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Abstract 
 

For visual perception of 3D models, shading plays 
one of the major roles. The shading quality of level-of-
detail models is limited generally because existing LOD 
algorithms assume a conceptually smooth surface. A 
complex mesh, however, is likely to have conceptually 
smooth and angular parts. We introduce an extension to 
the progressive mesh LOD approach that efficiently 
handles triangle meshes with large numbers of shading 
discontinuities. For this the algorithm distinguishes three 
principal shading situations for mesh vertices: com-
pletely continuous shading, completely discontinuous 
shading, and mixed continuous/discontinuous shading. 
Remarkably, the algorithm does not introduce any over-
head for completely smooth surfaces. As one field of 
application, we briefly outline its application for LOD 
representations of 3D city models. 

 
 

1. Introduction 

Multiresolution modeling aims at reducing the com-
plexity of 3D models to optimize rendering performance, 
storage, or data transmission. Various algorithms and 
data structures have been developed in the past to cope 
with this task. A prominent example represents the pro-
gressive mesh representation [5] used to generate LOD 
approximations of triangle meshes.  

Most multiresolution modeling techniques are de-
signed for and operate on implicitly smooth surfaces. In 
the case of complex polygon meshes, however, we can-
not always assume implicit surface smoothness, for ex-
ample in the case of most man-made or machine-made 
objects. In these cases, the visual characteristic of the 
polygon meshes is determined to a considerable degree 
by angular parts, represented by hard edges. Figure 1 
compares results from LOD representations that do and 
do not distinguish hard and soft edges. From a rendering 
perspective, hard edges represent shading discontinuities, 
common vertices of adjacent polygons do not share ver-
tex normals (Figure 2).  

For any kind of surface shading, vertex and face 
normals are essential, because they represent the main 
parameters for illumination and shading calculations.  

   
Figure 1. LOD representation of complex 3D buildings without (left) and with (right)  

distinguished smooth and angular parts (left).  



 

We distinguish between three principal shading 
situations at mesh vertices: completely continuous shad-
ing, completely discontinuous shading, and mixed con-
tinuous/discontinuous shading. The partitioning enables 
us also to handle the shading discontinuities in a mem-
ory-efficient manner. Since the data transfer between 
application memory and graphics hardware represents the 
core bottleneck in real-time rendering (as well as in the 
case of progressive transmission of data), the efficient 
handling of vertex normals in general, and the efficient 
handling of different types of normals are essential for an 
implementation of the progressive mesh technique.  

2. Related Work 

Simplification algorithms for polygon meshes mostly 
use one of the following four local operations: vertex 
clustering (e.g., [8][10]), vertex removal (e.g., 
[12][13][15]), face collapsing (e.g., [3][4]), and edge 
collapsing (e.g., [5][7][17]) or a generalization of the 
latter (e.g., [2][9]). Our approach can be applied to ex-
tend any simplification algorithm that is exclusively 
based on edge collapsing (Figure 3) or the more general 
pair contraction [2]; we therefore discuss related work in 
this context. 

Hoppe introduced the progressive mesh data-
structure [5], which has been used and extended by sev-
eral authors (e.g. [1][2][11][16]). It efficiently stores a 
sequence of simplified meshes, beginning with the sim-
plest mesh (base-mesh) and ending with the original one. 
The central idea is to take advantage of the reverse col-
lapse operation (split operation). A progressive mesh 
consists of the explicitly stored base-mesh and a se-
quence of split operations.  

For creation, Hoppe [5] uses an energy function con-
sidering the surface geometry, scalar attributes, and at-
tribute discontinuities to select edges to be collapsed and 
to determine positions of new vertices.  

