
Proceedings of Graphics Interface 2004

Blueprints – Illustrating Architecture and Technical Parts using Hardware-
Accelerated Non-Photorealistic Rendering

Marc Nienhaus Jürgen Döllner

University of Potsdam
Hasso Plattner Institute

Abstract
Outlining and enhancing visible and occluded features
in drafts of architecture and technical parts are essential
techniques to visualize complex aggregated objects and
to illustrate position, layout, and relations of their com-
ponents.
In this paper, we present blueprints, a novel non-
photorealistic hardware-accelerated rendering technique
that outlines visible and non-visible perceptually impor-
tant edges of 3D objects. Our technique is based on the
edge map algorithm and the depth peeling technique to
extract these edges from arbitrary 3D scene geometry in
depth-sorted order. After edge maps have been gener-
ated, they are composed in image space using depth
sprites, which allow us to combine blueprints with fur-
ther 3D scene contents. We introduce depth masking to
dynamically adapt the number of rendering passes for
highlighting and illustrating features of particular im-
portance and their relation to the entire assembly. Fi-
nally, we give an example of blueprints that visualize
and illustrate ancient architecture in the scope of cul-
tural heritage.

Key words: Blueprints, non-photorealistic rendering,
hardware-accelerated rendering, edge map, depth peel-
ing.

1 Introduction
The term blueprint in its original meaning denotes “a
photographic print in white on a bright blue ground or
blue on a white ground used especially for copying
maps, mechanical drawings, and architects' plans”
(Merriam Webster). Blueprints consist of transparently
rendered features, represented by their outlines. This
way, blueprints allow for realizing complex, hierarchi-
cal object assemblies such as found in architectural
drafts, technical illustrations, and design.
This paper introduces a general-purpose hardware-
accelerated rendering technique for generating blue-
prints of arbitrary 3D object assemblies, outlining posi-
tion, layout, and relations of each feature (Fig. 1). This
way, blueprints become an effective visualization tool
for interactively exploring complex objects and com-
municating structure and relationships of their compo-

nents. Among the many application areas, blueprints
can be used for visualizing and illustrating ancient ar-
chitecture of cultural heritage as demonstrated.
Our blueprint technique applies non-photorealistic ren-
dering (NPR) to enhance perceptually important edges
of 3D scene geometry, achieving vivid and expressive
depictions and facilitating visual perception. It also ap-
plies depth peeling as a technique to decompose arbi-
trary 3D scene geometry in disjunctive depth layers to
cope with its depth complexity. The blueprint technique
operates in image space and takes fully advantage of
hardware-acceleration, thus being applicable for real-
time rendering.
In a naïve approach for blueprints, a wire-frame draw-
ing could be used, but would not allow us to distinguish
between triangulation edges and true outlines (e.g., sil-
houettes) and even complicate the visual perception of
complex object assemblies. One could also use trans-
parency rendering, but outlines would be hardly visible,
in particular in regions of high depth complexity. Exist-
ing image-space NPR algorithms, finally, operate on

Figure 1: The blueprint of a crank generated with our
technique outlines its design comprehensibly.

Proceedings of Graphics Interface 2004

visible features and cannot be directly extended towards
transparent renderings. Our approach extends and inte-
grates an NPR edge enhancement technique with depth
peeling.
The remainder of this paper is structured as follows.
Section 2 discusses related work. Section 3 describes
our implementation of depth peeling. Section 4 presents
our blueprints rendering technique. Section 5 introduces
applications, and Section 6 draws conclusions and dis-
cusses future work.

