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Abstract 
Outlining and enhancing visible and occluded features 
in drafts of architecture and technical parts are essential 
techniques to visualize complex aggregated objects and 
to illustrate position, layout, and relations of their com-
ponents.  
In this paper, we present blueprints, a novel non-
photorealistic hardware-accelerated rendering technique 
that outlines visible and non-visible perceptually impor-
tant edges of 3D objects. Our technique is based on the 
edge map algorithm and the depth peeling technique to 
extract these edges from arbitrary 3D scene geometry in 
depth-sorted order. After edge maps have been gener-
ated, they are composed in image space using depth 
sprites, which allow us to combine blueprints with fur-
ther 3D scene contents. We introduce depth masking to 
dynamically adapt the number of rendering passes for 
highlighting and illustrating features of particular im-
portance and their relation to the entire assembly. Fi-
nally, we give an example of blueprints that visualize 
and illustrate ancient architecture in the scope of cul-
tural heritage.  
 
Key words: Blueprints, non-photorealistic rendering, 
hardware-accelerated rendering, edge map, depth peel-
ing. 

1 Introduction 
The term blueprint in its original meaning denotes “a 
photographic print in white on a bright blue ground or 
blue on a white ground used especially for copying 
maps, mechanical drawings, and architects' plans” 
(Merriam Webster). Blueprints consist of transparently 
rendered features, represented by their outlines. This 
way, blueprints allow for realizing complex, hierarchi-
cal object assemblies such as found in architectural 
drafts, technical illustrations, and design.  
This paper introduces a general-purpose hardware-
accelerated rendering technique for generating blue-
prints of arbitrary 3D object assemblies, outlining posi-
tion, layout, and relations of each feature (Fig. 1). This 
way, blueprints become an effective visualization tool 
for interactively exploring complex objects and com-
municating structure and relationships of their compo-

nents. Among the many application areas, blueprints 
can be used for visualizing and illustrating ancient ar-
chitecture of cultural heritage as demonstrated. 
Our blueprint technique applies non-photorealistic ren-
dering (NPR) to enhance perceptually important edges 
of 3D scene geometry, achieving vivid and expressive 
depictions and facilitating visual perception. It also ap-
plies depth peeling as a technique to decompose arbi-
trary 3D scene geometry in disjunctive depth layers to 
cope with its depth complexity. The blueprint technique 
operates in image space and takes fully advantage of 
hardware-acceleration, thus being applicable for real-
time rendering. 
In a naïve approach for blueprints, a wire-frame draw-
ing could be used, but would not allow us to distinguish 
between triangulation edges and true outlines (e.g., sil-
houettes) and even complicate the visual perception of 
complex object assemblies. One could also use trans-
parency rendering, but outlines would be hardly visible, 
in particular in regions of high depth complexity. Exist-
ing image-space NPR algorithms, finally, operate on 

Figure 1: The blueprint of a crank generated with our
technique outlines its design comprehensibly. 
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visible features and cannot be directly extended towards 
transparent renderings. Our approach extends and inte-
grates an NPR edge enhancement technique with depth 
peeling.  
The remainder of this paper is structured as follows. 
Section 2 discusses related work. Section 3 describes 
our implementation of depth peeling. Section 4 presents 
our blueprints rendering technique. Section 5 introduces 
applications, and Section 6 draws conclusions and dis-
cusses future work. 

2 Related Work 
Non-photorealistic rendering has become a popular re-
search topic in computer graphics during the last dec-
ade. NPR includes rendering styles such as painterly 
rendering [10], hatching [21], and edge enhancement 
[18]. Today, a number of object space [4,11], image 
space [5,17,24], and hybrid [20] algorithms exist for 
detecting and enhancing visually important edges of 3D 
scene geometry. Outlining edges is an important tech-
nique to differentiate the parts of complex 3D objects; 
traditionally it is used in technical illustrations and vis-
ual instruction guides [1]. By their nature, image space 
techniques for edge enhancement are nearly independ-
ent from polygon count and impose few prerequisites on 
3D scene geometry. Object space and hybrid ap-
proaches allow for generating stylized silhouettes; they 
can be applied to occluded edges as well [13]. Isenberg 
et al. [12] give an overview on silhouette extraction 
algorithms. 
Increasingly, real-time non-photorealistic rendering 
algorithms are accelerated taking advantage of graphics 
hardware available today [8,21,22]. In particular, image 
space rendering has been accelerated, now being usable 
for real-time image processing operations even for non-
photorealistic rendering [16,17]. 
One of the pioneering works in non-photorealistic ren-
dering is the G-buffer concept introduced by Saito and 
Takahashi [24]. Geometric buffers are 2-dimensional 
data structures that store geometrical properties of 3D 
scene geometry. Important G-buffers are the normal 
buffer, the z-buffer, and the Id-buffer. Furthermore, 
image processing operations are provided with G-
buffers to analyze their contents and to produce com-
prehensible images of 3D scene geometry. These in-
clude edge-enhanced or hatched renderings of 3D scene 
geometry.  
Decaudin [5] introduces cartoon-style renderings of 3D 
scene geometry with enhanced edges. His method de-
tects edges by extracting discontinuities using image 
processing techniques applied to the normal and z-
buffers. His approach is not intended being processed in 
real-time. 
Image processing techniques applied to 2-dimensional 
images are time consuming. However, Mitchell et al. 

