
- Draft -

Interactive 3D Visualization of Vector Data in GIS
Oliver Kersting

University of Potsdam
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

oliver.kersting@hpi.uni-potsdam.de

Jürgen Döllner
University of Potsdam

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

juergen.doellner@hpi.uni-potsdam.de

ABSTRACT
Vector data represents one major category of data managed by

GIS. This paper presents a new technique for vector-data display

that is able to precisely and efficiently map vector data on 3D

objects such as digital terrain models. The technique allows the

system to adapt the visual mapping to the context and user needs

and enables users to interactively modify vector data through the

visual representation. It represents a basic mechanism for GIS

interface technology and facilitates the development of visual

analysis and exploration tools.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - graphical user interfaces, screen design, interaction

styles. I.3.3 [Computer Graphics]: Picture/Image Generation -

display algorithms, viewing algorithms. I.3.6 [Computer

Graphics]: Methodology and Techniques - interaction

techniques. I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism - color, shading, shadowing, and texture.

General Terms

Algorithms, Performance, Design.

Keywords

Vector Data, 3D GIS, Geographic Visualization, Animated

Cartography.

1. INTRODUCTION
Vector data represents one of the main categories of geo-data

managed by geo-information systems (GIS). Main primitives

include points (e.g., cities, monuments), lines (e.g., road

networks, rivers, coastlines), and polygons (e.g., national borders,

vegetation zones). In the following we understand vector data as

any 2D or 3D analytically described geo data as opposed to raster

data.

There are two principal methods to visualize vector data by 2D

graphics. (1) Vector data is mapped by 2D primitives such as

points, lines, and polygons, which can be modified by varying

point symbols, line patterns, or polygon fill-styles. (2) A set of

vector data is rasterized at a given resolution as a 2D image and

combined with other images (e.g., road system combined with

topographic map) by 2D image operations.

To display vector data in 3D, however, these methods have

several drawbacks. Most 3D terrain representations are based on a

level-of-detail terrain model (e.g., [10][12]), which is needed to

handle large terrain data sets (Figure 1a), and whose geometry is

refined according to camera position and screen size.

We can map vector data to 3D geometric objects and integrate

them in the 3D scenery. In this case, rendering artifacts are likely

to occur unless vector-data is mapped consistently and exactly to

the current level-of-detail. Rendering coplanar geometry,

however, causes z-buffer artifacts (Figure 1b).

Another strategy is to rasterize vector data as 2D images in a pre-

processing step. The image is used as 2D texture and projected

onto the level-of-detail terrain geometry. Using multi-texturing,

different rasterized vector data sets can be visually combined [4].

Texturing as a pixel-precise rendering technique does not produce

the aforementioned artifacts in the image (Figure 1c). However,

the pre-processing is time-consuming, the intermediate images

require additional storage space, and the resolution cannot be

changed without mapping the vector data again.

In our approach, the visual mapping of vector data is specified by

scene graphs [14]. They specify the visual representation of vector

data at a high level of abstraction and in a hierarchical way. The

scene graphs are traversed on-demand to synthesize actual 2D

images stored at different resolutions as part of a texture pyramid.

Elements of the texture pyramid are used to project the visual

representation of vector data on any type of 3D surface. The

texture generation can take place for each frame, allowing us,

therefore, to map dynamic, time-dependent vector data as well as

to configure the representation according to the viewing

conditions.

The strengths of our texture-based rendering of vector data

include the complete decoupling of level-of-detail reference

geometry and vector-data representation, an independent level-of-

detail management for representations of vector-data, a high

image quality due to the pixel-precise application of textures, and

finally its straightforward adaptation to dynamic vector data and

its support for interactive manipulation.

The paper is structured as follows: Section 2 discusses related

work. Section 3 explains the displaying process. Section 4

discusses the dynamic display of vector data. Section 5 explains

techniques for interactively manipulating vector-data. Section 6

gives conclusions.

