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Abstract – Visualization has become an integral part in many applications of GIS. Due to
the rapid development of computer graphics, visualization and animation techniques,
general-purpose GIS can no longer satisfy the multitude of visualization demands. There-
fore, GIS have to utilize independent visualization toolkits. This article examines how visu-
alization systems can be used with and integrated into GIS. We analyze several key
characteristics visualization toolkits should satisfy in order to be used efficiently by GIS. We
show how GIS can provide visualization and animation features for geo objects by embed-
ding the visualization system using object-oriented techniques. The concepts are described
along with a new visualization and animation toolkit which provides extensible object-
oriented technology for the development of visualization components for 2D, 3D, and time-
varying data. The design of this visualization toolkit concentrates on a seamless integration
of application-specific geo-data into visualization components, an open interface for
different rendering techniques, and an advanced management of data dynamics.
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1 Introduction

Visualization has become an integral part in many GIS and their applications. New advanced
applications of GIS, e.g., in exploratory cartographic visualization, meteorological simula-
tions, or seismic exploration, process three-dimensional and time-varying data. Interactive 3D
visualization evolves as a main stream technology both in science and industry, and is avail-
able even on low-cost PCs.

General-purpose GIS were originally designed for the classical 2D application areas, and
hence do often not reflect the state of the art in visualization. Moreover, if a GIS implements its
own visualization subsystem, it will be difficult or even impossible to integrate cutting-edge
visualization technology. For example, state of the art visualization toolkits support real-time
volume rendering for 3D data sets based on a clever usage of textures. Since the 3D graphics
library OpenGL (Woo, Neider, and Davis, 1997), the de facto industry standard for 3D
graphics, is available on most of today’s machines, high-level visualization techniques are no
longer restricted by graphic software limitations.

A few new, innovative toolkits for visualization and 3D graphics have been developed in the
past, for example vtk (Schroeder, Martin and Lorensen, 1998), OpenInventor (Wernecke,
1994), and MAM/VRS (Döllner and Hinrichs, 1997). These toolkits consist of sets of classes
which can be included and compiled into application programs. In contrast to closed visualiza-
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tion systems such as AVS (Upson and others, 1989; for an overview see Slocum, 1994) these
toolkits provide the prerequisites for being extended and enriched by new visualization compo-
nents due to their object-oriented architecture.

In contrast to more monolithic GIS such as ARC/INFO (Morehouse, 1989), GIS should be
based on a software architecture which allows developers to use or to integrate independent
visualization toolkits, and to extend the visualization capabilities with respect to the applica-
tion domain by customized, application-specific visualization components. The GIS architec-
ture should ensure that the application developer can choose the most appropriate visualization
library and switch to another visualization toolkit if necessary.

There exist different strategies for coupling a visualization toolkit with a GIS. If the visualiza-
tion toolkit has to be used as an independent system, e.g. Geomview (Phillips, Levy, and
Munzner, 1993), the GIS has to communicate with the visualization system by import and
export files (loose coupling). The main disadvantage of this approach is that visualization
features are restricted by the file exchange format and that dynamic or large data sets can
hardly be transferred. Alternatively, the visualization toolkit could be integrated as part of the
GIS (tight coupling), communicating either through shared data structures at the object level,
or by object communication services (e.g., CORBA, ActiveX). The main disadvantage of this
approach is that the GIS has to link visualization objects and geo objects by customized soft-
ware components. However, this approach allows for a direct and efficient communication
between visualization toolkit and GIS.

In this paper, we describe how to integrate a GIS with a visualization toolkit by embedding
visualization objects into the GIS and by specializing visualization classes by object-oriented
techniques such as subclassing. In order to adapt the visualization system to the requirements
of the GIS, visualization objects have to provide a flexible, efficient, and adaptable interface.
The tight coupling of application-specific data management and the visualization objects is
realized by view classes which use the concept of iterators to directly exploit data structures
for specifying visualization primitives. Since the application data structures are integrated with
the visualization toolkit, data redundancies between the components are prevented, and the
semantics of application-specific data is available in all parts of the system.