2 Related Work
Non-photorealistic rendering has become a popular re-
search topic in computer graphics during the last dec-
ade. NPR includes rendering styles such as painterly
rendering [10], hatching [21], and edge enhancement
[18]. Today, a number of object space [4,11], image
space [5,17,24], and hybrid [20] algorithms exist for
detecting and enhancing visually important edges of 3D
scene geometry. Outlining edges is an important tech-
nique to differentiate the parts of complex 3D objects;
traditionally it is used in technical illustrations and vis-
ual instruction guides [1]. By their nature, image space
techniques for edge enhancement are nearly independ-
ent from polygon count and impose few prerequisites on
3D scene geometry. Object space and hybrid ap-
proaches allow for generating stylized silhouettes; they
can be applied to occluded edges as well [13]. Isenberg
et al. [12] give an overview on silhouette extraction
algorithms.
Increasingly, real-time non-photorealistic rendering
algorithms are accelerated taking advantage of graphics
hardware available today [8,21,22]. In particular, image
space rendering has been accelerated, now being usable
for real-time image processing operations even for non-
photorealistic rendering [16,17].
One of the pioneering works in non-photorealistic ren-
dering is the G-buffer concept introduced by Saito and
Takahashi [24]. Geometric buffers are 2-dimensional
data structures that store geometrical properties of 3D
scene geometry. Important G-buffers are the normal
buffer, the z-buffer, and the Id-buffer. Furthermore,
image processing operations are provided with G-
buffers to analyze their contents and to produce com-
prehensible images of 3D scene geometry. These in-
clude edge-enhanced or hatched renderings of 3D scene
geometry.
Decaudin [5] introduces cartoon-style renderings of 3D
scene geometry with enhanced edges. His method de-
tects edges by extracting discontinuities using image
processing techniques applied to the normal and z-
buffers. His approach is not intended being processed in
real-time.
Image processing techniques applied to 2-dimensional
images are time consuming. However, Mitchell et al.

[17] present a real-time rendering technique to extract
edges in image space to enhance 3D scenes taking full
advantage of hardware-acceleration on a per-scene ba-
sis. Their method renders fragment normals, z-values,
and object identifiers of 3D scene geometry into tex-
tures using a render-to-texture implementation. Then, it
detects discontinuities in these buffers using graphics
hardware and combines the resulting edges with frame-
buffer contents. This way, edges of 3D scene geometry,
regions in shadow, and texture boundaries can be out-
lined.
An edge-enhancement algorithm that extracts disconti-
nuities in G-buffers on a per-object basis using graphics
hardware has been introduced in [18]. It distinguishes
profile edges and edges of inner forms by handling dis-
continuities in the normal and z-buffer differently. The
assembly of intensity values constituting edges is made
available by a texture, called edge map. The algorithm
preserves the edge map, so that it can be combined with
manifold non-photorealistic rendering algorithms
[8,9,21] and advanced multipass, real-time rendering
algorithms [3].
The blueprint technique extends the edge map algorithm
to generate edge maps for varying depth levels. These
edge maps are used to compose blueprints in a subse-
quent rendering pass of our multipass rendering algo-
rithm.
Mammen [15] implements a high-quality antialiased
transparency rendering algorithm as an application of
the Virtual Pixel Maps architecture. For it, he introduces
a solution to incorporate processing pixels in depth-
sorted order with the z-buffer concept. Thus, his multi-
pass rendering algorithm generates an ordering of trans-
parent pixels suitable for transparency rendering.
Diefenbach [6] uses the dual z-buffer to implement two
depth tests for each fragment. This way, the additional
z-buffer allows for rendering fragments in depth-sorted
order and facilitates transparency rendering.
Everitt [7] introduces an alternative solution for order-
independent transparency that is fully accelerated. To
facilitate two depth tests without a dual z-buffer his
technique uses shadow mapping hardware for projecting
z-values back onto 3D scene geometry. This way, he
implements depth peeling – a technique for extracting
layers of ordered depth on a per-fragments basis. Each
layer is captured as texture that is blended in depth-
sorted order with frame buffer contents in the end.
The blueprint technique implements depth peeling to
extract layers of ordered depth in image space. The gen-
eral layout of its implementation allows us to integrate
edge map construction for each layer easily. In a final
rendering pass, we compose the blueprint by rendering
edge maps as 2D textures as a kind of depth sprite. This
way, we are even able to combine blueprints with arbi-
trary 3D scene geometry. Thus, blueprint rendering as a

Proceedings of Graphics Interface 2004

tool can complement and enrich applications that visu-
alize and communicate spatial relations [23], for in-
stance, in applications that illustrate assembly instruc-
tion [1] and architecture [2].

