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ABSTRACT 
Real-time rendering of massively textured 3D scenes usually in-
volves two major problems: Large numbers of texture switches 
are a well-known performance bottleneck and the set of simulta-
neously visible textures is limited by the graphics memory. This 
paper presents a level-of-detail texturing technique that over-
comes both problems. In a preprocessing step, the technique cre-
ates a hierarchical data structure for all textures used by scene 
objects, and it derives texture atlases at different resolutions. At 
runtime, our texturing technique requires only a small set of these 
texture atlases, which represent scene textures in an appropriate 
size depending on the current camera position and screen resolu-
tion. Independent of the number and total size of all simultane-
ously visible textures, the achieved frame rates are similar to that 
of rendering the scene without any texture switches. Since the 
approach includes dynamic texture loading, the total size of the 
textures is only limited by the hard disk capacity. The technique is 
applicable for any 3D scenes whose scene objects are primarily 
distributed in a plane, such as in the case of 3D city models or 
outdoor scenes in computer games. Our approach has been suc-
cessfully applied to massively textured, large-scale 3D city mod-
els. 
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1 INTRODUCTION 
Rendering massively textured scenes in real-time is an important 
issue for many applications, particularly in the field of 3D geo-
visualization and computer games. One problem related to texture 
complexity is the number of texture switches per frame because a 
texture switch is an expensive operation. A second problem arises 
if the set of simultaneously visible textures exceeds the capacity 
of the graphics memory or even of the main memory. For the 
problem of texture switches an established solution is to combine 
several textures in texture atlases [24]. This is, however, only 
sufficient if the number of the texture atlases needed to fit in all 
scene textures is small enough for fast rendering. Additionally, 
even in this case, potential problems arise when texture coordi-
nates of single triangles exceed the [0,1] range – there are three 
methods to handle repeated textures in texture atlases: The first 
method is to replicate repeated textures multiple times in a texture 

atlas. The second method is to tessellate the scene fine enough so 
that the texture coordinates of all triangles are always in the [0,1] 
range. Both methods fail, however, if the texture repeat counts are 
too high. For instance, in one of our test models, splitting triangles 
until their texture coordinates fitted into the [0,1] range increased 
the geometric complexity by a factor of 10. The third method is to 
implement clamp, wrap, and mirror addressing with pixel shaders. 
As Wloka [24] points out, however, this has some drawbacks. 
Particularly, the necessity of a pixel shader is not desireable be-
cause many current computer games are pixel-shader bound. 

In this paper, we propose a view-dependent rendering technique 
based on multiresolution texture-atlases that provides real-time 
rendering of massively textured scenes. The approach is suitable 
for all 3D scenes that are planary distributed, i.e., scene objects 
are primarily distributed on a plane. More precisely, for a suffi-
ciently fine subdivision of a properly chosen plane P into areas Ai, 
for all Ai the set of all triangles whose orthogonal projection onto 
P intersects Ai is small enough to be rendered quickly with origi-
nal scene textures. It should be noted that this definition does not 
restrict our approach to terrains, but includes a broad range of 3D 
scenes, such as outdoor environments in computer games or 3D 
city models in geovisualization. For the case of terrain rendering, 
specialized terrain techniques are probably more useful. The cen-
tral features of our approach are: 

- It can cope with scenes, for which the set of simultaneously 
visible textures exceeds the main memory capacity. 

- It keeps the texture switches permanently low, even for "worst 
case perspectives", e.g., if the whole scene is visible at once 
and several parts of the scene are near to the camera. 

- It provides explicit runtime-control of the texel-per-pixel ra-
tio, except for possible short delays due to dynamic texture 
loading. Usually, we use a ratio of 1:1. If desired, the ratio can 
be reduced to achieve higher frame rates on slower graphics 
hardware.  

- Since the major complexity of our approach is located in the 
preprocessing part, the runtime overhead for the rendering al-
gorithm is very small. Particularly, our approach does not 
consume any shader performance. 

- It does not make any assumptions about the way the user acts 
within the virtual environment, i.e., it does not favor or restrict 
specific navigation techniques. 

The basic principle of view-dependent rendering of multi-
resolution texture-atlases is similar to multiresolution-texturing 
approaches for terrain rendering, such as the technique described 
in [8]: In each frame, the texture resolution is chosen in a way that 
the texel-per-pixel ratio is always near to 1 so that the amount of 
necessary texture data remains small. To achieve this, we use a 
hierarchical data structure, called the texture-atlas tree, which 
provides atlas-texture representations of all visible scene textures 
at appropriate resolutions. 