2 GIS Requirements for Visualization Toolkits

Visualization toolkits used by GIS must meet the requirements of the visualization of typical
geo data and typical manipulation tasks. We identified several key characteristics visualization
toolkits should satisfy in order to be used efficiently by GIS. These characteristics include an
efficient incorporation of geo data in visualization objects; an integrated management of data
dynamics; high-level 3D interactive manipulation features; exchangeable rendering systems;
and facilities for designing and recording animation sequences. These characteristics are
discussed in the following. We have designed and implemented these concepts in an object-
oriented manner in a new, prototype visualization toolkit, called MAM/VRS, which serves as a
customizable visualization subsystem of any GIS.
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2.1 Realization of GIS Visualization Requirements in MAM/VRS

The visualization toolkit MAM/VRS is an open framework for developing components for
geo-based visualization and animation. MAM, the Modeling and Animation Machine,
supports high-level modeling of 3D geometry and its dynamics. VRS, the Virtual Rendering
System, is an object-oriented 3D rendering system which provides a variety of graphics primi-
tives and rendering techniques.

2.1.1 Application Data Structures for Graphics Primitives

Geo objects provided and maintained by GIS have to be transformed or linked to visualization
objects in order to provide data to the visualization toolkit. Both the implementation effort and
the efficiency depend on the type of coupling. In MAM/VRS, visualization objects use appli-
cation data as much as possible without copying the data into internal data structures. Most
MAM/VRS visualization objects require so called iterator objects provided by the application
and use these iterators to embed the necessary data. A 3D point set object, for example, does
not maintain an array of coordinates. It is associated with an iterator object and uses that iter-
ator to inquire the coordinates each time the point set is rendered. It is up to the iterator‘s
implementation to define how that data is calculated or how and where the data is stored.

2.1.2 Integrated and Sophisticated Management of Time

Data dynamics encoded in time-variant geo data can be visualized by temporal animation.
However, time can be used also to visualize features other than time. Non-temporal anima-
tions, for example, can be used to visualize spatial data uncertainty. For a detailed discussion
of the dynamic variables see MacEachren (1994) who points out that time as “powerful vari-
able [...] is likely to make the most substantial impact on maps as visualization tool in GIS”.
Thus, the visualization toolkit has to provide mechanisms for controlling and manipulating
time in geo objects and for modeling the global time flow.

MAM/VRS models the geometry of a visualization and its dynamics symmetrically by two
types of graphs: geometry graphs and behavior graphs. A geometry graph represents hierar-
chically nested 3D scenes in analogy to VRML scene graphs. A behavior graph complements
a scene description by representing its dynamic aspects such as animations or user interaction
capabilities. More abstract, behavior graphs model the time and event flows of a visualization.
MAM/VRS provides high-level time building blocks which deform or distribute time
according to time layouts. They are useful to build complex animations, such as a semantic-
guided flight across a landscape (e.g., the virtual camera could control its acceleration with
respect to the wind information at its current position).

2.1.3 Integrated 3D Interaction Capabilities

3D interaction is important for the direct manipulation of geo objects. For example, in order to
place a new building into a virtual landscape, the user needs a precise control mechanism in
3D space. 3D interaction represents also the technical foundation for intelligent dynamic
maps. MAM/VRS supports 3D interaction by an internal ray-tracer. The ray-tracer calculates
distances and positions of 3D rays and 3D objects. For example, one could simulate a flight
across a landscape and constrain the flight path to a certain altitude above the ground; the
virtual camera would send out test rays in order to check and adjust its altitude. Note that ray-
tracing does not refer to the image synthesis process: here, ray-tracing is an analytical tool
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applied to geo objects. Since all visual objects can be associated with tag objects, the GIS can
annotate any type of information it needs for identifying geo objects in virtual scenes.

