
Visualization of Execution Traces and its
Application to Software Maintenance

Dissertation
zur Erlangung des akademischen Grades

„doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin Praktische Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Dipl.-Phys. Johannes Bohnet

geboren am 19.5.1976 in München

Potsdam, den 13.10.2010

Danksagung

Ich möchte mich bei allen Personen bedanken, die mich während meiner Promotions-
zeit unterstützt haben. So danke ich besonders Prof. Dr. Jürgen Döllner. Durch ihn
wurde es mir möglich, auf dem Gebiet der Softwarevisualisierung zu forschen und die
vorliegende Arbeit zu schreiben. Ich konnte mich dabei immer auf seine Unterstützung
verlassen. Zudem habe ich durch ihn vieles aus den Bereichen wissenschaftliches
Schreiben und Didaktik gelernt.

Bedanken möchte ich mich weiterhin bei Prof. Dr. Guido Wirtz, Prof. Dr. Robert
Hirschfeld und Prof. Dr. Konrad Polthier dafür, dass sie sich bereit erkärten, diese
Arbeit zu begutachten.

Auch möchte ich meinen Kollegen am Fachgebiet Computergrafische Systeme des
HPIs danken. Sie sind ein wichtiger Grund dafür, dass mir diese Arbeit so viel Spaß
gemacht hat. Namentlich möchte ich besonders Dr. Marc Nienhaus, Dr. Stefan
Maaß, Stefan Voigt und Jonas Trümper erwähnen.

Meinen Eltern danke ich sehr dafür, dass sie mich vielfältig gefördert und mich immer
bedingungslos unterstützt haben. Ein ganz großer Dank geht zudem an meine beiden
Söhne Leonel und Hannes. Durch Euch beide lerne ich täglich neue Seiten des Lebens
kennen, die mir –auch für diese Arbeit– viel Energie spenden und gespendet haben.

Kurzfassung

Die Wartung und Weiterentwicklung komplexer Softwaresysteme ist im Allgemeinen
kostenintensiv, da die Beteiligten einen signifikanten Teil ihrer Zeit mit dem Verstehen
der Struktur und des Verhaltens dieser Systeme verbringen müssen. Programm-
verstehen ist unter anderem deswegen zeitaufwendig, weil die Struktur komplexer
Softwaresysteme und deren inneres Verhalten kaum intuitiv wahrnehmbar und damit
nur beschränkt einsehbar sind. Die Visualisierung von Programmabläufen (Traces)
stellt einen Ansatz dar, der hilft, die Struktur und das Verhalten eines komplexen Soft-
waresystems zu verstehen. Die Programmablaufvisualisierung protokolliert während
der Systemausführung Sequenzen von Funktionsaufrufen, analysiert und abstrahiert
diese Daten und generiert visuelle Darstellungen, die Einblicke in die Struktur und
das Verhalten von Softwaresystemen erlauben.

Das Ziel dieser Arbeit ist es, ein Konzept und ein Werkzeug zur Visualisierung von
Programmabläufen zu entwickeln, welche die berechnungs- und kognitionsbedingten
Herausforderungen überwinden, die bei Techniken zur Programmablaufvisualisierung
wegen der typischerweise sehr großen Menge an protokollierten Programmablaufdaten
vorhanden sind. Das in dieser Arbeit entwickelte Konzept enthält die folgenden
Teilkonzepte: (1) Ein Konzept zur skalierbaren Generierung von Programmablauf-
daten aus C/C++ Softwaresystemen; (2) ein Konzept zur Reduktion von Pro-
grammablaufdaten, das automatisch rekursive, zeitliche Grenzlinien in den Daten
identifiziert und es damit ermöglicht, Programmablaufdaten in einem "top-down"
Ansatz zu explorieren; (3) ein Rahmenwerk für Techniken zur Programmablaufvisuali-
sierung, das Lösungen auf die Frage aufzeigt, wie Kerntechniken zur Darstellung von
Programmablaufdaten implementiert werden können, sodass "top-down" und "bottom-
up" Verstehensstrategien unterstützt werden und (4) ein Konzept zur Kombination von
Programmablaufvisualisierung mit weiteren Werkzeugen und Systemen zum Erzeugen
von höherwertigen Sichten auf Implementierungsartefakte eines Softwaresystems.

Ein weiterer Beitrag dieser Arbeit ist die Validierung des Gesamtkonzepts durch
eine Implementierung, Performanzmessungen und Fallstudien. Die Implementierung
des vorgestellten Konzepts liegt als Rahmenwerk zur Erzeugung von Werkzeugen
zur Programmablaufvisualisierung vor. Um Skalierbarkeit zu gewährleisten, wurden
Performanzmessungen während der Anwendung des Werkzeugs auf große C/C++
Softwaresysteme durchgeführt. Weiterhin wurde das Werkzeug auf industriell er-
stellte Softwaresysteme angewendet, um Softwareentwickler bei dem Lösen von
Wartungsproblemen zu unterstützen.

Abstract

Maintaining complex software systems tends to be costly because developers spend a
significant part of their time with trying to understand the system’s structure and
behavior. Among many reasons, program understanding is time consuming because
the system’s structure and its internal behavior are not intuitively realizable and
can only be partially inspected. The visualization of execution traces represents an
approach to help developers to understand complex systems. Practically, execution
trace visualization captures the sequence of function calls over time during system
execution, analyzes and abstracts that data, and derives visual representations that
permit developers to analyze the system’s structure and behavior.
The goal of this thesis is to develop a trace visualization concept and tool that

can handle the computational and cognitive scalability issues that trace visualization
encounters due to the large amount of data that is typically produced when logging
runtime processes. The thesis’ concept includes the following building blocks: (1) A
concept for generating traces of C/C++ software systems in a scalable way; (2) a
concept for trace reduction that automatically identifies recursive boundaries within
the trace and, by this, supports developers in exploring a trace using a top-down
approach; (3) a framework for trace visualization techniques that provides solutions to
the question as to how core techniques for viewing trace data can be implemented such
that developers are supported in performing top-down and bottom-up comprehension
strategies; and (4) a concept for combining trace visualization with 3rd party tools
and systems for reverse engineering.

As a further contribution, this thesis validates the proposed concept by means of an
implementation, performance measurements, and case studies. The implementation
of the concept is provided as a framework for creating trace visualization tools.
To ensure scalability of the concept, performance measurements were taken while
applying the tool to large C/C++ software systems. Furthermore, the concept and
tool has been experimentally applied to industrially developed software systems to
solve particular maintenance problems in real-world scenarios.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 The Approach in a Nutshell . 2

1.2.1 Scalable Technique for Recording Traces of C/C++ Software
Systems . 3

1.2.2 Technique for Pruning Traces 3
1.2.3 Technique for Providing Multiple Linked Views on Traces . . 4
1.2.4 Technique for Combining Trace Visualization with 3rd Party

Tools and Systems for Reverse Engineering 4
1.2.5 Further Contributions . 4

2 The Context of Trace Visualization 7
2.1 Software Maintenance . 7

2.1.1 Program Comprehension . 8
2.1.2 Reverse Engineering . 10
2.1.3 Dynamic versus Static Analysis Techniques 12

2.2 Data Mining . 13
2.2.1 Mining Software Engineering Data 15

2.3 Visualization . 15
2.3.1 Information Visualization . 16
2.3.2 Software Visualization . 17
2.3.3 The Visualization Pipeline . 18

2.4 Trace Visualization . 19
2.4.1 Definitions of Traces . 19
2.4.2 The Trace Visualization Process 21

2.5 Extending Traces with Module Hierarchy Information 23
2.5.1 Module Names and Function Semantics 24
2.5.2 Reconstruction of Module Hierarchies 24

2.6 Maintenance Tasks Facilitated by Trace Visualization 25

3 Related Work 27
3.1 Software Visualization . 27

3.1.1 Visualization of the Software System’s Structure 28
3.1.2 Visualization of the Software System’s Evolution 30

viii Contents

3.1.3 Visualization of the Software System’s Behavior 31
3.2 Trace Visualization . 32
3.3 Maintenance Tasks . 40

3.3.1 Fault Localization Techniques 40
3.3.2 Feature Location Techniques 41

4 A Scalable Technique for Tracing Function Calls in C/C++ Systems 43
4.1 Tracing Techniques as Part of Scalable Trace Visualization 43
4.2 Robust Execution-Time Instrumentation by Reverting Compile-Time

Instrumentation . 46
4.2.1 Compiler-Supported Function Entry-Point Instrumentation . 47
4.2.2 Reverting Compile-Time Instrumentation 48
4.2.3 Tracing by Execution-Time Instrumentation 48

4.3 Automatically Detecting and Excluding Massively Called Functions
during Tracing . 49
4.3.1 Event Buffer Management . 52
4.3.2 Detecting Massively Called Functions 53
4.3.3 Deactivating Massively Called Functions at Execution-Time . 54

5 Pruned Traces - Splitting Traces into Phases 55
5.1 Classifying Function Calls . 56
5.2 The Trace Pruning Algorithm . 60
5.3 Detecting Repetitive Behavior . 65

5.3.1 Phase Similarity . 65
5.3.2 Phase Fingerprints . 65
5.3.3 Phase Similarity Metrics . 66

6 Visualization Techniques for Traces 69
6.1 Mathematical Operations on Traces 70

6.1.1 Trace Filtering Operations 71
6.1.2 Call Graph Operations . 72

6.2 Focusing on Temporal Order . 74
6.2.1 Temporal Overview - A Macroscopic View 75
6.2.2 Call Stack View - A Microscopic View 77
6.2.3 Phases View - Bridging the Gap between Microscopic and

Macroscopic Views . 79
6.3 Focusing on Structure . 83

6.3.1 Structure Overview . 83
6.3.2 Collaboration View . 86
6.3.3 Call Neighborhood View . 87

6.4 Focusing on Source Code . 89
6.4.1 Enriched Code View - Enriching Source Code with Runtime

Information . 90
6.5 Linking Views - Multiple Perspectives on Traces 92

Contents ix

7 Applying Trace Visualization during Software Maintenance 95
7.1 Combining Trace Visualization with other Analysis Techniques . . . 95
7.2 Maintenance Task: Identifying Recently Introduced Faults 97

7.2.1 Behavior-Affecting Code Modifications in C/C++ 97
7.2.2 Analysis Process . 98
7.2.3 Fact Extraction . 99
7.2.4 Fact Analysis - Detecting Functions Affected by Code Changes 100
7.2.5 Applying Trace Visualization - Exploring Functions within

their Execution Contexts . 101

8 CGA - A Trace Visualization Framework 103
8.1 Functional Decomposition . 103

8.1.1 Extraction Module . 103
8.1.2 Analysis Module . 105

8.2 Performance Measurements . 106
8.2.1 Performance Overhead with Deactivated Tracing 106
8.2.2 Detecting and Excluding Massively Called Functions 108

9 Case Studies related to Complex Software Systems 113
9.1 Visualizing Traces for Locating Features 114

9.1.1 Fact Extraction . 114
9.1.2 Fact Analysis - Applying the Trace Pruning Algorithm 115
9.1.3 Fact Presentation . 115
9.1.4 Discussion on the Results . 116

9.2 Visualizing Traces for Identifying Recently Introduced Faults 117
9.2.1 Fault: "Why does the bridge become invisible?" 117
9.2.2 Fault: "Why is the Terrain Wizard missing?" 118
9.2.3 Discussion on the Results . 119

10 Summary and Outlook 121
10.1 Summary . 121
10.2 Outlook - Further Research Directions 123

10.2.1 Evaluations - Controlled Experiments and Field Studies . . . 124
10.2.2 Enriching Traces with Information on System State 124
10.2.3 Visualizing Multi-Threaded Software Systems 125
10.2.4 Visualizing Service-Oriented Software Systems 125

Bibliography 127

CHAPTER 1
Introduction

1.1 Problem Statement
A large fraction of the costs in a software system’s life cycle is spent on its maintenance
[40]. Erlikh [57] reports an estimate of 85-90%. One important reason why software
maintenance tends to be costly is that long-living software systems such as legacy
software systems can only be understood in part, and an up-to-date documentation
describing the system’s structure and behavior is rarely available. Hence, developers,
including any person participating in software development and maintenance that
operates on source code, devote up to 50% of their time to trying to understand the
system’s implementation [40]. Likewise, more recent studies emphasize the importance
of program understanding during maintenance [5, 106]. One of the many reasons
why program understanding is time consuming is that the system’s internal behavior
can only be inspected in parts. Developers need to re-establish the links between
the external, visible behavior and the system’s implementation. State-of-the-art
developer tools support developers by "showing" the inner processes either by providing
information on the system’s state at a single point in time (e.g., symbolic debuggers)
or by providing time aggregated overviews (e.g., profilers). While these tools help
developers to acquire an understanding of the system’s execution, reconstructing the
execution history needs to be done mentally—a cognitively demanding task.
The visualization of execution traces, i.e., sequences of function calls, represents

an approach to help developers to understand a complex system’s structure and
behavior [41, 45, 179]. Trace visualization reveals the participating functions, their
relationships, and their call order while the system runs and exhibits a specific
externally visible behavior. In practice, execution trace visualization captures the
sequence of function calls over time, analyzes and abstracts that data, and derives
visual representations that permit developers to analyze the system’s structure and
behavior. Throughout the thesis, the term trace is used synonymously with the term
execution trace.

There are a number of commercial and academic program program comprehension
tools available that have been adopted by developers for daily use in an industrial
software maintenance setting. However, these do not focus on trace visualization.

2 1 Introduction

The main reason for this is that building trace visualization tools encounters major
scalability [6, 232] issues: First, it is computationally difficult to process the large
amount of data that is typically produced when logging system behavior. Second, it
is difficult to explore the vast amount of runtime data—a cognitive scalability issue.
For example, capturing the behavior of the Google Chrome web browser for 5 seconds
while it is downloading and displaying a web page involves more than 10 million
function calls.

The aim of this thesis is to develop a concept and a tool that tackles the scalability
challenges, pushing the technique of trace visualization one step forward in an effort
to get it more widely accepted by developers as a technique for understanding the
structure and behavior of software systems during software maintenance.
The research questions of this thesis can be summarized as follows: How can

information on control flows of complex software systems be captured at runtime,
analyzed and abstracted, and presented? In particular, how can the computational and
cognitive scalability problems be reduced that are encountered by trace visualization?

1.2 The Approach in a Nutshell
This thesis presents a concept and implementation for the visualization of traces
that aims to reduce the computational and cognitive scalability problems that trace
visualization encounters. The concept comprises the following building blocks (Figure
1.1):

Figure 1.1: This thesis presents a concept that tackles the computational and cogni-
tive scalability problems that the visualization of traces encounters.

1.2 The Approach in a Nutshell 3

1. Scalable technique for recording traces of C/C++ software systems

2. Technique for pruning traces

3. Technique for providing multiple linked views on traces

4. Technique for combining trace visualization with 3rd party tools and systems
for reverse engineering

The overall concept—except for parts of the C/C++ tracing technique—is platform-
independent and can be applied to software systems written in any procedural
programming language. With minor adaptions, even the tracing technique can be
applied for other languages than C/C++.

1.2.1 Scalable Technique for Recording Traces of C/C++ Software Systems
A robust and scalable tracing technique for C/C++ software systems is presented
in Chapter 4 providing the basis for a scalable trace visualization tool, which can
be seamlessly integrated into existing maintenance processes. It is robust in a sense
that it does not introduce faulty system behavior such as crashes because it handles
all compiler optimizations and other special binary code situations that need to
be considered when runtime instrumentation is concerned. Furthermore, it can be
easily integrated even into complex build processes because it relies only on common
compiler features for code instrumentation, which can be activated by global build
options. Moreover, it can be applied during development and maintenance with only
a short waiting time (less than a few seconds), as tracing can be quickly activated
and deactivated at runtime by standard debugger features. It is possible to apply
the tracing technique and, hence, trace visualization to a running software system
even in the midst of a debugging session. Finally, the tracing technique offers a
means of coping with the scalability issues of trace visualization: The technique
detects functions at runtime that are massively called and excludes them from being
traced. Thus, the size of the resulting trace is reduced by several orders of magnitude.
Additionally, the runtime overhead introduced by the tracing technique is reduced
significantly.

1.2.2 Technique for Pruning Traces
Traces typically consist of several hundred thousand function calls even if only a
part of the software system’s implementation is traced. The trace pruning algorithm
described in Chapter 5 identifies boundaries within the trace, thus creating a coarse-
grained hierarchical trace representation that supports developers in exploring a
trace using a top-down approach and in identifying those parts of the trace that are
relevant to the maintenance task at hand. The key idea is to take advantage of the
fact that the implementation of software systems commonly follows the paradigms of
reuse and modularization, which force programmers to implement higher-level system
functionality as executions of lower-level functionality. Automatically identifying the
calls that "coordinate" executions of lower-level functionality makes it possible to

4 1 Introduction

recursively describe a trace as sequences of phases, which is a reduced and coarser-
grained description of the trace. Based on these trace descriptions, highly compact
trace visualizations can be provided.

1.2.3 Technique for Providing Multiple Linked Views on Traces
Chapter 6 explains various techniques to present traces. These trace views are
designed to show different characteristics of a trace and to support different program
comprehension strategies. For each view, the transformation rules from trace data
to the resulting image are given. Additionally, it is demonstrated how the views are
linked to support developers in cross-referencing multiple mental models on system
behavior that have been built up by analyzing the different views.

1.2.4 Technique for Combining Trace Visualization with 3rd Party Tools and
Systems for Reverse Engineering

For many maintenance tasks, analysis tools and systems already exist. They allow
developers to identify specific artifacts of the software system (e.g., functions, classes,
files) that are relevant to the given maintenance task. Typically, the resulting artifacts
contains false positives, i.e., artifacts not relevant to the task at hand. Identifying
the true positives tends to be time consuming, especially if one needs to "dig into
code" to distinguish between false and true positives. Applying trace visualization in
these situations has the following benefits:

• Trace visualization can often be applied as an intermediate step after having
received the set of artifacts and before analyzing the code manually to verify
that an artifact is relevant to the given maintenance task. Trace visualization
facilitates comprehension of the execution context of the artifacts and helps to
eliminate false positives.

• Combining trace visualization with other analysis tools and systems helps to
master the scalability issue. The resulting artifacts provide developers with
precise entry points for trace exploration. They may perform detailed trace
analysis without having to search for maintenance task relevant parts in the
trace via a top-down exploration.

Chapter 7 explains how result sets originating from existing analysis tools and
systems are incorporated within the trace visualization process. Furthermore, a
novel fault localization technique is proposed that supports developers in identifying
recently introduced code changes that, contrary to expectations, cause modified
system behavior.

1.2.5 Further Contributions
The thesis includes as a further contribution a validation of the proposed concept. For
this, the concept was implemented as framework for creating trace visualization tools,

1.2 The Approach in a Nutshell 5

performance measurements were taken, and case studies on industrially developed
software systems were carried out:

• Chapter 8 introduces CGA, a framework for creating trace visualization tools.
Performance measurements on CGA applied to complex, industrial C/C++
software systems show that the thesis’ concept helps to overcome problems
pertaining to major scalability issues.

• Chapter 9 presents case studies where CGA was applied to real-world main-
tenance problems in cooperation with industrial partners. The case studies
provide evidence that trace visualization enhances the performance of industrial
developers during maintenance activities.

CHAPTER 2
The Context of Trace Visualization

Trace visualization can facilitate software maintenance tasks, especially those tasks
that require an understanding of the software system’s structure and behavior. This
chapter discusses fundamental concepts of software maintenance, reverse engineering,
program comprehension, and data mining, which form the context of trace visualiza-
tion. Furthermore, fundamental concepts of information visualization are outlined, in
particular the visualization pipeline. The chapter gives definitions of key terminology
such as traces and trace visualization.

2.1 Software Maintenance
Software maintenance has to cope with implementations of software systems that
can be considered to be vast, consisting of hundreds of thousands or even millions
of lines of code. As the system evolves over time, the implemented concepts tend
to drift away from the initially documented ones. Hence, it is likely that no reliable
up-to-date documentation is available explaining the system’s structure and behavior
on a higher-level of abstraction, i.e., conceptually higher than the implementation
itself.

One reason why software systems are complex is that their implementation is highly
likely to contain design anomalies in the long-run. Commonly, the software system is
developed and maintained over a considerable period of time by a constantly changing
developer team. Except for the initial development phase, when developers change
code, they do not have the original developers’ concepts in mind, causing the system’s
implementation to degrade. As Parnas [166] describes: "Changes made by people
who do not understand the original design concept almost always cause the structure
of the program to degrade. Under those circumstances, changes will be inconsistent
with the original concept; in fact they will invalidate the original concept. [...] After
those changes, one must know both the original design rules, and the newly introduced
exceptions to the rules, to understand the product. After many such changes, the
original designers no longer understand the product. Those who made the changes,
never did. [...] Software that has been repeatedly modified (maintained) in this way
becomes very expensive to update."

8 2 The Context of Trace Visualization

Software Maintenance Tasks Tasks that are performed on pre-existing software
systems are called maintenance tasks. The IEEE standard for software maintenance
[130] defines the term as follows.

Definition 1 (Software Maintenance Task) Any change made to a software system
after it is operational is a software maintenance task (short: maintenance task).

This definition includes tasks performed to eliminate bugs (corrective maintenance),
tasks to adapt the system to changes in the environment (adaptive maintenance), and
tasks to improve performance or maintainability (perfective maintenance). Efforts to
add new functionality that arise from changed requirements fall within the category
of adaptive maintenance. A large fraction of the time that developers expend on
performing maintenance tasks is dedicated to program comprehension. Corbi [40]
reports that this fraction exceeds 50%.

Developer Throughout the thesis, the term developer is a placeholder for a variety
of terms.

Definition 2 (Developer) The term developer stands for all participants in software
development processes that operate on the system’s source code and further artifacts.
Hence, the term incorporates roles such as programmer, implementer, maintainer and, to
some degree, tester.

Artifact The term artifact is used in this work according to the definition given by
Kruchten in the context of the Rational Unified Process [114].

Definition 3 (Artifact) An artifact is a piece of information that is produced, modified,
or used by a (software development) process. Artifacts are the tangible products of the
project: the things the project produces or uses while working toward the final product.
[...] Artifacts may take various shapes or forms: a model, such as the use-case model or
the design model; a model element, such as a class, a use case, or a subsystem; a document,
such as a business case or software architecture document; source code; executables.

2.1.1 Program Comprehension
Research into program comprehension is concerned with the cognitive processes that
developers adopt when trying to understand how a software system is structured
and how it behaves [200]. A key question in program comprehension theory is how
mental models are constructed [135]. In cognitive psychology mental models are
used to describe a given situation in the world and to generate conclusions from
it. Johnson-Laird et al. [97] state that "each mental model represents a possibility,
and its structure and content capture what is common to the different ways in which

2.1 Software Maintenance 9

the possibility might occur". According to Eysenck and Keane [59] "a mental model
represents a possible state-of-affairs in the world".

The program comprehension community has developed various models to describe
the cognitive processes and information structures used to form a mental model.
While all these cognitive models differ to some degree, they share many concepts
so that key activities in program comprehension can be identified [135]. Developers
choose from a set of different comprehension strategies including top-down and
bottom-up comprehension strategies [135, 200]. Furthermore, developers frequently
switch between the various strategies.

Top-Down Comprehension Strategy

In the case of the top-down comprehension strategy, the developer reconstructs
domain knowledge and tries to map this knowledge to the system implementation
[21], the software system’s externally visible functionality thereby serving as a starting
point. The process begins by constructing a hypothesis about the global nature of the
software system. After that, the hypothesis is successively refined in a hierarchical
fashion by forming subsidiary hypotheses. Soloway and Ehrlich [195] have observed
that this strategy is used when the software system or the type of software system is
familiar.

Bottom-Up Comprehension Strategy

Developers following a bottom-up comprehension strategy start by analyzing low-
level implementation artifacts, e.g., by reading source code. This information is then
aggregated and chunked into higher-level abstractions. The term chunk is defined in
cognitive psychology as an in memory stored unit formed from integrating smaller
pieces of information [59]. Shneiderman and Mayer further distinguish between
language-dependent knowledge (syntactic knowledge) and language-independent
knowledge (semantic knowledge) that is used for aggregation and chunking to build
a final mental model [190]. Pennington points out that developers typically start by
building a mental model of the control flow [169]. She states that abstract knowledge
of control flow plays the initial role in organizing memory representation and that
control flow or procedural relations dominate in the memory representation. Storey et
al. [200] remark that "reading code belonging to a delocalized plan can be cumbersome
as it may involve frequent switching between files which will rapidly lead to a feeling of
disorientation". A delocalized plan is conceptually related code that is implemented
in non-contiguous parts of the implementation. The term refers to the concept of
programming plans. Expert developers are assumed to have acquired a repertoire of
such plans, which represent stereotypic code fragments, allowing them to generate
code and recognize its structure more easily [66].

Switching between Comprehension Strategies

Letovsky [119] concluded that developers form a knowledge base to encode domain,
application, and programming expertise. Depending on the knowledge base contents,

10 2 The Context of Trace Visualization

developers opportunistically follow either top-down or bottom-up comprehension
strategies. A mental model describing the software system’s implementation in terms
of data structures and algorithms is built up iteratively during inquiry episodes in
instances where a developer asks a question, conjectures an answer, and then searches
through the software system’s artifacts to verify or reject the conjecture.
Experiments carried out by Van Mayrhauser and Vans revealed that developers

frequently switch between different comprehension strategies [134]. Developers create
and maintain a set of mental models—depending on the used strategies, frequently
switching between the strategies and cross-reference the models [200].

Program Comprehension as Interactive Task

An outstanding characteristic of program comprehension is that it is a cyclic and
interactive process. Klint [105] explains: "Initial findings on initial questions trigger
new questions that lead to new findings, and so on. In addition to this, the results of
understanding may be viewed and browsed in various manners."

2.1.2 Reverse Engineering
In forward engineering, higher-level concepts are transformed into lower-level artifacts
such as source code [114]. Reverse engineering is the opposite process where developers
need to recover and understand the higher-level concepts by analyzing the lower-level
artifacts. For reverse engineering tasks, tools and systems are available that support
developers during program comprehension. These tools should be designed with
regard to comprehension strategies. Storey et al. [200, 202] specify a set of important
cognitive design elements which a comprehension supporting tool should provide. A
subset with regard to trace visualization consists of the following requirements:

• Support for Top-Down Strategies [202]: "A tool may provide a layered view of
the program (previously prepared during system evolution or through reverse
engineering) to entice a maintainer to explore the program in a top-down fashion.
[...] To explore programs top-down, access to the software architecture should
be provided at various levels of abstraction. [...] Programmers can make use of
top-down views to gain a high-level understanding of the entire program, and
then focus only on the parts that need to be understood in order to complete
some task."

• Support for Bottom-Up Strategies [202]: "Bottom-up comprehension involves
3 main activities: 1) identifying software objects and the relations between
them; 2) browsing code in delocalized plans; and 3) building abstractions from
lower-level units. [...] In order to support bottom-up understanding, a software
visualization tool needs to provide immediate access to the atomic units in the
program. [...] Reading code belonging to a delocalized plan can be cumbersome
as it may involve frequent switching between files resulting in a feeling of
disorientation. Multiple views can be used to reduce the effects of delocalized
plans, as multiple views of source code, as well as other views such as call

2.1 Software Maintenance 11

graphs. [...] If instances of the same object are similarly highlighted in several
views, the negative effects of delocalized plans can be reduced."

• Support for Switching between Strategies [202]: "Tools need to be designed
to allow frequent switching between top-down and bottom-up comprehension
strategies. [...] Programmers create various mental models and frequently switch
between them during the course of comprehension. A tool [...] should support
the construction of several linked views representing a variety of cross-referenced
mental models."

Chikofsky and Cross [33] define reverse engineering as the "process of analyzing a
subject system to (a) identify the system’s components and their interrelationships
and (b) create representations of the system in another form or at a higher-level of
abstraction". A higher-level of abstraction thereby means that these representations
of the software system are less implementation-dependent and more dependent on
the application domain.
The first step in a reverse engineering process is to extract facts. The term fact

refers to data that is extracted from artifacts.

Definition 4 (Fact) A fact is data about a software system obtained by parsing, query-
ing, and analyzing the system’s artifacts. Additionally, a fact may be derived from other
facts.

Reverse engineering techniques are based on processing facts about the software
system obtained from various artifacts [47] (Figure 2.1):

• Source code

• Executables

• Configuration management systems

• Documentation

• Test cases

• Interviews with users and developers

The steps of the reverse engineering process are:

1. Fact Extraction: Facts are extracted from the source code, running executa-
bles, configuration management systems, documentation, test cases, or from
interviews. In the reverse engineering community the fact extraction step is
also referred to as extraction step [48, 103, 105, 115, 144, 171] or data gathering
[212].

2. Fact Analysis: Facts originating from different sources are integrated into
a fact base. Additionally, some form of abstraction is derived from the facts

12 2 The Context of Trace Visualization

Figure 2.1: Illustration of important aspects of the reverse engineering process.

resulting in additional facts. One example involving object-oriented software
systems is lifting up a method call graph to call relations between packages.
Synonyms for the fact analysis step commonly used in the reverse engineering
community are analysis [49, 103], knowledge inference [212], and abstraction
[105, 115, 144, 171].

3. Fact Presentation: Developers explore the fact base to comprehend aspects
of the software system that are related to a particular maintenance task.
Exploration means querying the fact base and analyzing the query results
in a highly interactive way. In each query, some facts are selected from the
fact base and presented to the developer, giving a specific view of the fact
base. In a typical situation, developers should be provided with multiple views
simultaneously. Synonymously used terms for the fact presentation step are
visualization [49, 103], knowledge presentation [212], presentation [144], and
view [48, 105, 115, 171].

2.1.3 Dynamic versus Static Analysis Techniques
Reverse engineering techniques are classified as dynamic, static, or combined analysis
techniques. Static analysis techniques examine source code and build an abstraction
of the runtime state, which permits developers to reason over all possible behaviors
[58]. Diehl [49] states that "static analysis computes properties of a program which

2.2 Data Mining 13

hold for all executions of the program." These techniques are typically sound, i.e.,
they guarantee—due to their conservatism—specific properties to be true. Dynamic
analysis techniques, on the other hand, execute the software system over certain inputs
and observe the execution [58]. For this, these techniques require an instrumentation
infrastructure. Additionally, one must decide what to measure and which scenario to
run. Hence, dynamic analysis techniques are precise but unsound by nature—their
results may not allow generalization as to future executions.
For program comprehension, applying static analysis alone is not sufficient. Cor-

nelissen et al. [42] emphasize the need for dynamic analysis: "Among the benefits
over static analysis are the availability of runtime information and, in the context of
object-oriented software, the exposure of object identities and the actual resolution of
late binding." The same holds for function pointers in procedural languages.

Heuzeroth and Löwe [81] explain likewise that "static program information captures
the program structure, but even elaborated static analysis techniques obtain only
little information on the runtime behavior of the program in advance. Hence, we
additionally need dynamic information to understand the behavior of the system in
example runs for specific use cases. We also need to assess dynamic information to
gain structural information, e.g., the target of polymorphic calls or the class(es) of
objects contained in heterogeneous containers. Static analysis cannot provide this
information in the general case."

Gamma et al. [63] illustrate the problem as follows: "An object-oriented program’s
run-time structure often bears little resemblance to its code structure. The code struc-
ture is frozen at compile-time; it consists of classes in fixed inheritance relationships.
A program’s run-time structure consist of rapidly changing networks of communicating
objects. In fact, the two structures are largely independent. Trying to understand one
from the other is like trying to understand the dynamism of living ecosystems from
the static taxonomy of plants and animals, and vice versa."

2.2 Data Mining
The reverse engineering process represents a form of data mining. According to Han
and Kamber [75] data mining is defined as follows:

Definition 5 (Data Mining [75]) Data mining is the process of discovering interesting
knowledge from large amounts of data stored in databases, data warehouses, or other
information repositories.

Witten and Frank [230] give a similar definition.

Definition 6 (Data Mining [230]) Data mining is defined as the process of discovering
patterns in data. The process must be automatic or (more usually) semiautomatic. The
patterns discovered must be meaningful in that they lead to some advantage, usually an
economic advantage.

14 2 The Context of Trace Visualization

Maimon and Rokach [128] define data mining in a more restrictive way describing
it as the essential step in the process of knowledge discovery in databases.

Definition 7 (Knowledge Discovery in Databases) Knowledge discovery in
databases (KDD) is an automatic, exploratory analysis and modeling of large data
repositories. KDD is the organized process of identifying valid, novel, useful, and
understandable patterns from large and complex data sets.

Definition 8 (Data Mining [128]) Data mining is the core of the KDD process, in-
volving the inferring of algorithms that explore the data, develop the model and discover
previously unknown patterns. The model is used for understanding phenomena from the
data, analysis and prediction.

Figure 2.2 illustrates the process of knowledge discovery in databases [128]. It
consists of an iterative sequence of the following steps:

• Data Preparation: This step includes data cleaning, data integration, data
selection, and data transformation.

• Data Mining: With this essential step, intelligent methods are applied in order
to extract data patterns.

• Pattern Evaluation and Knowledge Presentation: The truly interesting patterns
representing knowledge can be identified based on some measures of pattern
interestingness. Finally, visualization techniques are used to present the mined
knowledge to the user.

Figure 2.2: Illustration of the process of knowledge discovery in databases.

Different kinds of of patterns can be extracted by data mining techniques [75].
They include:

• Class descriptions describe classes of data in summarized, concise, and precise
terms. Such decriptions can be derived from data characterization, a technique
for summarizing the general characteristics of a class of data, or by way of data
discrimination, a technique for comparing general characteristics of a given
class with contrasting classes.

2.3 Visualization 15

• Frequent patterns are frequently occuring patterns in data, such as itemsets,
subsequences, and substructures. Mining frequent patterns leads to the discovery
of interesting associations between data sets in the form of association rules. An
association rule may describe certain probabilities, for example, the likelihood
that a customer who buys bread also buys milk.

• In a set of class-labeled data objects, a model is used to describe and distinguish
classes of which the labels are unknown and to predict future data trends. The
derived model is based on the analysis of training data, i.e., data objects with
known class labels. Classification uses models to predict categorical (discrete)
labels in data. Prediction uses models to describe continuous-valued functions.
Presentations of models include classification rules, decision trees, and neural
networks.