3 Depth Peeling and Its Implementation
Depth peeling is operating on a per-fragment basis and
allows for extracting 2D layers of 3D scene geometry in
depth-sorted order. Generally speaking, depth peeling
successively “peels away” layers of unique depth com-
plexity.
In regular real-time 3D rendering, fragments passing an
ordinary depth test define the minimal z-value at each
pixel. But the fragment that comes second (or third,
etc.) with respect to its depth cannot be determined.
Thus, an additional depth test is needed to extract those
fragments that form a layer of a given ordinal number
with respect to depth.
Depth peeling, a multipass algorithm, allows us to step
deeply into 3D scene geometry subject to the number of
rendering passes while capturing each layer in a 2D

texture. Thus, the first n layers are extracted by n ren-
dering passes.
We refer a layer of unique depth complexity to as depth
layer and a high-precision texture received from captur-
ing the according z-buffer contents as depth layer map.
The contents of the corresponding color buffer captured
in an additional texture is called color layer map. Color
layer maps can be used to compose the final rendition in
depth-sorted order. For example, ordered blending each
layer map in the frame buffer generates order-
independent transparency [7].
The pseudocode in Figure 2 outlines our implementa-
tion of depth peeling. It operates on a set G of 3D scene
geometries. G is rendered multiple times, whereby the
rasterizer produces a set F of fragments. The loop ter-
minates, if no fragment is rendered (termination condi-
tion), otherwise it continues to extract the next depth
layer. Generally speaking, the condition is satisfied if
the number of rendering passes has reached the maxi-
mum depth complexity.
In the first rendering pass (i=0) an ordinary depth test is
performed on each fragment, thus, filling the z-buffer
and the color buffer. Their contents are captured in a
depth layer map resp. color layer map for further proc-
essing.
In consecutive rendering passes (i>0) an additional
depth test is performed on each fragment. For it, the
depth layer map produced in the previous rendering
pass (i-1) serves for texture mapping 3D scene geome-
try. To do so, texture coordinates for a fragment are
determined in such a way that they correspond to can-
vas coordinates of the targeted pixel position. This way,
a texture access provides a fragment with the z-value
stored at that pixel position in the z-buffer of the previ-
ous rendering pass. Now, the additional depth test
works as follows:
� If the current z-value of a fragment is greater than

the texture value that results from depth layer map
access, the fragment proceeds and the following or-
dinary depth test is performed.

procedure depthPeeling(G ← 3D scene geometry) begin
i=0
do

F ← rasterize(G)
if (i==0) begin
∀ fragment ∈ F begin

bool test ← performDepthTest(fragment)
if (test) begin

fragment.depth → z-buffer
fragment.color → color buffer

end
else reject fragment

end
end
else begin
∀ fragment ∈ F begin

if (fragment.depth > fragment.valuedepth layer map(i-1))
begin

bool test ← performDepthTest(fragment)
if (test) begin

fragment.depth → z-buffer
fragment.color → color buffer

end
else reject fragment

end
else reject fragment

end
end
depth layer map(i) ← capture(z-buffer)
color layer map(i) ← capture(color buffer)
i++

while (occlusionQuery(F) ≠ ∅) /* Condition */
end

Figure 2: Pseudocode illustrating our implementation
of depth peeling.

Silhouette edge

Crease edge

Figure 3: Discontinuities in the z-buffer and normal
buffer form edge intensities in the edge map.

Proceedings of Graphics Interface 2004

� Otherwise, if the test fails, the fragment is rejected
prior.

Again, after all fragments have been processed, the con-
tents of the z-buffer and color buffer form a new depth
layer map and color layer map. We can efficiently im-
plement the additional depth test on a per-fragment ba-
sis using a fragment program. Furthermore, we utilize
the occlusion query extension [14] to efficiently imple-
ment the termination condition.

4 Generating Blueprints
Our blueprint technique 1) extracts visible and non-
visible edges of 3D scene geometry and 2) composes
them as blueprints in the frame buffer.