2.1.4 Multiple 3D Rendering Techniques

GIS applications have different rendering requirements: real-time rendering for interactive GIS
applications must use a different rendering technology than high-quality image productions
used for computer generated videos. VRS ensures that the same visualization application can
change the underlying 3D rendering library without having to recode the application because
of VRS’s uniform and object-oriented interface. Currently, VRS supports OpenGL for real-
time rendering, and RenderMan (Upstill, 1990), POV Ray (POV Team, 1998), and the light
simulation system Radiance (Ward, 1994) for high-quality rendering with global illumination
effects. New rendering systems can be integrated by implementing so called virtual rendering
engines. Fig. 1 shows a terrain rendered with OpenGL. To facilitate the navigation in the
terrain, sun flares have been added.

2.1.5 Automated Production of Computer Video Sequences

The generation of computer video sequences is a time consuming task. In particular, if data
sets are large, the requirements of time and space are enormous. MAM/VRS facilitates the
design and realization of computer animations due to its built-in time management and
multiple 3D rendering techniques. An animation can be planned and modified with a fast real-
time rendering system. To produce the final video sequence, a high-quality rendering system
can be plugged in without writing additional code.

2.2 Architecture of the MAM/VRS Visualization Toolkit

The architecture basically consists of two layers, the MAM graphics layer and the VRS
rendering layer. The rendering layer is responsible for the image synthesis based on low-level
3D rendering libraries, whereas the graphics layer is responsible for composing 3D scenes and
specifying their dynamics.

Figure 1: Real-time terrain visualization using OpenGL 2D textures and 2D detail-textures.
Lens flares are superimposed by transparent textures.
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The Virtual Rendering System (Döllner and Hinrichs, 1997b) provides graphics objects which
represent graphical entities, e.g., colors, textures, geometric transformations, and shapes.
Shapes represent concrete 2D or 3D objects. The appearance of shapes is modified by graph-
ical attributes. Graphics objects are processed and evaluated by rendering engines which map
graphics objects to appropriate calls of the underlying 3D rendering systems. The application
can define new mapping techniques by so called shape painters and attribute painters. Painters
are objects which encapsulate the code for the actual mapping. This way, developers can add
application-specific rendering functionality to their visualization system.

VRS is a thin object-oriented layer. Its virtual rendering engines do not have a significant
impact on the rendering performance compared to applications which access a rendering
system directly. Moreover, the OpenGL rendering engine has been fine-tuned to achieve
almost the same performance as native OpenGL programs.

The Modeling and Animation Machine provides higher-level modeling techniques for visual-
ization. MAM specifies geometry nodes and behavior nodes, and it is responsible for the
management of geometry graphs and behavior graphs. Geometry graphs consist of geometry
nodes, and behavior graphs consist of behavior nodes. To visualize graphics objects, they have
to be associated with geometry nodes. To animate them, they are associated with behavior
nodes. VRS and MAM are tightly coupled because MAM’s geometry nodes and behavior
nodes manipulate and operate on associated, shared graphics objects provided by VRS.

The MAM/VRS toolkit is implemented as a C++ library. User interface bindings exist for the
Microsoft Foundation Classes MFC, OSF/Motif, and Tcl/Tk. On Windows platforms, visual-
ization components can be developed as ActiveX components.

MAM/VRS objects can be used within the scripting language Tcl/Tk (Ousterhout, 1994) in
order to support rapid prototyping of GIS applications, to take advantage of the powerful and
portable Tk user interface toolkit, and to support interactive development and testing. The
different application programming interfaces ensure that the toolkit is independent of the
window system and the low-level 3D rendering library and that MAM/VRS is portable. The
visualization toolkit can be used if at least OpenGL is available on the target platform (e.g.,
Windows95/NT, most Unix systems). Figure 2 shows the overall architecture of MAM/VRS.

3 Integration of Geo-Data and Visualization Objects

The interface between geo-data and visualization objects must be designed very carefully
because the interface has a major impact on the transparency of the system and its overall
performance.

