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Abstract 
 

Three-dimensional maps are fundamental tools for 

presenting, exploring, and manipulating geo data. This 

paper describes multiresolution concepts for 3D maps 

and their texture-based design. In our approach, 3D maps 

are based on a hybrid, multiresolution terrain model 

composed of data sets having different topological struc-

ture, for example a coarse regular grid combined with by 

triangulated microstructures. Any number of texture lay-

ers can be associated with the terrain model. For each 

texture layer, the multiresolution structure builds a tex-

ture tree which is linked to geometry patches of the mul-

tiresolution terrain model. The terrain model together 

with multiple texture layers can be rendered in real-time, 

in particular if multitexturing is available. Texture layers 

can be combined by high-level operations such as blend-

ing and masking, and can be rebuilt at run-time. This 

mechanism simplifies the implementation of visual explo-

ration tools and of procedural, automated map designs. 

3D maps facilitate the visual simulation of environmental 

issues in spatial support systems, virtual reality applica-

tions, real-time GIS, and interactive cartography.  

 

 

1. Introduction 
 

In many applications of interactive computer graph-

ics, 3D maps are important tools for presenting, exploring, 

and manipulating geo data. In medium and large scales, 

dense graphical elements and a high level of abstraction 

are often required to communicate spatio-temporal infor-

mation about environmental objects, their relationships, 

and natural phenomena. Hence, 3D maps can be used as 

planing instruments by experts as well as presentation 

tools for non-experts [20]. 3D maps which can be de-

signed and configured in real-time enable interactive vis-

ual tools for data analysis and decision making. These 

dynamic 3D maps achieve a vivid and terse representation 

of spatio-temporal data. As a consequence, a more intui-

tive access to spatio-temporal data as well as an improved 

communication between geo-data and users result [18]. 

This paper describes concepts for implementing dy-

namic 3D maps based on a hybrid, multiresolution digital 

terrain model and multiple texture layers.  

The multiresolution terrain model used in this ap-

proach permits to integrate geometry data having different 

topological structure – and can therefore precisely model 

morphologically important terrain parts. Typically, a ter-

rain model is composed of a coarse regular grid combined 

with TINs representing microstructures of the terrain such 

as river beds or streets. 

The multiresolution terrain model can be associated 

with any number of texture layers. For each texture layer, 

a multiresolution texture data structure is generated; the 

selection of an LOD texture patch depends on the geomet-

ric resolution of the associated terrain patch. To render a 

textured 3D map, the terrain patches actually used deter-

mine relevant LOD texture patches. Multitexturing, now 

available even on "low-cost" graphics hardware, enables 

an efficient rendering of multiple texture layers.  

Multiple texture layers are deployed for 3D maps in 

various ways. (1) Typically, a texture layer visualizes 

thematic data related to a 3D map at different levels of 

detail. (2) With high-level layer operations such as blend-

ing and masking, texture layers can be combined in a sin-

gle 3D map. (3) A texture layer may also be rebuilt and 

redesigned at run-time. This mechanism permits the im-

plementation of dynamically changing 3D maps: the 3D 

map can choose appropriate visual designs according to 

design rules. These rules may consider camera settings 

and screen resolution. Therefore, we can automate the 

design of the map contents. (4) Furthermore for visualiz-

ing thematic data the map design may use representations 

different from textures such as 3D geometric objects. The 

behavior of 3D map objects is specified by associating 

events and actions. These objects determine both interac-

tivity and intelligence of 3D maps, and complement the 

3D map design. 

Dynamic 3D maps facilitate the visual simulation of 

environmental issues: Due to their effective and efficient 

visual design capabilities, these maps can be used as inter-

active tools for presentation, exploration, and manipula-

tion of spatial data as required by a growing number of 

applications such as spatial decision support systems, vir-



tual reality applications, real-time GIS, and interactive 

cartographic environments.  

The concepts described in this paper have been im-

plemented in a dynamic 3D map software prototype offer-

ing navigation, orientation, exploration, and analysis func-

tionality [2]. 

The remainder of this paper is structured as follows: 

Section 2 briefly outlines the hybrid multiresolution ter-

rain model. Section 3 describes how multiresolution tex-

ture layers are associated with the level-of-detail terrain 

geometry. Section 4 focuses on special issues regarding 

shading textures. Section 5 describes applications of tex-

ure layers for visualizing thematic data, and Section 6 

discusses how texture layers can be combined. Section 7 

outlines the software architecture of our prototype imple-

mentation, and Section 8 gives some conclusions. 

