
Towards Advanced and Interactive Web
Perspective View Services

Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

Hasso-Plattner-Institute at the University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany,
{benjamin.hagedorn|dieter.hildebrandt|doellner}@hpi.uni-potsdam.de

Abstract. The Web Perspective View Service (WPVS) generates 2D images of
perspective views of 3D geovirtual environments (e.g., virtual 3D city models)
and represents one fundamental class of portrayal services. As key advantage, this
image-based approach can be deployed across arbitrary networks due to server-
side 3D rendering and 3D model management. However, restricted visualization
and interaction capabilities of WPVS-based applications represent its main weak-
nesses. To overcome these limitations, we present the concept and an implementa-
tion of the WPVS++, a WPVS extension, which provides A) additional thematic
information layers for generated images and B) additional service operations for
requesting spatial and thematic information. Based on these functional extensions,
WPVS++ clients can implement various 3D visualization and interaction features
without changing the underlying working principle, which leads to an increased
degree of interactivity and is demonstrated by prototypic web-based client applica-
tions.

1 Introduction

Within spatial data infrastructures, geovisualization plays an important role
as it allows humans to understand complex spatial settings and to integrate
heterogeneous geodata from distributed sources on the visualization level.
For this purpose, the Open Geospatial Consortium (OGC) as a standardiza-
tion organization proposes several portrayal services for 2D and 3D geo-
data. So far, there is only one widely used “workhorse”, the Web Map Ser-
vice (WMS) [4], for generating 2D maps. Standards for visualizing 3D
geovirtual environments (3DGeoVEs) such as virtual 3D city models and

2 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

landscape models have not been elaborated to a similar degree. For por-
traying 3D geodata, two approaches have been presented: the Web 3D
Service (W3DS) and the Web Perspective View Service (WPVS).1

While the W3DS provides scene graphs that have to be rendered by the
service consumer, the WPVS supports the generation of images that show
2D perspective views of 3DGeoVEs encoded in standard image formats.
The key advantages of this image-based approach include low hardware
and software requirements on the service consumer side due to service-
side 3D model management and 3D rendering, and moderate bandwidth
requirements; only images need to be transferred regardless of the model
and rendering complexity. The weaknesses of the current WPVS approach
include the limited degree of interactivity of client applications. For exam-
ple, it is not possible to navigate to a position identified in the image or to
retrieve information about visible geographic objects (e.g., buildings).

To overcome these limitations, we propose the WPVS++, an extension
of the OGC WPVS that is capable of augmenting each generated color im-
age by multiple thematic information layers encoded as images. These ad-
ditional image layers provide for instance depth information and object
identity information for each pixel of the color image. Additionally, we
propose operations for retrieving thematic information about presented ob-
jects at a specific image position, simple measurement functionality, and
enhanced navigation support. This allows WPVS++ clients to efficiently
access information about visually encoded objects in images, to use that
information for advanced and assistant 3D navigation techniques, and
thereby to increase the degree of interactivity, which is demonstrated by
prototype implementations of two web-based clients.

The remainder of this paper is organized as follows. Section 2 describes
and analysis approaches for service-based 3D portrayal and reviews related
work. Section 3 presents the extended information model of the WPVS++;
the extended interaction model is proposed in Section 4. Section 5 de-
scribes our prototype implementation. Section 6 discusses results, and Sec-
tion 7 concludes the paper.

1 The W3DS has discussion status. The WPVS is an OGC-internal draft specifica-

tion and represents the successor of the OGC Web Terrain Server discussion
paper [15].

Towards Advanced and Interactive Web Perspective View Services 3

2 Background and Related Work

2.1 Service-Based 3D Portrayal

The OGC portrayal model [12] allows for three principle approaches for
distributing the tasks of the general rendering pipeline between portrayal
services and consuming applications [1]. These segmentations differ in the
type of exchanged data: either filtered geodata, or computer graphical rep-
resentations, or finally rendered images are provided. This leads to differ-
ent rendering capabilities and hardware and software requirements of the
portrayal services and the corresponding client applications.

The OGC Web 3D Service (W3DS) [13] generates 3D computer graphi-
cal representations, which are typically arranged as scene graphs and are
transmitted to the service consumer using 3D graphics formats (e.g.,
VRML, X3D, COLLADA). This graphics data can include appearance in-
formation, e.g., surface colors, but is not capable of carrying thematic in-
formation. These representations have to be processed and rendered at the
client side. Using the W3DS together with a powerful rendering client al-
lows for real-time navigation and interaction in the 3D scene. However, for
the provision of complex scenes by W3DS a high bandwidth is needed, as,
e.g., massive geometry and texture data must be transferred.

