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ABSTRACT 
Vector data represents one major category of data managed by 

GIS. This paper presents a new technique for vector-data display 

that is able to precisely and efficiently map vector data on 3D 

objects such as digital terrain models. The technique allows the 

system to adapt the visual mapping to the context and user needs 

and enables users to interactively modify vector data through the 

visual representation. It represents a basic mechanism for GIS 

interface technology and facilitates the development of visual 

analysis and exploration tools.  

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces - graphical user interfaces, screen design, interaction 

styles. I.3.3 [Computer Graphics]: Picture/Image Generation - 

display algorithms, viewing algorithms. I.3.6 [Computer 

Graphics]: Methodology and Techniques - interaction 

techniques. I.3.7 [Computer Graphics]: Three-Dimensional 

Graphics and Realism - color, shading, shadowing, and texture. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Vector Data, 3D GIS, Geographic Visualization, Animated 

Cartography. 

1. INTRODUCTION 
Vector data represents one of the main categories of geo-data 

managed by geo-information systems (GIS). Main primitives 

include points (e.g., cities, monuments), lines (e.g., road 

networks, rivers, coastlines), and polygons (e.g., national borders, 

vegetation zones). In the following we understand vector data as 

any 2D or 3D analytically described geo data as opposed to raster 

data. 

There are two principal methods to visualize vector data by 2D 

graphics. (1) Vector data is mapped by 2D primitives such as 

points, lines, and polygons, which can be modified by varying 

point symbols, line patterns, or polygon fill-styles. (2) A set of 

vector data is rasterized at a given resolution as a 2D image and 

combined with other images (e.g., road system combined with 

topographic map) by 2D image operations.  

To display vector data in 3D, however, these methods have 

several drawbacks. Most 3D terrain representations are based on a 

level-of-detail terrain model (e.g., [10][12]), which is needed to 

handle large terrain data sets (Figure 1a), and whose geometry is 

refined according to camera position and screen size.  

We can map vector data to 3D geometric objects and integrate 

them in the 3D scenery. In this case, rendering artifacts are likely 

to occur unless vector-data is mapped consistently and exactly to 

the current level-of-detail. Rendering coplanar geometry, 

however, causes z-buffer artifacts (Figure 1b).  

Another strategy is to rasterize vector data as 2D images in a pre-

processing step. The image is used as 2D texture and projected 

onto the level-of-detail terrain geometry. Using multi-texturing, 

different rasterized vector data sets can be visually combined [4]. 

Texturing as a pixel-precise rendering technique does not produce 

the aforementioned artifacts in the image (Figure 1c). However, 

the pre-processing is time-consuming, the intermediate images 

require additional storage space, and the resolution cannot be 

changed without mapping the vector data again.  

In our approach, the visual mapping of vector data is specified by 

scene graphs [14]. They specify the visual representation of vector 

data at a high level of abstraction and in a hierarchical way. The 

scene graphs are traversed on-demand to synthesize actual 2D 

images stored at different resolutions as part of a texture pyramid. 

Elements of the texture pyramid are used to project the visual 

representation of vector data on any type of 3D surface. The 

texture generation can take place for each frame, allowing us, 

therefore, to map dynamic, time-dependent vector data as well as 

to configure the representation according to the viewing 

conditions.  

The strengths of our texture-based rendering of vector data 

include the complete decoupling of level-of-detail reference 

geometry and vector-data representation, an independent level-of-

detail management for representations of vector-data, a high 

image quality due to the pixel-precise application of textures, and 

finally its straightforward adaptation to dynamic vector data and 

its support for interactive manipulation. 

The paper is structured as follows: Section 2 discusses related 

work. Section 3 explains the displaying process. Section 4 

discusses the dynamic display of vector data. Section 5 explains 

techniques for interactively manipulating vector-data. Section 6 

gives conclusions. 



2. RELATED WORK 
For interactive analysis and exploration of geo data, various 

applications as well as extensions to GIS have been developed, 

e.g., ESRI´s ArcView 3D Analyst. In general, they represent 

vector data by 2D and 3D geometric objects superimposed on 

terrain models. 

