Dynamic Glyphs 

Dynamic glyphs are visual elements that symbolize dynamics in images of 3D scenes. 
They do not represent original scene elements, and hence are not modeled as part of 
the scene by the scene designer. Instead, dynamic glyphs result from analyzing and 
interpreting behavior graphs for a specified time interval, and the subsequent visual 
mapping of the results to graphical elements. These elements are inserted as part of 
the scene graph automatically in order to augment the image by the abstract represen-
tation of dynamics found in the behavior graph.  

For analysis, we traverse the behavior graph searching for behavior nodes that are 
active in the specified time interval. Behavior nodes that do not become active in the 
specified time interval are ignored in the following. The remaining nodes can be 
interpreted at different levels of abstraction.  
 
Low-Level Depiction Rules. At the lowest level of abstraction, we can interpret each 
single node for itself, and we can at least determine for each node the set of geome-
tries in the scene graph that are modified by the node’s activities.  

For example, if an active time-constraint node is encountered that specifies a time-
dependent function applied to a translation object in the scene graph, we can conclude 
that all geometries affected by the translation will be moved. For them, we can depict 
the path they will follow by creating an additional visual element, called path. A path 
has the shape of a flexible 3D arrow, represented graphically as quad-strip, and ori-
ented towards the viewer to ensure full visibility (s. Fig. 1). If the time-to-vector func-
tion of the constraint node is based on a parameterized curve, for example, the path 
will resemble the shape of the curve (while the curve will never be visualized because 
it is used only to calculate object positions). The path type represents a prototypic 
dynamic glyph: It is a 3D shape whose configuration, appearance, and position is set 
up automatically based on the kind of constraint and its time-to-value mapping. It also 
becomes part of the scene graph without being a scene object.  

The way encountered constraint nodes are interpreted can be graphically designed 
arbitrarily. The aforementioned time constraint associated with a time-dependent 
function and a translation object could also be visualized by indicating the followed 
path using 3D points. Technically, a dynamic glyph is encoded by a scene subgraph, 
which can take advantage of all defined shapes, graphics attributes, and containers 
like the main scene graph can do.  
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A formal definition of the general visual mapping of time constraints at the lowest 
level of interpretation can be given at this point. It maps the triple consisting of time 
constraint, its time map, and its constrained scene objects to a dynamic glyph.  
 
Higher-Level Depiction Rules. We can also detect patterns in encountered behavior 
nodes that indicate dynamics at a higher level of abstraction. Mappings based on 
detecting patterns are applied prior to lower-level mappings. They aim at symbolizing 
complex dynamics.  

For example, if a scene object is animated by a tailspin, a simultaneity group hav-
ing two child nodes, one for constraining its position and one for constraining its 
rotation angle, encodes this kind of dynamics in a behavior graph. It is symbolized by 
a single dynamic glyph, a twisted path. 
 
Integrating Dynamic Glyphs and Scene Graphs. After analyzing behavior graphs 
and applying higher-level and lower-level interpretations, we can add the resulting 
scene subgraphs to the main scene graph. For different time intervals being consid-
ered for analysis, dynamic glyphs are added to or removed from the scene graph, 
respectively for image rendering. We assume that interpretation of behavior nodes as 
well as scene subgraphs representing dynamic glyphs are subject to a user-controlled 
design process in order to fine-tune the visual appearance. Of course, these processes 
can also be automated as well if interpretation schema and dynamic glyph designs are 
fixed for a given category of scene objects and related dynamics, for example, in-
structions for assembling furniture parts.  

4   Rendering Scenes with Dynamic Glyphs  

In general the images we are interested in outline and sketch complex scenarios and 
their related dynamics. Therefore, to achieve abstraction is essential for images of 
high perceptual and cognitive quality. We found as most appropriate the styles of 
hand drawn illustrations [8], storyboards [3], and comic strips [5]. The concept allows 
us to adopt the creation of dynamic glyphs from guidelines used for classic media, 
which have been successfully approved over decades. With respect to arrows, for 
example, we generate a 3-dimensional visual element that appears to be mostly paral-
lel to the view plane. 

To render dynamic glyphs in a non-photorealistic fashion we particularly deploy 
artistic strokes [7]. Artistic strokes are well suited to place lines and curves into 3D 
scenery, for instance, to visualize a motion path (see Fig. 4). Using variations in style 
leads to individual strokes and thus emphasize hand drawn creation. 

Speedlines depict dynamics of scene objects [4]; as dynamic glyphs they symbol-
ize direction and velocity of animated scene objects for a given point in time. Addi-
tionally, speedlines relate the past since they picture where the scene object has been 
before. Furthermore, they also relate the future since the position where the scene 
object will be soon can be estimated by deriving the future direction of flight from 
speedlines. To render speedlines, we extract extreme or artistically chosen points of 
polygonal geometry and, then, process their positions in 3-dimensional space with 
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respect to a given time interval. Based on these, we form an appropriate artistic stroke 
that symbolizes motion (see Fig. 5). 

We also apply non-photorealistic rendering to the main 3D scene to achieve a con-
sistent graphics style. For example, 3D scene objects can be rendered with enhanced 
edges [6] and NPR illumination models [2]. Real-time NPR techniques allow us to 
integrate dynamic glyphs in interactive graphics applications. The snapshots shown in 
this paper are actually derived from our interactive prototypic implementation.  

 

5   Examples 

Flight of a Paper Plane. We consider the following scenario: A paper plane flies 
beside a wall. It collides with the wall twice. Each collision alters the direction of 
flight. Finally, the paper plane descends smoothly nearly the camera. 