2 RELATED WORK 
The problem of texture complexity has been addressed in several 
approaches. Clipmaps [21] and 3Dlabs’ Virtual Textures can cope 
with textures that exceed the main memory capacity. They re-
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quire, however, specialized hardware support. Cline and Egbert 
[2] proposed a software approach for large texture handling. At 
runtime, they determine the appropriate mipmap-level for a group 
of polygons based on the projected screen size of the polygons 
and the corresponding area in texture space. The paper concen-
trates on rendering of a single large texture and demonstrates the 
effectiveness for the example of a terrain texture. For arbitrary 
massively textured scenes containing large numbers of singular 
textures, however, additional problems have to be addressed. For 
instance, the texture density may be irregularly distributed in the 
scene and all textures may have different resolutions. Lefebvre et 
al. [12] proposed a GPU-based approach for large-scale texture 
management of arbitrary meshes. The novel idea of their approach 
is to render the texture coordinates of the visible geometry into 
texture space to determine the necessary texture tiles for each 
frame. The technique is applicable for arbitrary scenes. The ren-
dering part of the approach, however, requires a cost-intensive 
fragment shader for correct filtering and the geometry has to be 
rendered multiple times per frame. 

Another way to manage the texture memory problem is texture 
compression (e.g., S3). However, the compression ratio is not 
high enough to cope with massively textured scenes. The adaptive 
texture maps [10] can cope with complex texture data by a sophis-
ticated texture representation that allows for textures with locally 
refined areas and with non-rectangular borders. While their ap-
proach is effective for higher-dimensional textures, it is mostly 
not applicable for 2D textures because it is based on the fact that 
the multidimensional textures usually need to be detailed only in 
certain regions. Carr and Hart [1] introduced a texture atlas for 
real-time procedural solid texturing. They partition the mesh sur-
face into a hierarchy of surface regions that correspond to rectan-
gular sections of the texture atlas. This structure supports mip-
mapping of the texture atlas because textures of triangles are 
merged only for contiguous regions on the mesh surface. The 
combination of texture atlases and mipmapping is similar to our 
approach but since the approach focuses on procedural solid tex-
turing of singular manifold meshes, it is not applicable to our 
problem of arbitrary complex textured scenes. In a number of 
applications, procedural texturing [13] can be used to render high-
detailed textured scenes without explicitly storing the texture data.  

Several approaches for handling texture complexity have been 
developed in the scope of geovisualization. Shi et al. [19] de-
scribed a multiresolution-texturing approach for terrain and 3D 
city models considering texture data for terrain and for building 
facades. They divide the terrain into a regular grid and store tex-
tures of different resolutions in each grid cell. They assume rela-
tively small facade textures and, hence, concentrate on terrain 
textures. Döllner et al. [3] described a multiresolution technique 
for terrain textures. It permits the combination of multiple large-
scale textures of different size. The approach is, however, special-
ized for terrain textures and is not applicable for arbitrary virtual 
environments. Wahl et al. [22] also presented an approach for 
rendering complex terrains with large-scale textures. They com-
bine geometric simplification, texture level-of-detail, and texture 
compression with occlusion culling and impostors to make the 
approach more output sensitive. Hwa et al. [8] proposed adaptive 
4-8 hierarchies for terrain texture level-of-detail. By using a 4-8 
refinement of raster tiles instead of the commonly used quadtree 
subdivision, they doubled the number of available texture level-
of-details, leading to higher frame-to-frame coherence and im-
proved texture quality. Lakhia [11] described an approach for 
interactive rendering of detailed city models based on Hierarchical 
Levels of Detail (HLODs) [4]. To support texturing, they store 
down-sampled versions of the original scene textures with each 
HLOD. Since the algorithm concentrates on geometric simplifica-
tion, texture resolution is not explicitly considered as a factor for 

the scene subdivision and is not regarded in the cost heuristic. 
Frueh et al. [5] described an approach to create texture maps for 
3D city models. The technique includes the creation of a special-
ized texture atlas for building facades and supports efficient ren-
dering for virtual fly-throughs. The created atlas is static, and 
different texture resolutions are not considered. Hesina et al. [6] 
described a texture caching approach for complex textured city 
models. Their approach is restricted to interactive walk-throughs.  