2. RELATED WORK
For interactive analysis and exploration of geo data, various

applications as well as extensions to GIS have been developed,

e.g., ESRI´s ArcView 3D Analyst. In general, they represent

vector data by 2D and 3D geometric objects superimposed on

terrain models.

Frequently, maps [13] serve as tools used to communicate spatial

information between GIS and users. The map metaphor has been

extended to 3D [8][5]; main requirements for these 3D maps

include multiresolution and multi-view representations, real-time

rendering, interactivity, and high visual quality [15]. Algorithms

and data structures for efficient terrain display have been

extensively studied in the past (e.g., multiresolution geometry

modeling [10][12] and multiresolution texture modeling [2][4]).

These approaches do not offer dedicated techniques for vector-

data display: Commonly, vector data is rasterized in a pre-

processing step and displayed by terrain textures.

Recently, approaches towards multiresolution modeling of vector

data have been emerged [1] and applied, for example, to

progressively transmit or compress vector data. They do not

concentrate on the display of vector data, but can substantially

support the design and implementation of visual multiresolution

representations of vector data.

In the field of vector-data display, the Scalable Vector Graphics

language (SVG) [6], a web standard for vector-based 2D graphics,

describes 2D graphics based on XML. It defines a wide variety of

2D graphics objects and styles, and concentrates on high-quality,

device-independent, scalable output. SVG primarily represents a

description standard but not a rendering technique. SVG does not

generalize to 3D graphics, which is our main focus. SVG

documents, of course, can be translated into a representation

suitable for our mapping technique.

In real-time 3D computer graphics, texturing emerges as a

fundamental graphics operation; applications include projective

textures [7], shadows and reflections [11], multi-texturing [17],

near-realistic lighting and shading [9]. Wynn [18] describes off-

screen 3D rendering implemented by the OpenGL P-buffer. The

P-buffer enables applications to use the full range of OpenGL for

synthesizing images in an internal, non-visible framebuffer. It

represents the technical basis of our approach for dynamically

generating vector-data textures. In general, texture-based

rendering techniques improve drastically visual quality, exactness,

and expressiveness of real-time renderings.

3. DISPLAYING VECTOR DATA IN 3D
Mapping vector data to 3D requires 3D surfaces having the role of

a geo-reference surface. In the following, we assume that a

multiresolution terrain model is used as geo-reference surface.

3.1 Geometry-Based Mapping
If we represent vector data by geometric objects (e.g., 2D line

segments), these objects must be linked to the geo-reference

surface. In general, multiresolution modeling is necessary for

representing geo-reference surfaces in order to reduce their

geometric complexity and to achieve real-time rendering.

However, for the vector-data mapping it is difficult (sometimes

impossible) to get access to the current state of the geo-reference

(a) (b)

 (c)

Figure 1. Vector data projected as polygons onto a level-of-detail terrain model, rendered in wire-frame style (a). Rendered

with filled polygons: z-buffer artifacts are introduced since vector-data polygons tend to be coplanar with terrain polygons (b).

Texture-based vector-data mapping does not produce artifacts (c).

(a)

(b)

(c)

(d)

Figure 2. Geometry-based mapping of vector data and its

pitfalls (a-c). Texture-based mapping of vector data (d).

surface and to install callbacks that could transform and adapt

geometric objects representing vector data so that they correspond

to that state. Without this kind of callbacks changes in the level-

of-detail terrain model would lead to visual artifacts.

Figure 2 illustrates the limitations of geometry-based mapping. A

pipeline, defined by two geo-referenced end-points, should be

visualized on top of a digital terrain model. The pipeline is

represented by a line segment, which interferes with the level-of-

detail terrain model (Figure 2a). We can crack pipeline segments

to ensure that the visual pipeline representation tightly follows the

terrain surface (Figure 2b), but the surface varies depending on

viewer position and screen resolution (Figure 2c). If we would

like to adapt pipeline segments to the surface, non-trivial analytic

calculations would become necessary.