 

2. Hybrid Multiresolution Terrain Model 
 

3D maps rely on terrain models as fundamental graph-

ics components. Due to the size of terrain models, mul-

tiresolution modeling is a well-known technique to sim-

plify terrain models for the purpose of real-time 3D visu-

alization. We briefly outline a hybrid multiresolution 

model which integrates different existing, sophisticated 

multiresolution structures within a single terrain model 

and operates on geometry data sets having different topo-

logical structure. The core component of this approach is 

the approximation tree data structure which constructs the 

level-of-detail (LOD) surface models for a digital terrain; 

it has been described in detail in [1]. 

 

2.1 The Approximation Tree Data Structure 
 

An approximation tree is specified by a collection of 

geometry data objects, e.g. regular grids or TINs, and a 

set of tree nodes, called geometry patches (see Figure 1). 

Each geometry patch, i.e., each tree node, represents an 

approximated terrain surface for a rectangular region at a 

certain level of detail. A geometry patch provides a sim-

plification strategy, i.e., an algorithm for subdividing the 

terrain domain and a strategy for selecting appropriate 

points of the geometry data objects according to quality 

and performance criteria. A simplification strategy oper-

ates on the data provided by geometry data objects which 

include regular grid objects, TIN objects, and arbitrarily 

triangulated meshes, and calculates or adjusts the internal 

surface representation. The rendering algorithm selects 

geometry patches based on screen-space and object-space 

error criteria [16]. Geometry data objects can be organ-

ized in a hierarchical fashion, for instance, a grid data 

object can have additional TIN objects which refine 

subregions of the parent grid by microstructures [3]. The 

hierarchy of geometry data objects is independent from 

the hierarchy of geometry patches, i.e., the geometry data 

objects are organized with respect to the application data 

sources, whereas the approximation tree subdivides the 

terrain recursively into non-overlapping rectangular ter-

rain patches at different levels of detail according to a 

given strategy, e.g., quadtrees. 

In the past a number of simplification strategies have 

been proposed for generating multiresolution models for 
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Figure 1. A conceptual view of geometry data objects and approximation tree representations. TIN 

data and regular grid data form a hybrid mesh. On the right side, the terrain model is visual-

ized without microstructures (top) and with microstructures (bottom). 



digital terrains (e.g., hierarchical triangulations [9][8][7], 

progressive meshes [14][15], LOD heightfields [17][19], 

adaptive meshes [12], restricted quadtree triangulations 

[21]). While all these techniques have their strengths and 

weaknesses, the approximation tree concept allows devel-

opers to use those strategies which are most appropriate 

for the specific application data sets by integrating them 

into a uniform multiresolution model. Therefore the mul-

tiresolution model can be customized to the needs of an 

individual application. 

In Figure 1 the illustrated approximation tree repre-

sents a hybrid digital terrain model built from a regular 

grid and additional TINs used to refine the grid partially. 

Two simplification strategies are used: quadtrees for the 

regular grid, and a binary partitioning method for the 

TINs. In Figure 1 (right) the terrain is visualized without 

and with microstructures. The original regular grid is ren-

dered by approximately 12.000 triangles, and the micro-

structures consist of 3.000 triangles. The improvement of 

the visual quality resulting from the combined use of 

coarse-grained and fine-grained structures is obvious: the 

contours are sharp and the important morphology is repre-

sented correctly. 

 

2.2 Properties of Approximation Trees 
 

The key properties of approximation trees with re-

spect to 3D maps include: 

Visual quality. The inclusion of microstructures (e.g., 

TINs) into coarse grid structures allows us to take advan-

tage of the low memory costs of grids and the exactness of 

TINs. The goal here is to provide a sharp, morphologi-

cally correct image of a terrain. The microstructures im-

prove the human perception of the terrain by introducing 

sharp edges which facilitate the recognition of forms and 

shapes by the human visual system. 

Preservation of semantics. Since the data sets for 

coarse and fine structures are not converted or topologi-

cally transformed, the identity and semantics of the data 

sets are preserved in the digital terrain model. The costs 

for data transformation and duplication are saved, and 

visualized data objects can be identified directly in the 3D 

map. 