Frequently, maps [13] serve as tools used to communicate spatial 

information between GIS and users. The map metaphor has been 

extended to 3D [8][5]; main requirements for these 3D maps 

include multiresolution and multi-view representations, real-time 

rendering, interactivity, and high visual quality [15]. Algorithms 

and data structures for efficient terrain display have been 

extensively studied in the past (e.g., multiresolution geometry 

modeling [10][12] and multiresolution texture modeling [2][4]). 

These approaches do not offer dedicated techniques for vector-

data display: Commonly, vector data is rasterized in a pre-

processing step and displayed by terrain textures.  

Recently, approaches towards multiresolution modeling of vector 

data have been emerged [1] and applied, for example, to 

progressively transmit or compress vector data. They do not 

concentrate on the display of vector data, but can substantially 

support the design and implementation of visual multiresolution 

representations of vector data. 

In the field of vector-data display, the Scalable Vector Graphics 

language (SVG) [6], a web standard for vector-based 2D graphics, 

describes 2D graphics based on XML. It defines a wide variety of 

2D graphics objects and styles, and concentrates on high-quality, 

device-independent, scalable output. SVG primarily represents a 

description standard but not a rendering technique. SVG does not 

generalize to 3D graphics, which is our main focus. SVG 

documents, of course, can be translated into a representation 

suitable for our mapping technique.  

In real-time 3D computer graphics, texturing emerges as a 

fundamental graphics operation; applications include projective 

textures [7], shadows and reflections [11], multi-texturing [17], 

near-realistic lighting and shading [9]. Wynn [18] describes off-

screen 3D rendering implemented by the OpenGL P-buffer. The 

P-buffer enables applications to use the full range of OpenGL for 

synthesizing images in an internal, non-visible framebuffer. It 

represents the technical basis of our approach for dynamically 

generating vector-data textures. In general, texture-based 

rendering techniques improve drastically visual quality, exactness, 

and expressiveness of real-time renderings. 

3. DISPLAYING VECTOR DATA IN 3D 
Mapping vector data to 3D requires 3D surfaces having the role of 

a geo-reference surface. In the following, we assume that a 

multiresolution terrain model is used as geo-reference surface. 

3.1 Geometry-Based Mapping 
If we represent vector data by geometric objects (e.g., 2D line 

segments), these objects must be linked to the geo-reference 

surface. In general, multiresolution modeling is necessary for 

representing geo-reference surfaces in order to reduce their 

geometric complexity and to achieve real-time rendering. 

However, for the vector-data mapping it is difficult (sometimes 

impossible) to get access to the current state of the geo-reference 
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Figure 1. Vector data projected as polygons onto a level-of-detail terrain model, rendered in wire-frame style (a). Rendered 

with filled polygons: z-buffer artifacts are introduced since vector-data polygons tend to be coplanar with terrain polygons (b). 

Texture-based vector-data mapping does not produce artifacts (c).  
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Figure 2. Geometry-based mapping of vector data and its 

pitfalls (a-c). Texture-based mapping of vector data (d). 



surface and to install callbacks that could transform and adapt 

geometric objects representing vector data so that they correspond 

to that state. Without this kind of callbacks changes in the level-

of-detail terrain model would lead to visual artifacts.  

Figure 2 illustrates the limitations of geometry-based mapping. A 

pipeline, defined by two geo-referenced end-points, should be 

visualized on top of a digital terrain model. The pipeline is 

represented by a line segment, which interferes with the level-of-

detail terrain model (Figure 2a). We can crack pipeline segments 

to ensure that the visual pipeline representation tightly follows the 

terrain surface (Figure 2b), but the surface varies depending on 

viewer position and screen resolution (Figure 2c). If we would 

like to adapt pipeline segments to the surface, non-trivial analytic 

calculations would become necessary. 

3.2 Texture-Based Mapping 
To overcome the limitations of a geometry-based representation, 

we represent vector data by 2D textures that are projected onto the 

reference geometry. The textures result from rendering a scene 

graph [14] that describes the visual mapping of the vector data, 

called vector-data scene graph.  

