

- Draft -

Efficient Handling of Shading Discontinuities for Progressive Meshes

Henrik Buchholz
Hasso Plattner Institute
University of Potsdam

buchholz@hpi.uni-potsdam.de

Jürgen Döllner
Hasso Plattner Institute
University of Potsdam

doellner@hpi.uni-potsdam.de

Abstract

For visual perception of 3D models, shading plays
one of the major roles. The shading quality of level-of-
detail models is limited generally because existing LOD
algorithms assume a conceptually smooth surface. A
complex mesh, however, is likely to have conceptually
smooth and angular parts. We introduce an extension to
the progressive mesh LOD approach that efficiently
handles triangle meshes with large numbers of shading
discontinuities. For this the algorithm distinguishes three
principal shading situations for mesh vertices: com-
pletely continuous shading, completely discontinuous
shading, and mixed continuous/discontinuous shading.
Remarkably, the algorithm does not introduce any over-
head for completely smooth surfaces. As one field of
application, we briefly outline its application for LOD
representations of 3D city models.

1. Introduction

Multiresolution modeling aims at reducing the com-
plexity of 3D models to optimize rendering performance,
storage, or data transmission. Various algorithms and
data structures have been developed in the past to cope
with this task. A prominent example represents the pro-
gressive mesh representation [5] used to generate LOD
approximations of triangle meshes.

Most multiresolution modeling techniques are de-
signed for and operate on implicitly smooth surfaces. In
the case of complex polygon meshes, however, we can-
not always assume implicit surface smoothness, for ex-
ample in the case of most man-made or machine-made
objects. In these cases, the visual characteristic of the
polygon meshes is determined to a considerable degree
by angular parts, represented by hard edges. Figure 1
compares results from LOD representations that do and
do not distinguish hard and soft edges. From a rendering
perspective, hard edges represent shading discontinuities,
common vertices of adjacent polygons do not share ver-
tex normals (Figure 2).

For any kind of surface shading, vertex and face
normals are essential, because they represent the main
parameters for illumination and shading calculations.

Figure 1. LOD representation of complex 3D buildings without (left) and with (right)

distinguished smooth and angular parts (left).

We distinguish between three principal shading
situations at mesh vertices: completely continuous shad-
ing, completely discontinuous shading, and mixed con-
tinuous/discontinuous shading. The partitioning enables
us also to handle the shading discontinuities in a mem-
ory-efficient manner. Since the data transfer between
application memory and graphics hardware represents the
core bottleneck in real-time rendering (as well as in the
case of progressive transmission of data), the efficient
handling of vertex normals in general, and the efficient
handling of different types of normals are essential for an
implementation of the progressive mesh technique.

2. Related Work

Simplification algorithms for polygon meshes mostly
use one of the following four local operations: vertex
clustering (e.g., [8][10]), vertex removal (e.g.,
[12][13][15]), face collapsing (e.g., [3][4]), and edge
collapsing (e.g., [5][7][17]) or a generalization of the
latter (e.g., [2][9]). Our approach can be applied to ex-
tend any simplification algorithm that is exclusively
based on edge collapsing (Figure 3) or the more general
pair contraction [2]; we therefore discuss related work in
this context.

Hoppe introduced the progressive mesh data-
structure [5], which has been used and extended by sev-
eral authors (e.g. [1][2][11][16]). It efficiently stores a
sequence of simplified meshes, beginning with the sim-
plest mesh (base-mesh) and ending with the original one.
The central idea is to take advantage of the reverse col-
lapse operation (split operation). A progressive mesh
consists of the explicitly stored base-mesh and a se-
quence of split operations.

For creation, Hoppe [5] uses an energy function con-
sidering the surface geometry, scalar attributes, and at-
tribute discontinuities to select edges to be collapsed and
to determine positions of new vertices.