There are also some works addressing support of textures in ex-
isting geometric multiresolution techniques. Most of them do not 
consider the texture complexity itself as a problem, but rather the 
texture error caused by geometric simplification [18]. Sander et al. 
[17] presented an approach to support textures in progressive 
meshes [7]. The original mesh is subdivided into charts, and their 
texture information is sampled into a texture atlas, minimizing 
texture stretch and texture deviation. Williams et al. [23] extended 
the perceptual simplification framework of Luebke and Hallen 
[15] by considering textures and dynamic lighting effects in the 
simplification algorithm. Sormann et al. [20] described an ap-
proach to integrate texture support in the view-dependent simpli-
fication framework (VDS) [14]. They support texturing disconti-
nuities and combine multiple textures hierarchically into lower-
resolution textures. So, their approach reduces texture switches 
and texture memory requirement. For scenes with thousands of 
textures, however, the time spent in their runtime-texture selection 
algorithm becomes a significant factor of the rendering perform-
ance. 

3 TEXTURE-ATLAS TREE 
The input data needed to create a texture-atlas tree is a 3D scene 
description consisting of a set of triangles with texture coordinates 
and a set of related textures. As stated in section 1, we assume the 
scene to be planary distributed. Without loss of generality, we will 
further assume the related distribution plane P to be the x-y-plane. 

Figure 1 illustrates the basic principle of the texture-atlas tree. 
For each frame, the tree provides a small collection of texture 
atlases containing each visible texture of the scene at an appropri-
ate resolution. For a given camera specification we consider the 
resolution of a texture as appropriate if it is minimized in a way 
that magnification is guaranteed to be avoided. The computation 
of the necessary texture resolution is explained in more detail in 
Section 5.2.1. Only for triangles close to the viewer original tex-
tures are used (Figure 2a). Starting from a certain camera distance, 
texture atlases are applied, each of them replacing all original 
textures within the related scene part (Figure 2b). As comparison 
with Figure 2c shows, the resolution of the texture atlases in Fig-
ure 2b is sufficient, although it is considerably smaller than the 
original texture resolution (Figure 2d). With increasing camera 
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Figure 1. Distance-dependent texture selection. Original textures 
for the near area, 4 texture atlases for the middle area, and a single 
combined texture atlas for the far area. 
 



distance, the necessary resolution for each texture decreases fur-
ther, so that more original textures covering larger scene parts can 
be combined in a single texture atlas. 

The basic structure of the texture-atlas tree is illustrated in Fig-
ure 3. A texture-atlas tree defines a quadtree subdivision of the 
scene in the x-y-plane (Figure 3 left) and a corresponding hierar-
chy of texture atlases (Figure 3 right). Each node N represents a 
part of the scene geometry and stores its bounding box N.bounds. 
The quadtree subdivision of the scene may be irregular, i.e., the 
scene parts represented by 4 children of a node may have different 
sizes. The scene subdivision algorithm is explained in Section 5.3. 
In addition to N.bounds, each node stores a single texture atlas 
N.atlas for all triangles of the related scene part. All texture atlases 
have equal size. The atlas of an inner node contains down-
sampled versions of its child nodes. Furthermore, each node stores 
a distance value N.minDistance, which represents the minimum 
distance between camera and the node’s bounding box to ensure 
that the node’s texture atlas resolution is sufficiently high. The 
scene geometry is stored in the leaf nodes. Each leaf node con-
tains the triangles of its corresponding scene part and the related 
subset of the original textures of the input scene. Two sets of tex-
ture coordinates are specified for the triangles, one referring to the 
original textures, and the other referring to the texture atlas of the 
leaf node. Finally, each node stores an additional texture matrix, 
which allows for using the same texture coordinate set for all atlas 
hierarchy levels. 

4 RENDERING 
The rendering is performed by a top-down traversal of the texture-
atlas tree. For the moment, we assume all nodes to be in memory. 
The necessary changes for dynamic loading and deletion are dis-
cussed in Section 6. For each traversed node N, a simple hierar-
chical view frustum test is performed. If the bounding box 
N.bounds is completely outside the view frustum, the node is 
skipped. If N is visible, we compute the distance d between the 
camera and N.bounds. If d is greater than N.minDistance, the tri-
angles of all leaf nodes of the subtree with root N are rendered 
using the atlas texture N.atlas and the texture matrix 
N.textureMatrix. In the case d < N.minDistance, the resolution of 
the texture atlas of N is not sufficient. So, if N is an inner node, the 
traversal is continued with the child nodes of N. If N is a leaf, the 
triangles of N are rendered using the original scene textures. 

For the preprocessing phase we will assume a previously 
known screen size and a fixed target texel-per-screen-pixel ratio 
of 1. However, if the screen size is rescaled at runtime by a certain 
factor, we only need to rescale the minimum distance values of 
the nodes by the same factor. Accordingly, the texel-per-screen-
pixel ratio can be increased to consider anti-aliasing or reduced to 
run the algorithm on slower graphics cards. 