In contrast, the OGC Web Perspective View Service (WPVS) is a 3D
portrayal service for generating and providing finally rendered images of
perspective views of a 3D scene. A WPVS can provide high-quality visu-
alization, regardless of a client’s rendering capabilities, limited only by the
rendering engine of the server. As only standard images are transferred, the
WPVS can be used by more simple clients and in situations where avail-
able bandwidth is low. Additionally, server-side 3D rendering implies that
we do not rely on a possible driver, outdated or even unknown client-side
3D hardware, i.e., we do not have to handle client hardware configura-
tions. Using a WPVS, 2D views of complex 3DGeoVEs can be specified
by simple URLs and can be easily integrated into various applications and
systems such as web portals. Navigation in a base WPVS is step-by-step
and far from real-time interaction. We argue that this drawback can be at-
tenuated by intelligent loading and display strategies (e.g., image preload-
ing).

A major difference between WPVS and W3DS is in the application of
optimization strategies for rendering. In the case of W3DS-based portrayal,
optimization strategies such as tiling, culling, caching, and level-of-detail
mechanisms are implemented at the client side, which is in charge of se-

4 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

lecting the right data to load from the W3DS. So, the W3DS client builds
up a local context that is used for rendering. In contrast, with a WPVS op-
timization has to be implemented fully by the service, which does not pro-
vide any session management functionality. Thus, the WPVS rendering
system cannot make any assumptions about the data to load and render. In
worst case, an underlying (naive) rendering system would have to load and
render different data for each single WPVS request.

2.2 Remote Visualization

Remote visualization comprises various approaches that distribute render-
ing functionalities within a network. In such systems, the data to visualize
is processed remotely and transferred to a consumer as finally rendered
image or video, or in a form that can be processed and rendered by the
consumer more easily. Besides the OGC portrayal initiative, multiple other
projects tackle the field of remote 3D visualization [9, 10].

At the client side, rendering techniques can be differentiated according
to the type of data that is used as input for the rendering stage. They in-
clude, e.g., polygon-based rendering, point-based rendering, and image-
based modeling and rendering. While both polygon-based and point-based
rendering rely on geometry data, image-based rendering utilizes image in-
formation for deriving new views [3]. Image-based modeling includes
techniques for reconstructing geometric information from images [5].

Mobile 3D visualization is mainly based on the programmable 3D
graphics hardware that became available for mobile devices during the last
years. It supports rendering 3D data directly on the mobile client. Here, a
major challenge is to transfer geometry and texture data to the device. For
this, elaborated data formats and rendering techniques for texture compres-
sion and buffer compression, frame buffer tiling, and geometry culling are
required to reduce processing load and minimize power consumption [2].

2.3 Image Data and Formats

For rendering high-quality images, computer graphics hardware generates
and takes into account per-vertex and per-fragment information such as
vertex normal directions, texture coordinates, or depth values. This data is
also incorporated by various rendering techniques for implementing spe-
cialized visual effects, e.g., object highlighting, edge enhancement, or
ghost views. In computer graphics, the G-buffer [14] describes a concept
for retrieving and storing this additional image information, which can be
referred to as additional (i.e., non-color) image layers.

Towards Advanced and Interactive Web Perspective View Services 5

For enabling various visualization effects and techniques in post-
processing, formats for storing these image layers are required. Especially
for depth images, various work addresses data representation and transfer
[7, 16]. OpenEXR [11] represents a format that supports several image
channels in one image file, e.g., RGBA color values, luminance channels,
depth values, and surface normals; it was originally designed for storing
and editing high-dynamic-range (HDR) images.

Besides storing image layers as, e.g., arrays of float values, they can be
encoded as color images. Storing data as images allows for utilizing stan-
dard image formats and their capabilities for data compression, which is
crucial due to minimizing bandwidth usage when transferring image data
over networks. Typical image compression algorithms include lossless
Huffman encoding and Deflate. In [6], a technique that utilizes images as
an efficient means for encoding geometry is presented. For each image
layer type an encoding might exist that is more efficient than standard im-
age encodings. However, in a standardization proposal in the context of
service-oriented architectures, we rate more important the improved inter-
operability and reduced efforts for service consumers when using standard
image encodings.