4.1 Visible and Non-Visible Edges
Perceptually important edges include silhouette, border,
and crease edges of 3D scene geometry. Our technique
extracts these edges by determining discontinuities in
both the normal and z-buffer. For it, encoded normals
and z-values of 3D scene geometry are rendered directly
into textures. So, as a prerequisite, 3D scene geometry
must provide per-vertex normals. Then, a screen-
aligned quad that fits completely into the viewport of
the canvas is textured with these textures. Sampling
neighboring texels allows for extracting discontinuities
that result in intensity values constituting edges of 3D
scene geometry. The assembly of edges forms a single
texture that is called edge map. Figure 3 illustrates the
normal buffer, the z-buffer, and the resulting edge map.

We classify visible and non-visible edges of 3D scene
geometry as follows.
� Visible edges are edges directly seen by the virtual

camera.
� Non-visible edges are edges that are occluded by

faces of 3D scene geometry, i.e., they are not di-
rectly seen.

Our technique combines depth peeling with edge map
construction to extract visible and non-visible edges of
3D scene geometry. Since visible edges are constituted
by discontinuities in the normal buffer and z-buffer both
have to be constructed. Encoding fragment normals as
color values generates the normal buffer as color layer
map for each rendering pass. Then, the edge map can be
constructed directly since the depth map is already
available. Non-visible edges become visible when depth
layers are peeled away. This way, non-visible edges can
be extracted successively. Thus, we complement our
depth peeling implementation by constructing an edge
map for each depth layer. As a result, the technique
preserves visible and non-visible edges for further proc-
essing.
Figure 4 shows z-buffers, normal buffers, and resulting
edge maps of several successive depth layers. It can be
observed that edges may appear repeatedly in edge
maps of consecutive depth layers. This results from
those discontinuities that remain local if faces of 3D
scene geometry are peeled away. Consider the follow-
ing cases:
1) Two polygons are connected and share the same

edge. One polygon occludes the other one. The dis-
continuity in the z-buffer that is produced along the

Figure 4: The z-buffer (first row) and the normal buffer (second row) of each depth layer (column) form basis for
constructing the edge map (third row) for each layer.

Proceedings of Graphics Interface 2004

shared edge will remain if the occluding polygon is
peeled away.

2) A polygon that partially occludes another polygon
produces discontinuities in the z-buffer at the transi-
tion. If the occluding polygon and non-occluded
portions are peeled away, a discontinuity in the z-
buffer will be produced at the same location.

Figure 5 illustrates both cases. However, the perform-
ance of edge map construction is independent of the
number discontinuities.

4.2 Composing Edge Maps
The blueprint of 3D scene geometry is composed by
depth sprite rendering using visible and non-visible
edges, which are stored in edge maps in depth-sorted
order.
Depth sprites are 2-dimensional images that provide an
additional z-value at each pixel for depth testing. Depth
sprite rendering is implemented based on fragment pro-
gramming. For each edge map, we proceed as follows:
1) A screen-aligned quad that fits completely into the

viewport of the canvas is textured with the edge
map and the corresponding depth map.

2) The fragment program replaces fragment z-values
by texture values derived from accessing the depth
map. If the z-value equals 1 – which denotes the
depth of the back clipping plane – the program re-
jects the fragment. Otherwise, the fragment’s
RGBA values are calculated using texture values
derived from edge map access. Then, the fragment
proceeds to the ordinary depth test.

For providing depth cue our technique uses color blend-
ing by considering intensity values derived from the
edge map as blending factors. For an example, see Fig-
ure 1.
As a variation, we can derive blueprints in a wire-frame
style. For it, we define a threshold value and reject frag-
ments if the intensity value is above the threshold. Oth-

erwise, fragments represent edges and are blended into
the color buffer. Note, that depth sprite rendering facili-
tates composing blueprints with further 3D scene ge-
ometry in arbitrary order.
Everitt [7] has already observed that it is sufficient to
blend just the first few color layer maps to compose
transparency. The remaining layer maps could have less
visually impact to the overall composition because only
a few (often isolated) pixels are produced. Thus,
� restricting the number of rendering passes to a

maximum, or
� specifying a desired minimal number of fragments

(dependent on the window resolution) to pass the
depth test

represent alternative termination conditions, which op-
timize rendering speed. We opt for the second choice,
which decreases the number of rendering passes while
maintaining visual quality of blueprints. To implement
the trade-off between speed and quality, the occlusion
query extension can be configured appropriately.