One known way to manage shading discontinuities is
to replicate the vertices at the corresponding sharp edges.
This is applicable for meshes for which the number of
shading discontinuities is small in comparison to the
mesh complexity. But if these discontinuities are pre-
dominating in the mesh, the replication of all these verti-
ces would involve considerable overhead in memory and
performance. In addition, simple replication of vertices
introduces problems during the simplification addressed
in [6], in which Hoppe suggests a flexible concept to
implement the progressive mesh data-structure. This
implementation is also able to manage meshes with at-
tribute discontinuities by associating scalar attribute
values not with vertices, but with wedges [6]. A wedge is
a set of vertex-adjacent corners whose attributes are the
same. This concept is well suited for many types of
meshes, but not for those with a large number of shading
discontinuities, which we are especially interested in: For
example, in a 3D city model, it is not improbable that the
model contains approximately exclusively face normals.
Since each wedge belongs to a singular vertex, the face
normal of most triangles had to be stored in three
wedges.

Garland presented in [2] the quadric error metrics,
which achieve a connection of high quality approxima-
tions and short pre-calculation time. During the pre-
calculation for each vertex a quadric is stored consisting
of a symmetric 4×4 matrix, a 3-vector and a scalar. The
quadrics are used to quickly calculate the sum of squared
distances of a given point from a set of planes being
represented by the quadric. Hoppe [7] extends this con-
cept by support for scalar attributes at vertices, e.g., ver-

hard edge soft edge

A B

C

Figure 2. Polygon mesh containing both smooth

and angular parts (A-B, B-C). Even edges of a
single polygon (B) can exhibit both soft and hard

edges.

p

q q

Figure 3. Result of an edge-collapse operation.

v0 v1 v2

v4

v3

n0

n1
n3

n2 n2

n2

n3

n0

n3

Index Array : [0,1,4,1,3,4,1,2,3]
Normal Index Array: [2,2,2,3,0,3,3,1,0]

Normal Array : [n0 , n1 , n2 , n3]

Hard Edge

Figure 4. An input mesh with one hard edge.

tex normals or texture coordinates. These extensions are
orthogonal to our extensions and could be used to im-
prove the quality of the simplification on smooth regions.
Since meshes with large numbers of shading discontinui-
ties consist mainly of non-smooth regions, we used the
simple variant of Garland’s algorithm [2], which is fast
and easy to implement.

3. Algorithm

Input. The input of the algorithm consists of four
arrays. The mesh geometry is specified by a vertex array
and a related index array. The normal of each mesh cor-
ner is specified by a normal array and a related normal-
index array. Each triangle is represented by a sequence
of three indices. The term corner denotes a (ver-
tex,triangle) tuple according to [6]. The normal at the
corner (v, T) specifies the normal for T at vertex v. We
assume that two normals n1 and n2 are equal if and only if
their indices i1 and i2 are identical. Two or more corners
share a common normal if and only if their correspond-
ing normal indices are equal (Figure 4).

Vertex Types. We distinguish different types of ver-

tices and triangles, which form central elements of our
algorithm. They are defined in the following:

We call a vertex v shared-normal vertex (SN-
vertex), if all corners that are adjacent to v have a com-
mon normal at v (Figure 5a). In the neighborhood of an
SN-vertex, the surface appears smooth. If v does not
fulfill the SN-condition (Figure 5b), we call it a non-
shared normal vertex (NSN-vertex).

Triangle Types. Based on this classification of ver-

tices, we distinguish three different types of triangles.
We call a triangle T an SN-triangle if all vertices of T are
SN-vertices. If T is no SN-triangle, but has a face normal,
i.e., all its vertices have a common normal, we call it an
FN-triangle, otherwise T is referred to as NSN-triangle.
The algorithm brings most profit for meshes with a large
number of shading discontinuities, i.e., a large number of
FN-triangles.

The algorithm is subdivided into three phases

(Figure 6): Restructuring of the mesh data, processing the
simplification steps based on an adapted simplification

algorithm, and finally constructing the resulting progres-
sive mesh.

8.1. Restructuring of Mesh Data (Phase I)

This phase restructures the given data into a form
that allows us to handle vertices and triangles of different
types separately.

In the first step, we partition the vertex array into
two sections, the first containing SN-vertices, the second
containing NSN-vertices. For this, we have to implement
two methods first:
− Inquiring vertex classifications. The method

isSNvertex(int v) returns true, if all adjacent
triangles of the vertex v have the same normal index
at v.