[17] present a real-time rendering technique to extract 
edges in image space to enhance 3D scenes taking full 
advantage of hardware-acceleration on a per-scene ba-
sis. Their method renders fragment normals, z-values, 
and object identifiers of 3D scene geometry into tex-
tures using a render-to-texture implementation. Then, it 
detects discontinuities in these buffers using graphics 
hardware and combines the resulting edges with frame-
buffer contents. This way, edges of 3D scene geometry, 
regions in shadow, and texture boundaries can be out-
lined. 
An edge-enhancement algorithm that extracts disconti-
nuities in G-buffers on a per-object basis using graphics 
hardware has been introduced in [18]. It distinguishes 
profile edges and edges of inner forms by handling dis-
continuities in the normal and z-buffer differently. The 
assembly of intensity values constituting edges is made 
available by a texture, called edge map. The algorithm 
preserves the edge map, so that it can be combined with 
manifold non-photorealistic rendering algorithms 
[8,9,21] and advanced multipass, real-time rendering 
algorithms [3]. 
The blueprint technique extends the edge map algorithm 
to generate edge maps for varying depth levels. These 
edge maps are used to compose blueprints in a subse-
quent rendering pass of our multipass rendering algo-
rithm. 
Mammen [15] implements a high-quality antialiased 
transparency rendering algorithm as an application of 
the Virtual Pixel Maps architecture. For it, he introduces 
a solution to incorporate processing pixels in depth-
sorted order with the z-buffer concept. Thus, his multi-
pass rendering algorithm generates an ordering of trans-
parent pixels suitable for transparency rendering. 
Diefenbach [6] uses the dual z-buffer to implement two 
depth tests for each fragment. This way, the additional 
z-buffer allows for rendering fragments in depth-sorted 
order and facilitates transparency rendering. 
Everitt [7] introduces an alternative solution for order-
independent transparency that is fully accelerated. To 
facilitate two depth tests without a dual z-buffer his 
technique uses shadow mapping hardware for projecting 
z-values back onto 3D scene geometry. This way, he 
implements depth peeling – a technique for extracting 
layers of ordered depth on a per-fragments basis. Each 
layer is captured as texture that is blended in depth-
sorted order with frame buffer contents in the end. 
The blueprint technique implements depth peeling to 
extract layers of ordered depth in image space. The gen-
eral layout of its implementation allows us to integrate 
edge map construction for each layer easily. In a final 
rendering pass, we compose the blueprint by rendering 
edge maps as 2D textures as a kind of depth sprite. This 
way, we are even able to combine blueprints with arbi-
trary 3D scene geometry. Thus, blueprint rendering as a 
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tool can complement and enrich applications that visu-
alize and communicate spatial relations [23], for in-
stance, in applications that illustrate assembly instruc-
tion [1] and architecture [2]. 

3 Depth Peeling and Its Implementation 
Depth peeling is operating on a per-fragment basis and 
allows for extracting 2D layers of 3D scene geometry in 
depth-sorted order. Generally speaking, depth peeling 
successively “peels away” layers of unique depth com-
plexity. 
In regular real-time 3D rendering, fragments passing an 
ordinary depth test define the minimal z-value at each 
pixel. But the fragment that comes second (or third, 
etc.) with respect to its depth cannot be determined. 
Thus, an additional depth test is needed to extract those 
fragments that form a layer of a given ordinal number 
with respect to depth. 
Depth peeling, a multipass algorithm, allows us to step 
deeply into 3D scene geometry subject to the number of 
rendering passes while capturing each layer in a 2D 