A vector-data scene graph consists of nodes. The nodes can 

contain 2D geometry objects (e.g., points, lines, polygons, 

curves), graphics attributes (e.g., color, material, textures, line 

style, facet style etc.), and child nodes. Subgraphs can be shared, 

i.e., a node can have more than one parent node. This way, 

complex scene objects, for example, glyphs and symbols, can be 

designed in a hierarchical and reusable way. Vector-data scene 

graphs mostly contain 2D graphics. In our implementation, we use 

the scene graph of the Virtual Rendering System (VRS) [3]. As 

the primary difference to a regular scene graph, the vector-data 

scene graph is attached to a P-buffer canvas.  

In the example, we represent the pipeline by a vector-data scene 

graph that consists of a 2D line, attributed by a red color, and two 

2D points, attributed by a blue color. It is rendered into a 2D 

texture that is projected onto the terrain surface (Figure 2d). The 

texture-based visual mapping of the pipeline is independent from 

the level-of-detail of the reference geometry, lines and points are 

drawn perspectively correct, and no rendering artifacts due to co-

planarity and surface intersections occur. 

3.3 Multiresolution Texturing 
The texture-based approach can be optimized with respect to its 

visual quality in the case of a level-of-detail terrain model as 

reference geometry. We assume that the terrain model has a quad-

tree structure. Each level of detail consists of terrain patches, each 

covering the area of all its four child patches (Figure 3b) and 

having higher resolution than its parent patch. The rendering 

algorithm determines visible patches according to the view 

frustum and selects patches according to quality criteria such as 

camera distance (Figure 3a).  

3.3.1 Static Texture Pyramid 
The idea is to visually map vector data at different levels of detail. 

Vector data is mapped into a possibly very large 2D texture in a 

pre-processing step. Then, the original 2D texture is down scaled 

at various resolutions, building a (static) texture pyramid [16].  

Each patch of the multiresolution terrain surface corresponds to a 

subregion (called texture patch) of each 2D texture contained in 

the texture pyramid. To render a terrain patch, the rendering 

algorithm activates the associated texture patch (Figure 3c).  

Displaying vector data based on a static texture pyramid has the 

following limitations with respect to quality, speed, and hardware 

resources: The pre-processing of the pyramid is generally not 
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Figure 3. Texture-based mapping of vector data. (a) Top-view. The gray area indicates the current view-frustum seen by 

the camera. (b) Quad-tree-based decomposition of the terrain geometry. Patches near the camera have higher resolution 

than patches far away from the camera. The currently used patches are colored gray. (c) Corresponding collection of 

applied textures, derived from the same texture pyramid. 

  

Figure 4. Differences in visual quality between static and on-

demand texture pyramids. Using the static texture pyramid based 

on a 40962-sized image (left); using the on-demand texture 

pyramid (right). 



hardware-accelerated, resolution and visual quality is fixed 

(Figure 4 left), the content of a selected layer cannot be changed 

dynamically, and memory requirements are high. The total 

amount of memory sums up to the original texture size plus 33%. 

3.3.2 On-Demand Texture Pyramid 
The on-demand texture pyramid has been developed to overcome 

the limitations of traditional texture pyramids for visual mappings 

of vector data. The pyramid is derived from a vector-data scene 

graph. If a specific texture patch is requested from the terrain 

rendering algorithm, the vector-data scene graph is rendered for 

that region. Note that for each patch, regardless of its quad-tree 

level, the same texture size is used, i.e., the resolution of the 

visual mappings of vector data increases with the level of the 

quad-tree. 

This technique does not require pre-processing because textures 

are generated on the fly. Hence, memory requirements are lower 

because no texture pyramid must be kept in memory. The 

generation of a texture patch can take place for each frame, 

allowing us, therefore, to map dynamic, time-dependent data as 

well as to configure the mapping according to the viewing 

conditions. This way, resolution and visual quality can be 

adjusted to screen resolution and user needs (Figure 4 right).  

3.4 Real-Time Rendering of Texture-Mapped 

Vector Data 
The visual representation of the vector data consists of collections 

of graphics shapes and graphics attributes that are hierarchically 

arranged by scene graphs. Since scene graphs can be constructed, 

modified, and rendered in real-time, our approach is applicable to 

dynamic vector data as well and, furthermore, enables interactive 

manipulation of vector data (see Section 5). 