If we choose a loose coupling, geo data structures and visualization objects exchange data
basically in three steps:

1. Convert objects of the source component into an exchange format.
2. Store these intermediate objects.
3. Convert the intermediate objects into objects suitable for the target component.

This loose coupling of components leads to problems resulting from the potential data redun-
dancy and from loss of information during the conversion processes. Hence, the semantics of
the objects used by the application program is usually not accessible by the visualization
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component which naturally restricts visualization techniques. The loose coupling is the most
popular interface provided by classical GIS.

In our approach, a tight coupling of GIS application and visualization toolkit is chosen. While
most geo-data structures have been designed to meet the requirements of GIS applications, the
data model provided by MAM/VRS reflects the needs of 3D graphics and animation. Of
course, there is in general a certain analogy in the class hierarchies. For example, vector-based
data classes provided by an application, e.g., polylines, polygonal regions, and solids, can be
represented by sets of line segments, triangles, and simplices provided by the visualization
toolkit. Furthermore, 2D and 3D meshes of triangles and simplices available in the visualiza-
tion toolkit can be used directly for the visualization of the corresponding raster-based classes
in most applications. However, we cannot expect to merge these class hierarchies due to their
different semantics and requirements. The visualization toolkit should allow the GIS developer
to add whatever is needed to visualize a specific type of geo object by subclassing existing
visualization classes. In our approach, we integrate geo data structures and visualization by
visualization view classes embedded in the visualization toolkit and by providing a uniform
embedding in a scripting language.

3.1 Visualization View Classes

Visualization view classes manage the mapping of application objects to graphics objects. By
application object we mean any type of object which contains geo data, for example a DEM
object. With respect to object-oriented design patterns (Gamma et al., 1995), a visualization
view class is both an adapter class which converts the interface of one class into another inter-
face clients expect, and a mediator class which encapsulates how two types of objects interact.
In general, a visualization view class will base the mapping on the geometric and thematic
data. In particular, the tight coupling of the application objects and graphics objects is realized
by specialized view objects, the iterator objects. The iterators provide an efficient way to

Figure 2: The architecture of the MAM/VRS visualization toolkit.
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establish a direct link between application kernel and visualization toolkit. An overview of the
architecture of such an integrated system is given in figure 3.

A visualization view class is associated with application classes and derives for these applica-
tion classes iterator classes. These iterator subclasses are specific to the application classes and
may take advantage of their internal data representation. The main purpose of iterators is the
sequential access of geometric or graphics data in a form suitable for MAM/VRS. The conver-
sion is carried out on the fly without an intermediate storage. Furthermore, visualization view
classes instantiate MAM/VRS graphics objects and connect them to iterators.

Visualization view classes can map application objects to graphics objects in various ways.
Since most classes of graphics objects in MAM/VRS rely on embedded data provided by iter-
ators, visualization techniques can be realized efficiently.

Example:
Consider the visualization of a digital elevation map (DEM) which could be represented
in a database by the class DEM, a subclass of class Grid2D, i.e., a two-dimensional
matrix of elevation information. Figure 4 shows the class hierarchy described in this
example. A DEM is visualized by an object of class Mesh provided by MAM/VRS.
Mesh objects represent triangulated n x m meshes. The interface between Grid2D and
Mesh is established by the iterator classes Grid2DVertexIterator and
Grid2DNormalIterator, both are derived from class Iterator< Vector>, the base class of
all MAM/VRS iterators. Each iterator object is associated with an Grid2D object and a
Mesh object.

If the DEM is requested to render itself, the Mesh object actually uses the iterator objects
to inquire the coordinates and the color data. Both types of iterators perform a row-by-
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Figure 3: Architectural overview of the integration of a GIS application and the visualization
toolkit MAM/VRS.
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row scan of the DEM‘s elevation matrix. Iterator objects of class Grid2DVertexIterator
return Vector objects, the 3D point and 3D vector class of MAM/VRS. Iterator objects of
class Grid2DNormalIterator return Vector objects which represent surface normal
vectors of a DEM entry. The computation of the normal vectors can be based on different
rules, e.g., geometric normals. Iterators perform their computations on the fly, i.e., no
data storage or duplication is required.