• Clusters of data are obtained following the principle of maximizing the intraclass
similarity and minimizing the interclass similarity in a training data set. As
clustering analysis works without consulting class labels, it can be used to
generate such labels.

• Outliers are data objects that do not comply with general characteristics of the
objects in the data set.

2.2.1 Mining Software Engineering Data
Applying data mining techniques to software engineering data, i.e., fact bases (cf
Section 2.1.2), poses several challenges. Xie et al. [231] state that "there might
be no existing mining algorithms that produce desired pattern representations, and
developing new algorithms for such representations can be difficult. Overall, ensuring
a scalable yet expressive mining solution is difficult. [...] Further, execution traces
collected from an even average-sized program can be very long, and dynamically or
statically extracted call graphs can be enormous. Analyzing such large-scale data poses
a challenge to existing mining algorithms".

Furthermore, they emphasize the challenges related to the developers’ work habits:
"In modern integrated software engineering environments, especially collaborative
environments, software engineers must be able to collect and mine software engi-
neering data on the fly to provide rapid just-in-time feedback. Stream data mining
algorithms and tools could be adapted or developed to satisfy such challenging mining
requirements".

2.3 Visualization
The thesis develops and applies concepts and techniques of information visualization
within the context of reverse engineering and program comprehension. Fundamentals
of the field of information visualization are outlined in this section.

Card et al. [29] define visualization using the term cognition, i.e., the gathering or
use of knowledge.

16 2 The Context of Trace Visualization

Definition 9 (Visualization) Visualization is the use of computer-based, interactive,
visual representations of data to amplify cognition.

Ware [226] emphasizes that "the power of a visualization comes from the fact that
it is possible to have a far more complex concept structure represented externally
in a visual display than can be held in visual or verbal working memories. People
with cognitive tools are far more effective thinkers than people without cognitive tools
and computer-based tools with visual interfaces may be the most powerful and flexible
cognitive systems". Furthermore, Ware [225] notes that "the human visual system is
a pattern seeker of enormous power and subtlety. The eye and the visual cortex of
the brain form a massively parallel processor".
Tufte [216] points out that such graphical representations can convey a complex

subject matter with clarity, precision, and efficiency. Butler et al. [27] note that
visualization may support users in a variety of distinctive cognitive processes. Driven
by these processes, three types of usage contexts can be distinguished for visualization
techniques:

• Discovery: This represents an exploratory approach. The user does not know
what to look for.

• Decision making: This represents an analytical approach. The user has a
hypothesis about the data and tries to verify it.

• Explanation: This represents a descriptive approach. The user knows the
phenomenon captured within the data. However, a visual representation of the
phenomenon is used as a means of communication.

A further distinction is made in respect of the type of data to be visualized. One
distinguishes between scientific visualization and information visualization [225]. In
scientific visualization, the data is concerned with objects and concepts associated
with phenomena from the physical world, typically with an inherent spatial component.
Information visualization focuses on abstract and non-physically based data. Chi [32]
tries to make this distinction more clear; however, there always remains an overlap of
the two fields.

2.3.1 Information Visualization
A definition of information visualization is given by Card et al. [29].

Definition 10 (Information Visualization) Information visualization is the use of
abstract, non-physically based data to amplify cognition.

According to Carr [30], information visualization is particularly useful "if there are
large amounts of data, the user goals are not easily quantifiable, and there are no simple
algorithms to accomplish the goals". Similarly, Spence [196] states that information

2.3 Visualization 17

visualization is demanded in "situations in which data is available, sometimes in very
large quantities, and where some human insight into that data is required". Heer et
al. [77] note that "information visualization technologies have proven indispensable
tools for making sense of complex data" and that "visual representations of abstract
information have been used to demystify data and reveal otherwise hidden patterns".
Kosara et al. [109] emphasize that visualization techniques are not efficient or

inefficient per se. Efficiency always needs to be evaluated ith regard to a clearly
defined task.

2.3.2 Software Visualization
Applying information visualization techniques in the domain of software engineering
is referred to as software visualization. Diehl [49] states: "It has often been noted
that software is inherently intangible and invisible. The goal of software visualization
is not to produce neat computer images, but computer images which evoke mental
images for comprehending software better." Storey [202] regards software visualization
as "a useful and powerful technique for helping programmers understand large and
complex programs". Likewise, Kranzlmüller [113] emphasizes the need for software
visualization when having to cope with challenging development processes: "A basic
necessity in this context are methods and tools to improve program understanding.
An accepted and powerful technique to manage the various stages of the software
lifecylce—especially during specification, design, programming, and program analysis—
is visualization." Mili and Steiner [141] state that "in software engineering, there
is ample evidence that a clear and visual representation of a software product can
significantly enhance its understanding and reduce the life cycle cost."
A broad definition of software visualization is given by Zhang [234]:

Definition 11 (Software Visualization [234]) Software visualization refers to the use
of various visual means in addition to text in software development. The various forms
of development means include graphics, sound, color, gesture, animation, etc. Software
development life cycle involves the activities of project management, requirement analysis
and specification, architectural and system design, algorithm design, coding, testing,
quality assurance, maintenance, and, if necessary, performance tuning.

Price et al. [173] define the term in a similar way.

Definition 12 (Software Visualization [173]) Software visualization is the use of
the crafts of typography, graphic design, animation, and cinematography with modern
human-computer interaction and computer graphics technology to facilitate both human
understanding and effective use of computer software.

Mili and Steiner [141] propose the following definition:

18 2 The Context of Trace Visualization

Definition 13 (Software Visualization [141]) Software visualization is a representa-
tion of computer programs, associated documentation and data, that enhances, simplifies
and clarifies the mental representation the software engineer has of the operation of a
computer system. A mental representation corresponds to any artifact produced by the
software engineer that organizes his or her concept of the operation of a computer system.

A more restrictive definition of software visualization is given by Diehl [49] who
focuses on visualization for software reverse engineering and maintenance tasks:

Definition 14 (Software Visualization [49]) Software visualization is the visualiza-
tion of artifacts related to software and its development process. In addition to program
code, these artifacts include requirements and design documentation, changes to the
source code, and bug reports, for example. Researchers in software visualization are
concerned with visualizing the structure, behavior, and evolution of software.

Diehl [49] adds that "in contrast to visual programming and diagramming for
software design, software visualization is not so much concerned with the construction,
but with the analysis of programs and their development process". Zhang [234]
emphasizes that "the act of software analysis can be a most challenging task, which is
determined by the complexity of the software itself and the actual scale of the program
and its data structures during execution. In this context, software visualization
tools have provided valuable assistance by enclosing the program’s complexity within
graphical displays to simplify the analysis task."

2.3.3 The Visualization Pipeline
The visualization process is modeled conceptually as a sequence of successive steps
that derive visual representations from raw data [186]; this concept represented by
the visualization pipeline is illustrated in Figure 2.3. The visualization process is
conceptually divided into three steps:

1. Filtering: The filtering step operates on raw data. Operations on the data
include interpolating missing parts of the data, computing data characteristics

Figure 2.3: The visualization process modeled as pipeline.

2.4 Trace Visualization 19

such as extreme values or gradients, cleaning data from noise, and selecting a
subset of the data.

2. Mapping: The mapping step transforms the filtered data into a geometry
model. That is, data values are mapped onto geometric primitives, the prim-
itives’ attributes (e.g., color), and their layout (i.e., relative positions). For
instance, scene graph representations may be used.

3. Rendering: The rendering step transforms mapped data into visual represen-
tations. For 3D geometry models a virtual camera defines the 3D view that can
be represented by a projective transformation on the view frustum.

For interactive visualization, the user triggers the visualization process in a cyclic
way: The image that is created by the rendering step is shown, and the user can gather
insights into the underlying data. Typically, the user can adjust the specifications
that control the filtering, mapping, and rendering step.

2.4 Trace Visualization
Traces present the core subjects of this work. In this section, we first give definitions
for traces. Next, a model for the trace visualization process is elaborated on. Finally,
it is discussed how information on the structural decomposition of the system is
combined with trace data.

2.4.1 Definitions of Traces
A broad definition of the term trace is given by Clements et al. [35]: "Traces are
sequences of activities or interactions that describe the system’s response to a specific
stimulus when the system is in a specific state. These sequences document the trace
of activities through a system described in terms of its structural elements and their
interactions".

In this thesis, we follow a more restrictive definition that is concerned with control
flow on function1 granularity. Traces result both from recording the execution of
single-threaded and multi-threaded software systems. In the case of multi-threaded
systems, however, multi traces are created—one trace per thread.

Definition 15 (Trace) A trace is a sequence of events that stand for a software system’s
control flow entering or leaving a function. As entry and exit events occur in pairs forming
a function call, a trace can be interpreted as sequence of nested function calls.

1 In different programming paradigms different terms for function are used. Throughout the thesis,
the term function stands as placeholder for all of these terms, e.g., procedure, subroutine, method,
etc.

20 2 The Context of Trace Visualization

Function level abstraction plays an important role in reverse engineering and
program comprehension: Functions are the smallest named and semantics conveying
execution units. Control flow captured on function level abstraction helps developers
to understand delocalized plans (cf Section 2.1.1). Kazman et al. point out that
function-based representations of a system are essential for understanding a system
on an architectural level of abstraction [101]. They represent the system in a more
coarse-grained way than abstract syntax trees (AST), control flow graphs (CFG), or
data flow graphs (DFG).
Specific reverse engineering techniques and tasks may require a representation of

system behavior which goes beyond function calls. Examples include variable states,
object identifiers in object-oriented software systems, or assembler instructions. In
this thesis, the proposed concepts are based on the function granularity only.
Mathematically, traces can be defined as graphs. Let T be the set of all possible

traces, i.e., sequences of function calls that conform to the constraints defined in the
following. Each trace T ∈ T is defined as a graph T = (F,C) where F ⊂ F is a set of
nodes representing functions and C ⊂ C = F×D× F is a set of edges representing
calls from a caller function to a callee function (Figure 2.4). D = N×N×L are edge
labels that carry the information on the start time ts ∈ N, the end time te ∈ N of
a call (ts < te), and of the location of the call site l ∈ L, e.g., the source code line
of the statement that triggers the call. Table 2.1 defines convenience operations for
accessing subelements of a call c = (f, (ts, te, l), g) ∈ C.
For each trace T = (F,C) ∈ T, C forms a tree with regard to time containment

(Figure 2.4)1. The following constraints are given:

Figure 2.4: A trace is a graph structure of functions (nodes) connected via directed
edges (calls) [left]. The time information attached to the calls ensures that the calls
form a tree with respect to time containment [right]. Parent-child relations in the call
tree correspond to caller-callee relations between functions in the graph structure.

1 This constraint implies a relation between sibling nodes in the call tree that arranges siblings
according to their sequential execution times. Additionally, parent-child relations in the tree
correspond to caller-callee relations between functions in the graph T .

2.4 Trace Visualization 21

Operation Domain and Range Result
time C→ N×N c 7→ (ts, te)
start C→ N c 7→ ts
end C→ N c 7→ te
callsite C→ L c 7→ l

caller C→ F c 7→ f

callee C→ F c 7→ g

Table 2.1: Convenience operations for a given trace T = (F,C) to access subelements
of a call c = (f, (ts, te, l), g) ∈ C.

• Time values are unique.

• There is exactly one root call, root ∈ C that encloses all calls in C \ {root}
with regard to time.

• Any two calls in C are either enclosed in time or do not overlap in time.

• For any c ∈ C \ {root} it holds that:
(1) there are one or more calls that enclose the call c in time;
(2) for the shortest call cparent of all enclosing calls it holds that callee(cparent) =
caller(c).

Table 2.2 defines further convenience operations to facilitate the description of
algorithms for traces.
For reasons of clarity, Figure 2.5 depicts the data model of traces using the UML

notation.

Figure 2.5: Data model of traces using the UML notation.

2.4.2 The Trace Visualization Process
Essentially, the model of the trace visualization process unifies the reverse engineering
and the visualization process models; this is illustrated in Figure 2.6. The model
consists of the following process steps:

1. Fact Extraction: The starting point is an executable of the software system,
which is modified in such a way that system execution generates a trace.

22 2 The Context of Trace Visualization

Operation Domain and Range Result
parentcall C→ C Returns the shortest call of all calls

that enclose c in time.
subcalls C→ 2C Returns the set of calls whose

parentcall is c.
enclosingcalls C→ 2C Returns the set of calls ob-

tained from recursively collecting
parentcalls starting with c.

triggeredcalls C→ 2C Returns set of calls obtained from re-
cursively collecting subcalls starting
with c.

costs C→ N Returns the difference between end
and start time of c.

selfcosts C→ N Returns the costs of c minus the
costs of c’s subcalls.

funcset 2C → F Returns the set of functions that are
either caller or callee of a call in the
input call set.

Table 2.2: Convenience operations on a trace T = (C,F) and a call c ∈ C or on a set
of calls C ′ ⊆ C, respectively.

The developer, who performs the trace visualization process with the aim of
understanding system behavior, needs to execute the software system to capture
a trace.

2. Fact Analysis: In the fact analysis step, the trace is combined with additional
facts on the system, e.g., facts describing the static structure of the system.

Figure 2.6: The trace visualization process.

2.5 Extending Traces with Module Hierarchy Information 23

Additionally, further facts are derived, e.g., by way of abstracting or grouping
facts. The analysis step stores the results in a fact base.

3. Filtering: In the filtering step, a subset of the facts is taken from the fact
base according to a developer-defined query. Defining the filtering this way
differs from any definition evolved in the context of visualization. According to
this definition, data preparation aspects are not included in the visualization
related definition of filtering but are located in the fact analysis step.

4. Mapping: The fact subset is transformed into a geometry model. The facts
are represented by geometric primitives and their associated attribute values
such as form, size, orientation, position, color, brightness, and texture.

5. Rendering: The geometry model is rendered; the resulting images are pre-
sented to the developer.

The three steps filtering (3), mapping (4), and rendering (5) are combined within
the term fact presentation. Fact presentations define views on the fact base. The
trace visualization process is an interactive process. In other words, the developers
interactively adapt the views to facilitate the building of mental models on the
system’s structure and behavior.

2.5 Extending Traces with Module Hierarchy Information
Functions as smallest named implementation units are grouped into more coarse-
grained implementation units, forming a hierarchical structure – the module hierarchy
of the software system.
The term module is used in this work as defined by Clements et al. [35].

Definition 16 (Module) A module is an an implementation unit of software that
provides a coherent unit of functionality. [...] It is a hierarchical element, i.e., an element
that can consist of like-kind elements. A module can consist of submodules that are
themselves modules.

The module hierarchy of a software system can be represented as treeM = (V,H) ∈
M where V ⊂ V is a set of nodes representing modules and H ⊂ H = V×V is a set
of tree edges representing the hierarchical containment relation between modules.
Table 2.3 defines operations on a module hierarchy M = (V,H) that simplify the

description of algorithms.
Figure 2.7 shows the data model for traces combined with module information

using the UML notation. Functions are leaf nodes in the module hierarchy.
A trace T = (F,C), whose functions f ∈ F are leaf nodes in a module hierarchy

M = (V,H) are referred to as compound graph. A compound graph [204] is a graph
with two sets of edges: adjacency edges and hierarchy edges. The hierarchy edges are
regarded as an inclusion relationship. Depending on the notion, hierarchy edges are
required to be acyclic or to form a tree.

24 2 The Context of Trace Visualization

Operation Domain and Range Result
parent V→ V Returns the module that contains v.
ancestors V→ 2V Returns the set of modules obtained

from recursively collecting parents
starting with v.

descendants V→ 2V Returns the set of modules that have
v as an ancestor.

Table 2.3: Operations on a module v ∈ V of a given module hierarchy M = (V,H).

Figure 2.7: Data model of traces extended with module hierarchy information in the
UML notation.

2.5.1 Module Names and Function Semantics
When developers explore traces, they need to understand the functions’ responsibilities
for the exhibited system behavior. The comprehension process is accompanied by
interpreting function names and function call relations. Further semantics conveying
information on functions can be obtained from taking the module hierarchy into
account. Developers may derive additional information on a function’s semantics
from the names of the modules of which the function forms a part. The purpose of
a function called callOnStartRequest(), for example, can be assessed more easily,
if the developer is aware of the fact that the function is contained in the module
hierarchy of Channel, Http, Protocol, and Network. To facilitate the exploration
of traces, module names can be evaluated [14].

2.5.2 Reconstruction of Module Hierarchies
In the field of architecture recovery [76, 100, 146], various techniques have been
proposed to reconstruct the system’s module hierarchy from its implementation.
Such techniques are required, as in the case of many long-living software systems an
explicit and up-to-date documentation of its modules and their relationships is rarely
available. The techniques include the analysis of syntactical elements in the source
code (e.g., class, package keywords), the analysis of how code is organized (e.g., in
nested directory structures), the analysis of naming conventions, the application of

2.6 Maintenance Tasks Facilitated by Trace Visualization 25

clustering algorithms to group code artifacts according to their dependencies [131].
Naming conventions and code partitioning within directory structures can be

exploited to reconstruct the module hierarchy of C/C++ software systems [8, 14].
The approach follows the hierarchical reflexion models proposed by Murphy et al.
[146]. A developer provides a mapping table consisting of regular expressions and
target modules. Each function’s name and its implementing file is checked against
the regular expressions and is then assigned to a module. A basic mapping table
is automatically derived from the directory structure of the source code or from
the package structure. Afterwards, the mapping can be fine tuned manually to
incorporate existing knowledge on the module hierarchy of the system.
Depending on the reconstruction technique, various source code metrics can be

determined per module. Examples of such metrics include lines of code (LOC), lines
of comments, fan-in, fan-out, number of methods or functions in a class or file, and
number of global variables. For a detailed discussion see Lorenz and Kidd [122] or
Lanza and Marinescu [118].

2.6 Maintenance Tasks Facilitated by Trace Visualization

A large set of maintenance tasks are related to system features. Eisenbarth et al. [54]
define a feature as follows.

Definition 17 (Feature) A feature is a system behavior that can be triggered by the
user of the system and produces some kind of output that is visible to the user.

Many feature-related maintenance tasks can be supported by trace visualization.
Moreover, the fact that the user knows when the feature starts and when it ends is a
real advantage here. Such tasks include:

Feature Location Requests for modifying and extending existing software systems are
in most cases submitted and expressed by end-users in terms of features [70, 137]. In
order to meet such a feature change request, developers need to translate it into terms
of source code. First, they have to locate the source code components responsible
for feature functionality. Second, they need to understand how these components
interact. In the case of complex software systems, this is a cost intensive and time
consuming task. Trace visualization can prove useful to developers performing this
task because it reduces the vast amount of source code enabling developers to inspect
the executed parts and as it provides higher-level views on the executed code.

Fault Localization If a failure occurs while executing a software system, i.e., if the
system fails to do what it should do, it is often time consuming to locate the failure-
causing fault (bug, defect) within the code. In complex software systems the executed
functionality is usually scattered throughout the system implementation. Subtle and
often undocumented couplings exist between different parts of the implementation.

26 2 The Context of Trace Visualization

Furthermore, code corresponding to functionality that exhibits the failing behavior is
frequently not the source of faulty system behavior. Hence, a developer first needs to
identify the code that corresponds to the functionality that is exhibiting the failing
behavior. Having identified the starting point, the developer needs to go back in
time and analyze the control flow until the fault, i.e., the origin of the failure, is
found. With trace visualization, however, developers record the control flow before
and while the system exhibits the failure. Later, they are able to analyze the system
behavior back and forth in time as if they had a time machine. For instance, they
can analyze what happend before a crash occured.

CHAPTER 3
Related Work

This chapter starts by outlining general software visualization approaches, including
those for trace visualization. Explanations are given on where and how tracing, trace
reduction, and trace presentation concepts proposed in this thesis differ from existing
ones. In addition, an overview is provided on related work to techniques for software
maintenance tasks of fault localization and feature location.

3.1 Software Visualization
Software visualization has its roots both in software engineering and information
visualization. Various taxonomies have been introduced that structure software visual-
ization research [129, 148, 149, 173, 181]. Myers [149] distinguishes between software
visualization techniques that present data, code, and algorithms. In an additional
dimension, the techniques are partitioned into static and dynamic approaches. Price
[173] classifies software visualization techniques according to the following aspects:

• Scope: Range of software systems used as input for the visualization.

• Content: Kind of information visualized.

• Form: Characteristics of the output of the visualization system.

• Method: Specification of the visualization.

• Interaction: Means of controling the visualization system.

• Effectiveness: Effectiveness of conveying information to the user.

As to the form, one distinguishes between 2D versus 3D visualizations [132, 199].
Teyseyre and Campo [210] give an extensive overview of 3D software visualization
tools and techniques.
Zhang [234] distinguishes between aspects of software visualization (visual mod-

eling, visual database query, visual programming, algorithm animation, program
visualization, data visualization, and document visualization) according to their
applicability during the stages of a software system’s life cycle. In contrast, Mili

28 3 Related Work

and Steiner [141] focus on software engineering and group software visualization
approaches into those for construction and those for analysis. Diehl [49] further
restricts software visualization approaches to program understanding and reverse
engineering activities and partitions software visualization techniques according to
aspects of the software system that need to be understood: the structure of a software
system, its evolution, and its behavior.

We structure related work on software visualization according to Diehl’s approach.

3.1.1 Visualization of the Software System’s Structure
UML Based Approaches Many tools and systems generate UML diagrams [183]
from source code. These diagrams have been established as a standard for visually
documenting and planning forward engineering activities. Examples of UML based
tools and systems include Borland Together [18], IBM Rational [90], ESS-Model [56],
Fujaba [79], GoVisual [160], and BlueJ [112]. The major challenge when using UML
diagrams for reverse engineering is scalability and the applied layout algorithm that
should keep edge crossings to a minimum [53].

Generic Graph Based Approaches A variety of tools and systems provide generic
graph visualizations on the software system’s structure. With Rigi [142, 143] the
source code is parsed and an initial graph is presented. The developer explores the
graph and aggregates nodes and, in this way, creates higher-level abstractions of
the system structure. Various approaches follow the same process, e.g., PBS [61],
Sotograph [78], and Bauhaus [110, 174].
Source navigator [156] is a graph based tool for visualizing call graphs and vari-

able usage dependencies for C, C++, Java, Tcl, FORTRAN, and COBOL systems.
Understand [187] is a system understanding tool that provides a variety of graphs
visualizations. Similar visualization techniques are provided by Imagix 4D [88].

Figure 3.1: The SHriMP visualization system [203].

3.1 Software Visualization 29

SHriMP [201, 203]—and its Eclipse plugin derivate Creole [138] for Java software
systems—visualizes structural system dependencies as interactive node-link graphs
(Figure 3.1). In multiple linked views, developers navigate through the system
structure. A similar approach is adopted by VizzAnalyzer [81, 163]. Favre [60]
proposes GSEE, a generic graph based software exploration framework that focuses
on visualization of object-oriented and on component based software systems. Telea
et al. [209] have introduced a graph based toolkit for prototyping reverse engineering
visualizations.

Lanza and Ducasse [117] have presented class blueprints, a visualization technique
that depicts dependency relations between classes. The classes’ methods are, thereby,
grouped into layers of initialization, interface, implementation, and access.

Figure 3.2: Balzer et al. use a landscape metaphor to visualize the structure of a
software system [4].

Balzer et al. [4] present the hierarchical structure of a software system using a
3D landscape metaphor (Figure 3.2). Using a similar metaphor, Panas et al. [123]
use 3D and visualize with Vizz3D a software system’s structure as 3D city. Likewise,
Wettel and Lanza [227] use a city metaphor to visualize the structure of software
systems together with metrics on the structural elements.
An inherent problem of graph based software visualization tools and systems is

the implementation of the graph layouting algorithm [147]. Most approaches use
generic graph drawing tools and systems for this. Among numerous tools, we mention:
Graphviz [64], Graphlet [19], OGDF [159], and Prefuse [77].

Mili and Steiner [141] point out that generic graph drawing tools may not always
be the appropriate choice because "these tools do not take into account the drawing
conventions of accepted software engineering notations. Additionally, these layout tools
do not scale. In re-engineering, software artifacts may necessitate the visualization of
graphs consisting of tens of thousands of nodes."

Metrics Based Approaches Metrics based software visualization approaches do not
primarily focus on dependency or containment relations between elements of the
system structure. On the contrary, they organize the visual representations according
to metrics values on the elements. CodeCrawler [46, 50] uses the concept of polymetric

30 3 Related Work

Figure 3.3: CodeCrawler visualizes metrics values about structural elements of a
software system [50].

views that maps values of object-oriented metrics on the attributes of box-shaped
representations of the elements, e.g., width and height (Figure 3.3). sv3D [133] in
addition exploits the third dimension to visualize metrics values.

3.1.2 Visualization of the Software System’s Evolution

Figure 3.4: The Seesoft technique visualizes metrics values on miniaturized source
code [3].

The SeeSoft technique [3, 52] introduced by Eick et al. [52] uses colored, miniatur-
ized source code views to visualize metrics on code changes (Figure 3.4). Various
tools and systems adopt this technique to visualize metrics data [62, 72, 99, 133, 161].
Griswold et al. [72] propose the Aspect Browser, a tool for visualizing evolution
metrics. For the same purpose, Froehlich and Dourish [62] introduce Augur.
Other tools and systems depict evolution using graph representations. Gevol [38]

converts for different development snapshots the structure of a Java software system
to animated sequences of graph representations. With YARN [82], modules of the
software systems are located on a circle. Edges between the modules denote their
dependency relations. The system animates through the different versions of the
system and reveals the change in dependencies.

Voinea et al. [223] propose CVSscan and CVSgrab that present each version of the
system as a colored line and show the system evolution as a series of these lines. The

3.1 Software Visualization 31

color encoding can be configured so that various characteristics of system evolution
can be analyzed, e.g., coding activity of individual developers.

3.1.3 Visualization of the Software System’s Behavior
We distinguish between approaches for educational purposes (section algorithm
animation), for visualizing system behavior on a microscopic scale (section micro
scale behavior visualization), for time-aggregated control flow visualization (section
time-aggregated visualization), and for visualizing sequences of function calls (section
trace visualization). Trace visualization approaches are discussed in a separate
section.

Algorithm Animation The tools and systems for algorithm visualization are designed
to visualize single algorithms and are usually applied in educational contexts. Brown
and Sedgewick [23] propose the algorithm animation system BALSA. TANGO [198] is
introduced by Stasko. BALSA and TANGO both have a variety of extended successor
versions. An extensive overview of algorithm animation tools and systems is given by
Kerren and Stasko [102].

Micro Scale Behavior Visualization Examples of diagrams that are visual represen-
tations of the source code include control-flow graphs [67], Jackson diagrams [93],
and structograms [151]. Due to the detailed information that these diagrams depict,
they are limited to display a small fraction of the code, e.g., the implementation of a
single function.
xSlice [34] computes a dynamic slice for a specific point in the code and a given

program state. That is, it computes the set of all program points that affect the given
program point for the given input. The slice is used to highlight the corresponding
code lines in a source code view (Figure 3.5).

Röthlisberger et al. [182] integrate runtime information into the Eclipse IDE. Via
pop-up windows developers receive information on call statistics of methods that are
selected with the mouse pointer.
Related to the visualization of behavior on a microscale are tools that visualize

the memory state at a specific point in time. The Data Display Debugger DDD
[233] depicts nested variable references. It can be used as an extension to command
line debuggers such as GDB on Linux and permits developers to visually unfold
nested data structures, e.g., lists. An extension of DDD as proposed by Zimmermann
and Zeller [235] visualizes memory graphs to show reference dependencies between
variables.

Time-Aggregated Visualization Visualization techniques that aggregate trace data
over time focus on two distinctive tasks: analyzing performance and assessing test
coverage.

Performance analysis tools and systems, such as Intel’s VTune [89] or the Unix tool
gprof [68], typically present system behavior in textual form or as call graphs that are
expanded interactively. Function calls are annotated with their cumulated runtime

32 3 Related Work

Figure 3.5: xSlice shows which code lines affect a given program point.

costs which permits developers to identify those functions that are on average costly.
Moret et al. [145] apply a radial, space-filling hierarchy visualization technique [197]
to depict the costs information of a call graph.

For visualizing test coverage, Tarantula [99] and Gammatella [161] use minituarized
source code views and encode by color whether a code line has been executed involving
tests or not.

3.2 Trace Visualization
In the field of trace visualization, a number of approaches have been proposed.
Shimba [205, 207, 208] is a tool for understanding the behavior of Java systems.

The developers explicitly choose artifacts they wish to be traced (e.g., classes, inter-
faces, methods, etc.) Here, the structure visualization tool Rigi is used. For trace
presentation, Shimba uses SCED [206], a trace visualization frontend for creating and
manipulating sequence diagrams and state machines similar to the respective UML
diagrams used in forward engineering [155, 183]. SCED is able to detect repeated
sequences of identical calls. Shimba’s purpose is not to provide views on the overall
behavior of a software system but on the behavior of manually selected artifacts.
Hence, Shimba does not run into any of the scalability issues related to very large
traces.
JaVis [136] extracts method calls in concurrent Java software systems via the Java

Debug Interface and visualizes the trace with the UML forward engineering tool
Borland Together [18].

PV [104] visualizes traces generated on AIX systems—IBM ’s version of the UNIX
operating system—with the aim of exposing performance bottlenecks. Traces contain
various kinds of events: from hardware-level performance information to application-

3.2 Trace Visualization 33

level-activity (such as execution time profiles). PV provides time-aggregated graph
views on a trace and colorstrip views that depict a user-selected event type over
time. The AixProcess Colorstrip visualizes the activity of all running processes
overtime—each process is mapped on a color value.

Figure 3.6: The information mural visualization technique.

ISVis [94–96] is a trace visualization frontend for object-oriented software systems
that introduces the information mural visualization concept (Figure 3.6) for presenting
traces in a highly condensed way. Objects occupy thin vertical lines, and color encodes
along the vertical time dimension when messages are sent. In addition to this coarse-
grained view, a view similar to an UML sequence diagram is provided. In this view, a
pattern detection algorithm summerizes identical call sequences. Furthermore, ISVis
provides a querying mechanism that allows developers to search the trace for patterns
using wildcards.

Figure 3.7: Visualization technique of the Ovation tool.

Ovation [45] is a trace visualization tool for Java systems. Traces are explored by
collapsing and expanding call subtrees. Filtering mechanisms exist based on manually
selecting objects or classes. Repetitive parts in sequences of subcalls are compacted
by means of identifying similar method calls and detecting call patterns (Figure 3.7).
Similarity can thereby be defined in various ways, e.g., methods of the same object,

34 3 Related Work

methods of the same class, methods with call stack depth under a given threshold,
etc.
Jinsight [44] focuses on performance analysis in Java systems. Some of Jinsight’s

views aggregate trace data over time. The histogram view shows overall CPU or
memory consumption of objects or classes. Likewise, the call tree view gives a
summarized CPU consumption of calls – a view that is provided by most performance
profilers. The execution view shows the trace over time. Calls are represented by
bars that are placed along the vertical dimension (time). In the horizontal dimension,
the bars are placed according to their call stack depth. The execution view provides
zooming facilities, i.e., it permits choosing the time range to be shown, while the
reference pattern view depicts interactions between objects. This view essentially
implements the Ovation concepts. Some of the concepts having become part of the
Eclipse project TPTP [51] and of Zinsight [92], an internal IBM tool for debugging
and performance analysis on System Z.
Like Shimba, Program Explorer [116] is a tool for understanding C++ systems.

For tracing they modify the GCC compiler as performed by the SPYDER tool
[2]. Moreover, they use IBM ’s Heap View Debugger technology available on IBM ’s
UNIX operation system AIX [91] to trace the creation and deletion of objects.
Program Explorer visualizes traces as object graphs showing selected objects and
their interactions. The authors state that manual pruning of the graph is necessary
to obtain an object graph that can cognitively be processed. Program Explorer
additionally provides a view similar to an UML sequence diagram.

Figure 3.8: Visualization technique of the Avid tool.

AVID [224] is a trace visualization tool for Smalltalk systems. Trace data is
obtained via instrumenting the Smalltalk virtual machine. AVID creates views that

3.2 Trace Visualization 35

primarily show the system’s modular structure, which has to be defined manually
beforehand. On top of the structural visualization, the dynamic information contained
in a trace is overlayed (Figure 3.8). Namely, the function call stack for a given point
is lifted up in such a way that it represents a module call stack that connects the
displayed modules.
Scene [111] uses source code instrumentation by means of applying a preprocessor

before code compilation to gather traces in object-oriented systems. The views
that Scene presents are similar to UML sequence diagrams. In order to cope with
scalability issues involving large traces, they may be interactively reduced to method
calls of user selected objects. Furthermore, calls may be collapsed and expanded
interactively allowing for the filtering of subcalls. Hence, these calls are prevented
from being shown.
The Collaboration Browser [180] operates on Smalltalk systems. A user selects

objects or methods to reduce the trace to calls related to selected artifacts. A view
similar to a UML sequence diagram shows the reduced trace.
DJVis [193, 194] visualizes the execution of Java systems. A runtime view shows

the call stacks of all threads. The class view depicts a graph of classes and their
relationships. Class metrics are encoded on the nodes’ shapes and colors.

Greevy et al. [71] propose a trace visualization system for Smalltalk systems. After
recordeding a trace, developers are able to step through the trace and analyze in a
21

2D graph visualization how objects are created and how they send messages. The
third dimension is used to pile up boxes on one another that represent objects of the
same class.

Figure 3.9: Screenshot of the ExtraVis tool.

ExtraVis [43] is a visualization frontend for presenting trace data. Two synchronized
views permit developers to explore the trace (Figure 3.9). The massive sequence view

36 3 Related Work

is a variation on Jerding’s information mural that depicts call events in a time-ordered
way along the vertical dimension. The circular bundle view depicts the system’s
structural elements on the circumference of a circle, including their hierarchical
structuring. Within the circle the edge bundles between structural elements in the
circumference represent call relations. A trace is explored by selecting a time range
in the massive sequence view and analyzing on the basis of the circular bundle view
which call relations are active within the time range.

Figure 3.10: Screenshot of the Zest Sequence Viewer tool.

The Zest Sequence Viewer [6] provides 3 views on traces of Java systems (Figure
3.10): A UML sequence diagram; an information mural-like miniaturized view; and
UML class diagram inspired view that shows the structural dependencies between
the objects that are referred to in the trace.