 

 
 
 
 

Figure 2. View-dependent texture selection.  
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Figure 3. Structure of the texture-atlas tree. Each node represents a certain scene part and provides a texture atlas for this part. 

a) Rendering near triangles with 
original textures. 

b) Rendering distant triangles 
with texture atlases. 

c) View of b) rendered with 
original textures.

d) Texture atlases used in b) are  
inappropropriate for close views. 



5 PREPROCESSING 
In this section we describe how to create the texture-atlas tree. We 
give an overview of the preprocessing, followed by a description 
of the most important steps. 

5.1 Overview 
The preprocessing starts with a tree consisting of a single root 
node containing all triangles of the scene. For each triangle, we 
keep a reference to its original texture. First, we try to create a 
single texture atlas of fixed size for all textures that are used by 
triangles of the node. Section 5.2 describes the creation of the 
texture atlas. If the atlas creation fails, the node is split, i.e., four 
child nodes are created and the triangles of the node are shared 
among its child nodes. Section 5.3 describes the subdivision algo-
rithm for the triangle set of a node. After a node split, the proce-
dure described above is recursively repeated for the new child 
nodes. If the atlas creation for a node is successful, the node be-
comes a leaf of the final tree. In this case, the node stores its re-
lated triangles, the corresponding original textures, the computed 
atlas texture, and the texture coordinates for original textures as 
well as for the atlas texture. The minimum distance value 
N.minDistance of each leaf is set to the global minimum distance 
value dmin that have been used for the atlas creation (see Section 
5.2).  

At this point, the tree structure has been created, and all leaf 
nodes have been filled with data. Next, we compute texture atlases 
for the inner nodes in a bottom-up fashion. To obtain the texture 
atlas of an inner node, the four texture atlases of the child nodes 
are combined and down-sampled by a factor of 2. The minimum 
distance values of the inner nodes are computed together with the 
texture atlases. Each down-sampling step reduces the resolution of 
an atlas by a factor of two in both axes. Therefore, an appropriate 
minimum distance value for an inner node is the maximum of all 
minimum distance values of its child nodes multiplied with 2. 
Note that the minimum distance values of the child nodes are not 
necessarily equal because the quadtree may be incomplete. 

The final step is the computation of a texture matrix for each 
node and an appropriate modification of the atlas texture-
coordinates of the triangles stored in the leaf nodes. Without this 
step, the atlas texture coordinates stored of the triangles were 
valid only for the texture atlases of the leaf nodes but not for the 
combined atlases of inner nodes. The aim is to use a single set of 
texture coordinates for all atlas textures, independent of their hier-
archy level in the tree. As illustrated in Figure 4, each node atlas 
corresponds to a squared area of the root node atlas. Considering 
the path from the root to a leaf, we convert the atlas texture-
coordinates of each leaf node to the corresponding texture coordi-
nates in the root atlas. Thus, we set the identity matrix as the tex-
ture matrix for the root node. Based on atlas texture coordinates of 
a node, the atlas texture coordinates for its child nodes can be 
obtained by multiplying by two and discarding the integer part. 
Therefore, we can use the root atlas texture coordinates for a node 
N at level k by setting a scaling matrix with factor 2k as texture 
matrix and rendering the atlas texture of N in repeat mode.  

5.2 Node Atlas Creation 
This subsection describes the creation of a node atlas for a given 
set of textured triangles. The atlas is created in a way that for a 
given global parameter dmin it is guaranteed, that no magnification 
occurs for any part of the texture atlas, as long as the camera has a 
distance of at least dmin from all triangles. The global parameter 
dmin should be set small enough, so that from each point of the 
scene all triangles within a distance of dmin can be rendered 
quickly with original textures. Smaller dmin values increase the 
size of the tree, finally resulting in higher preprocessing time and 

a larger paging file. The atlas is created in a fixed predefined size, 
e.g., 1024 × 1024 texels. The atlas creation is performed in 3 
steps: 

1. For each texture, we calculate minimum width and height the 
texture must have to avoid magnification at a distance of dmin. 

2. Based on step 1, we compute for each texture the size of the 
required area in the atlas texture and the corresponding source 
area in texture space. 

3. If possible, we create a single texture atlas of fixed predefined 
size for all textures based on the results of step 2. 

5.2.1 Texture Size Estimation 
Given a texture and a set of triangles using the texture, we have to 
compute the minimum required width and height to avoid magni-
fication at a camera distance of dmin. For this, we compute these 
values for each triangle separately and take the maximum of all 
calculated minimum widths respectively all calculated minimum 
heights as the final required texture size. 