Various image formats allow for specifying the degree of compression,
which leads to smaller data size, but possibly longer compression time and
reduced image quality. Further, while lossy compression is acceptable for
color values, it might be not for other image layers such as depth data.

3 Extending the Information Dimension

In this Section, we propose a concept for enhancing the WPVS by provid-
ing “semantic-rich” images, which complement the color images and serve
as a basis for enhanced interaction and navigation.

3.1 Image Layers

Besides color images, we propose that the WPVS generates additional im-
age layers storing information such as depth or object id values [14] for
each pixel of the image. Fig. 1 shows examples of such image layers. We
provide this additional data as separate images, in which each pixel value
does not necessarily encode a color and is not necessarily dedicated for
human cognition.

6 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of image layers that are provided by WPVS++: color layer (a),
depth layer (b), object id layer (c), normal layer (e), and mask layer (f). (d) shows
an orthographic projection for the same location of the camera and point-of-
interest.

Color Layer: A color layer contains a color value (e.g., RGB) for each
pixel. According to the current WPVS specification, the service consumer
can request a transparent background (RGBA), which requires image for-
mats that support transparency, e.g., PNG or GIF.

Depth Layer: A depth layer describes the distance to the camera for each
pixel. Depth images can serve for multiple effects, e.g., for computing 3D
points at each pixel of the image (image-based modeling) or for various
rendering techniques such as depth-of-field effects. Furthermore, depth in-
formation represents a major means to compose multiple images generated
from the same camera position.

Typically, graphics hardware provides logarithmic and linearized depth
values z ∈ [0, 1]. Different from this, we suggest providing depth values as
distances to the virtual camera in world coordinates that correspond to the
metrics defined by the requested coordinate reference system (CRS). This
representation abstracts from computer graphical details and the distance
values can be used without additional computation in many applications.

Towards Advanced and Interactive Web Perspective View Services 7

For this, each vertex p is transformed into camera space, and its lin-
earized and normalized depth to the camera zl is computed from its z-value
pz, and near plane near and far plane far. The graphics hardware interpo-
lates the depth values for each fragment of an image; the value 0.0 is re-
served for no-geometry fragments. In a second step for each image pixel,
the depth value depth is computed in world metrics:

nearfar
nearpz z

l −
−

=
(1)

)(nearfarzneardepth l −∗+= (2)

Due to linearization, the precision of the depth values is decreasing for
higher distances to the camera. For not reducing precision additionally,
high bit rates are required for storing depth values.

As a first approach, we store depth values in IEEE 32 bit Float represen-
tation as images by segmenting their byte representations and assigning
them to the color components of a pixel. Due to the direct storage as color
components, resulting depth images possess very little pixel-to-pixel co-
herence, and should not be stored by lossy image formats. Thus, we sug-
gest at least 32 bit (RGBA) images for this type of depth value storage.

Consequently, a service consumer has to recompose the depth values
from the color components of the requested depth layer.

Object Id Layer: An object id layer contains a unique id for each pixel
that refers to a scene object. Using this information, we can select all pix-
els that show a specific feature, e.g., for highlighting, contouring, or spa-
tially analyzing the feature. For facilitating consistent interaction across
multiple images, object ids should be unique over multiple requests. For
that, they could be computed from an object id that is unique for the whole
dataset.

Other Image Layers: In addition to the color, depth, and object id layers,
we identified the following image layers to be relevant for the WPVS:
• Normal Layer: Describes the direction of the surface normal at each pi-

xel. This could be used for the subsequent integration of additional light
sources and the adjustment of the color values around that pixel, e.g., for
highlighting scene objects. As a first approach, we encode normalized
normal vectors in camera space by encoding each vector component (x,
y, z) as color component (R, G, B) of a 24 bit color image.

• Mask Layer: Contains a value of 1 for each pixel that covers a scene ob-
ject and 0 otherwise. Thus, a mask layer can be stored as 1 bit black and

8 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

white image. It could support the easy altering of the scene background
or provide information about unused image space, which could be used,
e.g., for blending advertisement, labels, etc.

• Position Layer: Contains the 3D coordinate at each 2D pixel. This al-
lows the client to directly retrieve geo-position information, which, e.g.,
can be used for labeling or measurements.