The ARE tool [73] uses AspectJ to instrument Java applications and creates UML
sequence diagrams from small traces of user-selected methods and classes.

Comparison to the Thesis’ Tracing Technique
Most of the approaches do not detect massively called functions, i.e., functions
that have a short execution time and are executed with high frequency. In this
work, automatically detecting massively called functions at runtime and subsequently
disabling the tracing mechanism, forms a core functionality to cope with the scalability
problem of large traces because it reduces the amount of trace data right from the
start of the trace visualization process. Hence, this technique could quite reasonably
be integrated into the mentioned trace visualization approaches.

Hamou-Lhadj and Lethbridge [74] propose a technique that uses statically obtained
fan-in metrics on functions to classify functions as utility components and remove
them from a trace. This approach has the disadvantage that the developer needs to
perform a static analysis on the source code, which may take a long time. In the case
of a mid-sized 300k+ LOC code base, for instance, this may take some tens of minutes.
Another disadvantage is that the technique does not guarantee any reduction on the

3.2 Trace Visualization 37

size of the trace. Not all functions that are executed with high frequency and are
therefore responsible for the size of the trace have a high fan-in metrics value.

Tracing Techniques in General There is broad research activity in the field of tracing
as basis for a dynamic analysis. A variety of tools and systems record trace data to
build debugger tools that permit developers to step back in execution. Such tools
are referred to as reverse debuggers or omniscient debuggers. Most of these tools
operate on virtual machine based languages such as Java or Smalltalk: ODB [120],
JIVE [65], Whyline [107], Unstuck [84], a tool developed by Lienhard et al. [121],
and TOD [172]. An omniscient debugger for embedded systems is TimeMachine [69].
Native languages on the Linux operating system are supported by UndoDB [217]
and Chronicle [158].
Tracing techniques for C/C++ software systems have in common that they "im-

plant" event generating code into the software system’s binaries, i.e., they perform
code instrumentation1. For C/C++ software systems, code instrumentation can be
implemented by modifying source code, modifying binary code while or directly after
building the executable, and modifying binary code at execution-time.

The tracing technique proposed in this thesis uses a hybrid approach. It applies both
compile-time and execution-time instrumentation. Execution-time instrumentation is
done by redirecting control, which is conceptually the execution-time approach with
the smallest runtime overhead. The disadvantage of redirecting control is, however,
that it is difficult to implement in a robust way. Redirecting control usually relies on
code splicing [211], which means that instructions from the original binary code are
cut out, augmented, and moved to a newly allocated code block.
The tracing technique as proposed in this thesis introduces a new strategy: After

obtaining a fully instrumentated binary, the event generating code, which is inserted
by the compiler, is replaced with NOP assembler instructions. Essentially this reverts
the instrumentation. At execution-time, instrumentation becomes trivial and highly
robust. It can be done employing standard facilities provided by debuggers. One
only needs to replace the NOPs with the original instrumentation code. This strategy
avoids code splicing by using the compiler for the execution-time instrumentation
part.
Existing tracing techniques based on execution-time instrumentation perform

instrumentation either by execution interposing or by code editing:

• Interposing execution means that code is seen as data and is analyzed and
modified by a controlling process before being passed on to the processor.
Examples of tools working this way are Valgrind [152], Pin [124], Shade [37],
and DynamoRIO [24].

• Code editing techniques modify binary code within a running process.
One particular way of code editing is to insert traps, e.g., int3 instructions, into

1 This discussion ignores approaches based on hardware-generated events because they are either
imprecise, e.g., sampling profilers, or require specialized hardware, e.g., last branch recording.

38 3 Related Work

the code and enforce a trap handler to react when the processor executes the
trap. Debuggers are very popular tools that work in this way. Some debuggers,
e.g., WinDBG, which is part of the Microsoft’s Debugging Tools for Windows
[140], provide tracing facilitities based on traps. Another instrumentation tool
based on traps is DTrace [28]. Tracing via traps evokes a larger performance
overhead than techniques based on direct redirection of control [83].
A more general way of implementing runtime code editing is to do code splicing.
Tools which use this approach are Paradyn [85], Detours [87], and on some
platforms DTrace [28].

Comparison to the Thesis’ Trace Pruning Technique
Existing trace visualization tools basically provide two kinds of views for trace
exploration: (1) Macroscopic views present trace data in a cumulative, overview-like
way. These views are necessary for identifying those time ranges in the trace that are
relevant to the maintenance task at hand. (2) Microscopic views depict with detail
sequences of selected function calls. These views are essential, if specific artifacts or
time ranges have already been identified as task relevant and the developer needs to
understand details of them.

Navigation from a macroscopic to a microscopic level is implemented in two ways:
(1) A macroscopic and a microscopic view are linked and the macroscopic view is
used to define that section of the trace which is visualized within the microscopic
view. This process is driven by visually recognizing patterns in the macroscopic view.
(2) Starting from the root call in a call tree, developers successively expand previously
collapsed function calls, thereby navigating to calls located deeply in the call tree.

The trace pruning algorithm and the respective visualization technique as presented
in this thesis, bridge the gap between coarse-grained trace overviews and detailed
views that depict only short selected time ranges. Developers receive compact
intermediate trace visualizations that guide them during top-down exploration which
enable them to find task relevant parts of the trace—even in very large traces. The
algorithm for automatically reducing the calls in the trace to those that represent
key decision points during top-down exploration is a novel approach that could in
effect be integrated into the mentioned trace visualization tools.
The call similarity metrics proposed in this thesis as a basis for being able to

provide compact presentations of pruned traces obtained by applying the pruning
algorithm, is an extension of the call generalization approaches of Ovation. It differs
from the existing approaches as it defines similarity by means of comparing call
fingerprints in a fuzzy way, which represents a more coarse-grained metrics than
those used in Ovation. Additionally, the metrics’ continuous and clearly defined value
range permits precise control where two calls are classified as being similar, which, in
turn, facilitates detecting outlier calls.

Phase Detection The calls that remain in a pruned trace after applying the pruning
algorithm split the time range that the trace spans into phases. Reiss [175, 176]
proposes JIVE, a visualization framework for showing performance characteristics of

3.2 Trace Visualization 39

running Java software systems. A phase detection algorithm identifies cost-intensive
parts of the execution. This approach is useful for performance analysis. It cannot
be applied to program comprehension because the algorithm misses short phases that
are important for understanding a system’s behavior.
In the field of program optimization, various phase detection algorithms have

been suggested. The goal of these algorithms differ, however, from the goal of
splitting a trace into phases for program understanding. The purpose if the algorithms
is to ascertain the system being in a specific execution phase and to predict the
succeeding phase. This way, the system can anticipatorily be prepared for faster
execution of the succeeding phase. The algorithms are not designed to detect the
exact boundaries between the phases. This, however, is essential for comprehension
purposes [108]. Nagpurkar et al. [150] propose an online phase detection algorithm
for program optimization. Sherwood et al. [188] introduce an off-line algorithm that
uses clustering applied to basic block vectors to calculate phases.

Comparison to the Thesis’ Linked Trace Presentation Techniques
The trace presentation techniques put forward in this thesis are motivated by existing
techniques. The temporal overview, for instance, is a variation of the information
mural technique proposed by Jerding et al. [94]. The call stack view is similar to
the execution view in Ovation [45]. The enriched code view is an application of the
SeeSoft technique proposed by Ball et al. [52].

This thesis introduces a uniform framework for trace presentation techniques. It
provides solutions to the question of how a basic set of trace views can be implemented
which assist developers in performing top-down and bottom-up comprehension strate-
gies. In particular, the thesis shows how trace data taken from a fact base is filtered,
transformed into a geometry model, and finally converted into an image. Additionally,
the approach presented shows how developers may use different views on a trace
simultaneously enabling them to cross-reference findings made in a single view with
context information provided by other views.

Comparison to the Thesis’ Technique for Combining Trace Visualization with other
Analysis Techniques
Most trace visualization approaches rely on detailed pre-existing knowledge on the
software system’s implementation when having to cope with large traces. Developers
explicitly need to choose artifacts of interest, e.g., by selecting classes, objects, or
functions. The trace is then reduced to the calls that are related to the selected
artifacts. The problem with this approach is that in many cases the developer is not
aware of the task-relevant artifacts beforehand.
The concepts proposed in this thesis show systematically how existing analysis

techniques can be combined with trace visualization with the aim of solving this
problem. For many maintenance tasks, specialized analysis techniques exist and
produce sets of artifacts that may serve as a starting point for fine-grained trace
analysis. Hence, the proposed concepts can be integrated into all of the trace

40 3 Related Work

visualization approaches mentioned above in those instances where a developer starts
exploring the trace on a microscopic level.

3.3 Maintenance Tasks
Trace visualization is an essential instrument for supporting specific maintenance
tasks, namely fault localization and feature location.

3.3.1 Fault Localization Techniques
Various automatic techniques exist to localize faults in those cases where a set of
regression tests is to hand. Some approaches calculate the difference of statement
coverage between passing and failing test cases [1, 178]. The identified code locations
then serve as starting points for manually performing fine-grained code analysis
based on the system dependency graph (SDG) [86]. Jones et al. [99] calculate a
suspiciousness value for every line of code, based on their execution frequencies in
passing and failing test cases. To support developers in their efforts to identify highly
suspicious code lines, they go on to propose a visualization technique that encodes
the suspiciousness value into color. Cleve and Zeller [36] propose a technique that
runs both a passing and a failing test case in a debugger. The system is stopped at
multiple code locations and part of its memory state is swapped between the two runs
until the smallest memory state has been isolated that causes the test case to fail.
The technique is repeated at several code locations in order to identify the ones that
are critical to the test’s outcome. These locations then serve as a starting point for
manual code analysis, using the SDG in a similar way to that proposed by Renieris
and Reiss [178].
All these approaches differ from the fault localization technique proposed in this

thesis in that they operate on different input data, namely a set of test cases.
The approach here, however, exploits code change information stored in a software
configuration management system (SCM) and combines it with runtime information
from a single run. A similar approach that uses code change information to localize
the cause for a failing test case is proposed by Ren et al. [177]. Their idea is to model
recently introduced changes as a set of atomic changes such as add class or delete
method. Subsequently, a semi-automated process is started where an intermediate
executable is built by applying different sets of atomic changes to the original version
of the system. Next, the test case is applied to this intermediate version of the
system, isolating the minimal set of atomic changes that causes the test case to fail.
The approach differs from the one given in this thesis that explicitly maps runtime
information onto code change data with the objective of filtering irrelevant changes.
In this thesis, two key concepts are complementary to related approaches: (1)

Mapping code change data onto executed parts of the system implementation. (2)
Providing a means of visual exploration as to when and how introduced modifications
are executed. The concepts presented are of a general nature and can be adopted by
other approaches as well.

3.3 Maintenance Tasks 41

3.3.2 Feature Location Techniques
Wilde et al. introduce Software Reconnaissance [228, 229], a feature locating tech-
nique based on a comparison of traces from test cases with and without feature
execution. Eisenberg and DeVolder [55] extend this concept by comparing automati-
cally produced traces based on pre-existing test suites. Other research on locating
feature implementation is based on Program Dependency Graphs [162], which have
been extracted by static analysis. RIPPLES [31] supports the user during manual
exploration of a dependency graph by way of 2D graph visualization. The user
decides whether a component, e.g., function, basic block, or statement, is relevant
to the feature and adds it to the search graph that finally represents the feature
implementation. Eisenbarth et al. [54] first compare traces, which depend on a set of
features, by applying concept analysis to find out to which feature a computational
unit contributes. Later the user identifies additional feature specific units by exploring
the statically extracted dependency graph.

The concept of scalable trace visualization proposed in this thesis is complementary
to the approaches referred to and can be used in combination with them.

CHAPTER 4
A Scalable Technique for Tracing Function Calls in C/C++ Systems

Tracing visualization techniques denote techniques for extracting function call se-
quences from a running software system. The applied tracing technique represents a
crucial bottleneck in the trace visualization process. Major difficulties when tracing
techniques include: (1) It is difficult to "weave" the technique into existing build
processes. (2) The amount of data collected during tracing is generally huge. (3) The
runtime overhead of the tracing technique can be disturbing.
This chapter introduces a scalable and robust technique for C/C++ software

systems that is easily integrated into complex build processes and applies to a wide
range of platforms. The key ideas are:

1. Exploiting common instrumentation facilities provided by most compilers and
common runtime code-modification facilities provided by most debuggers. By
relying on common compiler and debugger facilities, a high degree of applicabil-
ity, easy integration into existing build processes, and a measure of robustness
is attained.

2. Providing a technique that analyzes how frequent functions are executed during
tracing and which selectively disables—at runtime—functions from being traced
whose call frequency exceeds a developer defined threshold. Automatically
eliminating functions called with high frequency reduces (1) the size of the
resulting trace and (2) the runtime overhead of the tracing technique.

Section 4.1 elaborates on the requirements of tracing techniques that are to be
applied as part of a scalable trace visualization tool. In Section 4.2, a tracing technique
is proposed that reverts standard compile-time instrumentation to enable developers
to apply robust execution-time instrumentation. Finally, in Section 4.3, a technique
is proposed for identifying functions called with high frequency and for disabling
tracing for them at execution-time.

4.1 Tracing Techniques as Part of Scalable Trace Visualization
A tracing technique that provides a basis for a scalable trace visualization tool needs
to fulfill a variety of requirements related to integration into both existing build and

44 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

maintenance processes, to tracing granularity, to applicability on different platforms,
and to ways of being extended to or combined with techniques for gathering system
state information.

Integration into build processes. Gathering traces from existing (legacy) software sys-
tems in an industrial environment is far from trivial. Zaidman enumerates challenges
and constraints [232]:

• The tracing technique should be applicable to the source code "as is". Otherwise,
one would require knowledge of what is in the sources, and this is exactly what
needs to be recovered.

• The existing build processes should remain in place, with only minimal alter-
ations. To refactor the build system, considerable knowledge of its current
internals is needed, but again this is lacking.

• The semantics of the original software system should remain intact.

Figure 4.1: In the edit-build-run cycle, a developer modifies source code, builds
executables, and checks whether the system behaves as expected.

Integration into existing maintenance processes. Performing a maintenance task gen-
erally means running through an edit-build-run cycle, i.e., modifying source code,
building executable code, running the system, and observing its behavior (Figure 4.1).
Integrating trace visualization into the edit-build-run cycle must not slow down the
overall performance of the developer when performing the cycle. Hence, important
requirements for the tracing technique include:

• The runtime overhead with disabled tracing should be minimal. "Disabled"
means that all preparations, e.g., compile-time instrumentation, have already
been applied, however, no information is captured. A noticeable general decrease

4.1 Tracing Techniques as Part of Scalable Trace Visualization 45

in system performance is likely to be perceived as disturbing by developers and
will not appeal to them.

• The tracing technique should be compatible with the state-of-the-art tools for
understanding behavior: debuggers. Hence, it should be possible to seamlessly
start and stop tracing from within a debugging session: Using a standard
debugger, developers go step by step through execution. At each call statement
they decide whether to follow the function call or to step over it. It is often
difficult to choose between the two actions. On the one hand, following each
call is highly time consuming, and on the other hand, a developer who steps
over a call runs the risk of skipping parts of the execution that are relevant
to the given maintenance task. With a tracing technique that can be started
within a debugging session one can implement a "trace over" functionality that
traces indirectly triggered function calls while stepping over a single call.
Seen from the trace visualization perspective, using a debugger to first navigate
to the interesting parts of the execution before activating tracing, is an effective
way of coping with the scalability problem of trace visualization: Traces only
capture the behavior that is triggered by a single call. Hence, traces are by
several orders of magnitude smaller than if tracing is started and stopped on
the "freely" running system.

• Enabling and disabling the tracing technique must be fast. Developers are
not likely to apply trace visualization, if they have to wait for several minutes
or even a complete rebuild of the system before they can take advantage of
visualization. If tracing is to be applicable from within a debugging session, then
the tracing technique must represent a technique that performs execution-time
binary code instrumentation.

Adjustable tracing granularity. To reduce the often large size of a trace right from
the start, developers need to be able to adjust the granularity level of trace data
according to the given maintenance task [85]. This means, they should be able to
choose between tracing only selected functions (low runtime overhead and less detail)
and tracing most functions (higher overhead, but more detail).

• If developers are in possesion of a-priori knowledge of specific functions or whole
modules that are not relevant to the given maintenance task, the respective
functions should be excluded from the tracing technique.

• Additionally, there should be an automated technique that identifies functions
called with high frequency during tracing and excludes them automatically.

High degree of applicability and robustness. Given the trace visualization process,
applying the tracing technique is the only step that is conceptually platform and
processor dependent. The tracing technique, therefore, limits the range of applicability
of a trace visualization tool. Hence, it is advantageous to use concepts for the tracing
technique that are implementable on a wide range of platforms. Furthermore, one

46 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

advantage should be taken of already available common instrumentation techniques
with a view to achieving a high degree of robustness [184].

Compatibility with state tracing techniques. So far, we have limited the scope to
understanding system behavior by means of analyzing control flow, which is considered
to be the fundamental comprehension task [169]. However, understanding system
behavior goes further. Mental models of system state and state changes are built
on top of a mental model of control flow. Hence, an additional requirement on the
tracing technique arises, if one gets beyond the scope of control flow: The technique
should either be able to allow the gathering of state information or it should prove
operational in combination with another technique that focuses on gathering state
information.
It would be interesting, for instance, to be able to trace function calls while

the system is under the control of a scriptable debugger that logs accesses of task
relevant variables, or, more precisely, the respective memory locations. The combined
captured data would give developers a good overview as to when and how the values
are read and written. In a debugging scenario, for instance, this helps a developer to
understand the contexts in which erroneous values are written.

4.2 Robust Execution-Time Instrumentation by Reverting
Compile-Time Instrumentation

As mentioned in the requirements section, starting and stopping the tracing technique
from within a debugging session has the advantage of creating smaller and more
precise traces and achieves better integration in the edit-build-run cycle. However,
this requires execution-time instrumentation. Existing techniques use code splicing
for this1, which means, new memory is allocated for additional code and original
code is partly relocated. The implementation of code splicing is platform dependend.
Implementing it in a robust way is a challenging task [167].
The proposed tracing technique is based on a hybrid instrumentation approach,

i.e., it exploits the robustness of compile-time instrumentation provided by most
compilers and the ease of replacing binary code at execution-time by using a standard
debugger.
Trace visualization becomes part of the run step of the edit-build-run cycle:

1. Edit: The developer modifies source code as usual.

2. Build: The build step is slightly modified by means of adding global compiler
and linker options, and a post-build step. These modification have the following
effects:

• Compiler-supported function entry-point instrumentation is performed.

1 Other techniques avoid code splicing by trap insertion. However, these techniques on the whole
lead to a much higher performance overhead due to costly trap handling mechanisms [83].

4.2 Robust Execution-Time Instrumentation by Reverting Compile-Time Instrumentation 47

• Compiler-supported instrumentation is reverted afterwards.

3. Run: The developer runs the system as usual to check its externally visible
behavior. If unexpected behavior is experienced, the developer tries to link the
behavior with the code—generally done by means of using a debugger. This is
where trace visualization comes in:

• Functions are activated for tracing by using standard debugger facilities.
• The system runs until a developer-defined execution point is reached.
• After recording a trace, the developer explores what happened during

runtime by analyzing the visualized trace.

4.2.1 Compiler-Supported Function Entry-Point Instrumentation

Figure 4.2: With function entry-point instrumentation, the compiler inserts a call
instruction at the beginning of each function to redirect control to a hook function.
Replacing the call by NOP instructions deactivates control redirection.

A wide range of compilers provide options for instrumenting the entry-point of
functions. With this, an assembler call instruction is placed at the beginning of
the binary code of each function. The inserted calls redirect control to a hook
function. For building a tracing tool, one only needs to provide the hook function’s
implementation (Figure 4.2). The Microsoft Visual Studio Compilers (from version
6.0 to version 2010), for instance, provide the Gh compiler option for inserting
hook function calls [139]; the GNU Compiler Collection GCC provides the option
finstrument-functions [98]. Many compilers also provide options for instrumenting
function exit-points. The proposed tracing technique only uses function entry-point
instrumentation, however. Instead of exit-point instrumentation, return address
rewriting as described by Brown [22] is applied. Limiting the technique to function

48 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

entry-point instrumentation increases its applicability because not many compilers
provide support for exit-point instrumentation—the Microsoft Visual Studio 6.0
Compiler is an example.

Building a tracing technique based on common compiler features has several
advantages:

• Instrumenting function entry-points does not increase compile time significantly
because it is part of the usual compilation process anyway.

• For the same reason, the instrumentation is robust and does not interfer with
code optimizations.

• It is easily integrated into existing build processes. Only global compiler and
linker options need to be set, which can generally be done without any knowledge
of the internals of the build process.

4.2.2 Reverting Compile-Time Instrumentation
After building the fully instrumented binary code, all additionally inserted assembler
call instructions are removed and are replaced with assembler NOP instructions. The
replacement reverts the effects of compiler-based function instrumentation. The
resulting binary file does not create any tracing events at runtime and behaves as
usual. Only a slight performance decrease (< 2%) is noticeable due to the additional
NOP instructions (cf Chapter 8).
The address locations of the instructions to be replaced can be obtained via the

binary’s debug information, which provide the entry-points of all functions contained
in the binary. During replacement, the call instructions are stored in a database,
where they remain until needed to restore the calls later when reactivating the tracing.

4.2.3 Tracing by Execution-Time Instrumentation
During the period when the developer runs the software system—either "freely"
or by means of stepping through its execution with a debugger—tracing may be
activated at any time. Throughout this phase, the software system’s process is
brought under control of a debugger (if it has not already been brought under control)
and all the threads are suspended. Then, for all those functions of interest, standard
memory rewriting facilities of the debugger are used to put the original assembler call
instructions from compile-time instrumentation in place again. During instruction
replacement, one needs to check that none of the process’ threads points with its
instruction pointer to an NOP that is about to be replaced. If this is the case, the
respective thread is stepped forward with the debugger until the instruction pointer
has left the NOPs.

Unsuspending the threads causes the system to continue executing. Now, call entries
and exits of the activated functions are captured during execution. The developer
may stop tracing at any time—either by breaking into the software system’s process
with the debugger or by setting a breakpoint at a code location by indicating where

4.3 Automatically Detecting and Excluding Massively Called Functions during Tracing 49

tracing should be stopped if the process runs under debugger control. When execution
is halted, the debugger is used to put NOPs in place again to deactivate tracing.
Next, the captured trace is visualized. The developer explores which functions

were executed and how they interacted. With this knowledge of task relevant code
locations, the developer either continues with the edit-build-run cycle and modifies
code; alternatively, well-placed breakpoints are set and the developer uses the debugger
to get a fine-grained understanding of system behavior.

4.3 Automatically Detecting and Excluding Massively Called
Functions during Tracing

Traces are typically large and frequently consist of hundreds of thousands of calls—
even where the developer restricts the functions to be traced by excluding modules.
Analysis on how each function in the trace contributes to the size of the trace have
confirmed that as a rule only a small number of functions are responsible for a large
fraction of the calls. The reason for this unequal call distribution is that traces reflect
the execution of nested control loop structures in the code. In the inner loops, fast
low-level functions are repeatedly called, which causes the trace to grow rapidly. We
use the term massively called functions for these functions.

Definition 18 (Massively Called Function) A massively called function is a function
whose call frequency in a time window of a developer-defined length exceeds a developer-
defined threshold.

Massively called functions typically implement low-level functionality in the software
system. For example, a trace capturing the execution of a resizing feature of an image
processing application are likely to contain massively called functions performing
low-level operations on color values. In most cases, massively called functions can be
ignored in captured trace data. The definition as to which functions are classified
as massively called functions depends on a threshold value set by the developer
according to the given maintenance task.
There is, however, one limitation with this approach. We assume that a function

that at one stage ascertained to be a massively called function implements only the
functionality that this classification is based on. This assumption loses its validity in
connection with weak modularized functions that implement, for example in a large
switch case, a set of different functionalities, some of them representing lower-level
and some higher-level system functionality. The technique would probably exclude the
function from the trace by mistake. However, although the execution of erroneously
classified massively called functions are not contained in the trace, the subcalls that
are triggered by the "invisible" call are still contained in the trace.
In order to measure the call frequency of functions during tracing-time and to

compare the frequency value ν against a threshold νmax, functions with frequencies
ν ≥ νmax are classified as massively called functions and are not traced further in
the execution. With this technique, the size of a trace is automatically reduced by

50 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

several orders of magnitude without the availability of any pre-existing knowledge of
the system’s implementation and without loosing information on higher-level system
behavior. We conserve information on high-level system behavior, because only those
functions are excluded that are executed in the inner most control loops.
For an example of this consider the transform functionality of a 3D content

management system. Listing 4.1 shows a simple implementation of the trans-
form functionality: The "high-level" function transform3DScene() delegates work
to the "mid-level" function transformSceneObj(), which in turn calls a "lower-
level" function transformVertex(). Within this function, the "lowest-level" function
Vertex::setPos() is used to update a vertex’ newly calculated position.
void transform3DScene (Scene scene , Vector center , double f a c t o r)
{

SceneObjs ob j s = scene . getObjs () ;
f o r each (obj in ob j s) {

transformSceneObj (obj , center , f a c t o r) ;
}

}

void transformSceneObj (SceneObj obj , Vector center , double f a c t o r)
{

Ve r t i c e s v e r t i c e s = obj . g e tVe r t i c e s () ;
f o r each (ver tex in v e r t i c e s) {

transformVertex (vertex , center , f a c t o r) ;
}

}

void transformVertex (Vertex v , Vector center , double f a c t o r)
{

Vector pos = v . getVector () ;

double newXPos = . . . // c a l c u l a t e new x Pos i t i on
double newYPos = . . . // c a l c u l a t e new y Pos i t i on
double newZPos = . . . // c a l c u l a t e new z Pos i t i on

v . setPos (0 , newXPos) ;
v . setPos (1 , newYPos) ;
v . setPos (2 , newZPos) ;

}

Listing 4.1: Code example to illustrate identification of massively called functions.

In a trace that captures the execution of transform3DScene(), the functions
mentioned in the example are called with different frequencies. Table 4.1 discusses
the call frequencies and the call counts—given that the Scene object contains 350
SceneObj objects each being built of 5000 Vertex objects in average. Setting νmax to a
value between the "mid" and the "high" frequency classification, for instance, removes
all calls to Vertex::setPos(), Vertex::getVector(), and transformVertex().
This reduces the number of calls in the trace from 8.750.702 to 702 and retains the

4.3 Automatically Detecting and Excluding Massively Called Functions during Tracing 51

Call Frequency ν Call Count Function
low 1 transform3DScene()
low 1 Scene::getObjects()
mid 350 transformSceneObj()
mid 350 SceneObj::getVertices()
high 1.750.000 transformVertex()
high 1.750.000 Vertex::getVector()

very high 5.250.000 Vertex::setPos()

Table 4.1: Call counts and frequencies of the functions mentioned in the code exam-
ple.

information as to how the "high-level" function transform3DScene() applies the
transformation to each of the objects contained in the scene.

A complete code example would in addition contain functions, such as the trigono-
metric functions sin() and cos(). These functions would be called at least as
frequently as transformVertex() and would, therefore, also be classified as being
massively called functions.
As the threshold νmax is chosen by the developers, they may choose the tracing

granularity level that is suitable for the given maintenance task. On the one hand,
they may choose a very low threshold value, if they need to analyze system behavior
on a coarse-grained level over a long execution time—for instance if they perform a
feature location task. On the other hand, a very high threshold value may be chosen
for capturing many details in the trace—for instance, if a debugging task is being
performed.
A positive effect of the automated deactivation of massively called functions is—

besides the reduced size of the trace—that the runtime overhead introduced by the
tracing technique is also reduced. Capturing function calls means executing additional
binary code for event registration and serialization. Even if this code is highly
optimized with regard to performance, tracing still leads to a noticeable performance
decrease. Due to the unequal distribution of calls of massively called functions, the
lion’s share of tracing overhead is a consequence of executing these functions. Hence,
if tracing is deactivated for these functions, the absolute performance overhead is
drastically reduced (cf Chapter 8), making it possible to apply the tracing technique
even on a deployed system running in a production environment.
In Chapter 8, various examples show how the proposed concept applies to large

industrially developed software systems. To give an impression of which functions are
found as being massively called in a real-world scenario, Table 4.2 lists results from
applying the concept to the Blender [7] software system comprising 460.000 lines of C
code. As can be seen, functions with high call frequencies are functions implementing
lowest-level functionality. On the contrary, functions such as those contained in the
GUI layer representing entry points for Blender ’s features have low call frequencies.

52 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

Call Frequency ν Function

3936 add_v3_v3()
3330 _CTX_data_equals()
2012 _EM_remove_selection()
2012 _CustomData_from_em_block()
1968 add_v3_v3()
1583 _cent_quad_v3()
1564 edge_normal_compare()
1512 _findedgelist()
1512 _addedgelist()
1383 normalize_v3()
1383 normalize_v3_v3()
1383 mul_v3_v3fl()
1383 dot_v3v3()
1303 _normal_quad_v3()
1114 calloc_em()
1014 normalize_v3()
1014 normalize_v3_v3()
1014 mul_v3_v3fl()
1014 dot_v3v3()
1007 _CustomData_em_free_block()
1005 _free_editedge()
... ...
... ...
... ...
4 _ui_handle_menu_event()
4 ui_handler_region_menu()
4 ui_item_local_sublayout()
4 ui_mouse_motion_towards_check()
4 _unit_m4()
4 ui_mouse_motion_towards_init()
4 len_v2v2()
4 ui_but_find_mouse_over()
4 ui_handle_button_event()

Table 4.2: Call frequency values of functions of the 460kLOC Blender software sys-
tem. With a threshold value νmax = 100, for instance, low-level functions are excluded
from tracing. Higher-level functions such as GUI menu entry points are still contained
in the trace, however. The frequency value is given with regard to a time window of
100 million processor ticks. (Functions with the same names are overloaded versions.)

4.3.1 Event Buffer Management
With the intention of clarifying to which data structures the algorithm for identifying
massively called functions is applied, this section briefly explains how event registration
and serialization concepts are implemented. Function entry and exit events are
registered by redirecting control to a hook function. The hook function is part of a
logging library that works as follows (Figure 4.3):

• When the library is loaded at runtime, it spawns an additional thread: the
coordinator thread.

4.3 Automatically Detecting and Excluding Massively Called Functions during Tracing 53

Figure 4.3: The library for registering and serializing function entry/exit events.
An additional coordinator thread handles buffers of function entry/exit events. Filled
buffers are analyzed for massively called functions and serialized to hard disk.

• The coordinator thread creates and manages a pool of empty event buffers.

• Each system process’ thread (except for the coordinator thread) has a dedicated
event buffer where function entry and exit events are stored when the thread’s
control is redirected into the logging library.

• If an event buffer is full, the respective thread takes an empty buffer from the
pool. The coordinator thread is responsible for serializing the events in the
filled buffer to the hard disk.

An event buffer sequentially stores events, each containing (at least) the following
information:

• A flag indicating if it is a function entry or exit event.

• The start address of the respective function in memory space.

• A time stamp.

The events are stored in chronological order in the buffer.

4.3.2 Detecting Massively Called Functions
For detecting and deactivating massively called functions at runtime, each event
buffer is analyzed before its events are serialized to disk. The algorithm for detecting
massively called functions in the buffer is parameterized by a frequency threshold
value νmax and a time window ∆t. It operates on a given buffer as follows:

• Let tcur be the time stamp of the first event in the buffer.
Let i be the iterator pointing to first event in the buffer.
Let iend be the iterator pointing to the last event in the buffer.

54 4 A Scalable Technique for Tracing Function Calls in C/C++ Systems

Let AddrCountMap be a map of function addresses and counters ∈ N.
Let AddrSet be an initially empty set of function addresses.

• While i is not equal iend do:
1. Clear AddrCountMap.
2. Increment i until an event is found with a time stamp t > tcur + ∆t or

until the last event in the buffer is reached. While incrementing i do:
– If the event that i points to is an exit event do:

∗ Register the event’s function address in AddrCountMap with
count 0, if the address has not been registered yet.

∗ Increment the respective count value by 1.
3. tcur = time stamp of the event that i points to.
4. For each function address addr in AddrCountMap do:

– If addr’s respective count value ν > νmax do:
∗ Insert addr into AddrSet.

The algorithm having been applied, AddrSet contains the addresses of the functions
that are classified as being massively called functions.

4.3.3 Deactivating Massively Called Functions at Execution-Time
To deactivate tracing for massively called functions, the functions’ assembler call
instructions that redirect control to the hook function needs to removed. The
elements in AddrSet contain precisely those addresses in memory space where the
call instruction is located. Hence, one only needs to overwrite the call instruction
with NOP instructions.

One possibility of performing the binary code modification is by suspending all
threads from within the coordinator thread, putting the NOPs in place and unsus-
peding the threads again. Suspending the threads is necessary, as replacing the call
instructions with multiple NOPs is not an atomic operation. Hence, a thread might
run into a situation where only some of the NOPs are set, causing the application to
crash. Another way of performing the binary code modification is to execute an int3
instruction and allow an attached debugger to handle this trap. The debugger then
performs the code modification "from outside".
Due to the construction of the algorithm for detecting massively called functions,

not all massively called functions can be identified immediately. Rather some can
be identified after analyzing several buffers that contain their events. Hence, a post
processing operation is applied to the resulting trace that removes the events of all
massively called functions.