texture. Thus, the first n layers are extracted by n ren-
dering passes.  
We refer a layer of unique depth complexity to as depth 
layer and a high-precision texture received from captur-
ing the according z-buffer contents as depth layer map. 
The contents of the corresponding color buffer captured 
in an additional texture is called color layer map. Color 
layer maps can be used to compose the final rendition in 
depth-sorted order. For example, ordered blending each 
layer map in the frame buffer generates order-
independent transparency [7]. 
The pseudocode in Figure 2 outlines our implementa-
tion of depth peeling. It operates on a set G of 3D scene 
geometries. G is rendered multiple times, whereby the 
rasterizer produces a set F of fragments. The loop ter-
minates, if no fragment is rendered (termination condi-
tion), otherwise it continues to extract the next depth 
layer. Generally speaking, the condition is satisfied if 
the number of rendering passes has reached the maxi-
mum depth complexity. 
In the first rendering pass (i=0) an ordinary depth test is 
performed on each fragment, thus, filling the z-buffer 
and the color buffer. Their contents are captured in a 
depth layer map resp. color layer map for further proc-
essing. 
In consecutive rendering passes (i>0) an additional 
depth test is performed on each fragment. For it, the 
depth layer map produced in the previous rendering 
pass (i-1) serves for texture mapping 3D scene geome-
try. To do so, texture coordinates for a fragment are 
determined in such a way that they correspond to can-
vas coordinates of the targeted pixel position. This way, 
a texture access provides a fragment with the z-value 
stored at that pixel position in the z-buffer of the previ-
ous rendering pass. Now, the additional depth test 
works as follows:  
� If the current z-value of a fragment is greater than 

the texture value that results from depth layer map 
access, the fragment proceeds and the following or-
dinary depth test is performed.  

procedure depthPeeling(G ← 3D scene geometry) begin
i=0 
do  

F ← rasterize(G) 
if (i==0) begin 
∀ fragment ∈ F begin 

bool test ← performDepthTest(fragment) 
if (test) begin  

fragment.depth → z-buffer 
fragment.color → color buffer 

end 
else reject fragment 

end 
end 
else begin 
∀ fragment ∈ F begin 

if (fragment.depth > fragment.valuedepth layer map(i-1)) 
begin 

bool test ← performDepthTest(fragment) 
if (test) begin  

fragment.depth → z-buffer 
fragment.color → color buffer 

end 
else reject fragment 

end 
else reject fragment 

end 
end 
depth layer map(i) ← capture(z-buffer) 
color layer map(i) ← capture(color buffer) 
i++ 

while (occlusionQuery(F) ≠ ∅  )   /* Condition */ 
end 

Figure 2: Pseudocode illustrating our implementation
of depth peeling. 

 

Silhouette edge 

Crease edge 

Figure 3: Discontinuities in the z-buffer and normal 
buffer form edge intensities in the edge map. 
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� Otherwise, if the test fails, the fragment is rejected 
prior.  

Again, after all fragments have been processed, the con-
tents of the z-buffer and color buffer form a new depth 
layer map and color layer map. We can efficiently im-
plement the additional depth test on a per-fragment ba-
sis using a fragment program. Furthermore, we utilize 
the occlusion query extension [14] to efficiently imple-
ment the termination condition.  

4 Generating Blueprints 
Our blueprint technique 1) extracts visible and non-
visible edges of 3D scene geometry and 2) composes 
them as blueprints in the frame buffer. 

4.1 Visible and Non-Visible Edges 
Perceptually important edges include silhouette, border, 
and crease edges of 3D scene geometry. Our technique 
extracts these edges by determining discontinuities in 
both the normal and z-buffer. For it, encoded normals 
and z-values of 3D scene geometry are rendered directly 
into textures. So, as a prerequisite, 3D scene geometry 
must provide per-vertex normals. Then, a screen-
aligned quad that fits completely into the viewport of 
the canvas is textured with these textures. Sampling 
neighboring texels allows for extracting discontinuities 
that result in intensity values constituting edges of 3D 
scene geometry. The assembly of edges forms a single 
texture that is called edge map. Figure 3 illustrates the 
normal buffer, the z-buffer, and the resulting edge map. 

We classify visible and non-visible edges of 3D scene 
geometry as follows.  
� Visible edges are edges directly seen by the virtual 

camera.  
� Non-visible edges are edges that are occluded by 

faces of 3D scene geometry, i.e., they are not di-
rectly seen.  