• Category Layer: Classifies the image contents on a per-pixel basis; the
classification could be based on, e.g., feature types, object usages, or ob-
ject names. The category layer extends the so far described concept; it
consists of an object id layer and a look-up table that lists for each ob-
ject id the corresponding category (Fig. 2).

Fig. 2. A category layer consists of an object id layer and a category look-up table.
Here, the pixels are categorized according to the feature type.

Image Data Encoding: Encoding also non-color data by standard image
formats means to support the same principles for data encoding, data ex-
change, and client-side data loading and processing for all image data. Ad-
ditionally, using images allows for applying state-of-the-art compression
algorithms. For color data, which is dedicated for perception by humans,
lossy compression algorithms can be used; for this data, JPEG mostly
represents a suitable data encoding format. For data that requires exact
values for each pixel, lossless image compression must be applied. We
suggest PNG to encode this image data. PNG is also used for color images
that shall contain transparency.

Technically we encode JPEG images by 24 bit per pixel and PNG im-
ages by 24 or 32 bit per pixel. Higher data accuracies could be reached by
using image formats with higher bit rates, e.g., 32 (48) bit images or even
48 (64) bit images. Drawbacks include increased image size and, thus,
transfer load, and processing time at both the service-side and the con-
sumer-side.

Towards Advanced and Interactive Web Perspective View Services 9

3.2 Image Sets

Various applications could require to fetch multiple, spatially coherent im-
age layers from the WPVS++. As the WPVS is a stateless service (i.e.,
each service request is self-contained and its processing is independent
from any preceding request), it potentially has to fetch, map, and render
disjunctive sets of geodata for each service request. In particular, this is
relevant when considering large 3DGeoVEs or remote data sources to be
visualized.

From a performance point of view, it is better to support multiple image
layers within a single WPVS++ response. Provided that the requested
views are spatially coherent (i.e., they are located close to each or have
overlapping view frustums), this could reduce the number of switches of
the rendering context. As an additional benefit, the network communica-
tion overhead caused by multiple requests is reduced.

These image sets could provide multiple images layers for the same
camera specification (e.g., a set consisting of a color layer, depth layer, and
object id layer) as well as images for different camera specifications (e.g.,
perspective views along a path through the 3D world).

3.3 Convenient Camera Specification

The current OGC WPVS provides a camera specification that is based on a
point-of-interest (POI) and is not convenient for many applications. For
example, specifying a setting that shows a view out of a window to a spe-
cific point in the 3D world demands for laborious computations for deriv-
ing distance, pitch, yaw, and roll angles.

As various applications could profit from a different specification of the
view frustum, we suggest replacing the camera specification by another
one that is based on only three vectors: the 3D coordinate of the camera
position (POC), the 3D coordinate of the point-of-interest (POI), and an
optional camera up vector (UP) for specifying camera rolls (List. 1). Fur-
thermore, parameters for near plane and far plane are required; they de-
scribe the culling volume used during the rendering process and are neces-
sary, e.g., for the generation and usage of depth image layers. For the
specification of distorted images, we suggest replacing the angle-of-view
parameter by a field-of-view angle in degrees in horizontal direction
(FOVY) and to complement it by the optional vertical angle (FOVX). If
FOVX is not specified, it is derived from the image dimensions.

10 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

3.4 Additional Projection Types

The current OGC WPVS is intended for central perspective projections
only. Complementary, an image-based 3D portrayal service could offer
additional projection types, such as orthographic projections, which are
used, e.g., for architectural applications.

For extending the WPVS++ for orthographic projections, we suggest an
alternative camera specification Orthographic that is controlled by the
parameters Left, Right, Top, and Bottom, which describe the borders
of the cuboid view frustum (List. 1).

Beyond perspective and orthographic projections, a 3D portrayal service
could support more advanced projection types such as panoramic views
(i.e., field-of-view larger than 180 degrees) or multi-perspective views [8].2
While some of these projections could be generated from 2D images as
provided by the current WPVS implementation, others require geometric
information and, thus, are an integral part of the rendering process and
need to be implemented by the 3D portrayal service itself.

3.5 Extended GetView Operation

A WPVS++ GetView request mainly specifies the datasets to include,
visualization styles to apply, and a camera specification; this information
can be called image context. Adding the concept of multiple image layers,
a WPVS++ image context could be specified as described in List. 1.