− Permuting vertex indices. The method swapVerti-
ces(int a, int b) swaps two vertices and up-
dates the index array, so that this swap does not
change the mesh geometry.

In the next step, the index array is partitioned into SN-
triangles, FN-triangles, and NSN-triangles. Here, swap-
ping two triangles means to swap their indices and the

a) Example of an SN-vertex. b) Example of an NSN-vertex.
Figure 5. Different types of vertices.

Partitioned Vertex Array
Partitioned Index Array

Vertex Normal-Indices for the SN-vertices

Vertex Array
Index Array

Normal-Index Array

Phase I: Restructuring

Phase II: Simplification

Facet Normal-Indices for the FN-triangles
Corner Normal-Indices for the NSN-triangles

Phase III: PM-Construction

Partitioned Vertex Array
Partitioned Index Array
Normal Array
Normal-Index Arrays

Collapse/Split Data

Optimized Collapse/Split Data Partitioned and Ordered Vertex Array
Partitioned and Ordered Index Array
New Normal Array
Normal-Index Arrays (with

changed order to remain
consistent with the rearranged
index array)

Rendering

OpenGL

SN-vertices
SN-indices
New Normal-Array (only the SN-normals)
FN-triangles (1 normal and 3 vertices

per triangle)

CN-triangles (3 normals and 3
vertices per triangle)

Normal Array

Normal Array

Figure 6. Process overview: The arrays on the left of
each arrow has been newly created in the previous
stage, the ones on the right has been sustained or
changed.

corresponding normal indices to keep both index arrays
consistent. We start partitioning with swapping the SN-
triangles to the front of the index array. 2) Having di-
vided the index array into two sections – the first one
containing the SN-triangles, the second one the remain-
ing ones – we continue with the second section of the
index array and divide it further into FN-triangles and
NSN-triangles.

Now, based on the partitioned index array, we can
replace the normal-index array by three new ones:

1) SN-normal indices. It contains exactly one index
per SN-vertex.

2) FN-normal indices. It contains exactly one in-
dex per FN-triangle.

3) NSN-normal indices. It contains exactly one in-
dex per NSN-triangle corner.

We obtain these arrays as follows:
1) The normal index of an SN-vertex v is the cor-

ner normal-index of (v,T) for an arbitrary trian-
gle T being adjacent to v.

2) The normal index of an FN-triangle T is the
normal index of an arbitrary corner of T.

3) The normal indices for the NSN-triangles can
simply be taken from the original normal-index
array.

8.2. Processing Simplification Steps (Phase II)

In our algorithm, we use pair contraction [2] for
mesh simplification. This represents a generalized ver-
sion of the edge-collapsing method: Edge-collapsing
corresponds to pair contraction restricted vertex pairs that
represent edges. Contractions can be represented by a

data structure that consists conceptually of the following
elements:

struct Contraction {
 Vertex p;
 Vertex q;
 List<Vertex> lv;
 List<Triangle> lt;
 List<Corner> ct;
};

For a given contraction c, vertex p is replaced by a
vertex q, i.e., p gets lost. In lv, we store additional verti-
ces that get lost, namely those vertices that exclusively
belong to triangles containing both p and q. In lt, we
store lost triangles, i.e., those triangles that contain both
p and q. In ct we record changed triangles, i.e., triangles
T containing p but not q. Thus, ct contains all corners
(p,T) for which q is not a corner of T.

If we use optimal placement, i.e., moving q to a new
position (which might not correspond to an existing ver-
tex), we extend the contraction data-structure by a vector
delta encoding the translation vector of q.

To avoid obvious visual artifacts in the resulting
simplified mesh, two conditions must be met when re-
placing a vertex p by another vertex q:

a) If p and q are part of a smooth surface, this sur-
face should remain smooth in the neighborhood
of q, i.e., q should keep a shared vertex-normal.
Otherwise, the resulting shading discontinuities
would be more striking than the simplification
itself (Figure 7, Figure 8).

b) The face normal of an FN-triangle should not be
changed due to a contraction (Figure 9), as this
would strengthen the visibility of the geometri-
cal modification.