Our technique combines depth peeling with edge map 
construction to extract visible and non-visible edges of 
3D scene geometry. Since visible edges are constituted 
by discontinuities in the normal buffer and z-buffer both 
have to be constructed. Encoding fragment normals as 
color values generates the normal buffer as color layer 
map for each rendering pass. Then, the edge map can be 
constructed directly since the depth map is already 
available. Non-visible edges become visible when depth 
layers are peeled away. This way, non-visible edges can 
be extracted successively. Thus, we complement our 
depth peeling implementation by constructing an edge 
map for each depth layer. As a result, the technique 
preserves visible and non-visible edges for further proc-
essing.  
Figure 4 shows z-buffers, normal buffers, and resulting 
edge maps of several successive depth layers. It can be 
observed that edges may appear repeatedly in edge 
maps of consecutive depth layers. This results from 
those discontinuities that remain local if faces of 3D 
scene geometry are peeled away. Consider the follow-
ing cases:  
1) Two polygons are connected and share the same 

edge. One polygon occludes the other one. The dis-
continuity in the z-buffer that is produced along the 

Figure 4: The z-buffer (first row) and the normal buffer (second row) of each depth layer (column) form basis for
constructing the edge map (third row) for each layer. 
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shared edge will remain if the occluding polygon is 
peeled away. 

2) A polygon that partially occludes another polygon 
produces discontinuities in the z-buffer at the transi-
tion. If the occluding polygon and non-occluded 
portions are peeled away, a discontinuity in the z-
buffer will be produced at the same location. 

Figure 5 illustrates both cases. However, the perform-
ance of edge map construction is independent of the 
number discontinuities. 

4.2 Composing Edge Maps 
The blueprint of 3D scene geometry is composed by 
depth sprite rendering using visible and non-visible 
edges, which are stored in edge maps in depth-sorted 
order.  
Depth sprites are 2-dimensional images that provide an 
additional z-value at each pixel for depth testing. Depth 
sprite rendering is implemented based on fragment pro-
gramming. For each edge map, we proceed as follows: 
1) A screen-aligned quad that fits completely into the 

viewport of the canvas is textured with the edge 
map and the corresponding depth map. 

2) The fragment program replaces fragment z-values 
by texture values derived from accessing the depth 
map. If the z-value equals 1 – which denotes the 
depth of the back clipping plane – the program re-
jects the fragment. Otherwise, the fragment’s 
RGBA values are calculated using texture values 
derived from edge map access. Then, the fragment 
proceeds to the ordinary depth test. 

For providing depth cue our technique uses color blend-
ing by considering intensity values derived from the 
edge map as blending factors. For an example, see Fig-
ure 1.  
As a variation, we can derive blueprints in a wire-frame 
style. For it, we define a threshold value and reject frag-
ments if the intensity value is above the threshold. Oth-

erwise, fragments represent edges and are blended into 
the color buffer. Note, that depth sprite rendering facili-
tates composing blueprints with further 3D scene ge-
ometry in arbitrary order. 
Everitt [7] has already observed that it is sufficient to 
blend just the first few color layer maps to compose 
transparency. The remaining layer maps could have less 
visually impact to the overall composition because only 
a few (often isolated) pixels are produced. Thus,  
� restricting the number of rendering passes to a 

maximum, or  
� specifying a desired minimal number of fragments 

(dependent on the window resolution) to pass the 
depth test  

represent alternative termination conditions, which op-
timize rendering speed. We opt for the second choice, 
which decreases the number of rendering passes while 
maintaining visual quality of blueprints. To implement 
the trade-off between speed and quality, the occlusion 
query extension can be configured appropriately. 

4.3 Depth-Masking Hidden Components 
Outlining the area surrounding possibly occluded com-
ponents or locations is of particular importance to un-
derstand their relation to the overall structure. Further-
more, extra highlighting can be used to focus attention. 
For it, we introduce depth masking to peel away a 
minimal number of depth layers until a specified frac-
tion of the occluded components becomes visible. Thus, 

 

Camera 

Occluded faces 

Camera 

Visible faces Peeled away 

1. Pass 2. Pass 

Visible faces 

Figure 5: Top views of a set of upright polygons. Rays
are cast to discontinuities that are produced by the
composition of polygons and that are visible from the
camera position. The left view illustrates the first ren-
dering pass. The right view shows the same composi-
tion with faces peeled away. Note that the orange rays
indicate edges that exist in both edge maps.  