For a single triangle and a camera distance of dmin or greater, we 
compute the largest possible screen-space projections sscreen and 
tscreen of the unit vectors (1, 0) and (0, 1) in texture space (Fig-
ure 5). If sscreen has a length of m pixels, the texture must have a 
width of at least m texels. The same applies for tscreen and the 
height of the texture. So, we need an upper limit for the lengths of 
sscreen and tscreen. 

Let T = (v0, v1, v2, t0, t1, t2) a triangle defined by vertex posi-
tions and texture coordinates. We can assume (v0, v1, v2) to be 
non-degenerate because world-space degenerate triangles can be 
ignored. In the following, we restrict the description to the calcu-
lation of the minimum width. The upper bound for the length of 
sscreen is obtained in two steps: 

1. Computing the length of sworld, the projection of the unit vec-
tor (1, 0) to world-space coordinates. 

2. Computing of an upper limit for the scale factor involved by a 
perspective projection from world-space to screen space. 

If (t0, t1, t2) is degenerate, sworld is not properly defined. For the 
case t0 = t1 = t2 we skip the triangle and set a fixed minimum size 
of 1×1. If (t0, t1, t2) is degenerate with a non-degenerate longest 
edge e = (ti, tj), we skip step 1) and estimate the length of sworld by 
abs(vi - vj) / abs(ti - tj). So, we can assume (t0, t1, t2) to be non-
degenerate as well. Without loss of generality, we also assume 
v0 = 0 and t0 = 0. Let PT be the parameterization for T with 

P(a,b) := a · v1 + b · v2,  and 

TexT(a,b) := a · t1  + b · t2. 
TexT maps the parameterized representation of a vector 
v = a·v1 + b·v2 on the triangle plane to the corresponding texture 
coordinates. TexT is linear and invertible, since (t0, t1, t2) is non-
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Figure 4. The local texture coordinates for the atlas at tree level 
k = 2 are obtained by scaling the root atlas coordinates by a factor 
of 4 = 2k and discarding the integer part. 



degenerate. So, the result of step 1) can be calculated using the 
formula 

sworld = PT(TexT
–1((1, 0))) 

Given a minimum camera distance d, a pre-defined field-of-view 
angle of c, and a predefined screen width wscreen, we now have to 
compute the scale factor for step 2). For the sake of simplicity, we 
assume identical scale factors for both screen axes. The screen 
projection of a line segment of the length sworld viewed from the 
distance d has maximum size if it is oriented orthogonal to the 
viewing direction. So, we obtain a projection factor 

fproj = wscreen / (2 d tan(c/2)). 
Note that the constant fproj is equal for all triangles and all tex-
tures. Finally, we obtain the required texture size by: 

wtex = abs(sworld) · fproj  and 

htex = abs(tworld) · fproj. 

5.2.2 Computation of the Required Atlas Area 
In the last section we obtained for each texture a minimum width 
and a minimum height to avoid magnification. These values apply 
for a single texture repetition. To find the required area for a tex-
ture in the texture atlas, we have to take into account the area in 
texture space defined by all texture coordinates for the texture and 
an additional border to avoid texture pollution (Figure 6). First, 
we compute the bounding area Atex of all texture coordinates for a 
texture. Textures that are only partially used in a certain atlas 
node, are only partially needed in the texture atlas. Repeated tex-
tures have to be repeated in the texture atlas. Note that high repeti-
tion numbers of textures do not cause problems because the fi-
nally required atlas area size depends only on the triangle area in 
world space. Considering Atex we multiply wtex and htex with the 
width and height of Atex. 

Finally, we add a texture border area to the required texture area 
to avoid mixing adjacent textures in downsampled versions of the 
texture atlas. For our implementation, we use a constant border 
width of 8 texels. Although this guarantees the avoidance of tex-
ture pollution only for the first 3 down-sampling levels, the visual 
artifacts were hardly noticeable. To fill the border with content of 
the original texture, we scale the texture space area Atex around its 
center by a corresponding scale factor.  

5.2.3 Texture Atlas Generation 
As a result of step 2, we obtain for each texture the required width 
and height inside the atlas texture and the source area in texture 
space from which the original texture content has to be copied. 
Using the atlas-packing algorithm described in [9], we try to find 
positions for all textures inside an atlas texture of fixed pre-
defined size. If the texture areas do not fit completely in the atlas 
image, the atlas creation fails. In this case, the atlas creation is 
retried after a node split for a smaller subset of the triangles, as 
described in Section 5.1. 

If all textures fit into the atlas, we create the texture atlas image. 
To accelerate the preprocessing, we use the GPU for the atlas 
creation by rendering textured quads into the P-buffer. Alterna-
tively, more sophisticated filtering algorithms could be used. For 
each original texture, we render a textured quad filling the corre-
sponding atlas area, using the corners of Atex as texture coordi-
nates. 