Since the handling of different normal types should not
restrict the simplification process in the choice of a ver-
tex pair to contract, we need to take into account the
following configurations:
− Each of the vertices p and q can be of arbitrary type

(SN or NSN).
− Each changed triangle can be of arbitrary type (SN,

FN, or NSN). More exactly, there is one exception:
If p is an NSN-vertex, a changed triangle cannot be
of type SN.

q p q

Figure 7. To avoid visual artifacts, smooth sur-

faces must remain smooth.

Figure 8. The sphere on the left is simplified
without regarding rule a). The picture on the
right shows the sphere in the same level of

detail with preserved SN-vertices.

q

p

q

Figure 9. Face normals should not be changed

due to a contraction.

Particularly, we must ensure that we always have a well-
defined normal for every corner of the mesh. Fortunately,
most cases need not be handled explicitly:

(i) The normals of FN-triangles and NSN-triangles
will not be affected because their normals are
defined explicitly in the corresponding normal-
index arrays.

(ii) If p is an NSN-vertex, there cannot be any SN-
triangle adjacent to p.

(iii) If p and q are both SN-vertices, any changed
SN-triangle gets the new normal at the changed
corner implicitly via the index q.

Note that the conditions a) and b) are fulfilled because of
properties (iii) and (i). The only problem is the case in
which p is an SN-vertex and q an NSN-vertex. If there is
any SN-triangle T that is changed but does not vanish
during the contraction, the normal of the corner (q, T)
will be undefined after the contraction (Figure 10, Figure
11). In this case we need to modify the contraction such
that after its application the following properties hold:

I. The normal of (q,T) is well-defined for all
changed triangles T.

II. The resulting mesh geometry is the same as it
would be after the application of the unmodified
contraction.

To meet condition I. we replace q by p instead of replac-
ing p by q. If we use optimal placement, condition II. is
already met by this modification, because it does not
matter whether we replace p with q and move q to the
new position or vice versa. If we use subset placement,
we can also meet both conditions by swapping in addi-
tion the positions of p and q in the vertex array. In the
case of subset placement, therefore, we need to extend
our contraction data-structure by an additional Boolean
value swapVectors to store whether the position vec-
tors have been swapped due to the contraction.

8.3. Creating the PM Structure (Phase III)

After completing Phase 2 the mesh is now simplified
to the base mesh [5]. We can reconstruct the original
mesh by applying the inverse operations to the contrac-

tions, the splits. Those vertices and triangles that are not
relevant for the current progressive mesh are called inac-
tive.

For a given contraction, we would waste memory if
we would store lost triangles, lost vertices, and p explic-
itly. A better method is to arrange vertices and indices
according to the contraction sequence, so that the inac-
tive vertices (resp. triangles) can be found at the end of
the vertex array (resp. index array) in every state of the
progressive mesh [14]. Our algorithm adapts this idea:
We subdivide each section into subsections for active
and inactive elements (Figure 12).

To create the subsections, we traverse the pre-
calculated contraction sequence replacing each contrac-
tion c by a new, more compact contraction c´ and swap-
ping vertices and triangles. The rewritten c´ does not
need to store the lists of lost vertices and lost triangles.
Instead, it just has to store the numbers of lost vertices
and lost triangles for each section. Note that vertex p is
defined implicitly: prior to applying the contraction it is
defined as the last active vertex; the section is defined by
a Boolean value.

struct CompactContraction {
 Vertex q;
 bool pIsSNS;
 int NumberLostSNVertices;
 int NumberLostNSNVertices;
 int NumberLostSNTriangles;
 int NumberLostFNTriangles;
 int NumberLostSNSTriangles;
};

p
q q

C

C’

T4

T3 T2

T1

T3

T4

T2

T1

Tp
Tp

Figure 10. The problem: q is NSN-vertex and
defines no own normal. All adjacent triangles
define their own normals at q. The normal at

corner C is implicitly defined via p. Which nor-
mal gets C’?