The on-demand texture pyramid uses a caching mechanism to 

speed up the texture-patch generation process: If vector-data 

content of a texture patch has not changed from one frame to 

another, the cached texture patch is re-used.  

In our implementation, the on-demand rendering of textures is 

based on the OpenGL pixel buffer [18]. The P-buffer is a fully 

functional frame-buffer, i.e., it consists of color buffer, a z-buffer, 

and optionally a stencil-buffer. Rendering to the P-buffer is as fast 

as rendering to an on-screen canvas; there is no restriction with 

respect to hardware acceleration. The P-buffer contents can be 

copied directly to a 2D texture. The P-buffer resides on graphics 

hardware; no texture data must be transferred to the application 

memory during that copy action.  

Hence, copying P-buffer contents into 2D textures (also resident 

on graphics hardware) is extremely fast. Since P-buffer rendering 

allows us to rasterize vector data within real-time, on-demand 

generation of textures becomes practicable.  

To achieve a given screen-space texture resolution, most notably, 

the memory requirements are drastically lower using an on-

demand texture pyramid compared to a static texture pyramid. In 

Table 1, memory requirements of both approaches are compared. 

We assume that vector data is rendered with an average number of 

10-25 equally sized 2D textures, which are generated on demand. 

In comparison, a static texture pyramid for a four level quad-tree 

and a source image size of 8192×8192 pixels would require 

268 MB of memory to store all mip-map levels; the equally 

resolved on-demand texture pyramid requires 11 MB (Table 1).  

4. DYNAMIC DISPLAY OF VECTOR 

DATA 
Each texture patch of an on-demand texture pyramid can be 

rebuilt for each frame. Consequently, we are able to dynamically 

adapt visual mappings to user’s needs, camera settings, or screen-

space quality criteria. This enables a wide range of dynamic 

visualization strategies, including: 

� Enabling/Disabling of Vector Data. Each node component 

of a vector-data scene graph can be enabled respectively 

disabled. That way, users and applications can select which 

vector-data elements to be mapped, or reduce/increase the 

visual complexity of a mapping.  

� Animated Display of Vector Data. Vector data resulting 

from or controlled by geo-processes or simulations (time-

dependent vector data) can be represented in an animated 

way.  

� View-Dependent Displaying of Vector Data. While 

rasterizing vector data we can take into account the graphics 

context such as camera settings (distance, orientation), view-

frustum culling, screen-space extension etc. to control visual 

appearance and design of vector data (Figure 5). 

� Mixing Texture-Based and Geometry-Based Mapping of 

Vector Data. There are two basic strategies for selecting 2D 

or 3D representations: We can opt for a mixed representation 

(1) when vector-data elements come close to the viewer to 

show more details by 3D objects, or (2) when vector data 

elements move far away from the viewer to ensure that they 

remain visible by 3D objects. The first strategy can be 

Table 1. Resource usage for different texture pyramids. 

Texture 
Resolution 

Quad-
tree 

Levels 

Min/Avg 
Number of 

Patches 

Min/Avg 
Memory 

Usage MB 

Resolution 
of Pre-Built 

2D Images 

Memory 
Usage 

MB 

2562 4 10/14 2.0/2.8 40962 66 

5122 4 10/14 7.9/11 81922 268 

2562 6 16/20 3.1/3.9 163842 1073 

5122 6 16/20 12.6/15.7 327682 4295 

2562 8 22/25 4.3/4.9 655362 17180 

5122 8 22/25 17.3/19.7 1310722 68719 

  

Figure 5. Visual mapping of a pipeline at low level-of-detail 

(left). When the camera gets closer to one pipeline segment, 

details, such as capacity and name, become visible (right). 



applied to complex 3D objects (e.g., building models), which 

can be abstracted in the 2D representation. The latter can be 

preferred in the case of objects that would become invisible 

(e.g., labels in Figure 6). 

� Cartographic Generalization. As an immediate application 

of on-demand rasterization, applications can implement 

generalization schemes such as defined by cartography.  