So far, the geometry of application objects has been linked to graphics objects. The thematic
part of the application objects can be mapped either by additional graphics objects or by color
information applied to existing graphics objects. It is up to the visualization strategy how to
map thematic data.

Example:
Consider again the visualization of a DEM. We have described how spatial coordinates
and the normal vectors are embedded in graphics objects by Grid2DVectorIterator
objects and Grid2DNormalIterator objects. To visualize the land use information for a
DEM, we assign colors to the mesh based on a thematic color scale. Colors are assigned
to a mesh by a color iterator. In the example, we derive a color iterator class Landuse-
ColorIterator which has to return Color objects. A Color object contains the RGB coef-
ficients and the transparency coefficient. The color iterator will actually use the associ-
ated land use geo object to inquire land use information for a spatial position.

Alternatively, we could color the mesh with respect to the height of DEM entries,
whereby the colors are calculated based on a color scale. This approach can be imple-
mented by the iterator subclass DEMHeightColorIterator.

Both land use and height information layers are visualized by the same paradigm: color
iterators infiltrate directly application semantics in MAM/VRS objects. We could also
design an appropriate texture coordinate iterator to map an additional information layer
onto the mesh.

Figure 4: Class relations for the DEM visualization.
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.

Figure 5: Sample DEM visualization. (a) Hypsometric color tinting applied to the terrain. The flight path is
visualized by a polyline. (b) Visualization of the forest land use; trees are visualized by transparent textures.
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Obviously, the concept of embedded data in graphics objects does not require explicit conver-
sion of data between application and visualization subsystem, and thereby an erroneous data
redundancy between both components is prevented. The visualization directly accesses the
objects of the application and transfers the information contained in the application into a
format which can be processed by the low-level rendering engines underlying the visualization
toolkit. This transfer is done each time an application object is rendered on the screen. To
provide smooth animations and to speed up user-interaction (e.g., interactive exploration of 3D
scenes) graphics objects can be cached. However, the visualization view classes keep track of
modifications to the application objects such that cached data is always updated if application
objects have been modified.

The tight coupling of application and visualization subsystem offers extensible and customiz-
able visualization techniques to GIS applications. For an application of our approach, see
Bernard et al. (1998) who describes an interoperable object-oriented GIS-framework for
managing, modeling, and visualizing high-dimensional spatio-temporal data by an integrated
system based on MAM/VRS and the iterator concept. Figure 5 shows sample visualizations
taken from this application

3.2 Interactive Modification of Geo Objects

As a consequence of the tight coupling of GIS and visualization subsystem, it is easy to imple-
ment interactive modification techniques for geo objects. The visualization toolkit MAM/VRS
provides tag objects to assign application-specific identifiers and group identifiers to visual
objects. Tags represent the hooks for any type of geo object editor. Tags are created by visual-
ization view classes and are associated with the graphical representations of geo objects. The
tags are used to formulate scene requests and to build object-specific interactions. Interaction
techniques can use tags to identify the relevant objects and to report them to the geo object
editor. In addition, interaction techniques can use the built-in ray tracer to inquire spatial rela-
tionships of 3D objects.

Since geo objects and their visual representations are connected by iterators, modifications
apply directly to the visual representation as well as to the application. Moreover, 3D interac-
tion techniques developed in computer graphics can be exploited. For example, the height of a
building located in a DEM can be interactively modified by a 3D scroll bar (i.e. a cylinder
erected upon the landscape with a small slider box). Figure 6 illustrates the data flow during an
interactive modification of application objects.