CHAPTER 5
Pruned Traces - Splitting Traces into Phases

In complex software systems, capturing just a few minutes of behavior commonly
results in several hundred million calls. Due to the size of the trace, it is difficult
to browse through or view trace data, and hence it is time consuming to identify
parts of the trace that are relevant to a given task. In a top-down approach for
trace exploration, we start from the root call and navigate step-wise to subcalls deep
within the call tree. As calls are nested in time, developers are able to reach more
detailed parts of a trace, thereby spanning smaller time intervals. For large traces,
performing step-wise navigation is tedious and demands more effective communication
and visualization strategies. A key element for their implementation entails reducing
trace data to relevant aspects. For this, we introduce a novel concept involving
the pruning of traces, which facilitates exploring traces in coarse-grained navigation
steps [15]. Pruning traces is a technique aimed at reducing a trace to those calls
that represent crucial decision points during top-down trace exploration where a
developer has to decide which path to follow in the call tree. The technique is based
on empirical observations made when developers needed to navigate in large traces
taken from event-loop based desktop applications.
The elements of a pruned trace split the original trace into coarser-grained parts,

which facilitates rapid exploration and navigation in large traces using a top-down
approach. The elements of a pruned trace are called phases. The terminology
phase emphasizes the heavyweight and high-level character of the elements in the
pruned trace: Each phase corresponds to a call that either triggers a large amount
of indirect calls or that has a long call duration. For a developer exploring a trace,
a phase therefore represents a time interval during which coherent system behavior
is captured—coherent with regard to the purpose of the function that is executed.
That means, it represents a time interval where the system executes a higher-level
call that triggers a bunch of subcalls to achieve a higher-level functional goal. With
respect to "caller-called relationships" Saleh [185] describes that high-level functions
are "typically user interface-driven control modules that are more application-specific
and therefore of low reusability" whereas low-level functions are "most likely to be
reused from or in other software designs".

Our use of the term phase differs from its use in the field of program optimization

56 5 Pruned Traces - Splitting Traces into Phases

where the characterization of the system’s behavior is driven by resource usage.
Madison and Batson [127] describe the challenges of this research field as "to determine
those intervals or phases of the program’s execution history that are of significant
duration, involve references to a relatively small subset of the information set, and
are in some sense ’distinctive’ compared to neighboring phases".
The algorithm for pruning traces falls into the category of data mining. In other

words, it is a technique for semiautomatically discovering patterns in the vast amount
of data that are meaningful and lead to some advantage—as Witten and Frank [230]
define data mining.
The key ideas of the concept for pruning traces include:

• Calls are classified according to their subcall and costs characteristics. Two
specific classes of calls are in particular identified within a trace. Such calls are
referred to as leaf phases and inner phases.

• Pruning a trace from calls that do not correspond to phases results in a pruned
trace. A pruned trace provides a valuable hierarchical overview and a recursive
high-level description of system behavior. With the help of a pruned trace,
developers can navigate with coarser-grained steps than in the original trace.

• A phase similarity metrics permits determining similarities among phases in a
configurable way. On this basis, compact trace visualizations can be generated
that support developers in identifying outliers in a series of repetitive subphases—
When trying to solve a maintenance task, it is often the outlier behavior that
is of interest for a developer.

The granularity in which a trace is best partitioned into phases strongly depends
on the individual software system being analyzed and on the given maintenance task.
Hence, developers adjust the algorithm’s parameters accordingly.

5.1 Classifying Function Calls
The trace pruning algorithm is based on observations we made in an experiment
where developers had to navigate within large traces. The analyzed traces were taken
from applications of a specific domain, namely, the applications were event-loop
based desktop GUI applications. During trace analysis, the developers were given
an interactive visualization system depicting the detailed sequence of function calls
and they were permitted to navigate from call to subcall. The visualization allowed
developers to rapidly assess a call’s execution costs and the number of subcalls it
triggers. The developers’ task was to locate those parts of the trace that correspond
to the execution of a given functionality of the software system. Hence, they had to
solve a feature location task.
An important observation made during the experiment was that some function

calls were considered more and others less significant for choosing the subtree of
calls to follow when navigating from high-level calls to feature-relevant calls that
were located much deeper within the call tree. For each intermediate call during

5.1 Classifying Function Calls 57

navigation, the developers needed to assess the call’s purpose and to decide whether
it leads to feature-relevant parts of the trace.
When the developers were following calls that triggered only a few subcalls, they

frequently ran into "dead ends". In such a case, they needed to "climb up" in the
call tree again and tried another subcall to follow. These lightweight calls leading to
"dead ends" can algorithmically be identified by comparing the number of triggered
calls and the call’s costs against two user-defined thresholds: Tntrig and Tcosts

1.

• Tntrig : Threshold value for the number of triggered calls.

• Tcosts: Threshold value for the call costs.

Definition 19 (Lightweight Call) A lightweight call is a call c with
|triggeredcalls(c)| < Tntrig and costs(c) < Tcosts.

Figure 5.1 illustrates where lightweight calls typically appear within a trace. Time
is depicted along the horizontal axis. Each bar corresponds to a function call and the
arrows between the bars indicate when control passes from one call to another.
Another type of calls that could be considered as "dead ends" during navigation

were, however, considered to be interesting during exploration by the developers.
Such a call had (1) either a large number of triggered calls whereas none of its
subcalls had themselves many triggered calls or (2) it had a low number of triggered
calls but it had relatively large execution costs. In the latter case, the developers
frequently switched to the source code when encountering such a call with large costs.
Reading code then often turned out that the respective function either performed
time-consuming calculations or it triggered calls that had been excluded from tracing.
We classify such calls as a phase in the sense as explained at the beginning of the
chapter. In particular, we name these calls leaf phases because they are leafs in a
pruned trace as will be shown later.

Definition 20 (Leaf Phase) A call c is classified as leaf phase if |triggeredcalls(c)| ≥
Tntrig or if |triggeredcalls(c)| < Tntrig and costs(c) ≥ Tcosts. Additionally, all subcalls of
c must not fulfill these conditions.

A further observation obtained from the trace exploration experiment was that
developers were frequently quick in deciding which subcall to follow if encountering
a control delegating call. The characteristics of such a call is that there is only one
(direct) subcall with a significantly large number of triggered calls or a large call
duration. When control delegating calls were encountered, the developers quickly
decided to follow the single outstanding subcall.

1 In the following, we use the mathematical convenience operations as defined in Section 2.4.1.

58 5 Pruned Traces - Splitting Traces into Phases

Figure 5.1: Calls captured in a trace can be classified according to their subcall and
costs characteristics. Pruning the trace from lightweight calls and delegating calls
allows for a massive reduction in trace size, while retaining important information
necessary for top-down trace exploration.

Definition 21 (Control Delegating Call) A call c is classified as control delegat-
ing call if there is exactly one subcall s of c that has the following characteristics:
|triggeredcalls(s)| ≥ Tntrig or costs(s) ≥ Tcosts.

The remaining type of calls was considered to be crucial during navigation as
developers needed to decide which control path to follow when reaching such a call.
Such calls were similar to control delegating calls, however, instead of a single path to
follow, developers needed to choose between paths into multiple subtrees comprising
many calls or being costly. We name such calls inner phases.

Definition 22 (Inner Phase) A call is classified as inner phase if it has two or more
(direct) subcalls s that fulfill the following criteria: |triggeredcalls(s)| ≥ Tntrig

or
costs(s) ≥ Tcosts.

As far as we can conclude from the analyzed software systems, inner phases seem
to be executions of functions that represent important system functionality: To
both ensure reuse of system functionality and to enable collaborative development,
the system implementation is typically decomposed into modules following the
paradigm of information hiding. The functional decomposition forces developers to

5.1 Classifying Function Calls 59

implement higher-level system functionality by combining and reusing lower-level
system functionality1. In an image processing application, for instance, the scale image
functionality is likely to be implemented by executing the sample pixel functionality
multiple times, which, in turn, executes the read color functionality multiple times.
Inner phases would appear to be the result of this hierarchical way of implementing
functionality. An inner phase captures the situation that higher-level functionality
triggeres multiple times lower-level functionality. Therefore, they seem to be crucial
when exploring traces and trying to understand the system behavior that is captured
by the trace.
As Figure 5.1 indicates, pruning a trace from all calls except for phases reduces

the size of the trace drastically.
To compensate for calls missing in the pruned trace, meta-information is attached

to the phases and provides statistics on the missing calls. This meta-information
permits developers, while exploring a pruned trace, to assess whether the trace
pruning algorithm skips calls that are in fact relevant to the given maintenance
task. If meta-information indicates that important calls have possibly been skipped,
then the developer should analyze the corresponding time range in full detail by
means of an appropriate view that depicts the original trace. The meta-information
i ∈ I = N0 ×N0 ×N0 attached to each phase p of a pruned trace is:

• numcallsp: Number of calls that are executed within p’s time range.

• numfuncsp: Number of distinctive functions being executed within p’s time
range.

• depthp: Maximum call depth of all calls contained within p’s time range.

Given a trace T = (F,C) (cf mathematical definition of traces in Section 2.4.1),
a pruned trace is defined as graph T † = (F †,C†) where F † ⊆ F is a subset of the
functions in the original trace. C† is a subset of the set of calls C, however, the
calls are additionally labeled with meta-information i ∈ I. To reflect the nested call
structure, edges are restricted as defined in Section 2.4.1. The edge labels associated
with the calls carry the information on start time, end time and meta-information.
As the phases in pruned traces have a nested structure equal to the calls of a trace,
the operations parentphase, enclosingphases, subphases, and triggeredphases are
likewise evenly defined for pruned traces.

For reasons of clarity, the data model of pruned traces is shown in Figure 5.2. The
common characteristics of phases are captured in a generalization relation with the
super class Phase and an associated PhaseInfo class. Only inner phases may have
subphases. Each phase is linked to exactly one call of the original trace.

1 Some system functionality is best described in terms of the problem domain (high-level function-
ality) and some in term of the solution domain (low-level functionality).

60 5 Pruned Traces - Splitting Traces into Phases

Figure 5.2: Data model of pruned traces.

5.2 The Trace Pruning Algorithm
Based on user-defined thresholds, the trace pruning algorithm automatically identifies
calls as inner phases or as leaf phases within a trace and eliminates all other call
types. This significantly reduces trace size. However, the pruned trace still contains
valuable call information that gives developers a useful overview of what happens
within various sections of the trace.

With the given thresholds Tntrig and Tcosts as defined in the last section, the
algorithm calculates a value n(c) ∈ N0 indicating the number of subcalls of c that
either have a large number of triggered calls or have large execution costs:

• n(c) = |{c′ ∈ subcalls(c) : |triggeredcalls(c′)| ≥ Tnsub
∨ costs(c′) ≥ Tcosts}|

The algorithm uses these definitions to identify inner phases and leaf phases:

• Call c is an inner phase if
n(c) ≥ 2.

• Call c is a leaf phase if
n(c) = 0 ∧ (|triggeredcalls(c)| ≥ Tntrig ∨ costs(c) ≥ Tcosts).

To simplify use of the algorithm for any developer, the parameter Tcosts can be
based on the parameter Tntrig . Hence, a typical short call cshort must be identified in
the trace. Tcosts can then be defined as Tcosts = costs (cshort) ∗ Tntrig .
The algorithm parses the sequence of function calls in a single pass, thereby

reconstructing the call stack. At the end of each call, the call is checked to ascertain
whether it is an inner phase or a leaf phase. As the algorithm’s time complexity is
linear, the algorithm is fast enough for developers to recalculate the pruned trace
with different threshold values, in the event that the resulting pruned trace is still too
large or too reduced—even where the trace is very large. Applying the algorithm on a
trace consisting of 100 million calls, for instance, takes an average of 50 seconds with
our prototypical implementation on an Intel Core 2 Duo CPU at 2.4GHz. The time
aspect can vary, however, due to the operating system’s disk caching mechanism.

5.2 The Trace Pruning Algorithm 61

Figure 5.3: Using the Blender software system, a monkey shape is added to the
currently managed 3D content.

To illustrate how a trace can massively be reduced by applying the trace pruning
algorithm, we exemplarily analyze the behavior of the Blender software system [7]
for creating, modeling and rendering 3D content (460.000 lines of C code). A trace is
captured while a user adds a monkey shape to the current 3D content project (see
Figure 5.3). The user’s task is to understand which parts of the code are responsible
for implementing this feature. The resulting trace comprises 545.276 function calls1.
Table 5.1 illustrates the characteristics of the trace, i.e., the number of calls per call
stack depth.
Applying the trace pruning algorithm with Tntrig = 5000 and Tcosts = 100 ticks ∗

Tntrig results in a pruned trace as depicted in Table 5.2. The algorithm found a
hierachy of 72 phases within the trace; one of them (make_prim_ext() in the source
code file editmesh_add.c) triggers the creation of the geometric mesh that internally
represents the monkey shape in Blender. Hence, analyzing the pruned trace can
permit developers to quickly find important function calls that represent task-relevant
parts of the trace. After having identified the call of the make_prim_ext() function,
the developer needs to explore the complete trace to gather more detailed information
on the execution context of this call.

For reasons of clarity, we show in Figure 5.4 visual representations of the trace—the
temporal overview and the call stack view are introduced in Chapter 6. As can be seen,
the calls of wm_method_draw_overlap_all(), which the trace pruning algorithm
identified automatically, correspond to the repetitive visual patterns in the temporal
overview. Figure 5.5 highlights the visual pattern corresponding to the execution of
make_prim_ext(). This pattern is also algorithmically found by the trace pruning
algorithm.

1 The technique for detection and excluding massively called functions (cf Section 4.3) is used with
a threshold νmax = 80 and ∆t = 100.000.000.

62 5 Pruned Traces - Splitting Traces into Phases

Call Stack Depth Number of Calls Call Stack Depth Number of Calls

1 1 19 33496
2 1 20 25017
3 1 21 27461
4 1 22 28662
5 1 23 23430
6 1 24 14631
7 1 25 10581
8 7114 26 4569
9 20881 27 2138
10 37225 28 1497
11 25516 29 712
12 8182 30 267
13 20625 31 178
14 27329 32 147
15 62514 33 48
16 68737 34 56
17 53477 35 54
18 40709 36 12

37 4

Table 5.1: Characteristics (function calls per call stack depth) of the trace captured
during execution of Blender ’s add monkey feature.

Figure 5.4: The temporal overview and the call stack view show that the phases
wm_method_draw_overlap_all(), which were detected by the trace pruning algo-
rithm, correspond to repetitive execution patterns.

5.2 The Trace Pruning Algorithm 63

Depth Phasename (Functionname) Filename #Calls

1 rootcall no file 545276
2 _WM_main() windowmanager/intern/wm.c 545270
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 45887
4 _ED_region_header() editors/screen/area.c 17039
5 bpy_class_call() python/intern/bpy_rna.c 10651
4 _ED_region_panels() editors/screen/area.c 18809
3 _wm_event_do_handlers() windowmanager/intern/wm_event_system.c 5049
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 30330
4 _ED_region_header() editors/screen/area.c 2102
4 _ED_region_panels() editors/screen/area.c 12914
5 _uiEndPanels() editors/interface/interface_panel.c 1615
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_header() editors/screen/area.c 3993
4 _ED_region_panels() editors/screen/area.c 3846
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 25893
4 _ED_region_header() editors/screen/area.c 2102
4 _ED_region_panels() editors/screen/area.c 12914
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_header() editors/screen/area.c 3993
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 25899
4 _ED_region_header() editors/screen/area.c 2108
4 _ED_region_panels() editors/screen/area.c 12914
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_header() editors/screen/area.c 3993
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 30885
4 _ED_region_header() editors/screen/area.c 2108
4 _ED_region_panels() editors/screen/area.c 12914
5 _uiEndPanels() editors/interface/interface_panel.c 1615
6 _uiDrawBlock() editors/interface/interface.c 479
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_header() editors/screen/area.c 3993
4 _ED_region_panels() editors/screen/area.c 3846
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 26866
4 _ED_region_header() editors/screen/area.c 2108
4 _ED_region_panels() editors/screen/area.c 12914
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_panels() editors/screen/area.c 3846
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 27289
4 _ED_region_header() editors/screen/area.c 2108
4 _ED_region_panels() editors/screen/area.c 12914
4 _ED_region_header() editors/screen/area.c 3276
4 _ED_region_panels() editors/screen/area.c 3846
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
4 _ED_region_header() editors/screen/area.c 1174
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
4 _ED_region_header() editors/screen/area.c 1174
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
4 _ED_region_header() editors/screen/area.c 1174
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
4 _ED_region_header() editors/screen/area.c 1174
4 _ED_region_panels() editors/screen/area.c 1217
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9852
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9634
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 6339
3 _wm_operator_invoke() windowmanager/intern/wm_event_system.c 52632
4 make_prim_ext() editors/mesh/editmesh_add.c 51146
5 make_prim() editors/mesh/editmesh_add.c 20492
5 _ED_object_exit_editmode() editors/object/object_edit.c 30338
6 _load_editMesh() editors/mesh/editmesh.c 25246
6 _free_editMesh() editors/mesh/editmesh.c 5041
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 9026
4 _view3d_main_area_draw() editors/space_view3d/view3d_draw.c 3044
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 8995
3 wm_method_draw_overlap_all() windowmanager/intern/wm_draw.c 4761
3 _wm_window_process_events() windowmanager/intern/wm_window.c 26

Table 5.2: The (tree-shaped) pruned trace representing Blender ’s behavior when
creating a monkey shape. The phase make_prim_ext() turns out to be representing
the execution of the core implementation of the monkey creation feature. The table
rows are ordered according to the chronological order of the phases’ start times.

64 5 Pruned Traces - Splitting Traces into Phases

Figure 5.5: The trace pruning algorithm automatically identified the execution
phase make_prim_ext(). It is responsible for creating the monkey shape during
Blender ’s execution.

5.3 Detecting Repetitive Behavior 65

5.3 Detecting Repetitive Behavior
The pruning algorithm massively reduces the calls contained in the trace. Control loop
structures in functions corresponding to inner phases, however, may cause the pruned
trace to continue to consist of repetitive structures that make trace exploration difficult
(Figure 5.6). The phase corresponding to the scale image behavior of the example
mentioned in the previous section, for instance, executes the sample pixel behavior
very often, which results in large sequences of repetitive subphases. To simplify
exploration of such repetitive structures, we aim to automatically detect similarity of
phases, permitting visualization of the pruned trace in an even more compact way
that makes repetitions of similar phases explicitly visible. Furthermore, the similarity
detection facilitates identifying outliers in successive subphases. In maintenance task
situations, it is often the outlier behavior that needs to be understood by a developer
to be able to solve the task. A bug, for instance, may not show up in the regular
behavior but in the outlier behavior that corresponds to a special case of system
execution for which a correct handling had not been implemented yet.

5.3.1 Phase Similarity
In sequences of repetitive subphases that all pass control to the same callee function,
it is often the outlier behavior, i.e., the one that executes in a different manner
from the others, that is most interesting for the developer to explore. Being able
to seize a "deep" similarity measure algorithmically can create visualizations that
support developers in detecting outliers and guide them along these outlier control
flows. Hence, we define phases as being equal, if they trigger the same sequence of
function calls (omitting the time information). Often, however, phases are considered
being equal from the developer’s point of view even where the call sequences are not
identical. Two sequences capturing "string conversion" behavior, for instance, are
likely to be considered being equal, even if one string consists of 42 and the other
of 15 characters. In order to allow similarity detection in a more "fuzzy" way, a
fingerprint is assigned to each phase and a similarity metrics is defined based on
fingerprints.

5.3.2 Phase Fingerprints
A fingerprint of a phase is a bit vector with the same number of dimensions as
functions participating in the complete trace. Each dimension’s value is 1, provided
the corresponding function is active during the phase; otherwise it is 0. Hence, phase
fingerprints abstract from (a) repetitive function executions and (b) the order of
function executions. Unfortunately, this approach for defining similarity is often still
too rigid. With the specific aim of making identifying similarity in an even more
fuzzy way possible, we introduce a similarity metrics that operates on fingerprints.

66 5 Pruned Traces - Splitting Traces into Phases

Figure 5.6: Control loop structures in the code may cause highly repetitive struc-
tures even in a pruned trace. The phase similarity metrics makes provision for com-
pact visualizations that make repetitions explicit and facilitate outlier detection.

5.3.3 Phase Similarity Metrics
The rationale behind the phase similarity metrics is to identify whether two phases
(that are equal in terms of caller and callee function) differ only slightly in the set
of executed functions. The corresponding system behavior captured by the phases
might be considered by developers as being similar. It is not sufficient to define the
absolute number of distinctive functions by adopting a metrics value and compare it
against a threshold value. If this is done, the decision whether two phases are similar
would depend strongly on how many functions are active. Phases executing a small
number of functions would be considered being similar to such other phases, even if
the set of functions were disjoint. Hence, we build the ratio between the number of
distinctive active functions and the total number of executed functions for the two
phases p1 and p2 to define the phase similarity metrics. The XOR and OR notation
refers to a representation of phase fingerprints as bit vectors:

• sim(p1, p2) = bitCount(XOR(p1,p2))
bitCount(OR(p1,p2))

If the phases p1 and p2 differ in their caller and callee functions, the metrics value is
clamped to 1.
Metrics values range from between 0 and 1. sim (p1, p2) = 0 means that p1 and

p2 execute exactly the same set of functions. sim (p1, p2) = 1 means that the sets of

5.3 Detecting Repetitive Behavior 67

Figure 5.7: Interactively adjusting the similarity metrics threshold permits control
as to whether outlier phases are visualized explicitly or not.

functions executed by c1 and c2 are disjoined. To classify whether two phases are
similar or not, the similarity metrics is compared to a threshold value Tsim. Figure
5.7 illustrates how different threshold values permit developers to explore the trace
in different granularity levels. With Tsim = 1 phases leading to the same callee
function are considered to be similar, which results in a highly compact visualization.
Decreasing Tsim then successively reveals differences in the set of functions that are
indirectly executed in the phases. In this way developers are able to identify outlier
phases in a series of phases. Details of the presentation technique of pruned traces are
given in Section 6.2.3. The similarity calculation is a simple operation and is therefore
fast enough to interactively change the threshold value Tsim, thereby interactively
exploring outlier phases.

CHAPTER 6
Visualization Techniques for Traces

This chapter introduces a framework for trace visualization techniques (Figure 6.1).
It provides solutions to the question as to how core techniques for viewing trace
data can be implemented that developers are supported in performing top-down and
bottom-up comprehension strategies. Emphasis is placed on showing how trace data
taken from a fact base is filtered, transformed into a geometry model and finally
converted into a visual representation. Additionally, it is explained how developers
may use different views on a trace simultaneously enabling them to cross-reference
findings made in a single view with context information provided by other views.

Depending on the specific maintenance task, developers have different requirements

Figure 6.1: Developers are provided with multiple views on a trace by using differ-
ent visualization techniques.

70 6 Visualization Techniques for Traces

in respect of visual representations. Facts and fact relations need to be displayed in
different ways. When exploring traces (cf Section 2.1.1: e.g., top-down and bottom-
up strategies) developers use common comprehension strategies. Therefore, several
general trace visualization techniques need to be devised that may prove helpful in a
variety of different maintenance task scenarios.

In the context of visualizing software architectures, Clements et al. emphasize the
need for multiple views: "It may be disconcerting that no single view can fully represent
an architecture. Additionally, it feels somehow inadequate to see the system only
through discrete, multiple views. [...] The essence of architecture is the suppression
of information not necessary to the task at hand. [...] This is its strength: Each
view emphasizes certain aspects of the system while deemphasizing or ignoring other
aspects, all in the interest of making the problem at hand tractable. Nevertheless, no
one of these individual views adequately documents the software architecture for the
system" [35]. Favre [60] states that "large software products are difficult to understand
because they are made of many entities of many different types in many concrete
representations, usually not designed with software comprehension in mind." He
emphasizes that developers, hence, need a "diversity of perspectives on software".

These statements are particularly true in the case of trace visualization. Developers
need to be provided with multiple views on traces that enable them to transfer
findings from one view to another. In other words, developers need to be able to
cross-reference the various mental models built by analyzing different views.
The visualization techniques can be characterized by answering the following

aspects:

• What is the purpose of the view?

• Which comprehension strategies are supported by the view?

• How is the view implemented?
1. Filtering step
2. Mapping step
3. Rendering step: As the rendering step means to apply a standard conver-

sion from the geometry model to an image for all views (cf Section 2.3.3),
this step is not explicitly mentioned in the following.

• What are the limitations of the view?

• In what way can the view be combined with other views during trace explo-
ration?

6.1 Mathematical Operations on Traces
Visualization techniques for trace data are based on mathematical operations described
in the following.

6.1 Mathematical Operations on Traces 71

6.1.1 Trace Filtering Operations
Trace filtering operations take a trace as primary input and result in a trace as output.
The operations eliminate calls and functions from the input trace to obtain a smaller
output trace.

Time Range Constraint

The time range constraint operation Ψ time-range-constraint : T×N×N −→ T reduces
a trace by eliminating calls that do not participate within a given time range (Figure
6.2). It takes a trace T = (F,C), a start time ts, and an end time te as input and
results in an output trace T out = (F out, Cout).
The operation is performed in two stages:

1. Reducing the trace to the calls that lie within the given time range:
T ′ = (F ′, C ′) with C ′ = {c ∈ C : start(c) > ts and end(c) < te} and F ′ =
funcset(C ′).

2. The calls that enclose all calls in C ′ are added to conserve the complete call
stack for all calls in T ′.
Cout = C ′ ∪

⋃
c′∈C′

enclosingcalls(c′) and F out = funcset(Cout).

Call Tree Removal

The call tree removal operation Ψ call-tree-removal : T× 2C −→ T removes all calls that
are triggered by a call out of the given input set Cx (Figure 6.3). The operation
takes a trace T = (F,C) and a call set Cx ⊂ C as input and returns an output trace
T out = (F out, Cout).
The operation is performed on a given trace T = (F,C) as follows:

• Cout = {c ∈ C : enclosingcalls(c) ∩ Cx = ∅} and F out = funcset(Cout).

Figure 6.2: The time range constraint operation Ψ time-range-constraint.

72 6 Visualization Techniques for Traces

Figure 6.3: The call tree removal operation Ψ call-tree-removal. The call trees triggered
by the "striped" call are removed from the trace.

As an alternative to explicitly specifying a call set, one can specify a set of functions
Fx ⊂ F whose direct and indirect outgoing calls are removed from the trace. The call
set Cx which is used as input for Ψ call-tree-removal is then: Cx = {c ∈ C : callee(c) ∈
Fx}.

Module Removal

The module removal operation Ψmodule-removal operates on a trace T = (F,C) and a
matching module hierarchy M = (V,H). For any given module v ∈ V , the functions
are first determined that are both part of the module and part of the trace and then
removed from the trace. The resulting trace T out = (F out, Cout) can be described as
follows:

• Fx = F ∩ (descendants(v) ∪ {v}).

• F out = F \ Fx.

• Cout = {c ∈ C : callee(c) /∈ Fx}.

• In a final step, ∀c ∈ Cout the call relation needs to be recalculated in such a
manner that the caller function matches the callee function of c’s parent call
with regard to the reduced trace T out.

6.1.2 Call Graph Operations
Call graphs are essential building blocks devised to describe traces in a compactified
way. In this section, we describe how a trace can be converted into a call graph and
how call graphs can be reduced.

Converting a Trace into a Call Graph

A call graph abstracts from the sequential information stored in a trace by aggregating
calls from the same caller and callee function to call relations (Figure 6.4). Call

6.1 Mathematical Operations on Traces 73

Figure 6.4: A call graph abstracts from the sequential information stored in a trace.
Functions are depicted by circles; calls by edges or rectangles, respectively.

graphs permit developers to explore the structural relationships between functions
[9, 10, 12].

Let G be the set of all call graphs. A call graph G = (V,R) ∈ G is a graph with the
set of modules V ⊂ V as nodes and a set of edges R ⊂ R = V ×DR ×V named call
relations. DR = N×N×N is a set of labels attached to call relations. They carry
information on the number of calls that a call relation represents, the aggregated
costs and the aggregated selfcosts. Call graphs are defined on modules rather than
on functions only (functions are modules, i.e., F ⊆ V) to make the description of the
module collapsing operation clearer that is defined in the next section.
Table 6.1 defines operations on two functions f,g ∈ F of a given trace T = (F,C)

which help to give a concise description of the conversion of traces to call graphs.
The conversion operation Φ takes a trace T = (F,C) as input and results in a call

graph G = (V,R) as output. The nodes in G are the same as in T , i.e., V = F . R is
defined as follows:
R = {r ∈ R : r = callrel(f,g) with f,g ∈ F and callset(f,g) 6= ∅}
To give a clearer picture of the description of operations on call graphs in the

remainder of the chapter, convenience operations are listed in Table 6.2.

Module Collapsing

Module collapsing is a common approach when aiming to reduce the size of a call
graph. Call relations between low-level modules, e.g., functions, are aggregated to call
relations between higher-level modules. The module collapsing operation Γ operates

74 6 Visualization Techniques for Traces

Operation Domain and
Range

Result

callset F×F→ 2C {c ∈ C : caller(c) = f and callee(c) = g}
count F× F→ N |callset(f,g)|
costs F× F→ N

∑
c∈callset(f,g)

costs(c)

selfcosts F× F→ N
∑

c∈callset(f,g)
selfcosts(c)

callrel F × F →
V×DR×V

(f, dR, g)
with dR = (count(f,g), costs(f,g), selfcosts(f,g))

Table 6.1: Operations on two functions f,g ∈ F of a given trace T = (F,C) that are
used for describing the conversion from traces to call graphs.

Operation Domain and
Range

Result

source R→ V (v1,d,v2) 7→ v1
destination R→ V (v1,d,v2) 7→ v2
relationlabel V × V →

DR

For v1, v2 ∈ R: returns the label dR at-
tached to the call relation r ∈ R with
source(r) = v1 and destination(r) = v2
or dR = (0,0,0) if no such relation exists

+ DR×DR →
DR

((n1, c1, s1),(n2, c2, s2)) 7→ (n1 + n2, c1 +
c2, s1 + s2)

Table 6.2: Convenience operations on a call graph G = (V,R).

on a call graph G = (V,R) and a module hierarchy M = (VM ,H) with V ⊆ VM .
Let Vx ⊆ VM be the set of modules to be collapsed. Then Γ results in a call graph

Gout = (V out, Rout) with:

• V out = {v ∈ V : ancestor(v) ∩ Vx = ∅} ∪ Vx

• Rout = {(v1, d, v2) ∈ R : v1, v2 ∈ V out with v1 6= v2 and
d =

∑
v1d

,v2d

relationlabel(v1d
, v2d

) with

v1d
∈ descendants(v1) ∪ {v1}, v2d

∈ descendants(v2) ∪ {v2}}

Hence, the labels of higher-level call relations result are the result of aggregating
the labels of the lower-level call relations.

6.2 Focusing on Temporal Order
A knowledge of the temporal order of how implementation units of a software system
are executed is essential for understanding system behavior. Experiments conducted
by Pennington [169] give evidence that developers first build a mental model of the
control flow when trying to understand a software system.

6.2 Focusing on Temporal Order 75

The views outlined in this section explicitly depict the temporal order of function
calls captured in a trace. The main characteristic of these views’ underlying geometric
models is that they allocate one physical dimension of the layout space to explicitly
encode the temporal order. The main challenge is to cope with the vast amount of
calls that are typically contained in a trace. One approach to solve this scalability
problem is to provide a set of views displaying the trace on different granularity
levels:

• A macroscopic view gives an overview of the complete trace;

• a microscopic view provides details of selected time ranges;

• a third view, which is based on pruned traces (cf Chapter 5), bridges the gap
between macroscopic and microscopic views.

6.2.1 Temporal Overview - A Macroscopic View

Purpose of the View

The main purpose of the temporal overview (Figure 6.5) is to provide a degree of
orientation during trace exploration. It shows the complete trace in a way that
exposes phases, i.e., patterns of function executions become visible. Similar and
repeated execution patterns can be identified. Details of function activity at selected

Figure 6.5: The temporal overview (upper part) presents an overview of when func-
tions are active over a certain time (blue shaded areas). Additionally, it depicts which
time range (shaded red) is shown in detail in other views, e.g, the call stack view
(lower part).

76 6 Visualization Techniques for Traces

points in time can be obtained on demand by a showing of the corresponding function
call stacks. With this on-demand information at hand, a developer can identify
system behavior on the basis of a visual pattern.
Moreover, the macroscopic view permits developers to understand at what stage

in the complete trace a function or higher-level module is active (by selecting it in
another view).

Supported Comprehension Strategies

This view is helpful with both top-down and bottom-up comprehension strategies.
Top-down comprehension strategies are supported in such a way that the developer
may start by formulating hypotheses on the high-level behavior captured in the trace.
When analyzing an address book import feature of a mail client software, for instance,
a developer may hypothesize that the import feature is implemented by, firstly,
parsing an external address book file and, secondly, merging the newly obtained
mail contact data with existing mail contacts. Visually analyzing a corresponding
trace with the temporal overview makes verifying and rejecting the hypothesized
two-step behavior of parsing and merging possible. The analysis might reveal that
an additional processing step between the parsing step and the merging step is
converting the contact data from one intermediate parsing related data structure
to another. Depending on the type of maintenance task, the developer refines the
original hypothesis and continues trace exploration. If the developer’s task is to
implement an as yet not supported address book format, for instance, the developer
might continue exploration with analyzing the revealed conversion step in more detail.
Bottom-up comprehension strategies are supported by the temporal overview,

which provides contextual information that helps to aggregate findings obtained via
analyzing low-level implementation artifacts into higher-level abstractions: When
developers analyze details of a specific function in another view and try to understand
the function’s role in the captured system execution, the temporal overview provides
information on the phases the function participates. In this way, developers are able
to distinguish between functions that are frequently used throughout the captured
behavior and functions that are specific to one single phase. Knowing the phase-
specific functions helps to gain an understanding of how higher-level behavior is
implemented using lower-level functions.

Implementation - Filtering Step

The temporal overview is based on the complete trace T = (F,C). No filtering
operations are applied.

Implementation - Mapping Step

The geometry model that results from the mapping step is a 2D area that is vertically
segmented into strips of equal height. Each strip corresponds to a function f ∈ F .
The association between function and strip is obtained by ordering the calls in C

6.2 Focusing on Temporal Order 77

according to their start time. The order of the functions is then determined by the
order in which they appear as callee function in the ordered set C.
The horizontal dimension of the strips reflects the temporal order. Each call is

mapped—according to its start and end time—onto the strip that corresponds to the
call’s callee function. In those time regions where a call is the top call on the call
stack, the strip is painted black.

Limitations

The strength of this view lies in providing an overview of coarse-grained system
behavior. Fine-grained behavior represented by a visual pattern consisting of only a
few pixels in horizontal dimension cannot be explored satisfactorily.

Multiple View Interaction

The temporal overview allows for cross-referencing by translating requests on selected
functions and modules (being selected in another view) into time ranges where they
are active. Developers may analyze details in another view and obtain coarse-grained
context information from the temporal overview. Additionally, the view provides
orientation and helps developers while exploring a time range in detail in another
view by highlighting this time range.