Style specifications within this image context are dedicated and applica-
ble only for requested color images. Parameters for the requested image
layers allow for specifying their contents, e.g., a category image could be
parameterized with the category to apply (e.g., feature type or building us-
age) and mask images could be generated for specific features (e.g., speci-
fied by GML-id). Using this image context definition, the WPVS++ Get-
View operation is modified and extended in respect of multiple camera
specifications as described in Listing 1.

4 Extending the Interaction Dimension

We consider the support of interaction with the generated image as a main
requirement of the WPVS++. This includes techniques for maneuvering

2 Due to possible non-perspective projections, the name of the WPVS++ should be
adapted in future, e.g., to Web View Service.

Towards Advanced and Interactive Web Perspective View Services 11

the virtual camera through the 3D world and for retrieving information
about the visualized objects. In this section, we describe extensions of the
WPVS that support navigation within and information retrieval from the
rendered images.

Listing 1. Extended interface of the WPVS++.

OP GetView (mand.)
 IN
 ImageContext(1,n)
 OUT
 Image(1,n): Image

OP GetCategory (opt.)
 IN
 CategoryType: string
 ObjectId: integer
 OUT
 Category: string

OP GetPosition (opt.)
 IN
 ImageContext: ImageContext
 Coordinate2D(1,n): Vector2D
 OUT
 Coordinate3D(0,n): Vector3D

OP GetFeatureInfo (opt.)
 IN
 ImageContext: ImageContext
 Coordinate2D(1,n): Vector2D
 ResponseFormat: string
 OUT
 FeatureInfo(0,n): anyType

OP GetNavigationCamera (opt.)
 IN
 ImageContext: ImageContext
 Coordinate2D(1,n): Vector2D
 NavigationType: MoveCamera
 ResponseFormat: string
 OUT
 Camera : Camera

OP GetMeasurementResult (opt.)
 IN
 ImageContext: ImageContext

 Coordinate2D(2,*): Vector2D
 MeasurementType: PATH | AREA
 ResponseFormat: string
 OUT
 MeasurementResult: string

TYPE Camera
 PointOfCamera: Vector3D
 PointOfInterest: Vector3D
 UpVector: decimal (opt.)
 Proj: Perspective|Orthographic
 NearPlane: decimal
 FarPlane: decimal

TYPE Perspective
 FovY: decimal
 FovX: decimal (opt.)

TYPE Orthographic
 Left: decimal
 Right: decimal
 Top: decimal
 Bottom: decimal

TYPE ImageContext
 CRS: string
 Dataset(1,k): Dataset
 BoundingBox(0,1): BoundingBox
 Style(1,k) : string
 SLD(0,1): SLD-Ref
 Camera(1,m): Camera
 Width: integer
 Height: integer
 ImageLayer(1,n): ImageType
 OutputParameter(0,n): string
 OutputFormat(1,n): string

ENUM ImageType
 { COLOR, DEPTH, OBJECTID,
 NORMAL, MASK }

As described, feature-related information could be bulk-loaded to a

WPVS++ consumer as non-color layers, e.g., object id layers or category

12 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

layers. This is particularly useful, when this data is required for a lot of
pixels of the image, as bulk loading avoids the transmission overhead
caused by multiple requests. However, if only sparse information is
needed, or in the case of a very simple client, an operation for requesting
particular feature information at a 2D pixel position would be suitable;
transfer load would be reduced and a client would not have to parse and
evaluate the whole image layers.

4.1 Requesting 3D Coordinates

Retrieving 3D geocoordinates for a specific 2D pixel position in a gener-
ated image is useful for many applications (e.g., for specifying the position
of a defect fireplug). For this, we propose a WPVS++ operation GetPo-
sition (Listing 1). As the WPVS++ is stateless, in addition to the 2D
pixel position the image specification of the original GetView request has
to be part of the GetPosition request. This operation is highly useful
for navigation in the visualized 3DGeoVE: A user could select two posi-
tions in the image that specify the desired point of camera and point of in-
terest; the client requests corresponding 3D coordinates, and uses these for
specifying the camera in a subsequent GetView request.

4.2 Requesting Feature Information

Similar to the WMS, a GetFeatureInfo operation should provide ex-
tra information about the geoobjects at a specific pixel position. This op-
eration could either provide domain-specific or any potentially useful in-
formation to the consumer. According to the underlying data source and its
capabilities, various response formats could be supported, e.g., attribute
names and values in XML format or even GML structured data sets. Addi-
tional formats can be supported and specified as mime type within the ser-
vice request. In the case of structured responses (e.g., in GML format), the
WPVS operation GetDescription can be used for retrieving schema
information for specific datasets.