5.3 Triangle Set Subdivision of a Node 
If the atlas creation for a node fails, the triangles of the node have 
to be subdivided into 4 groups, one for each child node. A well-
chosen subdivision should met two conditions: 

a) The overlap of the group’s bounding boxes should be 
small. 

b) The summed number of texels for all required texture ar-
eas (see 5.2) of a group should be approximately equal for 
all groups. 

To simplify the problem, we assume that for each texture each 
point in texture space is mapped to at most one point in world 
space. That is, if for a single texture the same area is mapped to 
two different triangles, this is not considered for the subdivision. 
Since the rendering algorithm can also handle scenes with com-
pletely individually textured triangles, multiply referenced texture 
areas do not need to be exploited for optimization. Given the 
above-formulated assumption, the summed number of texels for 
all required texture areas is approximately proportional to the 
summed areas of all triangles in world space. So, the condition b) 
can be substituted by the condition 

b') The summed area of all triangles of a group should be ap-
proximately equal for all groups. 

To find a proper subdivision according to both criterions, we use a 
simple greedy algorithm: First, the complete set of triangles is 
sorted according to increasing x-coordinates of triangle midpoints. 
As stated in Section 3, we assume that the scene can be properly 
subdivided in the x-y-plane. Next, the ordered sequence is split 
into two groups. The first one contains the first k triangles of the 
sequence. k is chosen so that the summed area of the first k trian-
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Figure 5. Computation of the largest possible screen projections of the unit vector (1,0) in texture space. The length of sscreen  is chosen as 
required texture width. 

 

                                       

 
Figure 6. Computation of the required atlas area: a) Area needed 
for a single repetition; b) Size with considered bounding area in 
texture space; c) Size with added borders. 



gles is as close as possible to the A / 2, where A is the summed 
area of all triangles. Finally, we split both groups in the same way 
along the y-axis. Assuming single triangles to be sufficiently small 
compared to the node size, the resulting 4 groups have approxi-
mately equal summed areas and the overlap between their bound-
ing boxes is very small.  

6 MEMORY MANAGEMENT 
This section describes the memory management strategy to use 
the texturing algorithm for scenes whose complete set of textures 
exceeds the main memory capacity. Dynamic loading and deleting 
of textures is applied to texture atlases and to original textures of 
leaf nodes. All other data of the tree is kept in memory. 

As a first step, the rendering procedure has to be slightly 
changed to cope with missing textures. When a texture atlas is not 
sufficient for a node N and one or more child nodes are not in 
memory, all triangles of the missing child nodes are nevertheless 
rendered immediately using the atlas texture of N. The root atlas 
node is always in memory. Thus, in the worst case some triangles 
are rendered with too coarse textures but for all triangles there are 
at least approximate textures available.  

The management strategy handles atlas textures and original 
textures simultaneously in the form of memory blocks of ap-
proximately equal size. Each block represents either an atlas tex-
ture or a set of original textures of a leaf node. Large sets of origi-
nal textures are split into multiple blocks. The memory manage-
ment strategy is based on the following considerations: 

- The number of blocks in memory must not exceed a prede-
fined maximum capacity k. 

- Blocks needed for the current frame must be preferred. 
- If the atlas of a node N is in memory, the atlases for all nodes 

on the path to N should also be in memory. Similarly, if the 
original textures of a leaf node are in memory, the atlas of N 
should be in memory as well. 

- If multiple blocks have to be loaded, the blocks for the nearest 
nodes should be loaded first. This is particularly important for 
slow loading speeds such as in the case of web-streaming. 

- If the number of simultaneously needed blocks exceeds k, the 
memory management strategy loads and keeps only the k 
blocks for the nearest nodes. 

- Textures of nodes near the camera that are currently not used 
due to view-frustum culling should be scheduled for prefetch-
ing because they can become visible very quickly, even with 
slow camera movement. 

- If the atlas texture of a node N is currently used, the atlas 
textures of the child nodes of N respectively the original 
textures of N if N is a leaf node should be scheduled for 
prefetching. 