Choice of LOD algorithms. Due to the object-oriented 

architecture the approximation tree data structure is ge-

neric, i.e. it can be customized and extended by applica-

tion-specific simplification and approximation strategies. 

For example, constrained Delauny triangulations [23] can 

be integrated in the approximation tree. 

 

3. Texture Layers 
 

Texture mapping became a fundamental drawing 

primitive [13], and is excellently supported by low-cost 

graphics hardware. 3D visualization techniques use more 

and more texturing as one main mechanism to model and 

visualize geo-referenced topographic and thematic data. In 

most 3D maps, 2D textures are projected onto digital ter-

rain models carrying thematic information. In the past 

LOD mechanisms developed for the hierarchical represen-

tation of geometry data did not represent texture data in an 
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Figure 2. A conceptual view of a texture layer consisting of the image pyramid, the texture tree, and 

the relations to the approximation tree.  



LOD-dependent way. Since map textures are at least as 

complex as map geometry, we extend the concept of the 

approximation tree by the texture tree. A texture tree 

represents a 3D map texture at different levels of detail. A 

3D map may have any number of texture layers, that is, 

any number of texture trees. The approximation tree and 

its associated texture trees cooperate tightly because the 

selection of texture patches depends on the selection of 

geometry patches. 

 

3.1 Image Pyramid and Texture Tree 
 

The construction of a texture layer involves two steps: 

building an image pyramid and building a texture tree.  

The image pyramid is derived from the original tex-

ture data [24], which might be contained, for example, in 

a 2D image file. The image pyramid of a texture consists 

of a sequence of images with decreasing resolution. Each 

image is created by scaling down the predecessor image 

by a factor of ½. The first image of the sequence is identi-

cal to the original texture data, the last image consists of 

1 x 1 pixels. The initial image can have an arbitrary reso-

lution: Cartographic textures, for example, are likely to 

have a width and height of several ten thousands pixels.  

A texture tree is specified by a set of tree nodes, 

called texture patches. The texture tree is constructed 

symmetrically to the approximation tree. Thus, each tex-

ture patch is related to exactly one geometry patch, cover-

ing or at least overlapping the domain of the geometry 

patch with respect to its geo-referenced coordinates. 

Compared to the tree structure of the approximation tree, 

the texture tree may prune subgraphs if texture patches 

reference already a subimage of the image pyramid with 

the highest resolution. Conceptually, a texture layer of a 

3D map is represented by an image pyramid and a texture 

tree (see Figure 2). 

The rendering algorithm for 3D maps simultaneously 

traverses the approximation tree and the texture trees for 

all active texture layers, selecting geometry patches and 

texture patches according to visual geometric and texture 

approximation error thresholds. 

 

A texture patch references a sub-image of one of the 

pyramid's images. It references that image which has 

highest resolution and satisfies the texture constraints im-

posed by the rendering system. For example, OpenGL 

[25] defines a maximal texture size and requires that the 

texture size is a power of 2. The sub-image contains the 

data actually passed as texture data to the 3D rendering 

system.  

The implementation of texture trees is facilitated by 

the memory-mapped files provided by the operating sys-

tem. They permit an application to map its virtual address 

space directly to a file on disk. Memory-mapped files are 

useful for manipulating extremely large image files since 

their creation consumes few physical resources. Then, 

smaller portions of the file called "views" can be mapped 

into the address space of the process just before perform-

ing I/O. Without memory-mapping, image files not fitting 

into main memory could not be used as initial images of 

image pyramids. 

If the rendering algorithm decides to use a certain ge-

ometry patch and has determined which texture patch to 

use (in the case of a single texture layer), the texture data 

is requested. If the texture patch is asked for the first time, 

the texture patch starts a separate thread loading or calcu-

lating the appropriate texture data. As long as the thread is 

not finished, the texture of the parent texture patch is used 

instead, which covers the same domain as the child texture 

patch by definition. Thus, the rendering of a 3D map is 

progressively refined when texture patches are requested 

for the first time, but real-time rendering is ensured. 

 

3.2 Multiple Texture Layers 

 
Multiple texture layers are used if multiple thematic 

data sets have to be projected onto the digital terrain 

model. For example, land use information and surface 

temperatures for a given terrain could be visualized by 

two independent texture layers. Both thematic data sets 

could be represented by independent texture trees which 

are used together for display. 