4.3 Navigation based on Picking

Navigation represents a fundamental interaction type for 3DGeoVEs. From
virtual globes and online map systems users know to navigate by using
mouse and keyboard in a real-time interactive manner. However, espe-
cially due to the image-based approach, the WPVS inherently provides

Towards Advanced and Interactive Web Perspective View Services 13

only non-real-time step-by-step navigation. Assistant navigation tech-
niques could compensate that drawback and allow a user to interact with
the image, e.g., by sketching a desired point of interest. The portrayal ser-
vice automatically interprets this navigation input, taking into account
scene objects, their types, and their navigation affordances, and computes
and responds a camera specification, which can be used for requesting the
corresponding view.

Fig. 3. Changing the camera orientation and position; the camera is oriented to the
selected object, moved there while keeping its height, and finally looks down in a
specified angle. Side view (top) and top view (bottom).

However, complex, arbitrary, or domain-specific navigation techniques
can hardly be defined and described in a formal interface specification.
Because of that, we propose an optional generic operation GetNaviga-
tionCamera that can compute and provide a meaningful camera specifi-
cation for a 2D pixel position (List. 1). For virtual 3D city models, we sug-
gest a comprehensible navigation technique that supports a user in moving
closer to a selected object. This technique moves the camera toward the
center of the bounding box of a selected object, while the camera height is
kept constant; finally, the camera is positioned in a specified angle above
the object (Fig. 3). This ensures that the camera is only moved along a line
of sight keeping the probability of occlusion low.

4.4 Measurement based on Picking

Measuring within a requested view represents a main functionality used to
retrieve information about the spatial extent of geofeatures, their spatial re-
lationships, and the overall spatial layout of a 3D scene. Hence, WPVS++
should support the measurement of distances, paths, and areas (List. 1):
• Path measurement: Computes the sum of the Euclidean distances bet-

ween the 3D positions derived from each pair of consecutive 2D pixel

14 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

positions. If only two 2D pixel positions are provided as input, the
WPVS++ performs distance measurement.

• Area measurement: Computes the area which is outlined by the input
points. In 3D, area measurement is not straight forward, as the derived
3D points are not likely to be coplanar. Projecting the 3D points onto a
horizontal 2D plane would be a straight forward solution for this prob-
lem. More accurate algorithms are possible, e.g., computing a best fit-
ting plane for projection or applying differential techniques to the prob-
lem.

5 Implementation

5.1 WPVS++

For demonstrating the applicability of the proposed concepts and exten-
sions, we have implemented a prototype of the described WPVS++ service
and tested it with a virtual 3D city model. This implementation is based on
the Virtual Rendering System (VRS). The demo dataset is given in 3DS
format. Thus, only object names and unique object ids can be requested via
GetFeatureInfo operation. The service is accessed by an HTTP inter-
face on top of TCP/IP.

For showing the applicability of the WPVS++, we have implemented
two client applications, which differ in their requirements concerning
processing power, rendering capabilities, and degree of interactivity.

5.2 Lightweight JavaScript Client

As example of very lightweight clients, we implemented a JavaScript-
based client, which can be run in a web browser without additional plug-
ins or libraries. This client just requests and displays color images by
HTML elements. It provides step-by-step navigation such as
moving left/right, tilting up/down, or rotating around the POC or POI. For
each navigation step a new image is requested and displayed.

Moreover, this client takes advantage of the GetPosition operation
for retrieving 3D coordinates for changing the virtual camera’s orientation
and for implementing a “move there and orient here” navigation. The
GetFeatureInfo operation is used for retrieving object information
about features in the image.

Towards Advanced and Interactive Web Perspective View Services 15

Fig. 4. Java-based interactive web client. Object selection by using the object id
layer (upper left); distance measurement by calculating 3D positions from the
depth layer (upper right); moving the camera to a selected object by requesting
GetNavigationCamera (lower left and right).

5.3 Java-based Client

A second client application (Fig. 4) implements functionalities for image
processing and rendering; thus, it requires more processing power. It is
Java-based and can be integrated into a web page as a Java applet, which
also allows for a broad range of applications.