Figure 6: Interaction between geo objects and their visual representations.
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3.3 Embedding in an Object-Oriented Scripting Language

In general, scripting languages offer many advantages for high-level programming compared
to system programming languages because they are easier to learn and understand, provide a
tight binding to user interfaces, and allow for rapid and interactive prototyping (Ousterhout,
1998). Their main disadvantage is that they cannot implement large object-oriented systems.
The interpretative tool command language Tcl (Ousterhout, 1994), its GUI toolkit Tk, and the
object-oriented Tcl extension [incr Tcl] (McLennan, 1995) together represent a widely used
and one of the most powerful object-oriented scripting languages.

The visualization toolkit MAM/VRS is implemented by C++ libraries. To integrate the system
at the application programming interface level, we have embedded it into the object-oriented
scripting language [incr Tcl].

Our approach for embedding C++ classes in [incr Tcl] is based on the following concept: For
each C++ class there is one “mirror class” in [incr Tcl] whose class members have a one-to-
one relationship to their C++ counterparts. For each object created in the C++ world, there is a
“mirror object“ in the [incr Tcl] world. A mirror object delegates all requests to its corre-
sponding C++ object. That delegation guarantees optimal flexibility and performance: The
complete functionality of the visualization toolkit is available through the [incr Tcl] interface.
However, there is no lack of performance since the visualization functionality is not executed
in the interpretative scripting language but in the native C++ code.

If the application developer extends the visualization toolkit by new classes derived from the
existing class hierarchies, these classes must be available to the [incr Tcl] interface as well.
The same applies to application-dependent classes developed independently of MAM/VRS
which should also be available to the [incr Tcl] interface. To support the automatic integration
of application-specific classes, a generator has been developed which creates the [incr Tcl]
classes from information obtained by parsing the corresponding C++ header files.

The interpretative object-oriented scripting language [incr Tcl] also proved to be a valuable
tool for developing user interfaces. Tk offers a platform-independent collection of easy to
customize user interface components. Due to the nature of a scripting language, user interface
design can be done interactively. New parts of an application can also be developed in the
scripting language, can be tested within the interpretative environment, and can later be ported
to C++.

4 Conclusions

GIS application development can profit from the integration of object-oriented visualization
toolkits. This integration saves development and implementation effort and ensures that up-to-
date visualization techniques are available to GIS applications.

We identified customizability as one of the main criteria for choosing a visualization toolkit.
Most likely, no visualization toolkit will offer all the primitives or techniques required for a
concrete GIS application. Therefore, the ability to customize the toolkit by means of object-
oriented techniques such as subclassing and template instantiation represents a very important
characteristic a visualization toolkit should provide.
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Geo objects and their visual representations are best linked by coupling both types of objects
using mediators, e.g., iterator objects. In this way, both types of objects remain independent
and can be developed within their own class hierarchy, but can communicate efficiently. In our
experience, writing iterator classes can be easily implemented since they are just wrappers for
existing GIS and visualization classes.

Time management features and animation features play a central role when visualizing the
dynamics of data. The visualization toolkit should provide building blocks for specifying time
flows and animation processes, otherwise animations have to be realized by the GIS developer.

Visualization toolkits for GIS should be able to use different rendering systems. Although
today OpenGL represents a stable and powerful platform, this might change in the future due
to the development of new rendering techniques. The exchange of a rendering system should
not cause major code revisions but should be supported by the visualization toolkit like in the
case of the Virtual Rendering System VRS.

GIS development can further be facilitated by an object-oriented scripting language which
interfaces both GIS objects and visualization objects. It allows for interactive and rapid proto-
typing of database, visualization, and user interface components. The complete functionality of
the visualization toolkit is accessible within the scripting language without a significant loss of
performance if the scripting language extension is based on delegation to the C++ implementa-
tion.

Our future work includes the design and implementation of a geo visualization toolkit and the
development of visualization strategies for high-dimensional dynamic geo-data. Along with
this project, the MAM/VRS visualization library will be extended and provided under the
GNU library public license (http://wwwmath.uni-muenster.de/~mam).
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