Multiple textures are a powerful visual modeling tool: 

a base texture may carry the shading information at a high 

resolution thus overcoming the visual artifacts of Gouraud 

shading, another texture may contain static thematic in-

formation, and yet another texture may contain a time-

variant texture visualizing flows or movements. The ren-

dering of multiple texture trees is supported efficiently by 

the multi-texture functionality of the latest (and low-cost) 

3D graphics hardware which accelerates the simultaneous 

projection of two or more textures within one rendering 

pass. 

 

 

 

4. Shading of 3D Maps 
 

3D maps are characterized by both topographic and 

thematic information. The user perceives and recognizes 

the morphology of a 3D map mainly by the silhouette and 

shading of the terrain model. We take that into account in 

two ways. The approximation tree offers the possibility to 

visualize topographic detail by including microstructures 

into the terrain model which leads to a more precise mod-

eling where it is actually necessary. The calculation of a 

sophisticated shading texture, provided as a separate tex-



ture layer, is another possibility to improve the perception 

of a 3D map.  

 

4.1 Shading Textures 

 
Typically, terrain models are shaded based on 

Gouraud shading: for each triangle, the shades are calcu-

lated at the vertices, and all pixels in the interior of the 

triangle are colored by interpolating these shades. As a 

consequence, topographic detail within large triangles is 

lost, i.e., the topographic quality of a terrain model de-

pends on its geometric resolution because the shading is 

determined by the triangle vertices. In particular, a wrong 

visual impression of the terrain’s topography results for 

simplified, low-resolution parts of the terrain.  

Strategies for appearance-preserving simplifications 

take into account that pictorial information is an important 

factor in perception and can re-introduce visual detail for 

a geometrically simplified object [5][6]. The strategies 

rely on the following principle: detailed textures contain-

ing appearance information such as shades or surface 

normals are pre-computed based on the original geometric 

model and stored separately. Visual detail is introduced 

into the LOD models by projecting the pre-computed de-

tail textures. Our approach for visualizing topographic and 

thematic terrain data on maps is based on that principle. 

The appearance of topographic features can be pre-

served in LOD models by pre-calculating a topographic 

texture. Topographic textures allow an application to rep-

resent topographic detail without representing that detail 

geometrically (see Figure 3). Since topographic textures 

are applied to terrain patches in screen-space, a pixel-

precise shading is obtained even for low-resolution terrain 

parts because the shading quality depends only on the 

resolution of the topographic texture and not on the geo-

metric resolution. 

 

 

 

4.2 Calculation of Shading Textures 

 
The calculation of a shading texture depends on sur-

face properties, surface geometry, topographic features, 

light sources, and shading rules (e.g., cartographic terrain 

shading).  

In addition, it can take into account topographic fea-

tures which are classified based on TIN properties [22] in  

- zero-dimensional features such as peaks, pits, and 

saddles describing land form,  

- one-dimensional features such as valleys and ridges 

describing drainages and basins, and  

- two-dimensional features such as convex, concave, or 

flat landform elements.  

Topographic textures can be calculated in a preproc-

essing step by an orthogonal projection of the full-

resolution illuminated terrain model into an offscreen or 

an onscreen framebuffer. The contents of the framebuffer 

are then used as image data to construct a texture layer. 

To achieve a resolution higher than the maximal frame-

buffer size, the topographic texture can be composed of 

tiles. The full-resolution terrain model can be shaded us-

ing the standard OpenGL lighting, an application-specific 

illumination model (e.g., cartographic hill shading), or it 

can be based on elevation mapping [10]. 

If the resolution of the topographic texture turns out 

to be not sufficient, e.g., in situations where the camera is 

close to a single polygon of a microstructure, the 3D map 

calculates on the fly a more precise topographic texture 

for that region, or even switches to standard Gouraud 

shading. 

Both impressive speed and quality improvements can 

be achieved using topographic textures on low-cost 3D 

graphics hardware with accelerated texture mapping be-

cause the texture-based approach bypasses the limited 

geometric processing capabilities on these platforms and 

saves the costs for per-frame lighting calculations. 

 

 

            

Figure 3. A Gouraud shaded terrain with a high number of triangles (left). A similar terrain with a to-

pographic texture using a considerably lower number of triangles (right). 



4.3 Examples of Shading Textures 

 
In Figure 4, the shading texture takes into account self 

shadowing of the terrain model. The self-shadowing is 

calculated by ray intersection test between light source 

and full-resolution terrain model. In the example, the 

shading texture is overlaid with a complex cartographic 

texture. 