3.2 Texture-Based Mapping
To overcome the limitations of a geometry-based representation,

we represent vector data by 2D textures that are projected onto the

reference geometry. The textures result from rendering a scene

graph [14] that describes the visual mapping of the vector data,

called vector-data scene graph.

A vector-data scene graph consists of nodes. The nodes can

contain 2D geometry objects (e.g., points, lines, polygons,

curves), graphics attributes (e.g., color, material, textures, line

style, facet style etc.), and child nodes. Subgraphs can be shared,

i.e., a node can have more than one parent node. This way,

complex scene objects, for example, glyphs and symbols, can be

designed in a hierarchical and reusable way. Vector-data scene

graphs mostly contain 2D graphics. In our implementation, we use

the scene graph of the Virtual Rendering System (VRS) [3]. As

the primary difference to a regular scene graph, the vector-data

scene graph is attached to a P-buffer canvas.

In the example, we represent the pipeline by a vector-data scene

graph that consists of a 2D line, attributed by a red color, and two

2D points, attributed by a blue color. It is rendered into a 2D

texture that is projected onto the terrain surface (Figure 2d). The

texture-based visual mapping of the pipeline is independent from

the level-of-detail of the reference geometry, lines and points are

drawn perspectively correct, and no rendering artifacts due to co-

planarity and surface intersections occur.

3.3 Multiresolution Texturing
The texture-based approach can be optimized with respect to its

visual quality in the case of a level-of-detail terrain model as

reference geometry. We assume that the terrain model has a quad-

tree structure. Each level of detail consists of terrain patches, each

covering the area of all its four child patches (Figure 3b) and

having higher resolution than its parent patch. The rendering

algorithm determines visible patches according to the view

frustum and selects patches according to quality criteria such as

camera distance (Figure 3a).

3.3.1 Static Texture Pyramid
The idea is to visually map vector data at different levels of detail.

Vector data is mapped into a possibly very large 2D texture in a

pre-processing step. Then, the original 2D texture is down scaled

at various resolutions, building a (static) texture pyramid [16].

Each patch of the multiresolution terrain surface corresponds to a

subregion (called texture patch) of each 2D texture contained in

the texture pyramid. To render a terrain patch, the rendering

algorithm activates the associated texture patch (Figure 3c).

Displaying vector data based on a static texture pyramid has the

following limitations with respect to quality, speed, and hardware

resources: The pre-processing of the pyramid is generally not

(c) (b) (a)

Figure 3. Texture-based mapping of vector data. (a) Top-view. The gray area indicates the current view-frustum seen by

the camera. (b) Quad-tree-based decomposition of the terrain geometry. Patches near the camera have higher resolution

than patches far away from the camera. The currently used patches are colored gray. (c) Corresponding collection of

applied textures, derived from the same texture pyramid.

Figure 4. Differences in visual quality between static and on-

demand texture pyramids. Using the static texture pyramid based

on a 40962-sized image (left); using the on-demand texture

pyramid (right).

hardware-accelerated, resolution and visual quality is fixed

(Figure 4 left), the content of a selected layer cannot be changed

dynamically, and memory requirements are high. The total

amount of memory sums up to the original texture size plus 33%.

3.3.2 On-Demand Texture Pyramid
The on-demand texture pyramid has been developed to overcome

the limitations of traditional texture pyramids for visual mappings

of vector data. The pyramid is derived from a vector-data scene

graph. If a specific texture patch is requested from the terrain

rendering algorithm, the vector-data scene graph is rendered for

that region. Note that for each patch, regardless of its quad-tree

level, the same texture size is used, i.e., the resolution of the

visual mappings of vector data increases with the level of the

quad-tree.

This technique does not require pre-processing because textures

are generated on the fly. Hence, memory requirements are lower

because no texture pyramid must be kept in memory. The

generation of a texture patch can take place for each frame,

allowing us, therefore, to map dynamic, time-dependent data as

well as to configure the mapping according to the viewing

conditions. This way, resolution and visual quality can be

adjusted to screen resolution and user needs (Figure 4 right).