One known way to manage shading discontinuities is 
to replicate the vertices at the corresponding sharp edges. 
This is applicable for meshes for which the number of 
shading discontinuities is small in comparison to the 
mesh complexity. But if these discontinuities are pre-
dominating in the mesh, the replication of all these verti-
ces would involve considerable overhead in memory and 
performance. In addition, simple replication of vertices 
introduces problems during the simplification addressed 
in [6], in which Hoppe suggests a flexible concept to 
implement the progressive mesh data-structure. This 
implementation is also able to manage meshes with at-
tribute discontinuities by associating scalar attribute 
values not with vertices, but with wedges [6]. A wedge is 
a set of vertex-adjacent corners whose attributes are the 
same. This concept is well suited for many types of 
meshes, but not for those with a large number of shading 
discontinuities, which we are especially interested in: For 
example, in a 3D city model, it is not improbable that the 
model contains approximately exclusively face normals. 
Since each wedge belongs to a singular vertex, the face 
normal of most triangles had to be stored in three 
wedges. 

Garland presented in [2] the quadric error metrics, 
which achieve a connection of high quality approxima-
tions and short pre-calculation time. During the pre-
calculation for each vertex a quadric is stored consisting 
of a symmetric 4×4 matrix, a 3-vector and a scalar. The 
quadrics are used to quickly calculate the sum of squared 
distances of a given point from a set of planes being 
represented by the quadric. Hoppe [7] extends this con-
cept by support for scalar attributes at vertices, e.g., ver-
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Figure 2. Polygon mesh containing both smooth 

and angular parts (A-B, B-C). Even edges of a 
single polygon (B) can exhibit both soft and hard 

edges. 
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Figure 3. Result of an edge-collapse operation. 
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Figure 4. An input mesh with one hard edge. 



 

tex normals or texture coordinates. These extensions are 
orthogonal to our extensions and could be used to im-
prove the quality of the simplification on smooth regions. 
Since meshes with large numbers of shading discontinui-
ties consist mainly of non-smooth regions, we used the 
simple variant of Garland’s algorithm [2], which is fast 
and easy to implement.  

3. Algorithm 

Input.  The input of the algorithm consists of four 
arrays. The mesh geometry is specified by a vertex array 
and a related index array. The normal of each mesh cor-
ner is specified by a normal array and a related normal-
index array. Each triangle is represented by a sequence 
of three indices. The term corner denotes a (ver-
tex,triangle) tuple according to [6]. The normal at the 
corner (v, T) specifies the normal for T at vertex v. We 
assume that two normals n1 and n2 are equal if and only if 
their indices i1 and i2 are identical. Two or more corners 
share a common normal if and only if their correspond-
ing normal indices are equal (Figure 4). 

 
Vertex Types. We distinguish different types of ver-

tices and triangles, which form central elements of our 
algorithm. They are defined in the following:  

We call a vertex v shared-normal vertex (SN-
vertex), if all corners that are adjacent to v have a com-
mon normal at v (Figure 5a). In the neighborhood of an 
SN-vertex, the surface appears smooth. If v does not 
fulfill the SN-condition (Figure 5b), we call it a non-
shared normal vertex (NSN-vertex). 

 
Triangle Types. Based on this classification of ver-

tices, we distinguish three different types of triangles. 
We call a triangle T an SN-triangle if all vertices of T are 
SN-vertices. If T is no SN-triangle, but has a face normal, 
i.e., all its vertices have a common normal, we call it an 
FN-triangle, otherwise T is referred to as NSN-triangle. 
The algorithm brings most profit for meshes with a large 
number of shading discontinuities, i.e., a large number of 
FN-triangles. 

 
The algorithm is subdivided into three phases 

(Figure 6): Restructuring of the mesh data, processing the 
simplification steps based on an adapted simplification 

algorithm, and finally constructing the resulting progres-
sive mesh.  

8.1. Restructuring of Mesh Data (Phase I) 

This phase restructures the given data into a form 
that allows us to handle vertices and triangles of different 
types separately.  

In the first step, we partition the vertex array into 
two sections, the first containing SN-vertices, the second 
containing NSN-vertices. For this, we have to implement 
two methods first: 
− Inquiring vertex classifications. The method 

isSNvertex(int v) returns true, if all adjacent 
triangles of the vertex v have the same normal index 
at v. 

− Permuting vertex indices. The method swapVerti-
ces(int a, int b) swaps two vertices and up-
dates the index array, so that this swap does not 
change the mesh geometry. 