In Figure 5, a 3D map of the Himalaya mountains is 

shown. The mountains are shaded using a technique which 

takes into account the relative height of a terrain part, re-

sulting in a more vivid impression of the terrain model.  

 

5. Visualizing Thematic Data 

 
Visualizing thematic data is one of the main purposes 

of a 3D map. As a key characteristic, thematic data rele-

vant for a 3D map must be geo-referenced and overlap the 

terrain domain in order to be visualized by a 3D map. 

 

5.1 Thematic Textures 
 

A thematic texture is generated by mapping thematic 

data to a 2D image, and constructing a texture layer based 

on that image. For rendering of a 3D map, each texture 

layer can be turned on or off. Frequently, several thematic 

data sets are visualized simultaneously in 3D maps, for 

example, road networks and land use information. 

Thematic data may already be available as image such 

as in the case of satellite images and cartographic textures. 

It may also be generated by applying design rules for the-

matic data. A simple design rule, for example, could as-

sign color values to the image elements based on a color 

function. A more elaborated design rule could paint carto-

graphic signatures into the image.  

In our approach, design rules have access to the fol-

lowing parameters: 

• Image space properties: Size of the image to be gen-

erated, resolution of the canvas, and image area of the 

terrain patch to which the texture should be applied. 

• Drawing context: Brush size, brush type, brush color, 

and paint mode. Used by drawing operations. 

• Object space properties: Area of the geometry patch 

in geo coordinates, surface elements of the geometry 

patch, image area of the geometry patch to which the 

texture will be applied. 

• Thematic properties: Thematic values available for 

the area covered by the geometry patch, meta infor-

mation for the thematic data, for example scalar data 

type, interpolated data, etc. 

• Environmental parameters: Camera distance, posi-

tion, direction, field-of-view, and light sources (inten-

sity, direction, and light color). 

 

The mapping of thematic data to an image may also 

depend on the LOD of the terrain patch for which the 

thematic texture should be constructed. In this case, the 

texture tree patches reference subimages which may have 

 

Figure 4. Shading texture with self shadowing, 

combined with a cartographic texture. 

 

Figure 5. Cartographic shading rules as an ex-

ample for application-specific shading. 



a completely different design. A LOD-dependent 3D map 

texture is specified by design rules which take into ac-

count the LOD. LOD-dependent 3D map textures are 

used, for example, to implement cartographic generaliza-

tion schemes (see Figure 6).  

 
5.2   3D Map Objects 

 
In contrast to traditional digital maps, a 3D map may 

contain 3D objects. For the design of a 3D map, these 

objects offer an additional way to represent thematic data. 

Together with texture layers, they are in particular useful 

to implement map designs which express thematic data in 

dependency of the level of detail required by 2D textures 

and 3D glyphs. 

In our implementation, design rules are not limited to 

map thematic data to images. In addition, design rules 

may decide – at a certain level of detail – to map thematic 

data to a collection of 3D map objects. We identified the 

following basic 3D map objects:  

• 3D Icons: A 3D icon consists of one, two, or three 

perpendicular and rectangular textured quads. These 

quads are rendered as billboards. The visualization of 

trees by 3D icons is a well-known example.  

• 3D Labels: They provide 2D characters as icons, and 

are rendered as billboards.  

• 3D Shapes: A 3D shape provides any type of 3D ge-

ometry and must be geo-referenced. Examples are 

bridges and buildings. 

For example, land use information can be visualized 

by a 2D thematic texture but is complemented in the case 

of buildings by small 3D icons (see Figure 7) which pro-

vide additional information about the building height and 

type. The buildings, however, are only shown close to the 

camera.  

 

6. Combining Texture Layers 

 
If a 3D map includes more than one texture layer, it 

must be specified how these layers are combined. Multiple 

texture layers can be rendered using multitexturing [25]. 

Thus, we can provide all texture combination modes 

available from the underlying 3D rendering system. The 

operations provided by OpenGL, which is used in our 

implementation, include blending, adding, subtracting, 

and multiplying textures. This way, texture layers are kept 

independent, that is, no costly 2D image operation is nec-

essary in order to combine several texture layers.  

Hardware multitexturing supports the rendering of mul-

tiple texture layers. Typically two or four independent 

 
Figure 6.  LOD-dependent design rules for forest land use. The exact boundaries of forest areas are 

visualized if the camera comes close to the terrain. The textures are computed on the fly. 