For a given camera position and view direction, we define the 
priority of a block based on the criteria usage, distance and hierar-
chy level. The usage categories ordered by decreasing priority are 
needed, culled, parent needed, and not needed. Needed textures 
are all textures that would have been used for rendering if the 
whole tree were in memory. Culled textures are those, that have 
appropriate texture accuracy, but are currently not needed due to 
view-frustum culling. For the atlas texture of a node, the usage 
value parent needed indicates that the atlas texture of the parent 
node is currently in the needed category. For blocks representing 
original textures of a leaf node N, the usage value parent needed 
indicates that the atlas texture of N is currently needed. The usage 
of each node is determined in a separate tree traversal. In contrast 
to the modified rendering traversal, the additional traversal does 
not stop at missing child nodes, so that needed nodes are also 
recognized if their parent nodes are currently not in memory. 
Among blocks of equal usage value, the priority is determined by 

the distance between the bounding box of the corresponding node 
and the current camera position. If usage and distance are equal 
for two blocks, the block with the lower tree level is preferred. In 
this way it is ensured, that the parent node of a needed node has 
always higher priority. 

Based on the above defined priorities we create a set of blocks 
that should currently be in memory, called the ideal block set. The 
ideal block set is updated for each frame and contains all blocks 
that have been identified for the categories needed, culled, and 
parent needed. If the ideal block set exceeds the maximum num-
ber of blocks k, it is reduced to the k blocks of the highest priority. 
All blocks in memory that are not contained in the ideal block set, 
are moved to the unused category. 

To keep the frame rate constant, we maintain a priority queue of 
currently requested blocks. In each frame, a fixed time slot is re-
served to continue the loading process of the first blocks in the 
queue. A block is removed from the queue if it has been com-
pletely loaded or if it is not in the ideal node set anymore. As long 
as the queue does not exceed a predefined maximum length, new 
blocks can be added to the queue. To determine the next block to 
add, we traverse the ideal node set in the order of decreasing pri-
ority. The most important node that is currently neither in memory 
nor queued is added to the queue. The overhead for the manage-
ment of the ideal node set is not critical because its size is usually 
at a scale of 100 or lower.  

7 RESULTS 
In our first test case, we used the Berlin city model, consisting of 
4,300 block buildings (Figure 7). For each building, an individual 
texture of 512 × 512 texels resolution was repeated around the 
facade. Since we only had 300 different facade photographs avail-
able, we created 4,300 individual textures by labeling each texture 
with an identifier. The aerial image used for terrain and building 
roofs was rendered using [3]. The performance tests, however, 
were made only for the building facades rendered by our ap-
proach. The summed uncompressed size of all facade textures was 
about 3.15 GB. All tests were performed at a screen resolution of 
800 × 600 with a texel-per-pixel ratio of 1 on a notebook with 
Pentium-M processor at 1.5 GHz, 1 GB main memory, and an 
ATI Radeon 9600 Mobility graphics card with 128 MB graphics 
memory. The preprocessing time for the atlas tree creation was 
approximately 80 minutes. Since the scene did not completely fit 
into main memory, a considerable part of the preprocessing time 
was spent in loading image files. The total file size of the atlas 
tree was 2.28 GB. The tree depth was 6. Figure 8a shows the 
measured frame rates for the façade rendering. In all tests, we 
used view-frustum culling and chose a camera path with rapidly 
changing visibility, ranging from a single building to a complete 
overview. We achieved an average frame rate of 69 fps. In the 
worst case, when the whole scene became visible, the frame rate 
was about 12 fps. 

In the second test case, we used a detailed city model of Chem-
nitz, Germany, to check the ability of our approach to cope with 
more irregularly textured scenes. The geometric complexity of 
300,000 triangles is not critical for current graphics cards. The 
model contains, however, about 2,000 different textures, which 
are all visible at once from an overview perspective. Although the 
summed size of all textures is only about 36 million texels, the 
textures cannot simply be combined into usual texture atlases 
because several textures are massively repeated even on single 
triangles, such as the tile textures in Figure 2a. Considering repeti-
tions on single triangles, the summed texture size of the scene 
expanded to multiple billion texels. Since the scene contains 
transparent parts, we used two atlas trees, one for RGB and one 
for RGBA textures. The two trees required an overall preprocess-
ing of 8 minutes and 223 MB disk space.  



Figure 8b shows the time measurements for our test camera 
animation. The thin solid line indicates the frame rate achieved for 
rendering the scene with original textures and view-frustum cull-
ing. The dashed line shows the frame rates we achieved with ren-
dering the scene without texture switches, i.e., using a single 
dummy texture for the whole scene. We used the dummy texture 
frame rates as an approximate indicator for the maximum per-
formance that can be achieved by optimizing texturing perform-
ance. The thick line indicates the frame rate achieved using the 
two atlas trees simultaneously. For all three measurements, we 
rendered the complete scene without alpha tests and alpha blend-
ing because the alpha test caused a dependency between texture 
content and frame rate, which is misleading for comparison be-
tween the atlas tree frame rate and the frame rate with the dummy 
texture. The average frame rates were 17 fps for the original tex-
tures, 30 fps without texture switches and 27 fps for the atlas tree. 
At the overview perspective the original texture rendering 
dropped below 5 fps, while the atlas tree was permanently over 14 
fps. Only at extremely low visibility, the original scene rendering 
was fastest because the necessity to separate more objects sup-
ported the view-frustum culling. For the final rendering with cor-
rect blending of alpha textures we achieved average frame rates of 
21 fps for the atlas tree and 13 fps for the original textures. 