3.4 Real-Time Rendering of Texture-Mapped

Vector Data
The visual representation of the vector data consists of collections

of graphics shapes and graphics attributes that are hierarchically

arranged by scene graphs. Since scene graphs can be constructed,

modified, and rendered in real-time, our approach is applicable to

dynamic vector data as well and, furthermore, enables interactive

manipulation of vector data (see Section 5).

The on-demand texture pyramid uses a caching mechanism to

speed up the texture-patch generation process: If vector-data

content of a texture patch has not changed from one frame to

another, the cached texture patch is re-used.

In our implementation, the on-demand rendering of textures is

based on the OpenGL pixel buffer [18]. The P-buffer is a fully

functional frame-buffer, i.e., it consists of color buffer, a z-buffer,

and optionally a stencil-buffer. Rendering to the P-buffer is as fast

as rendering to an on-screen canvas; there is no restriction with

respect to hardware acceleration. The P-buffer contents can be

copied directly to a 2D texture. The P-buffer resides on graphics

hardware; no texture data must be transferred to the application

memory during that copy action.

Hence, copying P-buffer contents into 2D textures (also resident

on graphics hardware) is extremely fast. Since P-buffer rendering

allows us to rasterize vector data within real-time, on-demand

generation of textures becomes practicable.

To achieve a given screen-space texture resolution, most notably,

the memory requirements are drastically lower using an on-

demand texture pyramid compared to a static texture pyramid. In

Table 1, memory requirements of both approaches are compared.

We assume that vector data is rendered with an average number of

10-25 equally sized 2D textures, which are generated on demand.

In comparison, a static texture pyramid for a four level quad-tree

and a source image size of 8192×8192 pixels would require

268 MB of memory to store all mip-map levels; the equally

resolved on-demand texture pyramid requires 11 MB (Table 1).

4. DYNAMIC DISPLAY OF VECTOR

DATA
Each texture patch of an on-demand texture pyramid can be

rebuilt for each frame. Consequently, we are able to dynamically

adapt visual mappings to user’s needs, camera settings, or screen-

space quality criteria. This enables a wide range of dynamic

visualization strategies, including:

� Enabling/Disabling of Vector Data. Each node component

of a vector-data scene graph can be enabled respectively

disabled. That way, users and applications can select which

vector-data elements to be mapped, or reduce/increase the

visual complexity of a mapping.

� Animated Display of Vector Data. Vector data resulting

from or controlled by geo-processes or simulations (time-

dependent vector data) can be represented in an animated

way.

� View-Dependent Displaying of Vector Data. While

rasterizing vector data we can take into account the graphics

context such as camera settings (distance, orientation), view-

frustum culling, screen-space extension etc. to control visual

appearance and design of vector data (Figure 5).

� Mixing Texture-Based and Geometry-Based Mapping of

Vector Data. There are two basic strategies for selecting 2D

or 3D representations: We can opt for a mixed representation

(1) when vector-data elements come close to the viewer to

show more details by 3D objects, or (2) when vector data

elements move far away from the viewer to ensure that they

remain visible by 3D objects. The first strategy can be

Table 1. Resource usage for different texture pyramids.

Texture
Resolution

Quad-
tree

Levels

Min/Avg
Number of

Patches

Min/Avg
Memory

Usage MB

Resolution
of Pre-Built

2D Images

Memory
Usage

MB

2562 4 10/14 2.0/2.8 40962 66

5122 4 10/14 7.9/11 81922 268

2562 6 16/20 3.1/3.9 163842 1073

5122 6 16/20 12.6/15.7 327682 4295

2562 8 22/25 4.3/4.9 655362 17180

5122 8 22/25 17.3/19.7 1310722 68719

Figure 5. Visual mapping of a pipeline at low level-of-detail

(left). When the camera gets closer to one pipeline segment,

details, such as capacity and name, become visible (right).

applied to complex 3D objects (e.g., building models), which

can be abstracted in the 2D representation. The latter can be

preferred in the case of objects that would become invisible

(e.g., labels in Figure 6).