 
Figure 7. Buildings as 3D map objects, com-

plementary to the texture design of 

land use information. 



textures can be specified together with their combination 

modes, and applied simultaneously to the terrain model. 

During the simultaneous traversal of the approximation 

tree and all active texture trees, the textures referenced by 

the texture patches are activated. Note that even if no 

hardware multitexturing is available, multiple texture lay-

ers can be rendered using multiple rendering passes. 

 

6.1 Weighted Interpolation of Textures 

 
The weighted interpolation of two texture layers is 

frequently needed for 3D maps. The weight is simply 

specified by an alpha texture, whereby both texture layers 

are combined in the relation α:(1-α). Both thematic tex-

tures and the alpha texture may have different resolution.  

The alpha texture may either be pre-computed or 

specified interactively. Since a typical alpha texture does 

not require a high resolution, for example the highlight 

lens in Figure 8 and the "thematic lens" in Figure 9 use a 

128x128 texture, the contents of the alpha texture can be 

calculated during the interaction with the user. In the case 

of static lens shapes, it suffices to manipulate the texture 

coordinates of the alpha texture layer, that is, the alpha 

texture needs not to be recalculated at all. 

To optimize real-time rendering, alpha texture layers 

can be applied to the terrain by disabling the RGB chan-

nels of the framebuffer, rendering the terrain only into the 

alpha channel of the framebuffer (assigning the weight to 

the framebuffer pixels) where the forthcoming thematic 

texture has to appear, enabling the RGB channels and 

alpha testing, and finally rendering the thematic textures 

in the next passes with the appropriate alpha operators.  

 

6.2 Texture Sequences 

 
Another frequent demand of the 3D map design is to 

visualize dynamic thematic data. If, for example, time-

varying thematic data has been pre-computed as a se-

quence of texture layers, the data changes can be animated 

by interpolating between two consecutive texture layers 

(see Figure 10). The interpolation through a texture se-

quence uses basically the same mechanism as the 

weighted interpolation. An animation results if we interpo-

late between each pair of adjacent textures of the se-

quence.  

 
Figure 8. Highlight lens modeled by a trans-

parency texture, a shading texture, 

and a cartographic texture.  

 
Figure 9. Thematic lens modeled by a weighted 

interpolation between two thematic 

textures. 

α 1-α

 
Figure 10. Interpolation through a sequence of tex-

tures, animating the flooding in a terrain. 



7. Software Architecture  

 
Figure 11 illustrates the software architecture of the 

prototype implementation of 3D maps. The implementa-

tion is based on the object-oriented modeling and anima-

tion toolkit MAM/VRS [11] which consists of two system 

layers, the Virtual Rendering Systems VRS as a thin ob-

ject-oriented layer above OpenGL and the Modeling and 

Animation Machine MAM responsible for 3D scene mod-

eling, 3D interaction, and animation.  

A collection of 3D map software components has 

been developed which interface the data structures and 

operations for approximation trees and texture trees, shad-

ing textures, and texture layer management. 3D maps can 

be embedded into applications as black-box components. 

Applications which want to extend the implementation can 

directly access the C++ classes implementing 3D maps. 

Design rules can be specified in the scripting language 

Tcl; the Tcl interpreter is embedded into the C++ applica-

tion at run-time.  

 

8. Conclusions 

 
3D maps and their texture-based design lead to pow-

erful tools for exploring and analyzing environmental is-

sues and geo data. Their ability to use data sets with dif-

ferent topological structure and preserving the semantics 

is essential for planing and simulation applications in or-

der to achieve a high visual quality of the terrain model. 

The tight integration of textures and geometry by the ap-

proximation tree and texture tree permits an efficient and 

flexible application of textures as main tools for designing 

dynamic 3D map contents. Since topographic textures can 

be used to encode topographic information, topographic 

details are preserved which would otherwise be lost due to 

the LOD models. The texture-based approach for design-

ing 3D maps benefits from recent developments in low-

cost graphics hardware which more and more provides 

fast texturing capabilities. The procedural specifications 

of thematic textures offers possibilities for easy customi-

zation of 3D maps. 3D map objects complement thematic 

textures and permit to use the third dimension for map 

design.  

Technical details and the prototype implementation 

are available at the following WWW site: 

http://www.mamvrs.de 
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