4.3 Depth-Masking Hidden Components
Outlining the area surrounding possibly occluded com-
ponents or locations is of particular importance to un-
derstand their relation to the overall structure. Further-
more, extra highlighting can be used to focus attention.
For it, we introduce depth masking to peel away a
minimal number of depth layers until a specified frac-
tion of the occluded components becomes visible. Thus,

Camera

Occluded faces

Camera

Visible faces Peeled away

1. Pass 2. Pass

Visible faces

Figure 5: Top views of a set of upright polygons. Rays
are cast to discontinuities that are produced by the
composition of polygons and that are visible from the
camera position. The left view illustrates the first ren-
dering pass. The right view shows the same composi-
tion with faces peeled away. Note that the orange rays
indicate edges that exist in both edge maps.

procedure depthPeeling(G , depth mask) begin
i=0
do

F ← rasterize(G)
if (i==0) begin
∀ fragment ∈ F begin
 …
end

end
else begin
∀ fragment ∈ F begin

if (fragment.depth > fragment.valuedepth layer map(i-1))
…

 end
end
depth layer map(i) ← capture(z-buffer)
color layer map(i) ← capture(color buffer) /* normals */
edge map(i) ← edges(depth layer map(i),color layer map(i))
i++

quad ← createTexturedScreenAlignedQuad(depth mask)
Q ← rasterize(quad)
R ← passedDepthTest(quad)

while (#R < fraction(#Q)) /* Condition */
end

Figure 6: Pseudocode illustrating the modified depth
peeling technique supporting edge map construction
and depth masking.

Proceedings of Graphics Interface 2004

depth masking provides a termination condition for
blueprint rendering to dynamically adapt the number of
rendering passes.
Depth masking works as follows:
1) An additional rendering pass is applied to generate a

depth texture of designated components.
2) In successive rendering passes, our technique masks

these components using the depth texture. To do so,
a screen-aligned quad is rendered as depth sprite
whenever a depth layer has been peeled away. If at
least a specified fraction of fragments passes the or-
dinary depth test (based on z-buffer contents just
produced), our technique terminates. Otherwise, fur-
ther depth layers must be peeled away.

3) When composing blueprints, designated components
are simply integrated.

The modifications to our technique are show in Figure
6. Again, we implement it using fragment programming
and the occlusion query extension.

Figure 7 outlines the whole design of the entrance and
the inner yard of the Temple of Ramses II with its sur-
rounding walls and statues. These are in front of the
highlighted statues that guard the doorway to the rear
part of the temple. The number of depth layers that oc-
clude the guarding statues and, therefore, have to be
peeled away is determined by depth masking. Note that
the full complexity of the rear part is not outlined.

4.4 Performance Remarks
The model of the crank (Fig. 1), which contains 25.000
triangles can be rendered at 5 fps at a window resolution
of 512×512 using an NVidia GeForce FX 5600.
Thereby, the 5 depth layers have been considered. No-

tably, this performance is almost independent from the
CPU.

5 Applications
Visualizing and exploring architecture models is one
key application area for blueprints, which is illustrated
for ancient architecture in the following.

5.1 Plan Views Illustrating Architecture
Blueprints can be used to generate plan views to outline
architecture comprehensibly. Composing plan views
using an orthographic camera for blueprint rendering is
a straightforward task.
Perceptual important edges are suitable to distinguish
single components from each other in an overall com-
position. So, in a visualization of ancient architecture
outlining the external and internal structure allows for
identifying chambers, pillars, and statues systematically.
Thus, blueprints increase visual perception in these il-
lustrations. The plan views of the 3D model of the Tem-
ple of Ramses II in Abydos in Figure 8 are produced
automatically.