� Cartographic Generalization. As an immediate application

of on-demand rasterization, applications can implement

generalization schemes such as defined by cartography.

4.1 Display of Labels
Labels are frequently used elements in geo-visualizations.

Commonly, labels are represented as part of a static terrain

texture. They keep, therefore, orientation and resolution

independently from the viewing situation. Labels as elements of

an on-demand texture, however, should always be oriented

towards the viewer and their font size must stay within a certain

range to ensure readability (Figure 6). Also, labels could be

represented as 2D text placed parallel to the view plane once the

terrain surface is seen below a certain viewing angle at a far

distance from the camera (Figure 7). This strategy ensures an

optimal visibility of labels.

4.2 Display of Time-Dependent Vector Data
In the case of time-dependent vector data, we must update their

corresponding elements in the vector-data scene graph. In general,

it will not be necessary to rebuild the whole scene graph. Thus

dynamic phenomena like flooding scenarios, air pollution

processes, or traffic simulations can be modeled in a

straightforward way.

5. INTERACTIVE MANIPULATION OF

VECTOR DATA
Interaction with vector data is necessary to let the user manipulate

that data. Since vector data is given in an analytic form (not

rasterized), the semantics of the data is directly available for any

kind of interactive editing, direct manipulation, and exploration

tools.

5.1 Picking Operation
In common 3D libraries, 3D interaction is supported by picking

operations. One kind of picking implementation consists in

constructing a 3D ray that is sent through a point in the view-

plane into the 3D viewing frustum, and testing the ray for

intersection with scene objects.

The picking operation starts with a primary ray test: a 3D ray

passes the view-plane through the perspective view-frustum.

Along its way, the picking request can hit none, one, or several

3D scene objects. If scene objects are hit, the intersection point,

together with the object-id is recorded. The picking operation, in

general, returns a list of all objects hit together with the

intersection points.

If the ray hits the terrain surface, we check for vector-data

elements. For it, we send a new, redirected ray through the virtual

(2D) scene described by the vector-data scene graph to check for

intersections with the visual representations of vector data

(Figure 8). The identifiers of hit shapes are returned and can be

traced back to vector-data elements. Note that vector-data scene

graphs can contained and their pick even invisible vector-data

elements such as groups or regions.

Figure 6. Hybrid representation of labels inside 2D texture

and as 2D text objects. Far-away labels are displayed as

billboards, they are not contained as elements of the terrain

texture.

Figure 7. Texture-based, automatically oriented labels contained in a terrain texture.

5.2 Manipulation of Vector Data
Direct manipulation of visualized vector data represents a

powerful technique to enable interaction of users with visually

mapped vector data. The interaction requirement – to react in real-

time to user actions – is fulfilled because of the real-time ability of

on-demand texture pyramids.

2D graphics editing operations such as selecting, moving,

resizing, rotating, and scaling can be implemented for geo-objects

described by vector data. In general, it is necessary to add visual

handles to the vector-data scene graph (or main scene graph). The

user can directly manipulate the handles and, thereby, control the

corresponding operation. In addition, an interaction mechanism

can apply the picking operation of vector-data scene graphs to

determine which objects the user selects. For example, to edit a

polygon, its vertices are represented by 3D spheres, which the

user can move over the terrain surface. The application is

responsible for synchronizing vector data, vector-data scene

graphs, and visual handles.

6. CONCLUSIONS
In our approach, we specify the visual mapping of vector data by

scene graphs, render them in 2D textures, and project these

textures onto geo-reference geometry such as terrain surfaces on a

per-frame basis. The approach benefits from texturing as a

fundamental high-quality and hardware-accelerated graphics

operation as well as from the analytic specification of the visual

representation of vector data using the whole capabilities of

modern scene graph libraries.