The initial scene graph for the animation consists of a translation node that speci-
fies the position of the paper plane, a set of polygons representing the geometry of the 
paper plane, and a single polygon representing the wall. Since the trajectory of the 
flight gets interrupted twice, the whole animation of the flight specified in the behav-
ior graph consists of three curves that are processed in sequential order. The three 
curve-map based constraint nodes, shown in Fig. 4, map a point in time to a 3-

 

Scene Graph Behavior Graph 

Sequence{[0,30],[30,50],[50,70]} 

TimeCt [0,30] 
    Curve0: t→ (x, y, z) 

Translation 

TimeCt [0,20] 
    Curve1: t→ (x, y, z) 

PolygonSet{Plane} 

Polygon{Wall} 

Path{Plane,[0,29]} 

Path{Plane,[51,70]} 

Collision{Plane,[30]} 

Path{Plane,[31,49]} 

symbolizePath{Plane}(0,29) 
symbolizeCollision{Plane}(30) 
symbolizePath{Plane}(31,49) 
symbolizeCollision{Plane}(50) 
symbolizePath{Plane}(51,70) 

Dynamic Glyphs

TimeCt [0,20] 
    Curve2: t→ (x, y, z) 

Collision{Plane,[50]} 

Figure 4: Dynamic glyphs depicting the flight and collisions of a paper plane (left). 
The diagram shows scene and behavior graph and depiction rules needed to construct
dynamics glyphs (right). 
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Scene Graph Behavior Graph 

Sequence{[0,20],[20,50]} 

TimeCt [0,20] 
    Curve1: t→ (x, y, z) 

Translation0 

TimeCt [0,30] 
    Curve2: t→ (x, y, z) 

Sphere{Ball} 

Polygon{Ground} 

Path{Ball,[7,19]} 

Path{Ball,[21,28]} 

SnapShot{Ball,[30]} 

symbolizePath{Ball}(7,19) 
symbolizePath{Ball}(21,28) 
symbolizeState{Ball}(30) 
symbolizePath{Ball}(33,42) 
symbolizeMotion{Plane}(10,30) 

Translation1 

PolygonSet{Plane} 

Simultaneity[0,50] 

Curve Map [0,40] 
    Curve0: t→ (x, y, z) 

Path{Ball,[33,42]} 

Speed 
Lines{Plane,[10,30]}

Dynamic Glyphs

dimensional vector derived from the given curve. Then, the constraint nodes manipu-
late the translation in the scene graph and, thus, position the paper plane in 3D scen-
ery. The time-sequence behavior node activates and deactivates, respectively, the 
constraint nodes in sequential order due to their time requirements. 

To visually communicate the animation of the flight, we symbolize each curve in a 
chosen time interval and both collisions at that points in time, when the events take 
place, by the use of dynamic glyphs. 

Therefore, we specify what to depict for a certain scene object in either a time in-
terval or at a point in time in depiction rules. The collection of depiction rules speci-
fies the symbolization of dynamics; they can be given in any order since they do not 
influence each other. 

If both, the behavior graph and a collection of depiction rules, are provided we 
analyze the behavior graph to extract information related to scene objects used for 
interpreting the rules to, finally, generate dynamic glyphs. To symbolize the path of 
the paper plane’s flight, we choose long artistic strokes placed along each curve ac-
cording to the specified time interval. As dynamic glyphs depicting the collision at a 
discrete point in time, we place short artistic strokes starting around the point of colli-
sion and following the direction of flight to visualize the impulse. Furthermore, we 
add a notation at or nearby the point of collision to symbolize the noise that arises. 
These dynamic glyphs will then be inserted into the scene graph. Fig. 4 illustrates the 
whole flight of the paper plane. 
 
Bouncing Ball and Flying Paper Plane. We consider the following scenario: A ball 

Figure 5: Dynamic glyphs depicting the simultaneous animation of a bouncing ball
and a flying paper plane (left). The diagram shows scene and behavior graph and depiction 
rules needed to construct dynamics glyphs (right). 
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bounces on the ground. It has hit the ground once, has lifted up, and falls down fol-
lowing a parabolic curve. Simultaneously, a paper plane is flying around. 

As before, the scene graph contains a translation node that controls the position of 
the paper plane. Additionally, it contains a translation node and a spherical shape to 
position and visualize the ball. Since the bouncing ball and the flying plane are ani-
mated simultaneously the behavior graph contains a simultaneity behavior node that 
starts the animations of both scene objects at the same time. One curve-map based 
constraint node describes the trajectory of the plane. Again, the path of the ball is 
divided into two curves. The corresponding constraint nodes are assembled in a se-
quence behavior node to be processed one after another. 

For depicting this scenario, speedlines gradually fade off in the past like condensa-
tion trails disappear behind a plane. In analogy, we can conceive speedlines like tur-
bulences behind a moving object invoked by its velocity and its striking surface. Fig. 
5 shows the resulting image of the 3D scene with integrated dynamic glyphs.  

5   Conclusions 

The presented concept formally specifies dynamics and derives dynamic glyphs that 
visually encode events and activities in images of 3D scenes; it extends the well-
known scene graph by a complementary behavior graph. Dynamic glyphs offer a rich 
vocabulary to designers for expressing different kinds of dynamics; depiction rules 
can be designed on different levels of abstraction.  

We see a large potential of application for the automated production of technical 
and instructive illustrations as well as for visual summaries of linear media contents. 
Our future research concentrates on identifying and categorizing dynamic glyphs, 
depiction rules, and appropriate rendering techniques. We also would like to apply 
the presented technique to concrete application domains such as authoring tools.  
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