5.2 Illustrating and Discovering Locations
Illustrating ancient architecture using glyphs allows for
discovering and focusing on hidden details, locations,
and relations that otherwise wouldn’t have been noticed.
Thus, combining general 3D scene geometry with blue-
prints can provide additional knowledge in depictions of
archeology.
The illustrations in Figure 9 mark a hidden chamber

Figure 7: In the main building of the Temple of Ramses
II statues guide the doorway from the inner yard to the
rear chambers. Depth masking allows for outlining the
structural design up to the highlighted statues.

top view

side view

Figure 8: Blueprints illustrate a top and a side view of
the Temple of Ramses II and outline its architectural
design comprehensibly.

Proceedings of Graphics Interface 2004

(red box) in the rear part of the Temple of Ramses II.
Furthermore, the paths from the inner yard resp. outer
side of the temple to the chamber are visualized (red
arrows). The depth masking technique is used to peel
away a minimal number of depth layers that hide the
upper chamber and the pathways to it.

6 Conclusion and Future Work
We have presented blueprints, a non-photorealistic ren-
dering technique for visualizing, illustrating, and outlin-
ing architecture and technical parts and its hardware-
accelerated implementation.
We observed that orthographic views become more
appropriate than perspective views with increasing
structural complexity. In such cases, composing edges
of consecutive depth layers could lessen comprehensi-
bility; for instance, the rear chambers and the peristyle
in Figure 8 can hardly be identified. Nevertheless, a
perspective view still provides better spatial orientation
and conceptual insight in blueprints. Therefore, future
research should concentrate on techniques, such as
depth masking, to determine those depth layers that
contribute to comprehensible depictions. To implement
our blueprint rendering technique we utilize the depth
peeling technique and combine it with our edge map
rendering algorithm. Actually, our technique takes full
advantage of graphics hardware fragment programming
and texturing capabilities. In addition, it scales with
graphics hardware.
Future work will focus on accelerating our technique by
utilizing upcoming concepts such as Super Buffers,
which avoid context switches when using render-to-
texture capabilities. Furthermore, we are going to inte-
grate blueprints into an interactive visualization envi-
ronment for 3D artifacts of cultural heritage.

Acknowledgements
We thank ART+COM, Berlin for providing us the tem-
ple model and Bruce Gooch for the crank model. This
work was supported by the 6. Framework Programme
of the European Community within the TNT project
FP6-2002-IST-1.

References
[1] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J.

Klingner, P. Hanrahan, and B. Tversky. Designing
Effective Step-By-Step Assembly Instructions. In
Proceedings of ACM SIGGRAPH 2003, pp. 828-
837, ACM Press, 2003.

[2] @Last Software, Inc. SketchUp,
 http://sketchup.com, 2002.

[3] D. Blythe, B. Grantham, M. J. Kilgard, T.
McReynolds, and S. R. Nelson. Advanced Graph-
ics Programming Techniques Using OpenGL. In
ACM SIGGRAPH 1999 Course Notes, 1999.

[4] J. W. Buchanan and M. C. Sousa. The Edge

Buffer: A Data Structure for easy Silhouette Ren-
dering. In Proceedings of the First International
Symposium on Non-Photorealistic Animation and
Rendering, pp. 39-42, Annecy, France, ACM
Press, 2000.

[5] P. Decaudin. Rendu de scénes 3D imitant le style

«dessin animé», Rapport de Recherche 2919, Uni-
versité de Technologie de Compiègne, France,
1996.

[6] P. J. Diefenbach. Pipeline Rendering: Interaction

and Realism Through Hardware-based Multi-Pass

 perspective view

orthographic view

Figure 9: Blueprints enhanced with dynamic glyphs
[19] illustrate paths through the arcades and the hall
of the Temple to an upper chamber. The perspective
view provides a spatial outline while the orthographic
view provides a more systematic insight.

Proceedings of Graphics Interface 2004

Rendering. Ph.D. thesis, University of Pennsyl-
vania, June 1996.

[7] C. Everitt. Interactive order-independent transpar-

ency. Technical report, NVIDIA Corporation,
May 2001, Available at
http://developer.nvidia.com.