In the next step, the index array is partitioned into SN-
triangles, FN-triangles, and NSN-triangles. Here, swap-
ping two triangles means to swap their indices and the 

 

a) Example of an SN-vertex. b) Example of an NSN-vertex.  
Figure 5. Different types of vertices. 
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Figure 6. Process overview: The arrays on the left of 
each arrow has been newly created in the previous 
stage, the ones on the right has been sustained or 
changed. 



 

corresponding normal indices to keep both index arrays 
consistent. We start partitioning with swapping the SN-
triangles to the front of the index array. 2) Having di-
vided the index array into two sections – the first one 
containing the SN-triangles, the second one the remain-
ing ones – we continue with the second section of the 
index array and divide it further into FN-triangles and 
NSN-triangles. 

Now, based on the partitioned index array, we can 
replace the normal-index array by three new ones: 

1) SN-normal indices. It contains exactly one index 
per SN-vertex. 

2) FN-normal indices. It contains exactly one in-
dex per FN-triangle. 

3) NSN-normal indices. It contains exactly one in-
dex per NSN-triangle corner. 

We obtain these arrays as follows: 
1) The normal index of an SN-vertex v is the cor-

ner normal-index of (v,T) for an arbitrary trian-
gle T being adjacent to v. 

2) The normal index of an FN-triangle T is the 
normal index of an arbitrary corner of T. 

3) The normal indices for the NSN-triangles can 
simply be taken from the original normal-index 
array. 

8.2. Processing Simplification Steps (Phase II) 

In our algorithm, we use pair contraction [2] for 
mesh simplification. This represents a generalized ver-
sion of the edge-collapsing method: Edge-collapsing 
corresponds to pair contraction restricted vertex pairs that 
represent edges. Contractions can be represented by a 

data structure that consists conceptually of the following 
elements: 

 
 

struct Contraction { 
  Vertex p; 
  Vertex q; 
  List<Vertex> lv; 
  List<Triangle> lt; 
  List<Corner> ct; 
}; 
 

For a given contraction c, vertex p is replaced by a 
vertex q, i.e., p gets lost. In lv, we store additional verti-
ces that get lost, namely those vertices that exclusively 
belong to triangles containing both p and q. In lt, we 
store lost triangles, i.e., those triangles that contain both 
p and q. In ct we record changed triangles, i.e., triangles 
T containing p but not q. Thus, ct contains all corners 
(p,T) for which q is not a corner of T. 

If we use optimal placement, i.e., moving q to a new 
position (which might not correspond to an existing ver-
tex), we extend the contraction data-structure by a vector 
delta encoding the translation vector of q.  

To avoid obvious visual artifacts in the resulting 
simplified mesh, two conditions must be met when re-
placing a vertex p by another vertex q: 

a) If p and q are part of a smooth surface, this sur-
face should remain smooth in the neighborhood 
of q, i.e., q should keep a shared vertex-normal. 
Otherwise, the resulting shading discontinuities 
would be more striking than the simplification 
itself (Figure 7, Figure 8). 

b) The face normal of an FN-triangle should not be 
changed due to a contraction (Figure 9), as this 
would strengthen the visibility of the geometri-
cal modification.  

Since the handling of different normal types should not 
restrict the simplification process in the choice of a ver-
tex pair to contract, we need to take into account the 
following configurations: 
− Each of the vertices p and q can be of arbitrary type 

(SN or NSN). 
− Each changed triangle can be of arbitrary type (SN, 

FN, or NSN). More exactly, there is one exception: 
If p is an NSN-vertex, a changed triangle cannot be 
of type SN. 

 

q p q 

 
Figure 7. To avoid visual artifacts, smooth sur-

faces must remain smooth. 

 

Figure 8. The sphere on the left is simplified 
without regarding rule a). The picture on the 
right shows the sphere in the same level of 

detail with preserved SN-vertices. 
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Figure 9. Face normals should not be changed 

due to a contraction. 



 

Particularly, we must ensure that we always have a well-
defined normal for every corner of the mesh. Fortunately, 
most cases need not be handled explicitly: 

(i) The normals of FN-triangles and NSN-triangles 
will not be affected because their normals are 
defined explicitly in the corresponding normal-
index arrays. 