T 1 T 2 T 4 T p T 3

SN-triangles Other triangles

face-norm als
&

not shared vertex-norm als

NSN -vertices SN-vertices

...

shared vertex norm als

via Index p

... gets norm al from ...

... gets position from ...

Figure 11. The situation of Figure 10. Tp gets
its normal implicitly from the array of shared

vertex-normals via index p. T1-T4 get their
normals explicitly.

active inactive active inactive

NSN-Vertices SN-Vertices

active inactive active inactive

FN-Triangles SN-Triangles

active inactive

Remaining Tr.

Figure 12. Arrangement of vertex array and index

array.

In analogy to the contraction data-structure, this data

structure contains an additional Boolean swapVectors
(if we use subset placement) or an additional Vector
delta (if we use optimal placement), respectively.

Maintaining Subsections. Throughout this traversal

we maintain an integer value NActiveSNvertices with the
following property: At the beginning of each contraction
rewrite the section of SN-vertices is divided into two
subsections; all SN-vertices that have been lost during
the previous contractions are stored in the second subsec-
tion, which begins at the position NActiveSNvertices and
ends at NSNvertices-1. For the first contraction rewrite
this condition can be obtained simply by initializing
NActiveSNvertices with NSNvertices. In analogy, we main-
tain appropriate subsections of the NSN-vertices, SN-
triangles, FN-triangles, and NSN-triangles.

Rewriting Contractions. We rewrite each contrac-

tion c by new contraction c´ as follows: Swap vertex p
with the last active one of the section containing p and
decrease the size of the corresponding active subsection
by one.

1. Store q explicitly.
2. Copy the swapVectors flag or the delta vec-

tor, respectively.
3. Store in which section of the vertex array p can

be found (SN or NSN).
4. For any additional lost vertex proceed as in the

first step.
5. Store the numbers of lost SN-vertices and lost

NSN-vertices.
6. The lost triangles are handled in the same way

as the lost vertices.

Vertex Swap and Triangle Swap. Note that we
must keep the other data valid when we swap vertices or
triangles. If we swap two vertices v1 and v2, the following
steps take place:

Update the index array: Any element of the index ar-
ray that has previously pointed to v1 has to be set to v2
and vice versa.

a) Update the contraction sequence: Any contrac-
tion for which p or q equals v1 or v2 has to be
updated.

b) Update the lost vertices: If v1 or v2 vanishes dur-
ing a certain contraction of the sequence, the
corresponding contractions have to be updated.

c) If v1 and v2 are SN-vertices, swap the corre-
sponding SN-normal indices

Similarly, when we swap two triangles T1 and T2, we
have to do the following:

d) Update the index changes: Any contraction that
replaces any vertex of T1 or T2 has to be up-
dated.

e) Update the lost triangles: If T1 or T2 vanishes
during a certain contraction of the sequence, the
corresponding contractions have to be updated.

f) If T1 or T2 are FN-triangles or NSN-triangles,
swap the corresponding normal indices.

Rebuilding the Normal Array. To render SN-

triangles efficiently based on OpenGL’s vertex array, the
normal array must meet the condition that the normal of
each SN-vertex v is located at position v in the normal
array. So we have to rebuild the normal array. Since the
normal-index arrays must contain the positions of the
corresponding normals in the new normal array, we need
to map an arbitrary normal index (i.e., a position of a
normal in the old normal array) to the position of the
corresponding normal in the new normal array. For this,
we allocate an array of integers, called newPosition. Its
size equals that of the old normal array.

The size of the new normal array is still unknown
because we possibly have to duplicate normals that are
shared by several SN-vertices. The size is given by the
size of the old one plus the number of replicated normals.
For this, we must count the number of replicated nor-
mals.

To rebuild the normal array, we allocate the new
normal array and copy the normals for the SN-vertices to
the first positions of the new normal array, i.e., we copy
the normal of the i-th SN-vertex to the i-th position of the
new normal array. Next, we assign the remaining nor-
mals to the remaining positions of the new normal array.
Then, we are able to update the normal indices for FN-
triangles and NSN-triangles by replacing each index n
with newPosition[n].