6.2.2 Call Stack View - A Microscopic View

Purpose of the View

The purpose of the call stack view is to provide details of the temporal order of calls
for a given, reasonably small time range (Figure 6.6). With it, developers receive
answers to questions such as:

• What happened before a specific call is executed?

• What happens after a specific call is executed?

• What is the sequence of (nested) subcalls that a specific call triggers?

Supported Comprehension Strategies

The call stack view aids developers in performing bottom-up comprehension strategies.
Starting with a specific call, a developer may use this view to analyze the detailed
sequence of calls executed before, after, and during the call. This detailed low-level
information is useful, as it helps developers to gain a higher-level of understanding
with regard to the analyzed system behavior.

Implementation - Filtering Step

Several filtering operations are applied to reduce the trace T to T out whose calls are
taken to build the geometry model.

78 6 Visualization Techniques for Traces

Figure 6.6: The call stack view presents the call stack for a time range of the trace
in detail. Three differed zoom levels are shown, i.e., different time ranges are shown.
The time marker in the center points to the same time value in all diagrams.

6.2 Focusing on Temporal Order 79

• time range constraint: T ′ = Ψ time-range-constraint(T)

• call tree removal: T ′′ = Ψ call-tree-removal(T ′)

• module removal: T out = Ψmodule-removal(T ′′)

Implementation - Mapping Step

The geometry model is obtained by (linearly) mapping the time range that parame-
terizes Ψ time-range-constraint to the horizontal dimension. Calls with their start and end
time are represented as horizontal bars. A bar’s vertical position is determined by its
depth within the call stack. Depending on the horizontal range that a bar spans, the
bar is annotated with the name of the corresponding callee function.

Limitations

The concept places no limitations on the chosen time range. As to large time ranges
with many calls (e.g., > 50.000), scalability issues may appear regarding computation
performance. One way of coping with this problem is to sample the call sequence
and display only the sampled calls. Consequently, not all calls but only randomly
picked ones are visualized.

Multiple View Interaction

The call stack view supports cross-referencing by way of highlighting, if they are
selected in another view. Likewise, calls of selected functions and (higher-level)
modules are determined and highlighted.

6.2.3 Phases View - Bridging the Gap between Microscopic and Macroscopic Views

Purpose of the View

The purpose of the phases view (Figure 6.7) is to provide a compact view on the
trace that permits to rapidly navigate in a top-down approach to those parts of the
trace that are relevant to the maintenance task at hand. The data that the view is
based on is a pruned trace (cf Chapter 5). Pruned traces contain those calls that
crucial decision points when navigating within a trace in a top-down fashion. Pruned
traces contain:

• Inner phases, which represent the execution of higher-level system functionality
by means of triggering multiple times lower-level functionality.

• Leaf phases, which represent lowest-level functionality. Leaf phases may repre-
sent, for instance, costly calls that do not trigger many further calls.

A major benefit to be derived from automatically identifying phases (cf Chapter 5)
is that their callee functions’ names often provide a helpful description of the system
behavior that is executed in the phase. Hence, the view is able to depict sequences of
named phases on various levels of abstraction.

80 6 Visualization Techniques for Traces

Figure 6.7: The phases view presents the trace in a highly compact way that per-
mits quick navigation to those parts of the trace that are relevant to a developer’s
maintenance task at hand.

As a sequence of phases may be composed of repetitive patterns, the phases
view applies a pattern detection algorithm on the sequence so that patterns can be
visualized explicitly and in a compact form.

Despite the view’s purpose of providing an efficient navigation means, the view
provides high-level execution context information in combination with other views.
As with the temporal overview, the phases view provides answers to questions such
as:

• In which phases is a specific function (or are functions of a specific module)
executed?

• To which higher-level behavior does the time range belong that is seen in the
call stack view?

In contrast to the temporal overview, the phases view provides execution context
information on various abstraction levels—and not only on the highest-level, i.e.,
regarding the complete trace’s time range.

Supported Comprehension Strategies

As described in the temporal overview section, the phases view also supports both
top-down and bottom-up comprehension strategies. Developers perform top-down
strategies by first analyzing the sequence of highest-level phases and forming hypothe-
ses about the global system behavior captured in the trace. Then the hypotheses are
successively refined by requesting details of specific phases: The process of unfolding
an inner phase provides an execution overview over a smaller time range and on a
more fine-grained abstraction level.
Bottom-up strategies are made more accessible, as the phases view provides

information on the execution context of functions and higher-level modules while
developers are analyzing a different view. A knowledge of the execution context helps
developers to gain a higher level of understanding of system behavior while analyzing
low-level facts (cf discussion in Section 6.2.1).

6.2 Focusing on Temporal Order 81

Implementation - Filtering Step

The starting point of the filtering step is a pruned trace T † = (F †,C†). Given a
phase p ∈ C†, the filtering step reduces the T † to a filtered, pruned trace T †out =
(F †out,C†out) that only contains details of subphases of p and of all its enclosing
phases (Figure 6.8):

• C†
′ = {p} ∪ enclosingphases(p)

• C†out = C†
′ ∪

⋃
p′∈C†′

subphases(p′)

• F †out = funcset(C†out)

Implementation - Mapping Step

The mapping step assigns a geometric representation to each phase p ∈ C†out. They
are represented by rectangles labeled with the callee function name of the call that the
phase stands for (Figure 6.7). Additionally, the phases’ meta-information is visually
encoded within the rectangle.
The following meta-information is shown:

• A label shows how many calls of the original trace are executed during the
phase’s time span.

• Colored areas encode the number of triggered calls, the call depth of the call
tree that starts from the corresponding call, the execution time of the phase,
and the number of distinctive callee functions of the triggered calls. These

Figure 6.8: The filtering step for the phases view is based on a phase p in a pruned
trace (striped bar). All enclosing phases together with their subphases remain in the
filtered pruned trace.

82 6 Visualization Techniques for Traces

visual hints permit developers to assess what to expect when requesting details
of the phase (e.g., by unfolding the phase or by consulting another view). We
can identify "laborious" parts during system execution by having a closer look
at large numbers of triggered calls, deep call trees, or large call costs.

The layout produced by the mapping step follows the hierarchical structuring of
the phases. Due to the filtering operation, all phases with equal depth in the phase
tree form a sequence of subphases (Figure 6.8). A vertical layer in layout space is
allocated to each subphase sequence. However, the subphase sequence is not mapped
from this coarse sequential form into a geometry model that fits within the layer. A
compact form of the sequence is calculated beforehand by applying phase similarity
metrics and detecting repetitive patterns (cf Section 5.3).

Phase Similarity and Pattern Detection Figure 6.9 illustrates the three steps necessary
for obtaining a compact representation for a phase sequence:

1. Phases are checked for similarity with respect to the phase similarity metrics
and are compared to a similarity threshold (cf Section 5.3). Unique identifiers
are assigned to the phases, whereas similar phases are given the same identifier.

2. By applying a tool called sequitur [153] for extracting grammar rules from
strings, hierarchical patterns are infered in the sequence of identifiers.

3. The sequence of phases is depicted in a folded form that shows only one
instance of multiple occurrences of anyone pattern. Gray boxes represent
patterns visually. Arrow symbols in the boxes indicate that the developers
may interactively choose the pattern instance to be shown. A label shows the
currently depicted pattern instance and the total number of instances.

Being given the opportunity to interactively choose the similarity threshold within
its value range of [0,1] helps to adjust the "compactness" of the sequence representation.

Limitations

A limitation of the phases view lies in the underlying algorithm for calculating
pruned traces. The algorithm removes lightweight calls and control delegating calls
(cf Chapter 5), which means that calls of the original trace are missing when the trace
is being explored via the phases view. Pop-up information, however, still provides
aggregated information on the missing calls. This helps developers to decide when to
(temporarily) stop analyzing the trace in the phases view and to switch to another
view to explore the complete trace data. In a sense, using the phases view is like
driving on the "fast lane" to get near to regions of interest in the trace; at some point
during exploration of the pruned trace, however, the developers need to switch to
more detailed views.

6.3 Focusing on Structure 83

Figure 6.9: A sequence of phases is compacted in three steps: (1) Assigning identi-
fiers according to phase similarity. (2) Calculating repetitive patterns. (3) Folding the
patterns.

Multiple View Interaction

As with the temporal overview, the phases view provides (1) orientation while exploring
the trace in other views and (2) permits developers to analyze when specific functions
or higher-level modules are active in time that are selected in another view.

6.3 Focusing on Structure
This section presents views that focus on structure contrary to the views focusing on
temporal order. Central elements of these views are (1) call relations contained in call
graphs and (2) the functional decomposition of the software system implementation
captured in a module hierarchy.

6.3.1 Structure Overview

Purpose of the View

The structure overview depicts the complete module hierarchy that the system
implementation is composed of (Figure 6.10). When exploring a trace in another
view, the structure overview provides help by revealing to which parts of the system
implementation a function or module belongs. Organizing the system implementation
into a hierarchy of modules is one way of coming to terms with the complexity of the

84 6 Visualization Techniques for Traces

Figure 6.10: The structure overview depicts the complete module hierarchy using a
2 1

2D treemap layout technique. Parts of the implementation that are active during a
specific execution can be visualized.

system. Modules thereby represent higher-level "implementation units that provide
coherent units of functionality" [35]. "Modularization [is] a mechanism for improving
the flexibility and comprehensibility of a system" [165]. Hence, the structure overview
helps developers to relate a single function to the modules it belongs to and to derive
their purpose and responsibility. Essentially, it is the structure overview that is
used during trace exploration to obtain module related context information about
functions.

Supported Comprehension Strategies

The structure overview is instrumental to developers while performing bottom-up
comprehension strategies. While developers explore detailed and low-level aspects of
the trace, e.g., when analyzing a sequence of calls in the call stack view, they need to
understand what the functions’ roles are in the captured system behavior. Context
information showing to which modules a function belongs, helps to clarify the overall

6.3 Focusing on Structure 85

role of the function and allows for the building-up of higher-level abstractions of the
analyzed system behavior.

Implementation - Filtering Step

No filtering step is necessary for this view.

Implementation - Mapping Step

During the mapping step, the module hierarchy is mapped onto a set of nested
rectangular volumes as a treemap [80, 189, 218]. Treemaps are "compact, space-filling
displays of hierarchical information, based on recursive subdivision of a rectangular
image space" [218]. Each module is represented by a volume with rectangular extend,
all its children recursively mapped onto its top surface. The partitioning of the top
surface is set out according to a specific treemap layout such as a slice-and-dice,
clustered, squarified, or ordered layout [191]. The surface area covered by a module
representation is proportional to its lines-of-code metrics (LOC). The height of a
module in the treemap corresponds to its depth in the module hierarchy. The resulting
nested rectangular volumes help to pinpoint the position of the module within the
hierarchy.

In order to further improve perception of the nested rectangular volumes, spezialized
shading techniques that simulate physical light distribution can be applied, i.e.,
ambient occlusion, or, alternatively, a 2D treemap representation can be used. For
interactive exploration, however, the 3D variant of the treemap provides essential
benefits as it uses depth to indicate the hierarchy level, leverages advanced illumination
and shading techniques, and provides 3D interaction tools for user interaction.

Implementation - Rendering Step

In the rendering step, the 3D model that represents the treemap is projected onto
a 2D view plane by projective projection. 3D interaction tools such as zooming,
rotation, and panning allow users to interactively explore the treemap.

Limitations

The structure overview depicts the complete module hierarchy in a dense way with
lower-level modules occupying less and less screen space and, hence, is useful when
exploring higher-level modules. It cannot show hierarchies with large depth. However,
in typical software implementations, the hierarchical level is usually rather low in
contrast with general information visualization contexts. Collberg et al. [39], for
instance, have analyzed 1132 open-source Java Jar files and found a maximum module
depth of 8 and an average depth of approximately 4.

Multiple View Interaction

In combination with another view, which selects a function or a higher-level module,
the structure overview highlights all modules from the selected one to the module

86 6 Visualization Techniques for Traces

hierarchy’s root module. Highlighting means changing the color selected for the
module representations and annotating them with their module name labels.

6.3.2 Collaboration View

Purpose of the View

The collaboration view shows call relations between modules (Figure 6.11). It enables
developers to understand which modules interact via calls with each other. This
analysis is performed either on the complete trace or on a selected time range. The
time range restriction is an important feature and has been installed to obtain a
clear picture of what happens in the analyzed software system during execution of a
specific functionality.

Supported Comprehension Strategies

The view supports a top-down comprehension strategy. Developers have the option
to choose a time interval of interest within another view, e.g., temporal overview or
call stack view. Subsequentially, collaboration between the highest-level modules is
shown. The developer may then in succession unfold modules to obtain a more and
more detailed view on how specific modules down in the module hierarchy interact
with the other modules. This involves developers starting with a global hypothesis
about system behavior and successively refining their hypotheses to gain a detailed
understanding of which lower-level module is important within the analyzed time
range and how it interacts.

Figure 6.11: The collaboration view depicts how modules interact during a selected
part of the trace.

6.3 Focusing on Structure 87

Implementation - Filtering Step

Several operations are applied to the trace T to obtain a call graph Gout = (V out, Rout)
containing call relations between higher-level modules:

• time range constraint: T ′ = Ψ time-range-constraint(T)

• module removal: T ′′ = Ψmodule-removal(T ′)

• call graph conversion: G = Φ(T ′′)

• module collapsing: Gout = Γ (G)

Implementation - Mapping Step

The mapping step results in a 2D layout space that contains rectangles for representing
modules and arrows for call relations. The containment relations between modules
are represented by embedding child rectangles into parent rectangles. The layout of
the rectangles and arrows is calculated by algorithms for clustered graphs that are
provided by the graph drawing Graphviz [64] library.

Limitations

One limitation of this type of view is that the number of depicted modules needs
to be reasonably small; we have experienced that up to 50 modules can be shown
using standard displays, otherwise the resulting image will suffer from visual clutter.
However, in concrete trace exploration scenarios, a small number of modules can be
obtained by successively narrowing down the "interesting" time range that needs to
be visualized. Furthermore, modules can be removed, if they are identified as not
being relevant to the given maintenance task.

Multiple View Interaction

This view does not provide any context information. However, it serves as view for
requesting context information from other views by selecting a module.

6.3.3 Call Neighborhood View

Purpose of the View

The call neighborhood view depicts for a given time range and a given function
f , which functions it calls and how it is called by other functions (Figure 6.12).
On the one hand, the view permits developers to understand how the function is
coordinated by other functions, and on the other hand, the view shows how the
function f coordinates other functions to implement its functionality in the software
system. The presented functions and their call relations are embedded within the
module hierarchy. This way, developers are assisted in understanding the functions’
role during system execution: The information to which modules a function belongs

88 6 Visualization Techniques for Traces

Figure 6.12: The call neighborhood view depicts for a given function the caller and
callee relations to other functions. Additionally, it depicts runtime statistics on call
relations. Furthermore, it shows how the functions are part of higher-level modules.

provides valuable clues when endeavoring to understand the function’s semantics (cf
Section 2.5.1).

Supported Comprehension Strategies

This type of view supports bottom-up comprehension strategies. Developers can
analyze for a small function set how the functions interact. Moreover, by analyzing
the higher-level context, i.e., how functions are embedded within higher-level modules,
developers can gain a more global understanding of interaction in the system. In
particular, they can see how the specific function interactions displayed are parts of
a more general module interaction.

Implementation - Filtering Step

Several operations are applied to a trace T to obtain a call graph Gout = (V out, Rout):

• time range constraint: T ′ = Ψ time-range-constraint(T)

• module removal: T ′′ = Ψmodule-removal(T ′)

• call graph conversion: G = Φ(T ′′)

Call graph G provides the basis for deriving the graph Gout = (V out, Rout) to
be shown in the call neighborhood view. Starting point is a function f ∈ F that
becomes the first element in V out. Next, f ’s outgoing call relations R→f to the callee
functions V→f are determined and added to V out and Rout, respectively. R→f = {r ∈
R : source(r) = f} and V→f = {destination(r) ∈ V : r ∈ R→f }.

6.4 Focusing on Source Code 89

In the same way, incoming call relations R←f from the caller functions V←f are deter-
mined and added to V out and Rout, respectively. R←f = {r ∈ R : destination(r) = f}
and V←f = {source(r) ∈ V : r ∈ R←f }.
This basic call neighborhood graph is augmented by indirect call relations on

demand by the developers. For a function f ∈ V→f the developer may analyze further
outgoing call relations. In the case of a function f ∈ V←f the incoming call relations
are made available.

Implementation - Mapping Step

The geometry model uses a 2D layout space. Similar to the collaboration view,
rectangles represent functions and higher-level modules. Call relations are represented
by directed arrows. Containment relations are expressed by embedding child rectangles
into parent rectangles. The thickness of the arrows corresponds to the costs of a call
relation. In addition, the arrows are annotated with labels that show how many calls
are cumulated by each call relation.
The layout of the rectangles and arrows is calculated by algorithms for clustered

graphs that are provided by the graph drawing Graphviz [64] library.

Limitations

The number of functions that can be shown in the call neighborhood view is limited.
In our experience, graphs with more than approximately 50 functions generally have
too many call relations and the resulting images start to contain too much visual
clutter.

Multiple View Interaction

If a point in time is selected in another view (e.g., call stack view), all the functions
and call relations that are part of the call stack of the selected point in time are
highlighted.

For a point in time (selected in another view) the call neighborhood view highlights
the functions and call relations that correspond to the call stack of the given point in
time. This facilitates understanding the call stack in terms of higher-level modules,
e.g., developers can explore how control is passed from module to module. A further
discussion on how to integrate the time dependent call stack information is given in
[221].

6.4 Focusing on Source Code
The source code represents the prime artifact type created and modified by developers
in software development processes. It codifies the structure and behavior of a software
system. While the static architecture of the system is represented in a straight
forward way, the dynamics of the software system is not intuitively expressed by the

90 6 Visualization Techniques for Traces

source code. Two problems arise when trying to understand system behavior on the
basis of reading source code:

1. Programming concepts such as polymorphism in object-oriented programming
languages or function pointers in various procedural programming languages
allow developers to postpone from compile-time to execution-time any decision
they have to make on which function is to be called at a call statement. Hence,
understanding system behavior by reading code is extremely difficult, in fact it
is impossible, if these constructs are used. For instance, if the common observer
design pattern [63] is applied, it is impossible to tell by reading code which the
observing objects are that are notified by the observed subject object. In some
languages such as C++, operation overloading hides the function call chains
that are triggered.

2. Understanding system behavior by reading source code means identifying those
parts of the code that participate in the respective behavior. If a "grown"
software system needs to be analyzed, it is highly possible that many essential
functions consist of large amounts of lines of code (Lanza and Marinescu call
them brain methods [118]). In this case, it is tedious work having to separate
the "wheat from the chaff", i.e., identifying the code lines executed during the
analyzed behavior from the large amount of unused code lines.

Another problem in connection with object-oriented software systems is the cir-
cumstance that it is difficult to "see" (a) the actual instantiation processes and (b)
state changes in the source code.

6.4.1 Enriched Code View - Enriching Source Code with Runtime Information

Purpose of the View

The purpose of the enriched code view (Figure 6.13) is to provide solutions for coping
with the two core problems when reading source code. Two strategies are applied:

• To assist developers in rapidly identifying the executed code lines in large
function implementations and to enable them to skip the unexecuted parts, the
source code of a function is presented in a miniaturized way, the textual layout
of the code thereby being conserved (cf SeeSoft metaphor [52]). Code lines are
reduced to pixel lines. A line is colored if it contains an executed call statement.
Call costs are encoded in color values. The miniaturized code is placed next to
the original code. There, the lines with an executed call statement are colored
in the same way.

• For code lines with executed call statements, details of the calls can be obtained
on demand. A pop-up window reveals (1) which calls "lie" behind the call
statement, (2) how often the calls were performed, and (3) how costly the
calls were. These detailed descriptions reveal what really happened during
runtime—even if polymorphism or function pointers are used.

6.4 Focusing on Source Code 91

Figure 6.13: The enriched code view presents the source code enriched with addi-
tional runtime information.

Supported Comprehension Strategies

The view supports bottom-up comprehension strategies by displaying low-level source
code information together with runtime information for specific behavior. Developers
do not need to mentally reconstruct several of the many possible control paths in
the function’s code before they are able to identify the control path relevant to the
observed behavior. Instead, the additional runtime information displayed guides
them along the relevant control path taken at runtime. As developers skip large parts
of the code, they will better find themselves capable of building up a higher-level
mental model of system behavior.

Implementation - Filtering Step

As a first step, the time range constraint operation is applied to the trace T ′ =
(F ′,C ′) = Ψ time-range-constraint(T); this step can be skipped if the entire trace is
considered. Subsequently, those calls are extracted that are initiated from the
function f ∈ F of interest. Cf = {c ∈ C ′ : caller(c) = f}.

92 6 Visualization Techniques for Traces

Implementation - Mapping Step

The resulting geometry model is made up of two parts: The first part is the miniatur-
ized source code presentation, devised, as described by Eick et al., for their SeeSoft
code visualization technique [52]. The second part is a standard textual presentation
of the source code. The miniaturized code presentation serves as an orientation aid
by providing additional visual markers that show which part of the code is currently
being displayed in the textual code presentation.

The color encoding of code lines is based on the relative cost of calls that originate
from the same code line. Therefore, the calls in Cf are grouped according to the call
statements’ code lines in the set of all code lines L (cf Section 2.4.1). Let Lf be the
code lines where a subcall was initiated from f ’s implementation: Lf = {callsite(c) ∈
L : c ∈ Cf}. The set of calls for a given l ∈ Lf is: Cf,l = {c ∈ Cf : callsite(c) = l}.
The call costs and relative call costs of a code line l are calculated as follows:
• callcosts(f,l) =

∑
c∈Cf,l

costs(c)

• relcallcosts(f,l) = callcosts(f,l)∑
l′∈Lf

callcosts(f,l′)

The color of each code line is obtained by mapping its relative call costs ∈ [0,1] to
a sequential color scheme (e.g., color scheme by Brewer et al. [20]).

The pop-up windows that display runtime details per code line on demand, further
group the calls in Cf,l per callee function and list summarized information for each
group, i.e., call costs, call count, callee function, module where the function is
implemented.

Limitations

One of the aims of this type of view is to allow developers to rapidly distinguish
between executed and not executed parts of the code. An even better support would
be provided, if the trace contained complete coverage information on basic block level.
This is not the case. Hence, if no call statements exist in specific control branches, no
runtime information is available and, therefore, developers will still need to analyze
control paths that are not relevant to the given system behavior.

Multiple View Interaction

In combination with other views, the enriched code view provides information on
the code context of calls. Pointing on a call relation in the call neighborhood view
with the mouse, for instance, highlights the associated code line in the code view,
provided that the code of the corresponding function is displayed.

6.5 Linking Views - Multiple Perspectives on Traces
Each view is specialized to reveal selected aspects of the trace and to support specific
comprehension strategies. When exploring a trace, developers typically switch between

6.5 Linking Views - Multiple Perspectives on Traces 93

Figure 6.14: Multiple views are synchronized and linked to provide the developer
with different perspectives on trace data.

strategies. Hence, they need multiple synchronized views to reach their conclusions
(Figure 6.14). Findings made from one view need to be cross-referenced with the
findings obtained from other views [16].
The following tables summarize the cross-referencing opportunities of the views.

Table 6.3 shows what kind of artifacts are explicitly depicted within the views and
are available for selection. Table 6.4 shows which views provide context information
on any one selected artifact.

The linking of views is implemented by highlighting related artifacts in those views
where an artifact is selected from within one view. Schumann and Müller use the term
brushing to describe this way of providing a common context for a set of different
graphical representations of a data set [186].

94 6 Visualization Techniques for Traces

View Fu
nc

tio
n

M
od

ul
e

C
al
l

C
al
lR

el
at
io
n

T
im

eP
oi
nt

T
im

eR
an

ge

Temporal Overview x x
Call Stack View x x x x
Phases View x x x x
Structure Overview x x
Collaboration View x x x
Call Neighborhood View x x x
Enriched Code View x

Table 6.3: The table summarizes which artifacts can be selected from within the
views.

View Fu
nc

tio
n

M
od

ul
e

C
al
l

C
al
lR

el
at
io
n

T
im

eP
oi
nt

T
im

eR
an

ge

Temporal Overview x x x x x x
Call Stack View x x x x x x
Phases View x x x x x x
Structure Overview x x
Collaboration View x x x x
Call Neighborhood View x x x x x
Enriched Code View x x

Table 6.4: The table summarizes for which artifacts the views provide contextual
information.

CHAPTER 7
Applying Trace Visualization during Software Maintenance

Trace visualization applied in software maintenance needs to identify the parts of
the trace that are relevant to any given task. One approach is to apply top-down
exploration strategies on a trace. In the previous chapter, several views are described
that support top-down strategies. Another approach is to find starting points for
fine-grained trace analysis by querying trace data by means of structured trace query
language [164]. Furthermore, we can use techniques that automatically point to
task-relevant parts of the trace. This chapter discusses how reverse engineering
techniques can be exploited that deliver relevant artifacts, which in turn act as entry
points for detailed trace exploration.
This chapter first discusses analysis techniques that support maintenance tasks

and can be combined with trace visualization. Section 7.2 demonstrates how these
techniques can be combined. For this purpose, a novel technique for fault localization
is proposed that makes use of the benefits of trace visualization.

7.1 Combining Trace Visualization with other Analysis Techniques
Various techniques for supporting maintenance tasks perform two steps, namely fact
extraction and fact analysis to obtain a set of artifacts, which is returned as a result
set (Figure 7.1). These steps are, as a rule, performed automatically. However, the
result set may contain false positives, making it necessary for the developer to identify
the true positives manually. If the maintenance task at hand refers to a specific
system behavior, this is usually done by either code reading or by stepping through
the system execution, using a conventional symbolic debugger. (Throughout the
remainder of the thesis this technique is called live debugging.) Both techniques are
highly time consuming, depending on the amount of false positives within the result
set.
Trace visualization can speed up the process of distinguishing between false and

true positives if applied as an intermediate step after obtaining the result set and
before starting time consuming code reading or live debugging. Trace visualization
reveals the execution context of the artifacts in the result set and enables developers
to decide more rapidly whether an artifact is task-relevant or not. With code reading

96 7 Applying Trace Visualization during Software Maintenance

Figure 7.1: Those analysis techniques that support performing a maintenance task
(1) related to one specific system behavior and that (2) results in a set of identified
artifacts, can reasonably be combined with trace visualization by steering the filtering
step of trace presentation. In this way, developers are provided with detailed informa-
tion on the execution context of the artifacts in the result set and receive support in
identifying the true positives in the result set.

on the one hand, this assessment is often difficult because the code represents any
possible executions of an artifact. Hence, it is time-consuming to isolate any single
execution of interest. With live debugging on the other hand, developers are provided
with a local view on system behavior only. They step from one point in time to the
next and need to mentally construct a model of execution history—a demanding
cognitive task. With trace visualization, developers are presented with explicit models
of the behavior. Hence, they can shortcut some of the time consuming steps during
code reading and live debugging.
Performing a textual search on the source code is one example of a standard

technique for feature location that can be combined with trace visualization. A
well-known search tool used for feature location is grep [192]. The result set achieved
after performing a search query is a list of the code locations that match the search
pattern. With this result set, the developer may reduce the set by redefining the
search pattern. Later however, the developer needs to manually read the code to
understand which code locations are relevant to the searched system feature.
To apply trace visualization for faster identification of relevant code locations in

the result set, the hit code locations need to be converted into hit functions (by
matching the code locations with the functions’ specifying and implementing source
code). Afterwards, a trace is taken from the software system while it executes the
searched system feature. The function result set obtained from the text search then
serves as precise starting points for trace exploration. The visualization provides the
execution context of each function and helps developers to decide whether the code
location hit is feature relevant or not.
An obvious additional advantage of using trace visualization in combination with

7.2 Maintenance Task: Identifying Recently Introduced Faults 97

static analysis techniques is that the complementary runtime information contained
in the trace automatically reduces the result set by removing artifacts from the set
that are not active during the observed behavior.

7.2 Maintenance Task: Identifying Recently Introduced Faults

With this novel analysis technique [17, 215] faults in collaboratively developed software
systems can be located. Both the maintenance task and the technique conform to
the criteria given in the previous section, i.e., the task "locating a fault" refers to a
specific system behavior and the analysis technique produces a result set of possibly
faulty code locations. Understanding the execution context of the code locations
is essential for deciding whether the automatically identified code is related to the
faulty behavior or not.
Working on collaboratively developed software systems often leads to situations

where a developer enhances or extends system functionality, thereby, introducing
faults. At best, the unintentional changes are found immediately by regression tests.
Often, however, the faults are detected days or weeks later by other developers who
notice strange system behavior while working on different parts of the system. What
follows is a highly time-consuming task to trace back this behavior change to code
changes in the past.
The proposed technique identifies the recently introduced changes that are re-

sponsible for the unexpected behavior. The key idea is to combine dynamic, static,
and code change information on the system to reduce possibly large amounts of
code modifications in line with those that may affect the system while running its
faulty behavior. Following this massive automated filtering step, developers receive
support in semi-automatically identifying the "root cause" change by means of trace
visualization. Within multiple synchronized views, developers explore when, how,
and why modified code locations are executed.

7.2.1 Behavior-Affecting Code Modifications in C/C++
In this section, we discuss which parts of the implementation of a C/C++ software
system may affect a specific system behavior if they are modified. The behavior of a
system may be changed for various reasons. Changes within source code typically
include:

• Code statements in a function’s body that are actually executed and modified.

• Data types of variables that are accessed from executed code statements are
modified.
In C/C++, a variable’s data type is either declared in a function’s body or
signature, in the case of a local variable, parameter or return value. Or it is
declared outside of "function code" if it is a global variable or an attribute of a
class.

• Preprocessor macros are changed.

98 7 Applying Trace Visualization during Software Maintenance

Changes outside of source code typically include:

• The system environment is/behaves different:
The system communicates with other systems that behave differently or where
persistent data that is being accessed during execution differs.

• The build configuration is modified:
Third-party libraries are exchanged or preprocessor definitions are modified.

The analysis technique identifies changes performed in source code only. Therefore,
developers should be aware of any changes that are manifested outside of source code
files. Additionally, as we use a fast and therefore lightweight static code analyzer,
macro code dependencies are not tracked [219]. Hence, if a modification of macro code
is detected, the developer has to check manually whether the change is responsible for
the observed change in system behavior. The main idea is to take advantage of the
decision not to analyze whether code changes affect system behavior in general. The
goal is to identify whether a code change is responsible for any specific faulty behavior.
This behavior is reflected by a trace. With it, the amount of code, i.e., all active
functions’ code, has to be checked for modifications. Additionally, modifications
of data types of variables that are accessed from the executed code need to be
checked. This information can be obtained via lightweight static code analysis.
Runtime information is exploited, which drastically simplifies the static analysis
process because control flow dependencies do not have to be analyzed. Otherwise,
it would be necessary to perform a heavyweight static dependency analysis, e.g., by
calculating the system dependency graph [86].

7.2.2 Analysis Process
Figure 7.2 illustrates the analysis process a developer has to perform if unexpected
system behavior happens to occur. Essentially, the developer must first extract
dynamic, static and code change data from the system. The data from the different
sources are then combined to identify those functions that may have been affected by
recent changes. In a final step, the developer explores how the affected functions are
executed in order to be able to assess the impact of their modifications on system
behavior. In detail, the steps are:

1. During daily programming work, a developer notices that the software system
is behaving in an unexpected way, unlike some days or weeks ago, when the
system was still behaving as expected.

2. The developer resorts to tracing and executes the faulty behavior.

3. The developer starts the extraction mechanisms for static and code change
data.
a) A lightweight static analysis of the code is performed.
b) All code modifications are collected from the time when the system still

behaved as expected up to the present.

7.2 Maintenance Task: Identifying Recently Introduced Faults 99

Figure 7.2: The analysis process for identifying recently performed code changes
that unintentionally cause faulty system behavior.

4. Dynamic, static, and code change data are combined to identify those functions
that have been affected by a code change.

5. By means of trace visualization, the developer explores runtime details of the
resulting set of affected functions, giving particular attention to and analyzing
how an affected function is executed while the faulty system behavior is being
exercised. In this way, the developer can ascertain how the change impacts on
the execution of other functions. Another option is to consult those developers
who were responsible for the changes in a "suspicious" function.

7.2.3 Fact Extraction

Tracing

The basis of any analysis technique is acquisition of knowledge on the sequence of
function calls that are performed while the faulty system behavior is executed. Here,
the tracing technique is used that is described in detail in Chapter 4.

100 7 Applying Trace Visualization during Software Maintenance

Static Code Analysis

As a result of the tracing process (dynamic analysis), the executed functions are
known. To resolve the code lines defining data types that are accessed from the
executed functions, a static code analysis is performed by exploiting the source code
documentation generator tool doxygen [157]. The doxygen parser is instrumental in
resolving most of the C/C++ preprocessor and template programming peculiarities.

Extracting Code Change Data

Information on the changes in the code from the time when the system last behaved
as it was expected can be easily obtained from a software configuration management
system (SCM). The implementation of the analysis process supports the SCM subver-
sion [170]. Lines of code that are new or modified are modeled by subversion in the
shape of added lines in the current version. These lines are checked for modifications
together with additional code lines that precede deleted lines. The latter code lines
are necessary for establishing that the control flow formerly entered the code but is
not being executed anymore in the current version of the system.

7.2.4 Fact Analysis - Detecting Functions Affected by Code Changes
As discussed in Section 7.2.1, code lines have to be checked for modifications that
are potentially responsible for unexpected system behavior (Figure 7.3). In other
words, (1) lines implementing the functions identified by dynamic analysis have to
be checked and (2) lines obtained via static analysis, i.e., lines declaring variables
outside of function-related code, however, being accessed in executed functions. If
a modified code line matches a line obtained via dynamic or static analysis, the
function that is dependent on the hit line is tagged as having been affected by code
change. This massive filtering step having been completed, the typically large set of

Figure 7.3: For detecting behavior-affecting code changes, both code of executed
functions and code defining variables accessed from executed functions have to be
checked for modifications.