16 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

In addition to the color layer, this client also requests object id and depth
layers. Object ids are used for selecting objects of the image. When an ob-
ject is selected, the client highlights all the pixels that belong to this object
and emphasizes its contour. Depth data is used for computing the 3D point
at each pixel of the image. Using this, the client provides an interactive
distance measurement tool. After selecting an image position, the distance
from this point to the 3D point under the mouse cursor is computed and
displayed as an image overlay.

6 Results and Discussion

6.1 Measuring the WPVS++ Response Behavior

Our current WPVS++ implementation provides only a single rendering
server. Thus, synchronous requests are processed sequentially. For measur-
ing the service’s response behavior, the Java client stressed the WPVS++
by repeatedly requesting 120 color, depth, and object id layers. Up to 10
requests have been sent in parallel. Furthermore, the performance of multi-
part responses was tested by requesting 40 image sets (color, depth, and
object id layer). The test was performed in an intranet environment; ren-
dering was performed on a desktop PC (2.4GHz double core, 2 GB RAM,
NV GeForce 7900 GS), the Java client was executed on a different PC
connected to the network.

Table 1 lists the number of images per second that the service can ren-
der, compress and send, and the client can decompress. Generally, provid-
ing multiple images in one response via HTTP multipart provides higher
throughput than requesting each image layer separately. This could be
caused by reduced message overhead, i.e., sending and processing the re-
quests. The gain increases for smaller images.

Table 1. Maximum number of processed requests per second when requesting
color layer, depth layer, and object id layer separately (single part response) or
within a single request (multipart response) using three image sizes.

 256 x 256 512 x 512 1024 x 1024
Single part response 4.7 3.0 1.5
Multipart response 13.9 5.7 2.6
Factor 2.95 1.90 1.73

Towards Advanced and Interactive Web Perspective View Services 17

6.2 Measuring the Size of Image Layers

We logged the size of generated and transferred image layers while navi-
gating through a virtual 3D city model at the Java client. For an overall
number of 370 camera positions, the client requested color layers (24 bit
JPEG), depth layers (32 bit PNG), and object id and normal layers (24 bit
PNG each) in a size of 512 x 512 pixels. The navigation process included
overviews as well as pedestrian views. While the depth layer accounts for
nearly two-thirds of the transmitted data, object id layer and normal layer
play only a minor role (Table 2). This is because for depth layers, only low
compression rates can be reached, due to the little pixel-to-pixel coher-
ence. Thus, alternative encodings for mapping depth values to image data
are required in order to reach better compression rates.

Table 2. Image layer size in Kbytes when navigating through a virtual 3D city
model and percentage of each image layer type.

 Minimum Maximum Average Avg. percentage
COLOR 8.37 126.11 77.95 0.25
DEPTH 5.98 725.22 199.63 0.64
OBJECTID 3.50 19.05 9.56 0.03
NORMAL 3.50 85.95 24.30 0.08

6.3 Comparison to full 3D Geovirtual Environments

Compared to full 3DGeoVEs, the WPVS++ provides only visual represen-
tations. Modalities such as auditory or tactile perception, are not addressed.
However, provided a sufficient bandwidth, we assume high usability rates
for applications and systems based on the WPVS++.

Navigation capabilities mainly depend on the functionality of the clients
that consume the WPVS++. Simple clients can provide a step-by-step
navigation based on requesting and displaying single views. For this, the
additional GetPosition operation facilitates an easy and targeted cam-
era manipulation. Based on depth information, more complex clients could
apply, e.g., image-based rendering techniques for providing more conven-
ient and close to real-time visualization and navigation functionality.

Regarding object interaction, the WPVS++ supports retrieving informa-
tion for individual objects of the scene. Object manipulation capabilities
are limited: For persistent manipulations of feature geometries and attrib-
utes the original data sources must be accessible, e.g., via a Web Feature
Service (WFS) [17]. For user-defined appearance manipulation, effective
styling mechanisms and specifications are required.

18 Benjamin Hagedorn, Dieter Hildebrandt, and Jürgen Döllner

7 Conclusions and Future Work

In this work, we present and discuss the WPVS++, an extended version of
the OGC Web Perspective View Service (WPVS), which aims at enhanced
interaction and navigation capabilities. The WPVS++ includes functional-
ities for the exploration and analysis of presented 3DGeoVEs by simple
clients, e.g., by requesting 3D positions, retrieving object ids and measur-
ing distances. Additionally, the WPVS++ provides non-color image layers,
which represent thematic information and can be utilized for enhancing
client-side interaction. We demonstrate the implementation of major
WPVS++ features with two different client applications and a common
application example.