(ii) If p is an NSN-vertex, there cannot be any SN-
triangle adjacent to p. 

(iii) If p and q are both SN-vertices, any changed 
SN-triangle gets the new normal at the changed 
corner implicitly via the index q.  

Note that the conditions a) and b) are fulfilled because of 
properties (iii) and (i). The only problem is the case in 
which p is an SN-vertex and q an NSN-vertex. If there is 
any SN-triangle T that is changed but does not vanish 
during the contraction, the normal of the corner (q, T) 
will be undefined after the contraction (Figure 10, Figure 
11). In this case we need to modify the contraction such 
that after its application the following properties hold: 

I. The normal of (q,T) is well-defined for all 
changed triangles T. 

II. The resulting mesh geometry is the same as it 
would be after the application of the unmodified 
contraction. 

To meet condition I. we replace q by p instead of replac-
ing p by q. If we use optimal placement, condition II. is 
already met by this modification, because it does not 
matter whether we replace p with q and move q to the 
new position or vice versa. If we use subset placement, 
we can also meet both conditions by swapping in addi-
tion the positions of p and q in the vertex array. In the 
case of subset placement, therefore, we need to extend 
our contraction data-structure by an additional Boolean 
value swapVectors to store whether the position vec-
tors have been swapped due to the contraction. 

8.3. Creating the PM Structure (Phase III) 

After completing Phase 2 the mesh is now simplified 
to the base mesh [5]. We can reconstruct the original 
mesh by applying the inverse operations to the contrac-

tions, the splits. Those vertices and triangles that are not 
relevant for the current progressive mesh are called inac-
tive. 

For a given contraction, we would waste memory if 
we would store lost triangles, lost vertices, and p explic-
itly. A better method is to arrange vertices and indices 
according to the contraction sequence, so that the inac-
tive vertices (resp. triangles) can be found at the end of 
the vertex array (resp. index array) in every state of the 
progressive mesh [14]. Our algorithm adapts this idea: 
We subdivide each section into subsections for active 
and inactive elements (Figure 12).  

To create the subsections, we traverse the pre-
calculated contraction sequence replacing each contrac-
tion c by a new, more compact contraction c´ and swap-
ping vertices and triangles. The rewritten c´ does not 
need to store the lists of lost vertices and lost triangles. 
Instead, it just has to store the numbers of lost vertices 
and lost triangles for each section. Note that vertex p is 
defined implicitly: prior to applying the contraction it is 
defined as the last active vertex; the section is defined by 
a Boolean value. 

 
struct CompactContraction { 
  Vertex q; 
  bool pIsSNS; 
  int NumberLostSNVertices; 
  int NumberLostNSNVertices; 
  int NumberLostSNTriangles; 
  int NumberLostFNTriangles; 
  int NumberLostSNSTriangles; 
}; 
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Figure 10. The problem: q is NSN-vertex and 
defines no own normal. All adjacent triangles 
define their own normals at q. The normal at 

corner C is implicitly defined via p. Which nor-
mal gets C’? 
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Figure 12. Arrangement of vertex array and index 
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In analogy to the contraction data-structure, this data 

structure contains an additional Boolean swapVectors 
(if we use subset placement) or an additional Vector 
delta (if we use optimal placement), respectively. 

 
Maintaining Subsections. Throughout this traversal 

we maintain an integer value NActiveSNvertices with the 
following property: At the beginning of each contraction 
rewrite the section of SN-vertices is divided into two 
subsections; all SN-vertices that have been lost during 
the previous contractions are stored in the second subsec-
tion, which begins at the position NActiveSNvertices and 
ends at NSNvertices-1. For the first contraction rewrite 
this condition can be obtained simply by initializing 
NActiveSNvertices with NSNvertices. In analogy, we main-
tain appropriate subsections of the NSN-vertices, SN-
triangles, FN-triangles, and NSN-triangles.  