7.2 Maintenance Task: Identifying Recently Introduced Faults 101

executed functions is reduced to a small set that only contains the affected functions.
Our experience when applying the filtering step on industrially developed software
systems with the intention of solving real-world problems indicates that the filtering
reduces the set of functions massively in a typical case.

7.2.5 Applying Trace Visualization - Exploring Functions within their Execution
Contexts

Within the set of functions affected by code changes, the developer needs to pinpoint
the one that is responsible for the observed change in system behavior. For this,
multiple views on the trace are provided as discussed in Chapter 6. With the views
the developer can explore how control flow passes through the implementation while
the faulty behavior is executed. Developers can recognize the context in which a
changed code location is executed.

• The temporal overview and the phases view reveal which phases are affected by
a code change. During execution of the system behavior, it is typical for different
phases to be passed through. Figure 7.4 shows the temporal overview of a trace
taken from an industrial software system for large-scale terrain visualization
and illustrates the various phases that are performed. Phases may, for instance,
be a startup-phase, a phase where specific data is imported, or a phase where a
specific calculation is performed. Knowing the phases that are affected by a
code change helps developers to assess the change’s impact and decide which
change needs to be analyzed in detail first and is to be given top priority.

• The call stack view reveals what happens along the control flow after modified
code has been executed. The opportunity to analyze the function call stack
at the time when modified code is executed and to discover which functions
are executed afterwards gives an understanding of the purpose of the modified
code. The call neighborhood view shows the structural control dependencies of
a modified function (Figure 7.5). In addition, having access to the functions’
source code enables developers to understand the purpose of the data that the
modified code operates on.

Figure 7.4: The temporal overview depicts function activity over time and permits
the detection of phases that are exercised while the system runs its faulty behavior.

102 7 Applying Trace Visualization during Software Maintenance

Figure 7.5: Trace visualization helps developers to understand the control dependen-
cies of a recently modified function. Trace visualization reveals what happens before
and after the function’s execution.

CHAPTER 8
CGA - A Trace Visualization Framework

The trace visualization concepts proposed in this thesis are implemented within a
software framework called CGA1. It comprises the following functionalities:

• Extracting dynamic, static, and evolution facts from implementations.

• Integrating the facts in a combined data model and storing them in a common
database.

• Providing a variety of generic trace visualization views.

• Providing several maintenance-specific views on dynamic, static, and evolution
facts.

• Composing views as trace visualization tools.

8.1 Functional Decomposition
CGA is implemented in C++ and comprises approximately 130.000 lines of code. As
shown in Figure 8.1, it is logically decomposed into two parts: EXTRACTION and
ANALYSIS. Runtime components built from the two modules communicate by means
of the shared data exchange format for extracted facts and by using a common
network communication protocol.

8.1.1 Extraction Module
The EXTRACTION module contains functionality for tracing function calls in C/C++
systems by means of compiler-based instrumentation (cf Chapter 4). This mechanism
called callmon is implemented in connection with the Microsoft Visual Studio Compiler

1 CGA is an abbreviation for call graph analyzer. Analyzing call graphs is what CGA was first
implemented for. This name is now outdated because the functionality of the CGA framework
meanwhile comprises a greater degree of functionality than only analyzing call graphs. For reasons
of consistency with literature, the name is still used.

104 8 CGA - A Trace Visualization Framework

Figure 8.1: The functional decomposition and layered architecture of CGA.

for systems running on Microsoft Windows platforms and for the GCC for systems
running on Linux or MacOS platforms.
Furthermore, EXTRACTION contains an IDE integration for the Microsoft Visual

Studio IDE. The features of the IDE integration include:

• Configuring callmon, i.e., specifying the functions to be traced.

• Providing a record start and stop user interface for activating and deactivating
callmon tracing at runtime.

• Remote controlling the Visual Studio Debugger, which facilitates tracing variable
states and memory accesses in addition to the control flow information captured
by callmon.

• Remote controlling the analysis and visualization back-end (i.e., the runtime
components created from the ANALYSIS module):
– A CGA project is automatically created based on the setting of a Visual

Studio solution.
– Traces are automatically imported and visualized in CGA after the developer

has stopped callmon tracing.

8.1 Functional Decomposition 105

8.1.2 Analysis Module

Layered Modules

ANALYSIS is organized as a layered architecture. The STORAGE layer is accessed by the
IMPORT and ACCESS layers. These in turn are accessed by the UI layer. Within UI,
the VISUALIZER module contains views on the data stored in STORAGE and accessed
via ACCESS. The module TOOLFACTORY within UI contains code that uses elements
from VISUALIZER to build tools for supporting maintenance tasks.
The IMPORT module supports the import of facts from a variety of sources:

• Dynamic facts:
– Control flow tracing with callmon.
– Variable state and memory access tracing via IDE integration.
– Statement coverage using the Intel’s instrumentation framework PIN [124].

• Static facts:
– Facts and fact relations revealed by the static analyzer doxygen [157]. This

includes namespaces, classes, class relations such as inheritance, functions,
global variables, variable and attribute accesses, directories, files, file
include relations, and many more. Additionally, code metrics are available
on the facts.

• Evolution facts:
– Code change history and check-in related meta data provided by the

software configuration management system subversion [170].

Vertical Modules

UTIL is a "vertical" module that provides common functionality that can be used by
all other modules. It contains, for instance, a graph visualization engine GV and a code
visualization engine CODEVIS. The latter depicts code with embedded dynamic facts.
Additionally, UTIL provides convenience functionality such as an API for working
with XML data.

The graph visualization engine can be customized and instantiated by many
visualization components in UI::VISUALIZER to implement their fact presentation
logic. The features of GV include1:

• Visualization of clustered graphs, i.e., graphs consisting of nodes and directed
edges with nodes being additionally organized in a tree of clusters.

• Customizable shapes of nodes, edges, and clusters and mapping of meta data
on nodes, edges, and clusters on visual attributes.

1 A detailed description of some core features of GV is found in [220].

106 8 CGA - A Trace Visualization Framework

• Customizable layouts; providing a set of default 2D layouts such as variants of
sugiyama layouts [204], energy based layouts [154], and treemap layouts [191].

• Underlying 3D rendering engine:
– Fast image creation by exploiting GPU power.
– Advanced rendering techniques exploiting the GPU rendering pipeline.
– Switching between orthogonal projections that result in images that appear
"pure" 2D and perspective projections that result in landscape-like 21

2D
presentations.

• Navigation techniques that operate both in 2D and 21
2D such as zooming,

panning, tilting, and viewpoint animations for automated focusing on nodes,
edges, or clusters [25, 26].

• Build-in picking mechanism to react on mouse clicks on node, edge, and cluster
shapes.

• Advanced labeling techniques that annotate nodes, edges, and clusters in such
a way that labels do not overlap in screen space (cf [125, 126]). Level-of-detail
technique that adapts the label text to the screen-space size of the shape to
which the label is attached.

• Animated morphing from the currently shown graph to a new graph as input
data.

The second vertical module EXT in ANALYSIS is the "gateway" to external tools,
i.e., third-party libraries and third-party processes. It encapsulates the external APIs
and data formats to minimize the impact of changes in the third-party tool. In the
case of a change, only the corresponding EXT module is affected.

8.2 Performance Measurements
To evaluate the proposed trace visualization concept, CGA is applied to real-world
software systems. Performance measurements show that the concept—even in its
prototypically implemented form—applies to complex software systems and comes
to terms with scalability issues that trace visualization frequently encounters. The
measurements were performed on a Lenovo Thinkpad X200 Tablet notebook with an
Intel Core 2 Duo CPU L9400@1.86GHz.

8.2.1 Performance Overhead with Deactivated Tracing
The proposed tracing technique initially applies compiler-based instrumentation
and then neutralizes it by replacing the instrumentation code with NOP assembler
instructions. This approach enables developers to activate tracing at runtime with
standard debugger facilities in a highly robust way.

8.2 Performance Measurements 107

However due to the NOP instructions, the resulting binary code differs from the
one built without instrumentation. One important requirement of any trace visual-
ization tool is that it should not hinder the developers from performing their usual
development processes. As the tracing technique is integrated into the usual build
process, the runtime overhead of the tracing technique needs to be negligible during
the usual development process, i.e., if tracing is disabled. To measure the effect of
additional NOP instructions, we apply the instrumentation technique on the 130kLOC
C/C++ software system brec of our industrial partner virtualcitySYSTEMS GmbH.
One feature of the system is to reconstruct 3D building models from point clouds that
were obtained by laser scanning (LiDAR). We apply the instrumentation technique
onto the release build configuration of brec. In the release build, several functions
are inlined or optimized by the compiler which reduces the amount of functions
in the binary code, i.e., binary code units that are entered via an assembler call
instruction. However, 8350 functions are still contained in the binary code and are
therefore traceable.

The system functionality being chosen for the measurements is the 3D reconstruction
of the first building of a small test data set. Without instrumentation, the execution
takes on average 20 seconds. In our experiment, we measure—for multiple runs—the
amount of processor ticks consumed during the reconstruction. Ticks are measured
using the RDTSC processor instruction. Without instrumentation, an average of
36.761.000.000 ticks is measured. With instrumentation, i.e., with additional NOP
instructions, we obtain an average of 37.407.000.000 ticks. Figure 8.2 shows the
histogram of our measurements. As illustration of the average ticks values, the
histogram deviations are fitted with gaussian curves. In this specific execution
scenario, the performance overhead due to the NOP instructions was approximately
1.7%. Feedback received from our industrial partners indicates that such a small
performance overhead is acceptable and does not impede the development process.
To calculate the performance overhead per function call, we next measure the

amount of calls that are executed during building reconstruction. Therefore, all
functions are activated for tracing. That is, the NOPs are replaced by the call
instructions that were originally inserted by compiler-based instrumentation. Our
event collecting library counts 26.196.226.749 calls. Hence, the performance overhead
per call due to the NOP instructions can be estimated as 37.407.000.000−36.761.000.000

26.196.226.749
tick
call =

0.02 tick
call .

To determine the runtime overhead that is introduced by the event collecting
mechanism, we divide the time (in ticks) for capturing the call entry and exit events
by the total number of events. Recording the trace of 26.196.226.749 calls took
46.496.000.000.000 ticks, which corresponds to approximately 7 hours. To solve the
problem that serializing the trace would require an extraordinarily large amount
of disk space, we write events of each event buffer only temporarily onto hard disk
and free up the used space again afterwards. Provided that we need 20 Bytes for
each event, we would need 1000 Terra(!) bytes of disk space for the ≈53 billion
events if being stored in a raw format. The event registration overhead per event is
46.496.000.000.000
2∗26.196.226.749

tick
event ≈ 890 tick

event . This measurement show that the implementation of
the event registration mechanism is indeed prototypical—it has not been optimized

108 8 CGA - A Trace Visualization Framework

Figure 8.2: Histogram of the performance measurements with and without NOP
instructions. The experiments were performed multiple times with the building recon-
struction feature of the brec software system of virtualcitySYSTEMS GmbH.

for performance. However as shown in the next section, by applying the technique
for deactivating massively called functions, the large overhead per event registration
does not imply a large overall overhead during tracing.

8.2.2 Detecting and Excluding Massively Called Functions
The technique for detecting and excluding massively called functions during tracing
(cf Chapter 4) offers an effective means of reducing the amount of captured function
calls at tracing-time, i.e., when events are captured in a buffer in memory and
before they are serialized to disk. In this section, we apply the technique during
tracing multiple features of various industrially developed software systems. Thereby,
different values for the massively called function threshold νmax are used. To be able
to reproduce the execution scenarios so that the effect of different threshold values
νmax for the detection of massively called functions can be compared, we exploit the
fact that our instrumentation technique permits the activation of tracing at runtime
by replacing binary code with standard debugging facilities. All execution scenarios
are traced performing the following steps:

1. Execute the software within the Microsoft Visual Studio debugger and stop it
via a breakpoint at the point in execution where tracing should be started.

2. Activate tracing by binary code instrumentation.

3. Execute and trace until a previously set stop breakpoint is hit.

4. Deactivate tracing by binary code instrumentation and examine the trace.

8.2 Performance Measurements 109

Software system: brec | Company: virtualcitySYSTEMS GmbH

The characteristics of the software system brec are given in the previous section. For
the experiment, the same execution scenario as in the previous section is analyzed:
reconstructing the first building in the test data set. However, this time we use the
debug build of the system. Running this execution scenario with the debug build
takes on average 37.4 seconds.

Before tracing, we exclude all compiler generated functions and all functions from
header files of 3rd party libraries such as the C++ standard template library (STL).
2754 functions remain activated for tracing in all executed binary files, i.e., the
executable file and the dll files it depends on. Without applying the technique for
detecting and excluding massively called functions, the trace comprises 2.300.000.000
calls. The execution time of this run with only temporarily serializing the call entry
and exit events to hard disk (cf previous section), takes 91 minutes. Hence, recording
all call events slows down the execution by a factor of 145.
Next, we apply the technique for detecting and excluding massively called func-

tions. The time window ∆t is set to 100.000.000 ticks. Table 8.1 shows the tracing
characteristics for multiple executions with different values of the massively called
function threshold νmax. The execution time reported here includes the time for
deactivating massively called functions, i.e., stopping the execution and replacing
call with NOP instructions. Hence, for decreasing νmax values an increasing amount
of time is spent for deactivating the increasing number of massively called functions.
Our prototypical tool analyzes and serializes the collected events in the in-memory
buffers every second. During massively called function deactivation, which takes
≈0.5s, all threads of the analyzed software system are suspended. Hence, the time
value reported in Table 8.1 includes two kinds of performance overheads: (1) There
is an overhead that results from the time delay between collecting events, detecting
massively called functions, and deactivating them. Hence, there are many events
corresponding to massively called functions first collected—with overhead for event
collection and serialization—before this source of overhead is deactivated. (2) There
is an overhead during the deactivation process itself: To prevent changing the binary
code that is currently executed by a thread of the analyzed software system, all
threads are suspended while changing the binary code.

νmax #Calls #Massively called funcs Execution time
∞ 2.300.000.000 0 5460s
200 65019 179 58s
150 55657 188 56s
100 38925 222 51s
50 20211 256 48s
25 13093 289 48s
12 5829 325 47s

Table 8.1: Tracing the brec software system with different values of νmax results in
traces with varying size and varying performance overhead.

110 8 CGA - A Trace Visualization Framework

To illustrate which functions are detected as massively called functions, Table 8.2
provides a list of excluded functions together with their ν values.

ν Function

6174 bool SweepInfo::operator<(SweepInfo const &)
5797 double Constellation::Determ(double,double,double,double,double,double)
5110 double Vector3T<double>::operator[](int)const
4819 bool Vector3T<double>::operator==(Vector3T<double> const &)const
4701 std::vector<SamplePoint,std::allocator<SamplePoint> > & Cell::SamplePoints(void)
4071 std::vector<Ring *,std::allocator<...> > const & GroundPlan::InnerRings(void)const
3967 Face * CSG::MergeFaces(Face *,Face *)
3864 double BuildingReconstructionProcess::Edge::EdgeDist(DPoint)
3614 bool IsPointInPolygon(Vector3T<double> const &,Face const *)
3606 double GetPixelFloat(IMAGE_PTR,double,double)
3503 DPoint & DPoint::operator-=(DPoint const &)
3503 void RectHouse::toLocal(DPoint &)
3403 Vector3T<double> SamplePoint::Position(void)const
3388 Triangulation3D const * Face::Triangulation(void)const
3162 IMAGE_PTR RecBuilding::show_dgmImage(void)
2796 Ring * Polygon::OuterRing(void)
2693 Vector2T<double> BoundingRectangle::Min(void)const
2535 std::vector<Vector2T<double>,std::allocator<...> > & Cell::Points(void)
2459 bool Constellation::SetPixel(int,int,bool)
2459 bool IsrCnstlSetPixel(KBV_CONSTELLATION *,int,int,int)
2431 double & Vector3T<double>::operator[](int)
2352 double Line::distance_to(Vector3T<double> const &)const
2250 Face * CSG::MergeConvexFaces(Face *,Face *)
2161 float MinVec(float *,int)
2046 double dotProd(DPoint const &,DPoint const &)
1963 BuildingReconstructionProcess::Edge::Edge(DPoint,DPoint)
1930 BuildingReconstructionProcess::Edge::Edge(void)
1927 DPoint operator+(DPoint const &,DPoint const &)
1904 Vector3T<double>::Ṽector3T<double>(void)
1745 DPoint * List<DPoint>::nextPtr(void)
1666 double CellDecomposition::LineBuffer::Significance(void)const
1554 IMAGE_PTR RecBuilding::show_dhmImage(void)
... ...

Table 8.2: Due to their high ν values, the listed functions are classified as massively
called functions and excluded from tracing.

Figure 8.3 shows a screenshot of the prototypical trace visualization tool and
illustrates that a trace cleaned from massively called functions still contains the
information to understand how the higher-level functionality of building reconstruction
is implemented in the brec software system.

Software system: Google Chrome | Company: Google Inc.

The Google Chrome webbrowser is an open-source software system primarily developed
by Google Inc. The code comprises 4 million lines-of-code. Thereof, 1.5 million
code lines are written in C and C++. We instrument the Chrome executable of the
debug configuration. 259145 different functions are contained in the executables (one

8.2 Performance Measurements 111

Figure 8.3: A screenshot of the trace visualization tool illustrating that a trace
cleaned from massively called functions still contains the information to understand
how the higher-level functionality of building reconstruction is implemented in the
brec software system.

executable and one dll file) and a can, hence, be activated for tracing.
For our measurements we examine the scenario of rendering the homepage1 of

Google, which involves 193.804 function calls and takes 0.015 seconds without tracing.
We use the feature of setting breakpoints in a normal debugger to concisely define
the part of execution to be traced.

Table 8.3 summarizes both resulting trace sizes and performance values for different
threshold values νmax for the detection of massively called functions.

νmax #Calls #Massively called funcs Execution time
∞ 193804 0 2.3s
200 40672 18 1.7s
150 30942 20 1.7s
100 28974 26 1.8s
50 21519 36 1.8s
20 8273 66 1.8s

Table 8.3: Traces captured while Google Chrome renders the Google homepage.
Traces are taken with different threshold values for detecting massively called func-
tions.

1 http://www.google.com

http://www.google.com

112 8 CGA - A Trace Visualization Framework

Software system: Blender | Company: Not A Number B.V.

The Blender software system developed by Not A Number B.V. and the Blender
Foundation is a tool for creating, modeling and rendering 3D content. The system
comprises 460.000 lines of C code. After instrumentation, 50803 functions are active
for tracing. The analyzed execution scenario is adding a monkey geometry shape
to the 3D scene. It takes 4.05 seconds to execute without tracing. Without using
the technique for detecting massively called functions results in a trace consisting of
371.623.833 function calls. With the technique, a significant reduction of trace size
and performance overhead can be achieved. Table 8.4 summarizes the reductions
given different threshold values νmax.

νmax #Calls #Massively called funcs Execution time
240 5.361.829 82 158s
200 4.278.518 88 127s
150 2.705.097 112 85s
100 2.291.174 151 78s
50 414.330 277 14s
10 138.757 543 12s

Table 8.4: Characteristics of traces captured during execution of the Blender soft-
ware system.

Software system: LandXplorer | Company: 3D Geo GmbH (now Autodesk Inc.)

The LandXplorer software system by 3D Geo GmbH, which has been integrated into
Autodesk Inc., is a software solution for processing and visualizing large geodata sets.
It comprises 1.1 million lines of C++ code. After instrumentation, 504432 functions
are active for tracing. We examine the scenario of loading a specific terrain data file
into a LandXplorer project. This execution scenario comprises 621.162.948 calls and
takes 3.1 seconds to execute without tracing. Table 8.5 shows the characteristics of
captured traces for different applied threshold values νmax.

νmax #Calls #Massively called funcs Execution time
200 41978 31 9.3s
100 36642 36 8.1s
36 21329 84 7.9s
5 6419 320 6.3s

Table 8.5: Characteristics of traces captured during execution of the LandXplorer
software system.

CHAPTER 9
Case Studies related to Complex Software Systems

The concepts and tools for using trace visualization to facilitate maintenance tasks
proposed in this thesis have been subject to evaluation in a number of case studies
pertaining to complex software systems. They have been applied within real-world
software engineering projects, in particular with regard to maintenance tasks in
industrial software development. Their objective being to evaluate the strengths and
weaknesses of trace visualization, case studies focus on singular instances of mainte-
nance tasks. The case studies chosen do not intend to prove general improvement
in developer performance—that would require stronger evaluation methods. These
methods include controlled experiments and surveys. In this thesis, evaluation is
restricted to case studies for two reasons. First, carrying out controlled experiments
on trace visualization represents a scientific effort in itself; the effort necessary would
have exceeded the scope of this thesis. Second, trace visualization tools that can be
integrated into professional development processes are as yet not readily available
as commercial products or academic prototypes. This thesis aims to bridge the gap
between non-scalable, academic trace visualization tool prototypes and robust and
scalable tools able to cope with real-world software systems. This thesis, therefore,
puts forward concepts and implementations on how to build trace visualization tools
that can be effortlessly and smoothly integrated into industrial software development
processes enabling professional developers to reap the benefits of trace visualization
in their daily work. Once trace visualization tools are adopted by the industry, long-
term, in-depth examinations and surveys can be conducted that measure qualitatively
and quantitatively the benefits of trace visualization. Only then will it be possible to
carry out experiments that distinguish between the effect of the general availability of
data on system execution and the effect presenting this data in a specific way. Almost
any evaluation of a trace visualization tool only compares the application of the tool
with a baseline situation in which developers had no access to the trace data at all.

This chapter provides case studies that were conducted with industrial partners.
The studies examine the benefits of trace visualization for two types of maintenance
tasks: (1) The maintenance task of locating an existing system feature in a large
code base; (2) The maintenance task of locating a fault by means of applying the
novel trace visualization based fault localization technique proposed in Section 7.2.

114 9 Case Studies related to Complex Software Systems

9.1 Visualizing Traces for Locating Features
The approach comprising use of trace visualization for feature location is demonstrated
in a case study performed with virtualcitySYSTEMS GmbH. The analyzed software
system brec is a tool suite for reconstructing 3D building models from point clouds
obtained by laser scanning (LiDAR). The software is written in C++ consisting of
130kLOC in 334 source files. The system’s main feature, the building model creation,
is triggered when a user starts a new project in brec. Input data is: (1) a 2D map
of building footprints and (2) a 3D point cloud (Figure 9.1). A crucial task during
building model creation is extraction of the building’s roof type from the point cloud.
In this case study, a developer, who has little knowledge of brec’s implementation,
needs to extend the set of supported roof types.

9.1.1 Fact Extraction
To begin with, a trace is taken while brec creates building models for a small data set
of 111 buildings. The trace log file is growing large rapidly (>8GB ≈ >380 million
calls) and the computer is running into hard-disk capacity problems. Therefore, brec
is stopped in the middle of execution and the functions contained in the trace are
analyzed. 10 functions related to 3D vector operations are called with very high
frequency. These functions are excluded from the tracing mechanism and brec is
executed again, which results in a trace consisting of 520 functions and 30 million
calls.1

Figure 9.1: The brec software system of virtualcitySYSTEMS GmbH reconstructs
3D building models from point clouds.

1 The case study had been performed before the technique for automatically excluding massively
called functions from tracing proposed in Chapter 4 was invented. Therefore, the exclusion
identification and exclusion step is done manually here.

9.1 Visualizing Traces for Locating Features 115

9.1.2 Fact Analysis - Applying the Trace Pruning Algorithm
To illustrate the complexity of the trace, Figure 9.2 depicts functions that are called
from the root function in up to 4 successive call relations out of 15. The diagram does
not show the sequential call order any more, i.e., multiple calls between the same two
functions are merged into a single call relation. Visualizing calls explicitly would lead
to a much higher cognitive load for the developer. The 10 call relations starting from
the root function, for instance, would be replaced by 797 calls. Applying the trace
pruning algorithm (threshold value Tntrig is 2000; cf Section 5.2) would drastically
reduce the graph’s size.

9.1.3 Fact Presentation
Explicitly visualizing the call order gives further important insights into system be-
havior. Figure 9.3 shows the phases view—the phase similarity threshold value Tsim

of the repetition detection mechanism is 0.3 (cf Section 5.3.3). The sequential order of
calls reveals that first, ground plans are loaded; second, a digital height model (DHM)
is created; and third, the reconstruction process is started. The reconstruction process
itself is done per building (111 times). Reconstruction involves execution of the meth-
ods for building reconstruction of the classes ReconstructionByCellDecomposition,
ReconstructionByGroundPlanExtrusion, and BuildingReconstruction. Unfold-
ing these three steps reveals that each step contains a call that is responsible for
determining roof types. The developer who needs to extend the set of supported roof
types is now aware of three important code locations that need to be extended.

Figure 9.2: The first 4 levels of caller-callee relations of the "timeless" call graph
illustrate the complexity of the trace taken from the brec software system. The trace
pruning algorithm automatically identifies key calls in the trace. The respective func-
tions are highlighted in the shown graph (red diamonds).

116 9 Case Studies related to Complex Software Systems

Figure 9.3: The phases view reveals how the 111 buildings are reconstructed by
executing 3 key functions for each building. Each of these functions calls a further
function that is responsible for determining the roof type of the building.

9.1.4 Discussion on the Results
For the given task setting, trace visualization has shown itself to be a useful technique
for rapidly identifying three code locations within the large code base that implement
key functionality for the given maintenance task of extending the roof type recognition
feature of the software system. In particular the phases view proved helpful when
exploring the trace using a top-down approach. With it, task related parts contained
in the trace were rapidly found. The overall time for applying trace visualization
was approximately 15 minutes (excluding the nonrecurring initial preparation of the
software system for being instrumented and the initial rebuild of the system – cf
Chapter 4). The following numbers obtained with grep, i.e., with regular expression
matching on the source code, convey a feeling of the complexity of the given feature
location task: The term roof is found 1.713 times in 349 different source code files;
rooftype is found 314 times in 180 different files.

As mentioned at the beginning of this chapter, this case study does not offer proof
that trace visualization outperforms other feature location techniques in general. What
this case study does indicate is that exploiting the sequential runtime information
contained in a trace can be very helpful in an industrial setting. Moreover, what
remains to be examined as follow-up research on this thesis, is the quantitive influence
of different trace presentations on the developer’s feature location task performance.
With regard to this issue, it is absolutely certain that without a scalable way of
visualizing trace data, the value contained in the data remains inaccessible. In
addition, the case study gives evidence that developers need to be provided with
trace visualization techniques that depict the sequential information stored in a trace.
However, the techniques need to create and present trace abstractions on various
levels of abstraction, as implemented by the phases view.

9.2 Visualizing Traces for Identifying Recently Introduced Faults 117

9.2 Visualizing Traces for Identifying Recently Introduced Faults
Two case studies have been performed with 3D Geo GmbH, which has been integrated
into Autodesk Inc. One of the main products represents LandXplorer Studio Profes-
sional (LDX), a software solution for processing and visualizing large geodata sets
(e.g., landscape and 3D city models). The LDX code has been developed over more
than 12 years with currently significantly more than 25 developers. LDX is written in
C++ consisting of ≈1.100.000 SLOC-P (7.000 source files). We carried out the case
studies by accompanying the developers during their fault localization activities. In
the given task settings the developers encountered failures in the software system that
had been introduced recently into the code base by other developers (or unconciously
by themselves); the system had previously (e.g., before two weeks) been behaving
correctly. In the case studies, trace visualization is used as explained in Section 7.2.

9.2.1 Fault: "Why does the bridge become invisible?"
Figure 9.4 illustrates the barely detectable failure that a developer had noticed: When
zooming away from a specific building model (the bridge), some parts of it become
invisible. The developer knew that approximately one month earlier the bridge had
been visualized correctly. To locate the fault in the code, the trace visualization
based fault localization technique described in Section 7.2 was applied: First, a trace
was recorded while the developer executed LDX and reproduced the failure. The
trace consisted of ≈50 million function calls and 1.724 different functions. Then, code
modifications within the last month were extracted from the software configuration
management (SCM) subversion. Within this time period, 273 check-ins had been
performed that modified 2.530 contiguous code blocks in 650 files.

In a third step, the static analysis tool doxygen is used to identify variable accesses
from within functions. After gathering this data, it was combined to reveal those
functions that had been both affected by a recent code modification and were
executed during system execution. The combination step revealed that only 11
functions matched the two criteria.

Figure 9.4: A developer detects a subtle failure in the LandXplorer software system
that did not exist a month earlier: The bridge becomes partly invisible when zooming
away from it.

118 9 Case Studies related to Complex Software Systems

Figure 9.5: The temporal overview, which depicts function activity over time, makes
it possible to detect those phases that are exercised while the system is running its
faulty behavior.

Next, the developer needed to identify which of the 11 functions was responsible for
the failure. However, before directly turning to the source code, trace visualization
was used to understand the execution context of the functions. Figure 9.5 shows the
temporal overview (cf Section 6.2.1) of the trace. A visual marker in the temporal
overview indicates the time ranges during which a function is active that is selected
in another view. The developer was able to reveal the exact phases of the execution
during which the affected functions appeared. This led the developer to be able to
analyze first of all details of the one affected function executed during the bridge
model import phase. Eventually it was discovered that this was the place where the
fault had been brought into the system. Results showed that a coupling between a
modification of the texture compression mechanism and the bridge model import
mechanism had been responsible for the failure.

9.2.2 Fault: "Why is the Terrain Wizard missing?"
The second case study describes the application of the approach in a situation where a
developer had noticed that a specific wizard, the terrain loading wizard, had stopped
being shown during the import process for a specific type of terrain data. One week
earlier, the wizard had still correctly showed up during terrain loading. A trace
capturing the failure contains ≈200.000 calls and 1.674 different functions. During the
past week, 9 developers had performed code modifications on 65 different source code
files. Applying the data combination step reduced the 1.674 functions of the trace to
3 that were being affected by recent code modifications. Visually analyzing where the
3 functions were active in the trace revealed that one function was concerned with
initializing the terrain data. One function was called when settings were being defined
as to how the terrain was to be visualized. The third function was called shortly
after user interaction for loading the terrain had taken place. Code modifications
within this third function turned out to be responsible for the missing terrain loading
wizard.

9.2 Visualizing Traces for Identifying Recently Introduced Faults 119

9.2.3 Discussion on the Results
The case studies described in this section provoke the following conclusions: (1)
In the case of long-living, large, industrial software systems, often subtle couplings
between structurally separated code elements exist that developers of the system are
not aware of. These couplings lead to situations where a developer alters system
behavior without noticing it. The failure is often noticed by other developers or
testers after days or weeks. (2) Combining information on code modifications with
information on executed functions while the system exhibits the failure can be of
significant help in identifying the cause-effect chain, i.e., the fault-failure relation. (3)
Even assuming that the fully automated step of combining change information with
runtime information proves successful in reducing the amount of functions to inspect,
trace visualization provides a useful means of understand the execution context of
the functions. Trace visualization is especially helpful when deciding which functions
in question to analyze in detail first. Analyzing in detail thus means that a developer
analyzes more and more fine-grained trace visualizations and finally ends up reading
source code.

The conclusions made on the basis of these case studies in no way wish to make any
claim on the general superiority of the fault localization technique introduced here.
However, it has been applied in typical industrial collaborative software development
settings, which means that there is evidence that this approach can be recommended
as a useful approach to be applied when endeavoring to localize faults in similar
software projects and maintenance situations. However, precise statistics on the
effectiveness of this approach as compared with other techniques require long-term
studies to be undertaken. Follow-up research on this thesis must therefore be to (a)
further improve this technique in a way that it can be effortlessly integrated into a
developer’s working process; (b) evaluate the effectiveness of the approach in the field.
Currently, the approach would not be adopted by industry as the data collection
step is still too time-consuming. Runtime information can be obtained without any
waiting time, but the necessary static analysis is slow. Performing lightweight static
analyis with doxygen on the LandXplorer system takes longer than 1 hour. One
feasible way of solving this problem would be by developing a server solution for
monitoring code check-ins into the SCM. The server would be expected to perform
a static analysis after each checkin and provide results instantaneously on demand
as soon as a developer notices a failure and wants to apply the fault localization
technique.

CHAPTER 10
Summary and Outlook

10.1 Summary
Understanding the structure and behavior of software systems is essential for their
effective maintenance. Modifying the implementation of a software system without
sufficient understanding is likely to introduce design anomalies and might cause the
implementation to degrade, which in turn complicates any understanding of the
system [166]. With the aim of making comprehension of a software system’s structure
more accessible, a wide range of concepts have been proposed which have already
been implemented as robust, industry-ready reverse engineering tools. Such tools
support developers in their tasks of creating structural higher-level abstractions from
the source code (e.g., by creating class diagrams from the code). At the present
time there are hardly any trace visualization tools available as commercial products
that provide an understanding of system behavior in a way that shows the temporal
order of how structural elements interact at runtime. In academic research relating
to trace visualization, a variety of concepts have meanwhile been put forward for
understanding runtime behavior. However, their prototypical tool implementations
are still far from being adopted by industry at large [6]. The major obstacle preventing
transition from concepts to usable tools is the scalability issue [232].
Due to the pipeline structure of the trace visualization process, any underlying

concepts of a trace visualization tool need to be scalable. In other words, they need
to be able to process a large amount of trace data in a user-acceptable time. That is,
there should be almost no waiting time to annoy developers before they can start
using the trace visualization tool. It should take less than a few minutes to obtain the
first visualization results. If trace visualization takes significantly longer, developers
will tend to reject the use of trace visualization tools and try to solve the task in hand
by resorting to standard techniques such as code reading or stepping through the
execution with a symbolic debugger. The scalability issue is not only concerned with
computational aspects, where time or space complexity of algorithms becomes too
large to be handled by a computer, scalability is also concerned with the cognitive
limitations of developers.
This thesis aims to overcome scalability bottlenecks within trace visualization

122 10 Summary and Outlook

concepts. The intention behind the proposed concept is to move the technique of
trace visualization one step closer to a situation, where it can be used as a standard
technique during software maintenance.
Understanding the behavior of a software system involves understanding both

control flow and data flow. Studies carried out by psychologists give evidence that the
fundamental information needed on the system behavior is control flow. Developers
first build up a mental model of the control flow while trying to understand the
behavior of a software system [168]. An understanding of what data is involved is
built on top of this fundamental mental model. This thesis focuses on understanding
behavior by means of understanding the control flow in the system on a function level
granularity as gaining an understanding of this fundamental task alone is difficult to
achieve, if large code code bases are concerned. Mentally reconstructing the control
flow is challenging in these systems owing to the delocalized plans involved, i.e.,
conceptually related code that is implemented in non-contiguous parts of the typically
large code base [200].