procedure depthPeeling(G , depth mask) begin
i=0 
do  

F ← rasterize(G) 
if (i==0) begin 
∀ fragment ∈ F begin  
  …  
end 

end 
else begin 
∀ fragment ∈ F begin 

if (fragment.depth > fragment.valuedepth layer map(i-1)) 
… 

    end 
end 
depth layer map(i) ← capture(z-buffer) 
color layer map(i) ← capture(color buffer)  /* normals */ 
edge map(i) ← edges(depth layer map(i),color layer map(i))
i++ 
 
quad ← createTexturedScreenAlignedQuad(depth mask) 
Q ← rasterize(quad) 
R ← passedDepthTest(quad) 

while ( #R < fraction(#Q) )       /* Condition */ 
end 

Figure 6: Pseudocode illustrating the modified depth
peeling technique supporting edge map construction
and depth masking. 
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depth masking provides a termination condition for 
blueprint rendering to dynamically adapt the number of 
rendering passes. 
Depth masking works as follows: 
1) An additional rendering pass is applied to generate a 

depth texture of designated components. 
2) In successive rendering passes, our technique masks 

these components using the depth texture. To do so, 
a screen-aligned quad is rendered as depth sprite 
whenever a depth layer has been peeled away. If at 
least a specified fraction of fragments passes the or-
dinary depth test (based on z-buffer contents just 
produced), our technique terminates. Otherwise, fur-
ther depth layers must be peeled away. 

3) When composing blueprints, designated components 
are simply integrated. 

The modifications to our technique are show in Figure 
6. Again, we implement it using fragment programming 
and the occlusion query extension. 
 
Figure 7 outlines the whole design of the entrance and 
the inner yard of the Temple of Ramses II with its sur-
rounding walls and statues. These are in front of the 
highlighted statues that guard the doorway to the rear 
part of the temple. The number of depth layers that oc-
clude the guarding statues and, therefore, have to be 
peeled away is determined by depth masking. Note that 
the full complexity of the rear part is not outlined. 

4.4 Performance Remarks 
The model of the crank (Fig. 1), which contains 25.000 
triangles can be rendered at 5 fps at a window resolution 
of 512×512 using an NVidia GeForce FX 5600. 
Thereby, the 5 depth layers have been considered. No-

tably, this performance is almost independent from the 
CPU. 

5 Applications 
Visualizing and exploring architecture models is one 
key application area for blueprints, which is illustrated 
for ancient architecture in the following. 

5.1 Plan Views Illustrating Architecture 
Blueprints can be used to generate plan views to outline 
architecture comprehensibly. Composing plan views 
using an orthographic camera for blueprint rendering is 
a straightforward task. 
Perceptual important edges are suitable to distinguish 
single components from each other in an overall com-
position. So, in a visualization of ancient architecture 
outlining the external and internal structure allows for 
identifying chambers, pillars, and statues systematically. 
Thus, blueprints increase visual perception in these il-
lustrations. The plan views of the 3D model of the Tem-
ple of Ramses II in Abydos in Figure 8 are produced 
automatically. 

5.2 Illustrating and Discovering Locations 
Illustrating ancient architecture using glyphs allows for 
discovering and focusing on hidden details, locations, 
and relations that otherwise wouldn’t have been noticed. 
Thus, combining general 3D scene geometry with blue-
prints can provide additional knowledge in depictions of 
archeology. 
The illustrations in Figure 9 mark a hidden chamber 

Figure 7: In the main building of the Temple of Ramses
II statues guide the doorway from the inner yard to the
rear chambers. Depth masking allows for outlining the
structural design up to the highlighted statues. 

top view

side view

Figure 8: Blueprints illustrate a top and a side view of 
the Temple of Ramses II and outline its architectural 
design comprehensibly. 
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(red box) in the rear part of the Temple of Ramses II. 
Furthermore, the paths from the inner yard resp. outer 
side of the temple to the chamber are visualized (red 
arrows). The depth masking technique is used to peel 
away a minimal number of depth layers that hide the 
upper chamber and the pathways to it. 

6 Conclusion and Future Work 
We have presented blueprints, a non-photorealistic ren-
dering technique for visualizing, illustrating, and outlin-
ing architecture and technical parts and its hardware-
accelerated implementation.  
We observed that orthographic views become more 
appropriate than perspective views with increasing 
structural complexity. In such cases, composing edges 
of consecutive depth layers could lessen comprehensi-
bility; for instance, the rear chambers and the peristyle 
in Figure 8 can hardly be identified. Nevertheless, a 
perspective view still provides better spatial orientation 
and conceptual insight in blueprints. Therefore, future 
research should concentrate on techniques, such as 
depth masking, to determine those depth layers that 
contribute to comprehensible depictions. To implement 
our blueprint rendering technique we utilize the depth 
peeling technique and combine it with our edge map 
rendering algorithm. Actually, our technique takes full 
advantage of graphics hardware fragment programming 
and texturing capabilities. In addition, it scales with 
graphics hardware.  
Future work will focus on accelerating our technique by 
utilizing upcoming concepts such as Super Buffers, 
which avoid context switches when using render-to-
texture capabilities. Furthermore, we are going to inte-
grate blueprints into an interactive visualization envi-
ronment for 3D artifacts of cultural heritage. 
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