[8] B. Freudenberg, M. Masuch, and T. Strothotte.

Real-Time Halftoning: A Primitive For Non-
Photorealistic Shading. In Proceedings of 13th Eu-
rographics Workshop on Rendering, pp. 227-232,
Pisa, Italy, Eurographics Association, 2002.

[9] A. Gooch, B. Gooch, P. Shirly, and E. Cohen. A

Non-Photorealistic Lighting Model for Automatic
Technical Illustration. In Proceedings of ACM
SIGGRAPH 1998, pp. 447-452, ACM Press, 1998.

[10] A. Hertzmann. Painterly Rendering with Curved

Brush Strokes of Multiple Sizes. In Proceedings of
ACM SIGGRAPH 1998, pp. 453-460, ACM Press,
1998.

[11] A. Hertzmann and D. Zorin. Illustrating smooth

surfaces. In Proceedings of SIGGRAPH 2000, pp.
517-526, ACM Press, 2000.

[12] T. Isenberg, B. Freudenberg, N. Halper, S.

Schlechtweg, and T. Strotthotte. A Developer's
Guide to Silhouette Algorithms for Polygonal
Models. In IEEE Computer Graphics and Applica-
tions, 23(4), pp. 28-37, IEEE Computer Society
Press, 2003.

[13] R. D. Kalnins, P. L. Davidson, L. Markosian, and

A. Finkelstein. Coherent Stylized Silhouettes. In
Proceedings of ACM SIGGRAPH 2003, pp. 856-
861, ACM Press, 2003.

[14] M. Kilgard (Ed.), NVIDIA OpenGL Extension

Specifications. NVIDIA Corporation, June 2003,
Available at

 http://developer.nvidia.com/docs/IO/1174/ATT/-
nvOpenGLspecs.pdf.

[15] A. Mammen. Transparency and Antialiasing Algo-

rithms Implemented with the Virtual Pixel Maps
Technique. In IEEE Computer Graphics and Ap-
plications, 9(4), pp. 43-55, IEEE Computer Soci-
ety Press, 1989.

[16] J. L. Mitchell. Real-Time 3D Scene Post-

processing. Game Developers Conference, 2003,
Available at

 http://www.ati.com/developer/gdc/GDC2003_-
ScenePostprocessing.pdf.

[17] J. L. Mitchell, C. Brennan, and D. Card. Real-

Time Image Space Outlining for Non-
Photorealistic Rendering. In ACM SIGGRAPH
2002 Conference Abstracts and Applications, p.
239, ACM Press, 2002.

[18] M. Nienhaus and J. Döllner. Edge-Enhancement –

An Algorithm for Real-Time Non-Photorealistic
Rendering. In Journal of WSCG, 11(2), pp. 346-
353, Plzen, 2003.

[19] M. Nienhaus and J. Döllner. Dynamic Glyphs –

Depicting Dynamics in Images of 3D Scenes. In
Proceedings of the Third International Symposium
on Smart Graphics, pp. 102-111, Springer, 2003.

[20] J. D. Northrup and L. Markosian. Artistic Silhou-

ettes: A Hybrid Approach. In Proceedings of the
First International Symposium on Non-
Photorealistic Animation and Rendering, pp. 31-
38, Annecy, France, ACM Press, 2000.

[21] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein.

Real-Time Hatching. In Proceedings of ACM SIG-
GRAPH 2001, pp. 581-586, ACM Press, 2001.

[22] R. Raskar. Hardware Support for Non-

photorealistic Rendering. In Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware, pp. 41-46, ACM Press, 2001.

[23] F. Ritter, B. Preim, O. Deussen, and T. Strothotte.

Using a 3D Puzzle as a Metaphor for Learning
Spatial Relations. In Proceedings of Graphics In-
terface 2000, pp. 171-178, Morgan Kaufmann,
2000.

[24] T. Saito and T. Takahashi. Comprehensible Ren-

dering of 3-D Shapes. In Proceedings of SIG-
GRAPH 1990, pp. 197-206, ACM Press, 1990.