The main contributions of the thesis include:

• Chapter 4 proposes a function call tracing technique for C/C++ software
systems that permits developers to instantly activate or deactivate tracing of a
running software system as and when necessary. The technique is integrated
into development processes without increasing build or runtime performance if
tracing is disabled. Furthermore, a technique has been devised that identifies
massively called functions during runtime and automatically disables tracing
for them. By these means, a developer can not only choose the granularity
level of the resulting trace data but also its size. Hence, the technique enables
developers to trace system behavior over long time periods on the basis of a
reasonably small amount of trace data.

• Chapter 5 proposes a novel technique for creating a hierarchy of higher-level
trace abstractions by recursively splitting the trace into phases. The proposed
algorithm for pruning traces enables developers to massively reduce the amount
of calls captured in a trace in such a way that merely a skeleton of calls (i.e,
phases) remains. With a pruned trace of this kind developers may navigate
through the trace in coarse-grained steps and are able to quickly identify those
parts of the trace that are relevant to their given maintenance task. The
technique forms the basis for trace presentation techniques that tackle the
scalability issue.

• Chapter 6: Here, a framework for trace visualization techniques is outlined.
It provides solutions to the question as to how core techniques for viewing
trace data can be implemented in such a way that developers are supported in
performing top-down and bottom-up comprehension strategies. The chapter
goes on to show how trace data taken from a fact base is filtered, transformed
into a geometry model, and finally converted into a visual representation.
Moreover, an explanation is given revealing how developers may use different

10.2 Outlook - Further Research Directions 123

views on a trace simultaneously for being able to cross-reference findings made
in a single view with context information provided by other views.

• Chapter 7: Trace visualization is only one technique from a large selection
of other maintenance techniques. With a class of maintenance techniques in
mind that relate to a specific system behavior and produce a set of artifacts
potentially related to the given maintenance task, this chapter shows how trace
visualization can be integrated as an intermediate step between obtaining the
result set and the generally time-consuming code reading necessary to identify
the true positives in the result set. Besides giving a general description on how
to combine trace visualization with other maintenance techniques in general,
this chapter introduces a novel fault localization technique that exploits trace
visualization and is an example of how to combine trace visualization with
"result set" based techniques.
Seen from the trace visualization perspective, integrating trace visualization
with other maintenance techniques solves one of the major problems encountered
when exploring traces: finding the task-relevant parts of the trace. With a
result set at hand obtained from another maintenance technique, developers
are provided with precise entry points into the trace that shortcut an otherwise
difficult top-down exploration.

• Chapter 8: The concept submitted in this thesis has been implemented as
part of a framework for creating trace visualization tools. To ensure scalability
of the concept—the prime subject of this thesis—performance measurements
were taken when applying the framework to large industrial C/C++ software
systems.

• Chapter 9: Here, details of case studies are given. These report on observations
made when applying the concepts in real-world scenarios to solve particular
maintenance problems. It has become clear that the concepts help developers
in certain maintenance contexts. Case studies in general do not allow us to
generalize results. However, these case studies demonstrate that the techniques
proposed in this thesis can overcome scalability difficulties and are successful
at solving real-world industrial maintenance problems.

10.2 Outlook - Further Research Directions
The thesis’ concept lays the foundation for building scalable trace visualization tools
suitable for industry. It is recommended that follow-up research be carried out in the
following directions:

• Evaluation of the concepts by means of controlled experiments and field studies.

• Enriching trace data by collecting information on system state, e.g., variable
values and object identities (in object-oriented languages).

• Visualization of the behavior of multi-threaded software systems.

124 10 Summary and Outlook

• Visualization of the behavior of service-oriented software systems.

10.2.1 Evaluations - Controlled Experiments and Field Studies
This thesis, or more precisely the proposed trace visualization concept, gains its
validity from the computational measurements of the algorithm implementations and
from the quoted case studies. These evaluations show that the concepts meet the
requirements of industrial-sized, real-world maintenance problems. The next step
for an even more profound validation of the positive effects of trace visualization on
developer performance is either to carry through controlled experiments [11] or closely
monitor the long-term observations of industrial developers, e.g., by performing field
studies or surveys. The latter evaluation methods require the availability of the trace
visualization concepts as a mature tool adopted by professional software developers.

10.2.2 Enriching Traces with Information on System State
The concepts in this thesis consider only control flow information as runtime in-
formation. As stated in Chapter 2, creating a mental model of control flow is a
fundamental task when trying to understand system behavior. Based on this model,
developers build up mental models of the system state and how it changes during
system execution, i.e., how the system operates on data. Hence, follow-up research
should consider incorporating information on variable values and how these are
accessed and modified [13].

Object Identifiers Object-oriented software systems (e.g., being written in C++)
extend the procedural programming paradigm in such a way that functions and
variables belong to objects representing their behavior and state. Seen from the
perspective of object-orientation: System behavior results from objects sending
messages to each other and reacting to the messages according to their current state.
For each group of similar objects a class exists as "blueprint" that defines the objects’
behavior (methods, i.e., functions) and possible states (attribute, i.e., variables).
A knowledge on how objects create and destroy each other and how they relate

during their life time, reflects coarse-grained information on system state and is
important when trying to understand the behavior of object-oriented systems. Hence,
follow-up research should extend traces in such a way that method/function calls are
associated with object identifiers and provide visualizations that take this additional
information into account. First research contributions have been proposed recently
[222].

Complementary Tracing Techniques The proposed solution for tracing function calls
in C/C++ software systems is a technique that can be combined with a variety
of complementary techniques that focus on gathering system state (cf Chapter 4).
Hence, follow-up research includes applying such complementary techniques and
extending trace presentation techniques with the additional information on state. For
example, a useful visualization for developers who need to locate a fault would be a

10.2 Outlook - Further Research Directions 125

view of control flow with additional information on when specific variables are read
or written.

10.2.3 Visualizing Multi-Threaded Software Systems
As a consequence of the tendency in hardware technology to provide CPUs with
multiple cores, the focus on using multiple threads will be even greater in the forseeable
future. Understanding system behavior for multiple threads is far from trivial. In
single-threaded systems, developers need primarily to understand the sequential order
of function calls. In the case of the vast majority of most maintenance tasks, the
exact timing behavior can be neglected. In multi-threaded systems, understanding
control flow is vital and must be done for each thread in parallel. Additionally, the
timing plays an essential role when trying to understand system behavior. Hence,
important follow-up research must focus on creating trace visualization techniques
that enable developers to understand the behavior of multi-threaded software systems.
Research contributions in this direction have recently been published [213, 214].

10.2.4 Visualizing Service-Oriented Software Systems
In a service-oriented software system, a suite of components providing services and
communicating via a network are integrated loosely and can be used in multiple
business domains. The services and their consumers interact by passing data in a well-
defined format or by coordinating activities between multiple services. Understanding
the runtime behavior of such software systems is challenging because, due to the
loose coupling, it is difficult to "see" which concrete components are interacting.
Furthermore, components can be exchanged at any time. Tracing and visualizing
concrete interaction between the components is promising when seeking to understand
such systems.

Bibliography

[1] Agrawal, H. ; Horgan, J. ; London, S. ; Wong, W.: Fault localization
using execution slices and dataflow tests. In: Proceedings of IEEE Software
Reliability Engineering (1995), pp. 143–151

[2] Agrawal, Hiralal ; Demillo, Richard A. ; Spafford, Eugene H.: Debugging
with Dynamic Slicing and Backtracking. In: Software - Practice and Experience
23 (1993), No. 6, pp. 589–616

[3] Ball, Thomas ; Eick, Stephen G.: Software Visualization in the Large. In:
Computer 29 (1996), No. 4, pp. 33–43

[4] Balzer, Michael ; Noack, Andreas ; Deussen, Oliver ; Lewerentz, Claus:
Software Landscapes: Visualizing the Structure of Large Software Systems. In:
Proceedings of the Eurographics Symposium on Visualization, 2004, pp. 261–266

[5] Basili, Victor R.: Evolving and packaging reading technologies. In: Journal
of Systems and Software 38 (1997), No. 1, pp. 3–12

[6] Bennett, Chris ; Myers, Del ; Storey, Margaret-Anne ; German, Daniel:
Working with ‘Monster’ Traces: Building a Scalable, Usable Sequence Viewer.
In: Proceedings of the 3rd International Workshop on Program Comprehension
through Dynamic Analysis, 2007, pp. 1–5

[7] Blender: www.blender.org. www.blender.org. Version: Blender Foundation

[8] Bohnet, Johannes ; Döllner, Jürgen: Analyzing feature implementation by
visual exploration of architecturally-embedded call-graphs. In: Proceedings of
the ACM International Workshop on Dynamic Systems Analysis. ACM, 2006,
pp. 41–48

[9] Bohnet, Johannes ; Döllner, Jürgen: CGA Call Graph Analyzer - Locating
and Understanding Functionality within the GNU Compiler Collection’s Mil-
lion Lines of Code. In: Proceedings of the IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007, pp. 161–162

[10] Bohnet, Johannes ; Döllner, Jürgen: Facilitating Exploration of Unfamiliar
Source Code by Providing 2.5D Visualizations of Dynamic Call Graphs. In:

www.blender.org

128 Bibliography

Proceedings of the IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 63–66

[11] Bohnet, Johannes ; Döllner, Jürgen: Planning an Experiment on User
Performance for Exploration of Diagrams Displayed in 2.5 Dimensions. In:
Proceedings der Software Engineering 2007 Fachtagung des GI-Fachbereichs
Softwaretechnik (Workshops), GI, 2007, pp. 223–230

[12] Bohnet, Johannes ; Döllner, Jürgen: Visually exploring control flow graphs
to support legacy software migration. In: Proceedings der Software Engineering
Konferenz der Gesellschaft für Informatik, 2007, pp. 245–246

[13] Bohnet, Johannes ; Döllner, Jürgen: Analyzing dynamic call graphs
enhanced with program state information for feature location and understanding.
In: Proceedings of the 30th IEEE/ACM International Conference on Software
Engineering. ACM, 2008, pp. 915–916

[14] Bohnet, Johannes ; Döllner, Jürgen: Visual exploration of function call
graphs for feature location in complex software systems. In: Proceedings of the
ACM Symposium on Software Visualization. ACM, 2006, pp. 95–104

[15] Bohnet, Johannes ; Koeleman, Martin ; Döllner, Jürgen: Visualizing Mas-
sively Pruned Execution Traces to Facilitate Trace Exploration. In: Proceedings
of the IEEE International Workshop on Visualizing Software for Understanding
and Analysis, IEEE, 2009, pp. 57–64

[16] Bohnet, Johannes ; Voigt, Stefan ; Döllner, Jürgen: Locating and Un-
derstanding Features of Complex Software Systems by Synchronizing Time-,
Collaboration- and Code-focused Views on Execution Traces. In: Proceedings
of the 16th IEEE International Conference on Program Comprehension, IEEE,
2008, 268–271

[17] Bohnet, Johannes ; Voigt, Stefan ; Döllner, Jürgen: Projecting code
changes onto execution traces to support localization of recently introduced
bugs. In: Proceedings of the 24th ACM Symposium on Applied Computing.
ACM, 2009, pp. 438–442

[18] Borland Software Corporation: Borland Together. http://www.
borland.com/de/products/together, retrieved 2. January 2010

[19] Brainsys Informatiksysteme GmbH: Graphlet. http://www.infosun.fim.
uni-passau.de/Graphlet, retrieved 13. March 2010

[20] Brewer, Cynthia A. ; Hachard, Geoffrey W. ; Harrower, Mark A.: Color-
Brewer in print: A catalog of color schemes for maps. In: Cartographic and
Geographic Information Science 30 (2003), No. 1, pp. 5–32

[21] Brooks, Ruven E.: Towards a Theory of the Comprehension of Computer
Programs. In: International Journal of Man-Machine Studies 18 (1983), No. 6,
pp. 543–554

http://www.borland.com/de/products/together
http://www.borland.com/de/products/together
http://www.infosun.fim.uni-passau.de/Graphlet
http://www.infosun.fim.uni-passau.de/Graphlet

Bibliography 129

[22] Brown, Keith: Building a Lightweight COM Interception Framework Part 1:
The Universal Delegator. In: Microsoft Systems Journal 14 (1999), January,
No. 1. http://www.microsoft.com/msj/0199/intercept/intercept.aspx

[23] Brown, Marc H. ; Sedgewick, Robert: A system for algorithm animation.
In: SIGGRAPH Comput. Graph. 18 (1984), No. 3, pp. 177–186

[24] Bruening, Derek L.: Efficient, transparent, and comprehensive runtime code
manipulation. Cambridge, MA, USA, Diss., 2004

[25] Buchholz, Henrik ; Bohnet, Johannes ; Döllner, Jürgen: Smart and
Physically-Based Navigation in 3D Geovirtual Environments. In: 9th Interna-
tional Conference on Information Visualization, IEEE Computer Society Press,
2005, pp. 629–635

[26] Buchholz, Henrik ; Bohnet, Johannes ; Döllner, Jürgen: Smart Navigation
Strategies for Virtual Landscapes. In: Buhmann, E. (Hrsg.) ; Paar, P. (Hrsg.) ;
Bishop, I.D. (Hrsg.) ; Lange, E. (Hrsg.): Trends in Real-time Visualization and
Participation. Proceedings at Anhalt University of Applied Sciences, Wichmann,
2005, pp. 124–131

[27] Butler, David M. ; Almond, James C. ; Bergeron, R. D. ; Brodlie,
Ken W. ; Haber, Robert B.: Visualization reference models. In: Proceedings
of the 4th conference on Visualization, 1993, pp. 337–342

[28] Cantrill, Bryan M. ; Shapiro, Michael W. ; Leventhal, Adam H.: Dynamic
instrumentation of production systems. In: Proceedings of the annual conference
on USENIX Annual Technical Conference. USENIX Association, 2004, pp.
15–28

[29] Card, Stuart K. ; Mackinlay, Jock D. ; Shneiderman, Ben: Readings in
information visualization: using vision to think. Morgan Kaufmann Publishers
Inc., 1999

[30] Carr, David A.: Guidelines for designing information visualization applications.
In: Ericsson Conference on Usability Engineering, 1999, pp. 1–7

[31] Chen, Kunrong ; Rajlich, Vaclav: RIPPLES: Tool for Change in Legacy
Software. In: Proceedings of the IEEE International Conference on Software
Maintenance (2001), pp. 230–239

[32] Chi, Ed H.: A Taxonomy of Visualization Techniques Using the Data State
Reference Model. In: Proceedings of the IEEE Symposium on Information
Vizualization. IEEE Computer Society, 2000, pp. 69–76

[33] Chikofsky, Elliot J. ; Cross II, James H.: Reverse Engineering and Design
Recovery: A Taxonomy. In: IEEE Software 7 (1990), No. 1, pp. 13–17

http://www.microsoft.com/msj/0199/intercept/intercept.aspx

130 Bibliography

[34] Cleanscape Software International: xSlice. http://legacy.
cleanscape.net/products/testwise/tools_xslice.html, retrieved 25.
March 2010

[35] Clements, Paul ; Garlan, David ; Bass, Len ; Stafford, Judith ; Nord,
Robert ; Ivers, James ; Little, Reed: Documenting Software Architectures:
Views and Beyond. Pearson Education, 2002

[36] Cleve, Holger ; Zeller, Andreas: Locating Causes of Program Failures. In:
Proceedings of the 27th international conference on Software engineering. ACM,
2005, pp. 342–351

[37] Cmelik, Bob ; Keppel, David: Shade: a fast instruction-set simulator for
execution profiling. In: Proceedings of the ACM SIGMETRICS conference on
Measurement and modeling of computer systems. ACM, 1994, pp. 128–137

[38] Collberg, Christian ; Kobourov, Stephen ; Nagra, Jasvir ; Pitts, Jacob ;
Wampler, Kevin: A system for graph-based visualization of the evolution of
software. In: Proceedings of the 2003 ACM symposium on Software visualization.
ACM, 2003, pp. 77–86

[39] Collberg, Christian ; Myles, Ginger ; Stepp, Michael: An empirical study
of Java bytecode programs. In: Software—Practice & Experience 37 (2007),
No. 6, pp. 581–641

[40] Corbi, T. A.: Program understanding: challenge for the 1990’s. In: IBM
Systems Journal 28 (1989), No. 2, pp. 294–306

[41] Cornelissen, Bas ; Holten, Danny ; Zaidman, Andy ; Moonen, Leon
; Wijk, Jarke J. ; Deursen, Arie van: Understanding Execution Traces
Using Massive Sequence and Circular Bundle Views. In: Proc. 15th IEEE
International Conference on Program Comprehension ICPC ’07, 2007, pp.
49–58

[42] Cornelissen, Bas ; Zaidman, Andy ; Deursen, Arie van ; Moonen, Leon ;
Koschke, Rainer: A Systematic Survey of Program Comprehension through
Dynamic Analysis. In: IEEE Transactions on Software Engineering 35 (2009),
No. 5, pp. 684–702

[43] Cornelissen, Bas ; Zaidman, Andy ; Holten, Danny ; Moonen, Leon ;
Deursen, Arie van ; Wijk, Jarke J.: Execution trace analysis through massive
sequence and circular bundle views. In: Journal of Systems and Software 81
(2008), No. 12, pp. 2252–2268

[44] De Pauw, Wim ; Jensen, Erik ; Mitchell, Nick ; Sevitsky, Gary ; Vlis-
sides, John M. ; Yang, Jeaha: Visualizing the Execution of Java Programs. In:
Revised Lectures on Software Visualization, International Seminar. Springer-
Verlag, 2002, pp. 151–162

http://legacy.cleanscape.net/products/testwise/tools_xslice.html
http://legacy.cleanscape.net/products/testwise/tools_xslice.html

Bibliography 131

[45] De Pauw, Wim ; Lorenz, David ; Vlissides, John ; Wegman, Mark:
Execution Patterns in Object-Oriented Visualization. In: Proceedings of the
Conference on Object-Oriented Technologies and Systems, USENIX, 1998, 219–
234

[46] Demeyer, Serge ; Ducasse, Stephane ; Lanza, Michele: A Hybrid Reverse
Engineering Approach Combining Metrics and Program Visualization. In:
Working Conference on Reverse Engineering, 1999, 175–186

[47] Demeyer, Serge ; Ducasse, Stéphane ; Nierstrasz, Oscar: Object Oriented
Reengineering Patterns. Morgan Kaufmann Publishers Inc., 2002

[48] Deursen, Arie van ; Moonen, Leon: Exploring Legacy Systems Using Types.
In: Proceedings of the 7th Working Conference on Reverse Engineering. IEEE
Computer Society, 2000, pp. 32–41

[49] Diehl, Stefan: Software Visualization. Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, Berlin, 2007

[50] Ducasse, Stéphane ; Lanza, Michele ; Bertuli, Roland: High-Level Poly-
metric Views of Condensed Run-time Information. In: Proceedings of the 8th
Euromicro Working Conference on Software Maintenance and Reengineering.
IEEE Computer Society, 2004, pp. 309–318

[51] Eclipse Foundation: Eclipse Test & Performance Tools Platform Project.
http://www.eclipse.org/tptp, retrieved 26. December 2009

[52] Eick, Stephen G. ; Steffen, Joseph L. ; Sumner, Eric E. Jr.: Seesoft—A
Tool for Visualizing Line Oriented Software Statistics. In: IEEE Transactions
on Software Engineering 18 (1992), No. 11, pp. 957–968

[53] Eiglsperger, Markus ; Gutwenger, Carsten ; Kaufmann, Michael ; Kupke,
Joachim ; Jünger, Michael ; Leipert, Sebastian ; Klein, Karsten ; Mutzel,
Petra ; Siebenhaller, Martin: Automatic layout of UML class diagrams in
orthogonal style. In: Information Visualization 3 (2004), No. 3, pp. 189–208

[54] Eisenbarth, Thomas ; Koschke, Rainer ; Simon, Daniel: Locating Features
in Source Code. In: IEEE Transactions on Software Engineering 29 (2003),
No. 3, pp. 210–224

[55] Eisenberg, Andrew D. ; De Volder, Kris: Dynamic Feature Traces: Finding
Features in Unfamiliar Code. In: Proceedings of the 21st IEEE International
Conference on Software Maintenance. IEEE Computer Society, 2005, pp.
337–346

[56] Eldean AB: ESS-Model. http://essmodel.sourceforge.net, retrieved 2.
January 2010

[57] Erlikh, Len: Leveraging Legacy System Dollars for E-Business. In: IT
Professional 2 (2000), No. 3, pp. 17–23

http://www.eclipse.org/tptp
http://essmodel.sourceforge.net

132 Bibliography

[58] Ernst, Michael D.: Invited Talk Static and dynamic analysis: synergy and
duality. In: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. ACM, 2004, pp. 35–35

[59] Eysenck, Michael W. ; Keane, Mark T.: Cognitive Psychology - A Student’s
Handbook. Psychology Press, 2005

[60] Favre, Jean-Marie: GSEE: A Generic Software Exploration Environment. In:
Proceedings of the 9th International Workshop on Program Comprehension,
2001, pp. 233–244

[61] Finnigan, P. J. ; Holt, R. C. ; Kalas, I. ; Kerr, S. ; Kontogiannis, K. ;
Müller, H. A. ; Mylopoulos, J. ; Perelgut, S. G. ; Stanley, M. ; Wong,
K.: The software bookshelf. In: IBM Systems Journal 36 (1997), No. 4, pp.
564–593

[62] Froehlich, Jon ; Dourish, Paul: Unifying Artifacts and Activities in a Visual
Tool for Distributed Software Development Teams. In: Proceedings of the 26th
International Conference on Software Engineering. IEEE Computer Society,
2004, pp. 387–396

[63] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design
Patterns. Addison-Wesley, 1995

[64] Gansner, Emden R. ; North, Stephen C.: An Open Graph Visualization
System and Its Applications to Software Engineering. In: Software - Practice
and Experience 30 (1999), pp. 1203–1233

[65] Gestwicki, Paul ; Jayaraman, Bharat: Methodology and architecture of
JIVE. In: Proceedings of the ACM symposium on Software visualization. ACM,
2005, pp. 95–104

[66] Gilmore, D. J. ; Green, T. R. G.: Programming Plans and Programming
Expertise. In: The Quarterly Journal of Experimental Psychology 40A (1988),
No. 3

[67] Goldstine, Herman H. ; Neumann, John von: Planning and coding of
problems for an electronic computing instrument. Part II, Vol. I / Institute for
Advanced Study. 1948 (2). – Technical report

[68] Graham, Susan L. ; Kessler, Peter B. ; McKusick, Marshall K.: gprof: a
call graph execution profiler. In: SIGPLAN Notes 39 (2004), No. 4, pp. 49–57

[69] Green Hills Software Inc.: Time Machine Debugging Suite. http:
//www.ghs.com/products/timemachine.html, retrieved 25. March 2010

[70] Greevy, Orla: Enriching Reverse Engineering with Feature Analysis, Univer-
sität Bern, Diss., 2007

http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html

Bibliography 133

[71] Greevy, Orla ; Lanza, Michele ; Wysseier, Christoph: Visualizing live
software systems in 3D. In: Proceedings of the ACM symposium on Software
visualization. ACM, 2006, pp. 47–56

[72] Griswold, William G. ; Yuan, Jimmy J. ; Kato, Yoshikiyo: Exploiting the
map metaphor in a tool for software evolution. In: Proceedings of the 23rd
International Conference on Software Engineering. IEEE Computer Society,
2001, pp. 265–274

[73] Gschwind, Thomas ; Oberleitner, Johann: Improving Dynamic Data
Analysis with Aspect-Oriented Programming. In: Proceedings of the 7th Euro-
pean Conference on Software Maintenance and Reengineering, IEEE Computer
Society, 2003, pp. 259–268

[74] Hamou-Lhadj, Abdelwahab ; Lethbridge, Timothy: Summarizing the
Content of Large Traces to Facilitate the Understanding of the Behaviour of a
Software System. In: IEEE International Conference on Program Comprehen-
sion, 2006, pp. 181–190

[75] Han, Jiawei ; Kamber, Micheline: Data Mining: Concepts and Techniques. 2
edition. Morgan Kaufmann, 2006

[76] Harris, David R. ; Reubenstein, Howard B. ; Yeh, Alexander S.: Reverse
engineering to the architectural level. In: Proceedings of the 17th international
conference on Software engineering. ACM, 1995, pp. 186–195

[77] Heer, Jeffrey ; Card, Stuart K. ; Landay, James A.: prefuse: a toolkit for
interactive information visualization. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. ACM, 2005, pp. 421–430

[78] hello2morrow GmbH: Sotograph. http://www.hello2morrow.com, re-
trieved 7. February 2010

[79] Henkler, Stefan ; Greenyer, Joel ; Hirsch, Martin ; Schafer, Wilhelm ;
Alhawash, Kahtan ; Eckardt, Tobias ; Heinzemann, Christian ; Loffler,
Renate ; Seibel, Andreas ; Giese, Holger: Synthesis of timed behavior from
scenarios in the Fujaba Real-Time Tool Suite. In: Proceedings of the IEEE 31st
International Conference on Software Engineering. IEEE Computer Society,
2009, pp. 615–618

[80] Herman, Ivan ; Melançon, Guy ; Marshall, M. S.: Graph Visualization
and Navigation in Information Visualization: A Survey. In: IEEE Transactions
on Visualization and Computer Graphics 6 (2000), No. 1, pp. 24–43

[81] Chapter Understanding Architecture Through Structure and Behavior Visual-
ization. In:Heuzeroth, Dirk ; Löwe, Welf: Software Visualization - From
Theory to Practice. Kluwer Academic Publishers, 2003, pp. 243–286

http://www.hello2morrow.com

134 Bibliography

[82] Hindle, A. ; Hindle, A. ; Jiang, Zhen M. ; Koleilat, W. ; Godfrey, M.W.
; Holt, R.C.: YARN: Animating Software Evolution. In: Jiang, Zhen M.
(Hrsg.): Proceedings ot the 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007, pp. 129–136

[83] Hiramatsu, Masami: Overhead Evaluation about KProbes and Djprobe (Direct
Jump Probe). http://lkst.sourceforge.net/docs/probes-eval-report.
pdf, retrieved November 30, 2005

[84] Hofer, Christoph ; Denker, Marcus ; Ducasse, Stéphane: Design and
Implementation of a Backward-In-Time Debugger. In: Proceedings of NODE’06
Bd. P-88 Gesellschaft für Informatik (GI), 2006 (Lecture Notes in Informatics),
17–32

[85] Hollingsworth, Jeffrey K. ; Miller, Barton P. ; Cargille, Jon: Dynamic
Program Instrumentation for Scalable Performance Tools. In: Scalable High
Performance Computing Conference, 1994, pp. 841–850

[86] Horwitz, S. ; Reps, T. ; Binkley, D.: Interprocedural slicing using depen-
dence graphs. In: Proceedings of the ACM SIGPLAN conference on Program-
ming Language design and Implementation. ACM, 1988, pp. 35–46

[87] Hunt, Galen ; Brubacher, Doug: Detours: binary interception of Win32
functions. In: Proceedings of the 3rd conference on USENIX Windows NT
Symposium. USENIX Association, 1998, pp. 135–143

[88] Imagix Corp.: Imagix 4D. http://www.imagix.com, retrieved 13. March
2010

[89] Intel Corporation: VTune Performance Analyzer. http://software.
intel.com/en-us/intel-vtune, retrieved 25. March 2010

[90] International Business Machines Corporation: IBM Rational. http:
//www.ibm.com/software/rational, retrieved 2. January 2010

[91] International Business Machines Corporation: AIX Version 6.1.
http://www-03.ibm.com/systems/de/p/os/aix/v61, retrieved 25. December
2009

[92] International Business Machines Corporation: Zinsight. https:
//researcher.ibm.com/researcher/view_project.php?id=613, retrieved 5.
January 2010

[93] Jackson, Michael A.: Principles of Program Design. Academic Press, Inc.,
1975

[94] Jerding, Dean ; Rugaber, Spencer: Using Visualization for Architectural
Localization and Extraction. In: Proceedings of the Working Conference on
Reverse Engineering (1997), pp. 56–65

http://lkst.sourceforge.net/docs/probes-eval-report.pdf
http://lkst.sourceforge.net/docs/probes-eval-report.pdf
http://www.imagix.com
http://software.intel.com/en-us/intel-vtune
http://software.intel.com/en-us/intel-vtune
http://www.ibm.com/software/rational
http://www.ibm.com/software/rational
http://www-03.ibm.com/systems/de/p/os/aix/v61
https://researcher.ibm.com/researcher/view_project.php?id=613
https://researcher.ibm.com/researcher/view_project.php?id=613

Bibliography 135

[95] Jerding, Dean F. ; Stasko, John T.: The Information Mural: A Technique for
Displaying and Navigating Large Information Spaces. In: IEEE Transactions
on Visualization and Computer Graphics 4 (1998), pp. 257–271

[96] Jerding, Dean F. ; Stasko, John T. ; Ball, Thomas: Visualizing Interactions
in Program Executions. In: Proceedings of the International Conference on
Software Engineering, 1997, pp. 360–370

[97] Johnson-Laird, P. N. ; Legrenzi, P. ; Girotto, V. ; Legrenzi, M. S.
; Caverni, J. P.: Naive probability: a mental model theory of extensional
reasoning. In: Psychological review 106 (1999), January, No. 1, pp. 62–88

[98] Jones, James A. ; Harrold, Mary J.: Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique. In: Proceedings of the International
Conference on Automated Software Engineering, 2005, pp. 273–282

[99] Jones, James A. ; Harrold, Mary J. ; Stasko, John: Visualization of Test
Information to Assist Fault Localization. In: Proceedings of the Interational
Conference on Software Engineering, 2002, pp. 467–477

[100] Kazman, R. ; Carrière, S.J.: View Extraction and View Fusion in Architec-
tural Understanding. In: Proceedings of the 5th International Conference on
Software Reuse (1998), pp. 290–299

[101] Kazman, Rick ; Woods, Steven G. ; Carrière, S. J.: Requirements for
Integrating Software Architecture and Reengineering Models: CORUM II.
In: Proceedings of the Working Conference on Reverse Engineering. IEEE
Computer Society, 1998, pp. 154–163

[102] Kerren, Andreas ; Stasko, John T.: Algorithm Animation - Introduction.
In: Software Visualization, 2002, pp. 1–15

[103] Kienle, Holger: Building Reverse Engineering Tools with Software Components,
University of Victoria, Diss., 2006

[104] In:Kimelman, Doug ; Rosenburg, Bryan ; Roth, Tova: Visualization of
Dynamics in Real World Software Systems. MIT Press, 1998, pp. 293–314

[105] Klint, Paul: How Understanding and Restructuring Differ from Compiling
- A Rewriting Perspective. In: Proceedings of the 11th IEEE International
Workshop on Program Comprehension. IEEE Computer Society, 2003, pp. 2–12

[106] Ko, Andrew J. ; DeLine, Robert ; Venolia, Gina: Information Needs
in Collocated Software Development Teams. In: Proceedings of the 29th
International Conference on Software Engineering, IEEE Computer Society,
2007, pp. 344–353

[107] Ko, Andrew J. ; Myers, Brad A.: Debugging reinvented: asking and answering
why and why not questions about program behavior. In: Proceedings of the
30th international conference on Software engineering. ACM, 2008, pp. 301–310

136 Bibliography

[108] Koeleman, Martin: Detection, Processing and Visualization of Execution
Information in Complex Software Systems, Hasso-Plattner-Institute at the
University of Potsdam, Germany, Master Thesis, March 2009

[109] Kosara, Robert ; Healey, Christopher G. ; Interrante, Victoria ; Laidlaw,
David H. ; Ware, Colin: User Studies: Why, How, and When? In: IEEE
Computer Graphics and Applications 23 (2003), No. 4, pp. 20–25

[110] Koschke, Rainer: Software Visualization for Reverse Engineering. In: Software
Visualization, 2001, pp. 138–150

[111] Koskimies, Kai ; Mössenböck, Hanspeter: Scene: Using Scenario Diagrams
and Active Text for Illustrating Object-Oriented Programs. In: In Proceedings
of the 18th international conference on software engineering, 1996, pp. 366–375

[112] Kouznetsova, Svetlana: Using BlueJ and Blackjack to teach object-oriented
design concepts in CS1. In: Journal of Computing Sciences in Colleges 22
(2007), No. 4, pp. 49–55

[113] Chapter Visualizing Program Behavior with the Event Graph.
In:Kranzlmüller, Dieter: Software Visualization - From Theory to
Practice. Kluwer Academic Publishers, 2003, pp. 29–57

[114] Kruchten, Philippe: The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., 2003

[115] Lange, Carola ; Winter, Andreas ; Sneed, Harry M.: Comparing Graph-
Based Program Comprehension Tools to Relational Database-Based Tools. In:
Proceedings of the 9th International Workshop on Program Comprehension.
IEEE Computer Society, 2001, pp. 209–220

[116] Lange, Danny B. ; Nakamura, Y.: Object-oriented program tracing and
visualization. In: Computer 30 (1997), No. 5, pp. 63–70

[117] Lanza, Michele ; Ducasse, Stéphane: A categorization of classes based on the
visualization of their internal structure: the class blueprint. In: Proceedings of
the 16th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. ACM, 2001, pp. 300–311

[118] Lanza, Michele ; Marinescu, Radu: Object-Oriented Metrics in Practice.
2006

[119] Letovsky, Stanley: Cognitive processes in program comprehension. In:
Journal Systems Software 7 (1987), No. 4, pp. 325–339

[120] Lewis, Bil: Debugging Backwards in Time. In: Proceedings of the 5th
International Workshop on Automated Debugging, 2003

Bibliography 137

[121] Lienhard, Adrian ; Gîrba, Tudor ; Nierstrasz, Oscar: Practical Object-
Oriented Back-in-Time Debugging. In: Proceedings of the 22nd European
conference on Object-Oriented Programming. Springer-Verlag, 2008, pp. 592–
615

[122] Lorenz, Mark ; Kidd, Jeff: Object-Oriented Software Metrics. Prentice Hall,
1994