4.1 Display of Labels 
Labels are frequently used elements in geo-visualizations. 

Commonly, labels are represented as part of a static terrain 

texture. They keep, therefore, orientation and resolution 

independently from the viewing situation. Labels as elements of 

an on-demand texture, however, should always be oriented 

towards the viewer and their font size must stay within a certain 

range to ensure readability (Figure 6). Also, labels could be 

represented as 2D text placed parallel to the view plane once the 

terrain surface is seen below a certain viewing angle at a far 

distance from the camera (Figure 7). This strategy ensures an 

optimal visibility of labels.  

4.2 Display of Time-Dependent Vector Data 
In the case of time-dependent vector data, we must update their 

corresponding elements in the vector-data scene graph. In general, 

it will not be necessary to rebuild the whole scene graph. Thus 

dynamic phenomena like flooding scenarios, air pollution 

processes, or traffic simulations can be modeled in a 

straightforward way. 

5. INTERACTIVE MANIPULATION OF 

VECTOR DATA 
Interaction with vector data is necessary to let the user manipulate 

that data. Since vector data is given in an analytic form (not 

rasterized), the semantics of the data is directly available for any 

kind of interactive editing, direct manipulation, and exploration 

tools. 

5.1 Picking Operation 
In common 3D libraries, 3D interaction is supported by picking 

operations. One kind of picking implementation consists in 

constructing a 3D ray that is sent through a point in the view-

plane into the 3D viewing frustum, and testing the ray for 

intersection with scene objects.  

The picking operation starts with a primary ray test: a 3D ray 

passes the view-plane through the perspective view-frustum. 

Along its way, the picking request can hit none, one, or several 

3D scene objects. If scene objects are hit, the intersection point, 

together with the object-id is recorded. The picking operation, in 

general, returns a list of all objects hit together with the 

intersection points.  

If the ray hits the terrain surface, we check for vector-data 

elements. For it, we send a new, redirected ray through the virtual 

(2D) scene described by the vector-data scene graph to check for 

intersections with the visual representations of vector data  

(Figure 8). The identifiers of hit shapes are returned and can be 

traced back to vector-data elements. Note that vector-data scene 

graphs can contained and their pick even invisible vector-data 

elements such as groups or regions.  

 

Figure 6. Hybrid representation of labels inside 2D texture 

and as 2D text objects. Far-away labels are displayed as 

billboards, they are not contained as elements of the terrain 

texture. 

   

Figure 7. Texture-based, automatically oriented labels contained in a terrain texture. 



5.2 Manipulation of Vector Data 
Direct manipulation of visualized vector data represents a 

powerful technique to enable interaction of users with visually 

mapped vector data. The interaction requirement – to react in real-

time to user actions – is fulfilled because of the real-time ability of 

on-demand texture pyramids.  

2D graphics editing operations such as selecting, moving, 

resizing, rotating, and scaling can be implemented for geo-objects 

described by vector data. In general, it is necessary to add visual 

handles to the vector-data scene graph (or main scene graph). The 

user can directly manipulate the handles and, thereby, control the 

corresponding operation. In addition, an interaction mechanism 

can apply the picking operation of vector-data scene graphs to 

determine which objects the user selects. For example, to edit a 

polygon, its vertices are represented by 3D spheres, which the 

user can move over the terrain surface. The application is 

responsible for synchronizing vector data, vector-data scene 

graphs, and visual handles.  

6. CONCLUSIONS 
In our approach, we specify the visual mapping of vector data by 

scene graphs, render them in 2D textures, and project these 

textures onto geo-reference geometry such as terrain surfaces on a 

per-frame basis. The approach benefits from texturing as a 

fundamental high-quality and hardware-accelerated graphics 

operation as well as from the analytic specification of the visual 

representation of vector data using the whole capabilities of 

modern scene graph libraries. 

The on-demand generation of visual mappings drastically reduces 

the required amount of memory compared to pre-rasterizing 

vector data, can adapt quality to viewing conditions, and enables 

mapping of dynamic vector data. The scene graph representation 

keeps the semantics of vector data accessible in 3D, which is 

required for any kind of interactive 3D editing and direct 

manipulation of vector data. As future work, we want to integrate 

mechanisms for coupling 2D and 3D representations more tightly 

and to develop a visual mapping language.  
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Figure 8. Picking of vector data in their visual representation: 

3D-Ray tests are re-directed from the main scene graph to the 

vector-data scene graph.  