The extended WPVS++ contributes to making complex and massive
3DGeoVEs accessible and interactively usable. Due to the HTTP-based in-
terface, it can be easily integrated into web-based applications and sys-
tems, e.g., for urban planning, public participation systems, location mar-
keting, or threat or emergency response. The additional non-color image
layers of the WPVS++ facilitate advanced image processing capabilities
within spatial data infrastructures, e.g., for image-based annotation of the
3DGeoVE or for advanced rendering effects. Within a spatial data infra-
structure, the WPVS++ could serve as frontend to a Web 3D Service
(W3DS): The WPVS++ could request the 3D data as scene graph from
W3DS, and render and distribute images.

In future work, we plan to fully implement the proposed functionalities,
to further formalize the extension concepts, and to research techniques for
further improving the interaction process in terms of efficiency and inter-
activity. For example, we will investigate how to better compress depth
image layers while still using standard encodings. As a further task, we
will extend the client application by image-based rendering techniques for
better using the potentials of the image-based portrayal service. Addition-
ally, we will investigate the service-based provisioning of non-
photorealistic rendering and illustrative depictions, which could support
and ease the cognition of 3D views.

References

1. Altmaier A, Kolbe Th (2003) Applications and Solutions for Interoperable 3D
Geo-Visualization. In: Fritsch D (ed) Photogrammetric Week. Wichmann

2. Capin T, Pulli K, Akenine-Möller Th (2008) The State of the Art in Mobile
Graphics Research. Computer Graphics Application 28(4):74–84

Towards Advanced and Interactive Web Perspective View Services 19

3. Chang C and Ger S (2002) Enhancing 3D Graphics on Mobile Devices by
Image-Based Rendering. In: Proc. of the 3rd Pacific Rim Conference on Mul-
timedia (PCM ‘02), Springer, pp 1105–1111

4. de la Beaujardiere J (2006) OpenGIS Web Map Server Implementation Speci-
fication. Version 1.3.0, Open Geospatial Consortium Inc.

5. Faugeras O, Laveau S, Robert L, Csurka G, Zeller C (1995) 3D Reconstruc-
tion of Urban Scenes from Sequences of Images. In: Gruen A, Kuebler O,
Agouris P (eds) Automatic Extraction of Man-Made Objects from Aerial and
Space Images. . Birkhuser, pp 145–168

6. Gu X, Gortler SJ, Hoppe H (2002) Geometry images. ACM Trans. Graph
21(3):355–361

7. Lapidous E, Jiao G (1999) Optimal depth buffer for low-cost graphics hard-
ware. In: Proc. of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware (HWWS ‘99). New York, ACM, pp 67–73

8. Lorenz H, Trapp M, Jobst M, Döllner J (2008) Interactive Multi-Perspective
Views of Virtual 3D Landscape and City Models. In: Proc. of the 11th AGILE
Int. Conf. on GI Science. Springer

9. Nadalutti D, Chittaro L, Buttussi F (2006) Rendering of X3D content on mo-
bile devices with OpenGL ES. In: Proc. of the 11th Int. Conf. on 3D web
technology (Web3D ‘06). New York, pp 19–26

10. Nurminen A (2008) Mobile 3D City Maps. In: IEEE Computer Graphics and
Applications 28(4):20–31

11. OpenEXR documentation. http://www.openexr.com/documentation.html
(14.06.2009).

12. Percivall G (ed) (2008) OGC Reference Model. Version 2.0, Open Geospatial
Consortium Inc.

13. Quadt U, Kolbe Th (ed) (2005) Web 3D Service, Version 0.3.0, OGC Discus-
sion Paper, Open Geospatial Consortium Inc.

14. Saito T, Takahashi T (1990) Comprehensible rendering of 3-D shapes. In:
SIGGRAPH Computer Graphics 24(4):197–206

15. Singh RR (ed.) (2001) Web Terrain Server (WTS). Version 0.3.2, OGC Dis-
cussion Paper, Open Geospatial Consortium Inc.

16. Verlani P, Goswami A, Narayanan PJ, Dwivedi S, Penta SK (2006). Depth
Images: Representations and Real-Time Rendering. In: Proc. of Int. Symp. on
3D Data Processing Visualization and Transmission, pp 962–969

17. Vretanos PA (ed) (2005) Web Feature Service Implementation Specification.
Version 1.1.0, Open Geospatial Consortium Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