[123] Löwe, Welf ; Panas, Thomas: Rapid Construction of Software Comprehension
Tools. In: International Journal of Software Engineering and Knowledge
Engineering 15 (2005), No. 6, pp. 995–1026

[124] Luk, Chi-Keung ; Cohn, Robert ; Muth, Robert ; Patil, Harish ; Klauser,
Artur ; Lowney, Geoff ; Wallace, Steven ; Reddi, Vijay J. ; Hazelwood,
Kim: Pin: building customized program analysis tools with dynamic instru-
mentation. In: Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation. ACM, 2005, pp. 190–200

[125] Maaß, Stefan: Techniken zur automatisierten Annotation interaktiver
geovirtueller 3D-Umgebungen, Hasso-Plattner-Institut at the University of
Potsdam, Diss., 2009

[126] Maass, Stefan ; Döllner, Jürgen: Efficient View Management for Dynamic
Annotation Placement in Virtual Landscapes. In: Smart Graphics, 2006, pp.
1–12

[127] Madison, A. W. ; Batson, Alan P.: Characteristics of program localities. In:
Communications of the ACM 19 (1976), No. 5, pp. 285–294

[128] Maimon, Oded ; Rokach, Lior: Data Mining and Knowledge Discovery
Handbook. Springer-Verlag New York, Inc., 2005

[129] Maletic, Jonathan I. ; Marcus, Andrian ; Collard, Michael L.: A Task
Oriented View of Software Visualization. In: Proceedings of the 1st International
Workshop on Visualizing Software for Understanding and Analysis. IEEE
Computer Society, 2002, pp. 32–40

[130] Mamone, Salvatore: The IEEE standard for software maintenance. In:
SIGSOFT Software Engineering Notes 19 (1994), No. 1, pp. 75–76

[131] Maqbool, Onaiza ; Babri, Haroon: Hierarchical Clustering for Software
Architecture Recovery. In: IEEE Transactions on Software Engineering 33
(2007), No. 11, pp. 759–780

[132] Marcus, Andrian ; Feng, Louis ; Maletic, Jonathan I.: 3D representations
for software visualization. In: Proceedings of the ACM symposium on Software
visualization. ACM, 2003, pp. 27–36

138 Bibliography

[133] Marcus, Andrian ; Feng, Louis ; Maletic, Jonathan I.: Comprehension of
Software Analysis Data Using 3D Visualization. In: Proceedings of the 11th
IEEE International Workshop on Program Comprehension. IEEE Computer
Society, 2003, pp. 105–114

[134] Mayrhauser, Anneliese von ; Vans, A. M.: Program Comprehension During
Software Maintenance and Evolution. In: IEEE Computer Bd. August 1995
(Vol. 28, No. 8), 1995, pp. 44–55

[135] Mayrhauser, Anneliese von ; Vans, A. M.: Program Understanding: Models
and Experiments. In: Advances in Computers 40 (1995), pp. 1–38

[136] Mehner, Katharina: JaVis: A UML-Based Visualization and Debugging
Environment for Concurrent Java Programs. In: Software Visualization, 2001,
pp. 163–175

[137] Mehta, Alok ; Heineman, George T.: Evolving legacy systems features using
regression test cases and components. In: Proceedings of the 4th International
Workshop on Principles of Software Evolution. ACM, 2001, pp. 190–193

[138] Michaud, Jeff ; Storey, Margaret-Anne ; Muller, Hausi: Integrating
Information Sources for Visualizing Java Programs. In: Proceedings of the
International Conference on Software Maintenance. IEEE Computer Society,
2001, pp. 250–259

[139] Microsoft Corporation: Enable _penter Hook Function with the /Gh
compiler option. http://msdn.microsoft.com/en-us/library/c63a9b7h%
28VS.100%29.aspx, retrieved 13. December 2009

[140] Microsoft Corporation: Debugging Tools for Windows. http://www.
microsoft.com/whdc/DevTools/Debugging/default.mspx, retrieved Novem-
ber 30

[141] Mili, Rym ; Steiner, Renee: Software Engineering - Introduction. In: Software
Visualization, 2001, pp. 129–137

[142] Müller, H. A. ; Klashinsky, K.: Rigi—A system for programming-in-
the-large. In: Proceedings of the 10th international conference on Software
engineering. IEEE Computer Society Press, 1988, pp. 80–86

[143] Müller, Hausi A. ; Tilley, Scott R. ; Wong, Kenny: Understanding
software systems using reverse engineering technology perspectives from the
Rigi project. In: Proceedings of the conference of the Centre for Advanced
Studies on Collaborative research, IBM Press, 1993, pp. 217–226

[144] Moonen, Leon: Exploring Software Systems, Faculty of Natural Sciences,
Mathematics, and Computer Science, University of Amsterdam, Diss., December
2002

http://msdn.microsoft.com/en-us/library/c63a9b7h%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/c63a9b7h%28VS.100%29.aspx
http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx
http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx

Bibliography 139

[145] Moret, P. ; Binder, W. ; Ansaloni, D. ; Villazon, A.: Visualizing
Calling Context Profiles with Ring Charts. In: Proceedings of the 5th IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
2009, pp. 33–36

[146] Murphy, Gail C. ; Notkin, David ; Sullivan, Kevin J.: Software Reflexion
Models: Bridging the Gap between Design and Implementation. In: IEEE
Transactions on Software Engineering 27 (2001), No. 4, pp. 364–380

[147] Mutzel, Petra ; Eades, Peter: Graphs in Software Visualization - Introduction.
In: Software Visualization, 2001, pp. 285–294

[148] Myers, B. A.: Visual programming, programming by example, and program
visualization: a taxonomy. In: Proceedings of the SIGCHI conference on Human
factors in computing systems 17 (1986), No. 4, pp. 59–66

[149] Myers, B.A.: Taxonomies of visual programming and program visualization.
In: Journal of Visual languages and Computing 1 (1990), pp. 97–123

[150] Nagpurkar, Priya ; Krintz, Chandra ; Hind, Michael ; Sweeney, Peter F.
; Rajan, V. T.: Online Phase Detection Algorithms. In: Proceedings of
the International Symposium on Code Generation and Optimization. IEEE
Computer Society, 2006, pp. 111–123

[151] Nassi, I. ; Shneiderman, B.: Flowchart techniques for structured program-
ming. In: SIGPLAN Notes 8 (1973), No. 8, pp. 12–26

[152] Nethercote, Nicholas: Dynamic Binary Analysis and Instrumentation,
University of Cambridge, United Kingdom, Diss., November 2004

[153] Nevill-Manning, Craig G. ; Witten, Ian H.: Identifying hierarchical
structure in sequences: a linear-time algorithm. In: Journal of Artificial
Intelligence Research 7 (1997), pp. 67–82

[154] Noack, Andreas: Energy Models for Graph Clustering. In: Journal Graph
Algorithms Applications 11 (2007), No. 2, pp. 453–480

[155] Object Management Group: The Unified Modeling Language UML. http:
//www.uml.org, retrieved 26. December 2009

[156] Open Source: Source Navigator. http://sourcenav.sourceforge.net,
retrieved 13. March 2010

[157] Open Source: Doxygen - Source code documentation generator tool. http:
//www.stack.nl/~dimitri/doxygen, retrieved 15. April 2010

[158] Open Source: Chronomancer. http://code.google.com/p/chronomancer,
retrieved 25. March 2010

http://www.uml.org
http://www.uml.org
http://sourcenav.sourceforge.net
http://www.stack.nl/~dimitri/doxygen
http://www.stack.nl/~dimitri/doxygen
http://code.google.com/p/chronomancer

140 Bibliography

[159] oreas GmbH: Open Graph Drawing Framework. http://www.ogdf.net,
retrieved 13. March 2010

[160] oreas GmbH: GoVisual. http://www.oreas.com, retrieved 2. January 2010

[161] Orso, Alessandro ; Jones, James A. ; Harrold, Mary J.: GAMMATELLA:
visualizing program-execution data for deployed software. In: Information
Visualization 3 (2004), No. 3, pp. 173–188

[162] Ottenstein, Karl J. ; Ottenstein, Linda M.: The program dependence
graph in a software development environment. In: Proceedings of the first
SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments. ACM, 1984, pp. 177–184

[163] Panas, Thomas ; Lundberg, Jonas ; Löwe, Welf: Reuse in Reverse Engi-
neering. In: International Conference on Program Comprehension (2004), pp.
52–61

[164] Panchenko, Oleksandr ; Koglin, Alexander ; Bohnet, Johannes ; Zeier,
Alexander: XPath-Based Query Language for Trace Analysis. In: Proceedings
of the 5th International Workshop on Program Comprehension through Dynamic
Analysis, 2010, pp. to appear

[165] Parnas, D. L.: On the criteria to be used in decomposing systems into modules.
In: Communications of the ACM 15 (1972), No. 12, pp. 1053–1058

[166] Parnas, David L.: Software aging. In: International Conference on Software
Engineering, 1994, pp. 279–287

[167] Passing, Johannes ; Schmidt, Alexander ; Löwis, Martin von ; Polze,
Andreas: NTrace: Function Boundary Tracing for Windows on IA-32. In:
Working Conference on Reverse Engineering, IEEE Computer Society, 2009,
pp. 43–52

[168] Pennington, Nancy: Comprehension strategies in programming. (1987), pp.
100–113

[169] Pennington, Nancy: Stimulus structures and mental representations in expert
comprehension of computer programs. In: Cognitive Psychology 19 (1987), No.
3, pp. 295–341

[170] Pilato, C. M. ; Collins-Sussman, Ben ; Fitzpatrick, Brian W.: Version
Control with Subversion. 2nd. O’Reilly Media, 2008

[171] Pinzger, M. ; Fischer, M. ; Gall, H. ; Jazayeri, M.: Revealer: A Lexical
Pattern Matcher for Architecture Recovery. In: Proceedings of the 9th Working
Conference on Reverse Engineering. IEEE Computer Society, 2002, pp. 170–180

[172] Pothier, Guillaume ; Tanter, Eric: Back to the Future: Omniscient Debug-
ging. In: IEEE Software 26 (2009), pp. 78–85

http://www.ogdf.net
http://www.oreas.com

Bibliography 141

[173] Price, Blaine A. ; Baecker, Ronald ; Small, Ian S.: A Principled Taxonomy
of Software Visualization. In: Journal of Visual languages and Computing 4
(1993), No. 3, pp. 211–266

[174] Raza, Aoun ; Vogel, Gunther ; Plödereder, Erhard: Bauhaus - A Tool
Suite for Program Analysis and Reverse Engineering. In: Ada-Europe, 2006,
pp. 71–82

[175] Reiss, Steven P.: Visualizing Java in action. In: Proceedings of the ACM
symposium on Software visualization. ACM, 2003, pp. 57–66

[176] Reiss, Steven P.: Dynamic detection and visualization of software phases. In:
SIGSOFT Software Engineering Notes 30 (2005), No. 4, pp. 1–6

[177] Ren, Xiaoxia ; Chesley, Ophelia C. ; ; Ryder, Barbara G.: Identifying
Failure Causes in Java Programs: An Application of Change Impact Analysis.
In: IEEE Transactions on Software Engineering 32 (2006), pp. 718–732

[178] Renieris, M. ; Reiss, S.: Fault localization with nearest neighbor queries.
In: In Proceedings of the 18th Conference on Automated Software Engineering,
2003, 30–39

[179] Renieris, Manos ; Reiss, Steven P.: Almost: Exploring Program Traces. In:
Workshop on New Paradigms in Information Visualization and Manipulation,
1999, pp. 70–77

[180] Richner, Tamar ; Ducasse, Stephane: Using Dynamic Information for
the Iterative Recovery of Collaborations and Roles. In: Proceedings of the
International Conference on Software Maintenance, 2002, pp. 34–43

[181] Roman, Gruia-Catalin ; Cox, Kenneth C.: A Taxonomy of Program Visual-
ization Systems. In: Computer 26 (1993), No. 12, pp. 11–24

[182] Röthlisberger, David ; Härry, Marcel ; Villazon, Alex ; Ansaloni,
Danilo ; Binder, Walter ; Nierstrasz, Oscar ; More, Philippe: Augmenting
Static Source Views in IDEs with Dynamic Metrics. In: Proceedings of the 25th
International Conference on Software Maintenance, 2009, pp. 253–262

[183] Rumbaugh, J. ; Jacobson, I. ; Booch, G.: The Unified Modeling Language
Reference Manual. Addsion Wesley, 1999

[184] Salah, Maher M.: An environment for comprehending the behavior of software
systems. Philadelphia, PA, USA, Diss., 2005

[185] Saleh, Kassem A.: Software Engineering. J. Ross Publishing Inc., 2009

[186] Schumann, Heidrun ; Müller, Wolfgang: Visualisierung - Grundlagen und
allgemeine Methoden. Springer Verlag Berlin Heidelberg, 2000

142 Bibliography

[187] Scientific Toolworks Inc.: Understand. http://www.scitools.com,
retrieved 13. March 2010

[188] Sherwood, Timothy ; Perelman, Erez ; Hamerly, Greg ; Calder, Brad:
Automatically characterizing large scale program behavior. In: Proceedings
of the 10th international conference on Architectural support for programming
languages and operating systems. ACM, 2002, pp. 45–57

[189] Shneiderman, Ben: Tree visualization with tree-maps: 2-d space-filling
approach. In: ACM Transactions on Graphics 11 (1992), No. 1, pp. 92–99

[190] Shneiderman, Ben ; Mayer, Richard: Syntactic/semantic interactions in
programmer behavior: A model and experimental results. In: International
Journal of Parallel Programming 8 (1979), June, No. 3, pp. 219–238

[191] Shneiderman, Ben ; Wattenberg, Martin: Ordered Treemap Layouts.
In: Proceedings of the IEEE Symposium on Information Visualization. IEEE
Computer Society, 2001, pp. 73–78

[192] Sim, S. E. ; Clarke, C. L. A. ; Holt, R. C.: Archetypal Source Code Searches:
A Survey of Software Developers and Maintainers. In: Proceedings of the 6th
International Workshop on Program Comprehension. IEEE Computer Society,
1998, pp. 180–189

[193] Smith, Michael ; Munro, Malcolm: Providing a User Customisable Tool
for Software Visualisation at Runtime. In: Proceedings of the International
Conference on Visualization, Imaging and Image Processing, 2004

[194] Smith, M.P. ; Munro, M.: Runtime visualisation of object oriented software. In:
Proc. First International Workshop on Visualizing Software for Understanding
and Analysis, 2002, pp. 81–89

[195] Soloway, Elliot ; Ehrlich, Kate: Empirical Studies of Programming Know-
ledge. In: IEEE Transactions on Software Engineering 10 (1984), No. 5, pp.
595–609

[196] Spence, Robert: Information visualization. Addison-Wesley, 2001 (ACM Press
books)

[197] Stasko, John ; Zhang, Eugene: In: Proceedings of the IEEE Symposium on
Information Vizualization. IEEE Computer Society, 2000, pp. 57–65

[198] Stasko, John T.: Tango: A Framework and System for Algorithm Animation.
In: Computer 23 (1990), pp. 27–39

[199] Stasko, John T. ; Wehrli, Joseph F.: Three-Dimensional Computation
Visualization. In: Proceedings of the IEEE Symposium on Visual Languages,
1993, pp. 100–107

http://www.scitools.com

Bibliography 143

[200] Storey, M.-A. D. ; Fracchia, F. D. ; Mueller, H. A.: Cognitive Design
Elements to Support the Construction of a Mental Model during Software
Visualization. In: Proceedings of the 5th International Workshop on Program
Comprehension. IEEE Computer Society, 1997, pp. 17–28

[201] Storey, M.-A. D. ; Muller, H. A.: Manipulating and documenting software
structures using SHriMP views. In: Proceedings of the International Conference
on Software Maintenance. IEEE Computer Society, 1995, pp. 275–284

[202] Chapter Designing a Software Exploration Tool Using a Cognitive Framework.
In:Storey, Margaret-Anne: Software Visualization - From Theory to Practice.
Kluwer Academic Publishers, 2003, pp. 113–147

[203] Storey, Margaret-Anne ; Best, Casey ; Michaud, Jeff ; Rayside, Derek ;
Litoiu, Marin ; Musen, Mark: SHriMP views: an interactive environment for
information visualization and navigation. In: Extended abstracts on Human
factors in computing systems. ACM, 2002, pp. 520–521

[204] Sugiyama, K. ; Misue, K.: Visualization of structural information: automatic
drawing of compound digraphs. In: Systems, Man and Cybernetics, IEEE
Transactions on 21 (1991), Jul/Aug, No. 4, pp. 876–892

[205] Systä, Tarja: Dynamic Reverse Engineering of Java Software. In: Proceedings
of the Workshop on Object-Oriented Technology. Springer-Verlag, 1999, pp.
174–175

[206] Systä, Tarja: Static and Dynamic Reverse Engineering Techniques for Java
Software Systems, University of Tampere, Diss., 2000

[207] Systä, Tarja: Understanding the Behavior of Java Programs. In: Proceedings
of the Working Conference on Reverse Engineering, 2000, 214–223

[208] Systä, Tarja ; Koskimies, Kai ; Müller, Hausi: Shimba—an environment for
reverse engineering Java software systems. In: Software—Practice & Experience
31 (2001), No. 4, pp. 371–394

[209] Telea, Alexandru ; Maccari, Alessandro ; Riva, Claudio: An open toolkit for
prototyping reverse engineering visualizations. In: Proceedings of the symposium
on Data Visualisation. Eurographics Association, 2002, pp. 241–250

[210] Teyseyre, Alfredo R. ; Campo, Marcelo R.: An Overview of 3D Software
Visualization. In: IEEE Transactions on Visualization and Computer Graphics
15 (2009), pp. 87–105

[211] Thiemann, Peter: Higher-Order Code Splicing. In: Proceedings of the 8th
European Symposium on Programming Languages and Systems. Springer-Verlag,
1999, pp. 243–257

[212] Tilley, Scott R.: The canonical activities of reverse engineering. In: Annals
of Software Engineering 9 (2000), No. 1-4, pp. 249–271

144 Bibliography

[213] Trümper, J. ; Bohnet, J. ; Döllner, J.: Understanding Complex Multi-
threaded Software Systems by Using Trace Visualization. In: Proceedings of
the ACM Symposium on Software Visualization, 2010, pp. to appear

[214] Trümper, J. ; Bohnet, J. ; Voigt, S. ; Döllner, J.: Visualization of
Multithreaded Behavior to Facilitate Maintenance of Complex Software Systems.
In: Proceedings of the International Conference on the Quality of Information
and Communications Technology, 2010, pp. to appear

[215] Trümper, Jonas: Localization and Visualization of Faulty Code Changes,
Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam,
Master Thesis, 2009

[216] Tufte, Edward R.: The Visual Display of Quantitative Information. Graphics
Press, 2001

[217] Undo Ltd.: UndoDB. http://undo-software.com, retrieved 25. March 2010

[218] Van Wijk, Jarke J. ; Wetering, Huub van d.: Cushion Treemaps: Visualiza-
tion of Hierarchical Information. In: Proceedings of the IEEE Symposium on
Information Visualization. IEEE Computer Society, 1999, pp. 73–78

[219] Vidacs, Laszlo ; Beszedes, Arpad ; Ferenc, Rudolf: Macro Impact Analysis
Using Macro Slicing. In: Proceedings of the 2nd International Conference on
Software and Data Technologies, INSTICC Press, 2007, pp. 230–235

[220] Voigt, Stefan: Visualisierung von Dynamik komplexer Softwaresysteme, Hasso-
Plattner-Institute at the University of Potsdam, Germany, Master Thesis, April
2008

[221] Voigt, Stefan ; Bohnet, Johannes ; Döllner, Jürgen: Enhancing structural
views of software systems by dynamic information. In: Proceedings of 5th
IEEE International Workshop on Visualizing Software for Understanding and
Analysis, 2009, pp. 47–50

[222] Voigt, Stefan ; Bohnet, Johannes ; Döllner, Jürgen: Object aware execution
trace exploration. In: Proceedings of the 25th IEEE International Conference
on Software Maintenance (2009), pp. 201–210

[223] Voinea, Lucian ; Lukkien, Johan ; Telea, Alexandru: Visual assessment of
software evolution. In: Science of Computer Programming 65 (2007), No. 3,
pp. 222–248

[224] Walker, Robert J. ; Murphy, Gail C. ; Freeman-Benson, Bjorn ; Wright,
Darin ; Swanson, Darin ; Isaak, Jeremy: Visualizing dynamic software
system information through high-level models. In: Proceedings of the 13th
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications. ACM, 1998, pp. 271–283

http://undo-software.com

Bibliography 145

[225] Ware, Colin: Information Visualization: Perception for Design. 2nd. Morgan
Kaufmann Publishers, 2004

[226] Ware, Colin: Visual Queries: The Foundation of Visual Thinking. In:
Knowledge and Information Visualization, 2005, pp. 27–35

[227] Wettel, Richard ; Lanza, Michele: Program Comprehension through Software
Habitability. In: Proceedings 15th IEEE International Conference on Program
Comprehension, 2007, pp. 231–240

[228] Wilde, Norman ; Huitt, Ross: Maintenance Support for Object-Oriented
Programs. In: IEEE Transaction on Software Engineering 18 (1992), No. 12,
pp. 1038–1044

[229] Wilde, Norman ; Scully, Michael C.: Software reconnaissance: mapping
program features to code. In: Journal of Software Maintenance 7 (1995), No.
1, pp. 49–62

[230] Witten, Ian H. ; Frank, Eibe: Data mining: practical machine learning tools
and techniques. 2. ed. Elsevier, Morgan Kaufman, 2005

[231] Xie, Tao ; Thummalapenta, Suresh ; Lo, David ; Liu, Chao: Data Mining
for Software Engineering. In: Computer 42 (2009), pp. 55–62

[232] Zaidman, Andy: Scalability Solutions for Program Comprehension Through
Dynamic Analysis, Unviversiteit Antwerpan, Diss., 2006

[233] Zeller, Andreas ; Lütkehaus, Dorothea: DDD—a free graphical front-end
for UNIX debuggers. In: SIGPLAN Notes 31 (1996), No. 1, pp. 22–27

[234] Zhang, Kang (Hrsg.): Software Visualization: From Theory to Practice.
Kluwer Academic Publishers, 2003

[235] Zimmermann, Thomas ; Zeller, Andreas: Visualizing Memory Graphs. In:
Revised Lectures on Software Visualization, International Seminar. Springer-
Verlag, 2002, pp. 191–204

List of Figures

1.1 This thesis presents a concept that tackles the computational and
cognitive scalability problems that the visualization of traces encounters. 2

2.1 Illustration of important aspects of the reverse engineering process. . 12
2.2 Illustration of the process of knowledge discovery in databases. . . . 14
2.3 The visualization process modeled as pipeline. 18
2.4 A trace is a graph structure of functions (nodes) connected via di-

rected edges (calls) [left]. The time information attached to the calls
ensures that the calls form a tree with respect to time containment
[right]. Parent-child relations in the call tree correspond to caller-callee
relations between functions in the graph structure. 20

2.5 Data model of traces using the UML notation. 21
2.6 The trace visualization process. 22
2.7 Data model of traces extended with module hierarchy information in

the UML notation. 24

3.1 The SHriMP visualization system [203]. 28
3.2 Balzer et al. use a landscape metaphor to visualize the structure of a

software system [4]. 29
3.3 CodeCrawler visualizes metrics values about structural elements of a

software system [50]. 30
3.4 The Seesoft technique visualizes metrics values on miniaturized source

code [3]. 30
3.5 xSlice shows which code lines affect a given program point. 32
3.6 The information mural visualization technique. 33
3.7 Visualization technique of the Ovation tool. 33
3.8 Visualization technique of the Avid tool. 34
3.9 Screenshot of the ExtraVis tool. 35
3.10 Screenshot of the Zest Sequence Viewer tool. 36

4.1 In the edit-build-run cycle, a developer modifies source code, builds
executables, and checks whether the system behaves as expected. . . 44

148 List of Figures

4.2 With function entry-point instrumentation, the compiler inserts a call
instruction at the beginning of each function to redirect control to
a hook function. Replacing the call by NOP instructions deactivates
control redirection. 47

4.3 The library for registering and serializing function entry/exit events.
An additional coordinator thread handles buffers of function entry/exit
events. Filled buffers are analyzed for massively called functions and
serialized to hard disk. 53

5.1 Calls captured in a trace can be classified according to their subcall
and costs characteristics. Pruning the trace from lightweight calls
and delegating calls allows for a massive reduction in trace size, while
retaining important information necessary for top-down trace exploration. 58

5.2 Data model of pruned traces. 60
5.3 Using the Blender software system, a monkey shape is added to the

currently managed 3D content. 61
5.4 The temporal overview and the call stack view show that the phases

wm_method_draw_overlap_all(), which were detected by the trace
pruning algorithm, correspond to repetitive execution patterns. . . . 62

5.5 The trace pruning algorithm automatically identified the execution
phase make_prim_ext(). It is responsible for creating the monkey
shape during Blender ’s execution. 64

5.6 Control loop structures in the code may cause highly repetitive struc-
tures even in a pruned trace. The phase similarity metrics makes
provision for compact visualizations that make repetitions explicit and
facilitate outlier detection. 66

5.7 Interactively adjusting the similarity metrics threshold permits control
as to whether outlier phases are visualized explicitly or not. 67

6.1 Developers are provided with multiple views on a trace by using
different visualization techniques. 69

6.2 The time range constraint operation Ψ time-range-constraint. 71
6.3 The call tree removal operation Ψ call-tree-removal. The call trees triggered

by the "striped" call are removed from the trace. 72
6.4 A call graph abstracts from the sequential information stored in a

trace. Functions are depicted by circles; calls by edges or rectangles,
respectively. 73

6.5 The temporal overview (upper part) presents an overview of when
functions are active over a certain time (blue shaded areas). Addi-
tionally, it depicts which time range (shaded red) is shown in detail in
other views, e.g, the call stack view (lower part). 75

6.6 The call stack view presents the call stack for a time range of the trace
in detail. Three differed zoom levels are shown, i.e., different time
ranges are shown. The time marker in the center points to the same
time value in all diagrams. 78

List of Figures 149

6.7 The phases view presents the trace in a highly compact way that
permits quick navigation to those parts of the trace that are relevant
to a developer’s maintenance task at hand. 80

6.8 The filtering step for the phases view is based on a phase p in a pruned
trace (striped bar). All enclosing phases together with their subphases
remain in the filtered pruned trace. 81

6.9 A sequence of phases is compacted in three steps: (1) Assigning
identifiers according to phase similarity. (2) Calculating repetitive
patterns. (3) Folding the patterns. 83

6.10 The structure overview depicts the complete module hierarchy using a
21

2D treemap layout technique. Parts of the implementation that are
active during a specific execution can be visualized. 84

6.11 The collaboration view depicts how modules interact during a selected
part of the trace. 86

6.12 The call neighborhood view depicts for a given function the caller and
callee relations to other functions. Additionally, it depicts runtime
statistics on call relations. Furthermore, it shows how the functions
are part of higher-level modules. 88

6.13 The enriched code view presents the source code enriched with addi-
tional runtime information. 91

6.14 Multiple views are synchronized and linked to provide the developer
with different perspectives on trace data. 93

7.1 Those analysis techniques that support performing a maintenance task
(1) related to one specific system behavior and that (2) results in
a set of identified artifacts, can reasonably be combined with trace
visualization by steering the filtering step of trace presentation. In
this way, developers are provided with detailed information on the
execution context of the artifacts in the result set and receive support
in identifying the true positives in the result set. 96

7.2 The analysis process for identifying recently performed code changes
that unintentionally cause faulty system behavior. 99

7.3 For detecting behavior-affecting code changes, both code of executed
functions and code defining variables accessed from executed functions
have to be checked for modifications. 100

7.4 The temporal overview depicts function activity over time and permits
the detection of phases that are exercised while the system runs its
faulty behavior. 101

7.5 Trace visualization helps developers to understand the control depen-
dencies of a recently modified function. Trace visualization reveals
what happens before and after the function’s execution. 102

8.1 The functional decomposition and layered architecture of CGA. 104

150 List of Figures

8.2 Histogram of the performance measurements with and without NOP
instructions. The experiments were performed multiple times with
the building reconstruction feature of the brec software system of
virtualcitySYSTEMS GmbH. 108

8.3 A screenshot of the trace visualization tool illustrating that a trace
cleaned from massively called functions still contains the information to
understand how the higher-level functionality of building reconstruction
is implemented in the brec software system. 111

9.1 The brec software system of virtualcitySYSTEMS GmbH reconstructs
3D building models from point clouds. 114

9.2 The first 4 levels of caller-callee relations of the "timeless" call graph
illustrate the complexity of the trace taken from the brec software
system. The trace pruning algorithm automatically identifies key calls
in the trace. The respective functions are highlighted in the shown
graph (red diamonds). 115

9.3 The phases view reveals how the 111 buildings are reconstructed by
executing 3 key functions for each building. Each of these functions
calls a further function that is responsible for determining the roof
type of the building. 116

9.4 A developer detects a subtle failure in the LandXplorer software system
that did not exist a month earlier: The bridge becomes partly invisible
when zooming away from it. 117

9.5 The temporal overview, which depicts function activity over time,
makes it possible to detect those phases that are exercised while the
system is running its faulty behavior. 118

Erklärung der Selbstständigkeit

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich
gemacht zu haben.

Potsdam, den 13.10.2010 Johannes Bohnet

	1 Introduction
	1.1 Problem Statement
	1.2 The Approach in a Nutshell
	1.2.1 Scalable Technique for Recording Traces of C/C++ Software Systems
	1.2.2 Technique for Pruning Traces
	1.2.3 Technique for Providing Multiple Linked Views on Traces
	1.2.4 Technique for Combining Trace Visualization with 3rd Party Tools and Systems for Reverse Engineering
	1.2.5 Further Contributions

	2 The Context of Trace Visualization
	2.1 Software Maintenance
	2.1.1 Program Comprehension
	2.1.2 Reverse Engineering
	2.1.3 Dynamic versus Static Analysis Techniques

	2.2 Data Mining
	2.2.1 Mining Software Engineering Data

	2.3 Visualization
	2.3.1 Information Visualization
	2.3.2 Software Visualization
	2.3.3 The Visualization Pipeline

	2.4 Trace Visualization
	2.4.1 Definitions of Traces
	2.4.2 The Trace Visualization Process

	2.5 Extending Traces with Module Hierarchy Information
	2.5.1 Module Names and Function Semantics
	2.5.2 Reconstruction of Module Hierarchies

	2.6 Maintenance Tasks Facilitated by Trace Visualization

	3 Related Work
	3.1 Software Visualization
	3.1.1 Visualization of the Software System's Structure
	3.1.2 Visualization of the Software System's Evolution
	3.1.3 Visualization of the Software System's Behavior

	3.2 Trace Visualization
	3.3 Maintenance Tasks
	3.3.1 Fault Localization Techniques
	3.3.2 Feature Location Techniques

	4 A Scalable Technique for Tracing Function Calls in C/C++ Systems
	4.1 Tracing Techniques as Part of Scalable Trace Visualization
	4.2 Robust Execution-Time Instrumentation by Reverting Compile-Time Instrumentation
	4.2.1 Compiler-Supported Function Entry-Point Instrumentation
	4.2.2 Reverting Compile-Time Instrumentation
	4.2.3 Tracing by Execution-Time Instrumentation

	4.3 Automatically Detecting and Excluding Massively Called Functions during Tracing
	4.3.1 Event Buffer Management
	4.3.2 Detecting Massively Called Functions
	4.3.3 Deactivating Massively Called Functions at Execution-Time

	5 Pruned Traces - Splitting Traces into Phases
	5.1 Classifying Function Calls
	5.2 The Trace Pruning Algorithm
	5.3 Detecting Repetitive Behavior
	5.3.1 Phase Similarity
	5.3.2 Phase Fingerprints
	5.3.3 Phase Similarity Metrics

	6 Visualization Techniques for Traces
	6.1 Mathematical Operations on Traces
	6.1.1 Trace Filtering Operations
	6.1.2 Call Graph Operations

	6.2 Focusing on Temporal Order
	6.2.1 Temporal Overview - A Macroscopic View
	6.2.2 Call Stack View - A Microscopic View
	6.2.3 Phases View - Bridging the Gap between Microscopic and Macroscopic Views

	6.3 Focusing on Structure
	6.3.1 Structure Overview
	6.3.2 Collaboration View
	6.3.3 Call Neighborhood View

	6.4 Focusing on Source Code
	6.4.1 Enriched Code View - Enriching Source Code with Runtime Information

	6.5 Linking Views - Multiple Perspectives on Traces

	7 Applying Trace Visualization during Software Maintenance
	7.1 Combining Trace Visualization with other Analysis Techniques
	7.2 Maintenance Task: Identifying Recently Introduced Faults
	7.2.1 Behavior-Affecting Code Modifications in C/C++
	7.2.2 Analysis Process
	7.2.3 Fact Extraction
	7.2.4 Fact Analysis - Detecting Functions Affected by Code Changes
	7.2.5 Applying Trace Visualization - Exploring Functions within their Execution Contexts

	8 CGA - A Trace Visualization Framework
	8.1 Functional Decomposition
	8.1.1 Extraction Module
	8.1.2 Analysis Module

	8.2 Performance Measurements
	8.2.1 Performance Overhead with Deactivated Tracing
	8.2.2 Detecting and Excluding Massively Called Functions

	9 Case Studies related to Complex Software Systems
	9.1 Visualizing Traces for Locating Features
	9.1.1 Fact Extraction
	9.1.2 Fact Analysis - Applying the Trace Pruning Algorithm
	9.1.3 Fact Presentation
	9.1.4 Discussion on the Results

	9.2 Visualizing Traces for Identifying Recently Introduced Faults
	9.2.1 Fault: "Why does the bridge become invisible?"
	9.2.2 Fault: "Why is the Terrain Wizard missing?"
	9.2.3 Discussion on the Results

	10 Summary and Outlook
	10.1 Summary
	10.2 Outlook - Further Research Directions
	10.2.1 Evaluations - Controlled Experiments and Field Studies
	10.2.2 Enriching Traces with Information on System State
	10.2.3 Visualizing Multi-Threaded Software Systems
	10.2.4 Visualizing Service-Oriented Software Systems

	Bibliography