The on-demand generation of visual mappings drastically reduces

the required amount of memory compared to pre-rasterizing

vector data, can adapt quality to viewing conditions, and enables

mapping of dynamic vector data. The scene graph representation

keeps the semantics of vector data accessible in 3D, which is

required for any kind of interactive 3D editing and direct

manipulation of vector data. As future work, we want to integrate

mechanisms for coupling 2D and 3D representations more tightly

and to develop a visual mapping language.

Acknowledgement

We would like to thank Konstantin Baumann for his collaboration

and work in the LandExplorer project.

REFERENCES
[1] Bertolotto, M., and Egenhofer, M.J. Progressive Vector

Transmission. Proceedings ACM GIS '99, 152-157, 1999.

[2] Cline, D., and Egbert, P. Interactive Display of Very Large

Textures. Proceedings IEEE Visualization '98, 343-350,

1998.

[3] Döllner, J., and Hinrichs, K. A Generic 3D Rendering

System. IEEE Transactions on Visualization and Computer

Graphics, 8(2):99-118, 2002.

[4] Döllner, J., Baumann, K., and Hinrichs, K. Texturing

Techniques for Terrain Visualization. Proceedings IEEE

Visualization 2000, 227-234, 2000.

[5] Döllner, J., and Kersting, O. Dynamic 3D Maps as Visual

Interfaces for Spatio-Temporal Data. Proceedings ACM GIS

2000, 115-120, 2000.

[6] Eisenberg, J.D. SVG Essentials. O’Reilly, 2002.

[7] Haeberli, P., and Segal, M. Texture Mapping as a

Fundamental Drawing Primitive. Proceedings of the 4th

Eurographics Workshop on Rendering, M. Cohen, C. Puech,

F. Sillion (Eds.), 259-266, 1993.

[8] Haeberling, C. Symbolization in Topographic 3D Maps:

Conceptual Aspects for User-Oriented Design. 19th

International Cartographic Conference, 1037-1044, 1999.

[9] Heidrich, W., and Seidel, H.P. Realistic, Hardware-

accelerated Shading and Lighting. Computer Graphics

(Proc. SIGGRAPH '99), 171-178, 1999.

[10] Hoppe, H. Smooth View-Dependent Level-of-Detail Control

and Its Application to Terrain Rendering. IEEE

Visualization '98, 35-42, 1998.

[11] Kilgard, M.J. Improving Shadows and Reflections via the

Stencil Buffer. NVIDIA White Paper, 2000.

[12] Lindstrom, P., and Pascucci, V. Visualization of Large

Terrains Made Easy. Proceedings of IEEE Visualization

2001, 363-370, 2001.

[13] MacEachren, A.M. How Maps Work: Representation,

Visualization, and Design. Guilford Press, New York, 1995.

[14] Sowizral, H. Scene Graphs in the New Millennium. IEEE

Computer Graphics and Applications, 20(1):56-57, 2000.

[15] Terribilini, A. Maps in Transition: Development of

Interactive Vector-Based Topographic 3D-Maps. 19th

International Cartographic Conference, 993-1001, 1999.

[16] Williams, L. Pyramidal Parametrics. Proceedings of

SIGGRAPH '83, 17(3):1-11, 1983.

[17] Woo, M., Neider, J., Davis, T., and Shreiner, D. OpenGL

Programming Guide - 3
rd

 ed. Addison-Wesley, 1999.

[18] Wynn, C. Using P-Buffers for Off-Screen Rendering in

OpenGL. NVidia Technical Paper, 2002.

P1

2D View-Plane Main 3D Scenery

Vector-Data Scenery Results

P2

P3

P4

P1

P2

P3

P4

Primary
Ray
Test

Ray Test
Results

Secondary
Ray
Test

Texture Depths

Figure 8. Picking of vector data in their visual representation:

3D-Ray tests are re-directed from the main scene graph to the

vector-data scene graph.