4. Case Study: 3D City Models

In 3D city models, most complex buildings are rep-
resented by polygonal meshes having both smooth and
angular parts. LOD representations are essential for any
interactive visualization due to the large number of build-
ings.

In a conventional implementation, progressive
meshes would force us to base shading exclusively on
vertex normals, which results in obvious shading arti-
facts. Smooth and angular parts within a single complex
mesh need to be distinguished to achieve visually con-
vincing results while having full LOD functionality
(Figure 13). The only previously known way to achieve
this would be to use wedges. However, in this case, we
would be forced to store nearly the complete normal

information twice since the vast majority of triangles in
our model are FN-triangles.

5. Conclusions

Our approach of an integrated treatment of smooth
and angular parts of complex polygon LOD meshes ex-
tends the widely adopted progressive-mesh technique,
offering the correct surface normals without storing re-
dundant mesh information. As a possible extension, the
algorithm can be extended to handle any information that
occurs per-vertex and per-face in a similar way to vertex
normals (e.g., per-vertex colors and per-face colors).

References

[1] P. Borodin, R. Klein, “Progressive Meshes with Con-
trolled Topology Modifications”, Proceedings OpenSG
Symposium, 2002.

[2] M. Garland, Quadric-Based Polygonal Surface Simplifi-
cation, Ph. D. Thesis, Carnegie Mellon University, 1999.

[3] T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, I. J.
Trotts, “Smooth Hierarchical Surface Triangula-
tions”,.IEEE Visualization Proceedings ´97, 379-386,
1997.

[4] B. Hamann, “A Data Reduction Scheme for Triangulated
Surfaces”, Computer Aided Geometric Design, 197-214,
1994.

[5] H. Hoppe, “Progressive Meshes”, Computer Graphics
(Proceedings SIGGRAPH ´96), 99-108, 1996.

[6] H. Hoppe, “Efficient Implementation of Progressive
Meshes”, Computers & Graphics Vol. 22 No. 1, 27-36,
1998.

[7] H. Hoppe, “New Quadric Metric for Simplifying Meshes
with Appearance Attributes”, IEEE Visualization ´99
Proceedings, 59-66, 1999.

[8] D. Luebke, “View-Dependent Simplification of Arbitrary
Polygonal Environments”, Computer Graphics (Proceed-
ings SIGGRPAH ´97), 199-208, 1997.

[9] J. Popovi'c, H. Hoppe, “Progressive Simplicial Com-
plexes”, Computer Graphics (Proceedings SIGGRPAH
´97), 217-224, 1997.

[10] J. Rossignac, P. Borrel, “Multi-Resolution 3D Approxi-
mations for Rendering Complex Scenes”, Technical. Re-
port RC 17687-77951. IBM Research Division, T. J.
Watson Research Center. Yorktown Heights, NY 10958,
1992.

[11] C. Prince, Progressive Meshes for Large Models of Arbi-
trary Topology, M.S. thesis, University of Washington,
2000.

[12] W. J. Schroeder, J. A. Zarge, W. E. Lorensen, “Decima-
tion of Triangles Meshes”, Computer Graphics (Proceed-
ings SIGGRAPH ´92), 65-70, 1992.

[13] W. J. Schroeder, “A Topology Modifying Progressive
Decimation Algorithm”, IEEE Visualization Proceed-
ings´ 97, 205-212, 1997.

[14] J. Svarovsky, “View-Independent Progressive Meshing”,
Game Programming Gems, Charles River Media, 454-
464, 2000.

[15] G. Turk, “Re-Tiling Polygon Surfaces”, Computer
Graphics (Proceedings SIGGRPAH '92), 55-64, 1992.

[16] P. Sander, J. Snyder, S. Gortler, H. Hoppe, “Texture
Mapping Progressive Meshes”, Computer Graphics (Pro-
ceedings SIGGRAPH 2001), 409-416, 2001.

[17] J. Wu, L. Kobbelt, „Fast Mesh Decimation by Multiple-
Choice Techniques“, Vision, Modeling and Visualization,
Erlangen, 2002.

Figure 13. Part of the 3D city model of Berlin. LOD representation with ≈960.000 triangles (left) and

≈200.000 triangles (right).