 
Rewriting Contractions. We rewrite each contrac-

tion c by new contraction c´ as follows: Swap vertex p 
with the last active one of the section containing p and 
decrease the size of the corresponding active subsection 
by one. 

1. Store q explicitly. 
2. Copy the swapVectors flag or the delta vec-

tor, respectively. 
3. Store in which section of the vertex array p can 

be found (SN or NSN). 
4. For any additional lost vertex proceed as in the 

first step. 
5. Store the numbers of lost SN-vertices and lost 

NSN-vertices. 
6. The lost triangles are handled in the same way 

as the lost vertices. 
 

Vertex Swap and Triangle Swap. Note that we 
must keep the other data valid when we swap vertices or 
triangles. If we swap two vertices v1 and v2, the following 
steps take place: 

Update the index array: Any element of the index ar-
ray that has previously pointed to v1 has to be set to v2 
and vice versa. 

a) Update the contraction sequence: Any contrac-
tion for which p or q equals v1 or v2 has to be 
updated. 

b) Update the lost vertices: If v1 or v2 vanishes dur-
ing a certain contraction of the sequence, the 
corresponding contractions have to be updated. 

c) If v1 and v2 are SN-vertices, swap the corre-
sponding SN-normal indices 

Similarly, when we swap two triangles T1 and T2, we 
have to do the following: 

d) Update the index changes: Any contraction that 
replaces any vertex of T1 or T2 has to be up-
dated. 

e) Update the lost triangles: If T1 or T2 vanishes 
during a certain contraction of the sequence, the 
corresponding contractions have to be updated. 

f) If T1 or T2 are FN-triangles or NSN-triangles, 
swap the corresponding normal indices. 

 
Rebuilding the Normal Array. To render SN-

triangles efficiently based on OpenGL’s vertex array, the 
normal array must meet the condition that the normal of 
each SN-vertex v is located at position v in the normal 
array. So we have to rebuild the normal array. Since the 
normal-index arrays must contain the positions of the 
corresponding normals in the new normal array, we need 
to map an arbitrary normal index (i.e., a position of a 
normal in the old normal array) to the position of the 
corresponding normal in the new normal array. For this, 
we allocate an array of integers, called newPosition. Its 
size equals that of the old normal array.  

The size of the new normal array is still unknown 
because we possibly have to duplicate normals that are 
shared by several SN-vertices. The size is given by the 
size of the old one plus the number of replicated normals. 
For this, we must count the number of replicated nor-
mals. 

To rebuild the normal array, we allocate the new 
normal array and copy the normals for the SN-vertices to 
the first positions of the new normal array, i.e., we copy 
the normal of the i-th SN-vertex to the i-th position of the 
new normal array. Next, we assign the remaining nor-
mals to the remaining positions of the new normal array. 
Then, we are able to update the normal indices for FN-
triangles and NSN-triangles by replacing each index n 
with newPosition[n].  

4. Case Study: 3D City Models 

In 3D city models, most complex buildings are rep-
resented by polygonal meshes having both smooth and 
angular parts. LOD representations are essential for any 
interactive visualization due to the large number of build-
ings.  

In a conventional implementation, progressive 
meshes would force us to base shading exclusively on 
vertex normals, which results in obvious shading arti-
facts. Smooth and angular parts within a single complex 
mesh need to be distinguished to achieve visually con-
vincing results while having full LOD functionality 
(Figure 13). The only previously known way to achieve 
this would be to use wedges. However, in this case, we 
would be forced to store nearly the complete normal 



 

information twice since the vast majority of triangles in 
our model are FN-triangles.  

5. Conclusions 

Our approach of an integrated treatment of smooth 
and angular parts of complex polygon LOD meshes ex-
tends the widely adopted progressive-mesh technique, 
offering the correct surface normals without storing re-
dundant mesh information. As a possible extension, the 
algorithm can be extended to handle any information that 
occurs per-vertex and per-face in a similar way to vertex 
normals (e.g., per-vertex colors and per-face colors).  
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Figure 13. Part of the 3D city model of Berlin. LOD representation with ≈960.000 triangles (left) and 

≈200.000 triangles (right). 