For all tests we used an atlas resolution of 512 × 512 texels. We 
chose dmin = D/151 for the Berlin model and dmin = D/62 for the 

Chemnitz model, where D is the diagonal of the bounding box of 
the scene, respectively. Since we did not use occlusion culling, the 
number of nodes used for rendering was at a maximum for small 
camera heights. Even so, the number of nodes used in the Berlin 
model was mostly below 20 and did never exceed 40. Due to the 
more heterogeneously distributed texture density and the addi-
tional RGBA tree, the Chemnitz model required slightly more 
nodes in dense regions. We observed a usage of about 30 nodes 
on average and about 60 in the worst case. For both models, we 
used S3 texture compression to reduce the disk space require-
ments and to speed-up the dynamic loading. To ensure the activity 
of the dynamic loading process during the tests, we limited the 
numbers of blocks in memory to 160. Hence, for the Berlin 
model, the memory requirement of the application including tex-
tured roofs and terrain did never exceed 350 MB. Although the 
images obtained from rendering with texture atlases were not 
exactly identical to those achieved using original textures, the 
visual difference was very small due to the explicit texel-per-pixel 
control (Figure 2). We only got some visual artifacts caused by 
the S3 compression. The dynamic loading of textures was hardly 
noticeable for normal navigation speeds. Only if we zoomed rap-
idly into a completely unloaded scene part within fractions of 
seconds, the algorithm needed 1-3 seconds to refine the textures 
appropriately. 

 

a) Close view to a 512 x 512 façade texture. b) Flythrough perspective: 23 atlas nodes. c) Overview: 13 atlas nodes. 
 

Figure 7. Snapshots of the city model of Berlin used in the first test. Original textures were only needed in a). 
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Figure 8. Performance-measurements for camera paths with strongly varying visibility. 

a) Frame rates measurement for 3.15 GB facade textures. b) Frame rate comparison between rendering with original tex-
tures, rendering without texture switches, and rendering 
with the atlas tree. 



8 CONCLUSIONS AND FUTURE WORK 
The atlas tree has proved to be an effective technique for interac-
tive rendering of massively textured scenes. It can be used for 
rendering scenes that exceed the main memory capacity, to re-
ceive textures via web-streaming, or just to reduce the number of 
texture switches if the textures are too large to be combined in 
usual texture atlases. The application of the atlas tree is not re-
stricted to scenes in which textures are distributed homogenously. 
Theoretically, the restriction to planary distributed scenes can be 
relaxed as well by a small change: The only part of the algorithm 
where the quadtree subdivision is explicitly addressed is the sub-
division in Section 5.3. Instead of subdividing according to x and 
y axis, we could choose the two axes, for which the bounding box 
of the triangle set to be subdivided has the largest extend. The 
application for completely arbitrary scenes, however, has to be 
properly evaluated first.  
Future improvements could consider the size of the atlas tree file. 
1) The atlas packing scheme could be optimized to increase the 
atlas coverage [1]. 2) Repeated textures have currently to be re-
peated in the texture atlas. In scenes such as the Chemnitz city 
model, the file size could be dramatically reduced by an explicit 
support for repeated textures. 3) Shared textures have to be stored 
once for each leaf node in which they are used. However, an ex-
plicit support for these triangles is probably only rarely helpful 
because triangles sharing a texture might be arbitrarily distributed. 
In addition, triangles of several leaf nodes could be batched to-
gether. Although a single call for rendering a batch of geometry is 
lightweight compared to a texture switch, the number of geometry 
batches should be reduced as well.  
To achieve full scalability in our approach, two points have to be 
considered: 1) The dynamic loading has to be extended from just 
textures to whole parts of the tree. 2) For buildings at extreme 
distances it is not useful to render the whole geometry and to 
combine the textures of several buildings in single texels. Those 
buildings can better be replaced for instance by a terrain texture. 
We are also investigating the combination of our approach with 
techniques for reduction of geometric workload and fill rate, ei-
ther by geometric simplification or by impostor techniques. In 
addition, we are currently extending our approach by the capabil-
ity of interactive manipulation and replacement of scene textures. 
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