
- Draft -

Dynamic 3D Maps and Their Texture-Based Design

Jürgen Döllner, Klaus Hinrichs

Institut für Informatik, University of Münster

{dollner, khh}@uni-muenster.de

Abstract

Three-dimensional maps are fundamental tools for

presenting, exploring, and manipulating geo data. This

paper describes multiresolution concepts for 3D maps

and their texture-based design. In our approach, 3D maps

are based on a hybrid, multiresolution terrain model

composed of data sets having different topological struc-

ture, for example a coarse regular grid combined with by

triangulated microstructures. Any number of texture lay-

ers can be associated with the terrain model. For each

texture layer, the multiresolution structure builds a tex-

ture tree which is linked to geometry patches of the mul-

tiresolution terrain model. The terrain model together

with multiple texture layers can be rendered in real-time,

in particular if multitexturing is available. Texture layers

can be combined by high-level operations such as blend-

ing and masking, and can be rebuilt at run-time. This

mechanism simplifies the implementation of visual explo-

ration tools and of procedural, automated map designs.

3D maps facilitate the visual simulation of environmental

issues in spatial support systems, virtual reality applica-

tions, real-time GIS, and interactive cartography.

1. Introduction

In many applications of interactive computer graph-

ics, 3D maps are important tools for presenting, exploring,

and manipulating geo data. In medium and large scales,

dense graphical elements and a high level of abstraction

are often required to communicate spatio-temporal infor-

mation about environmental objects, their relationships,

and natural phenomena. Hence, 3D maps can be used as

planing instruments by experts as well as presentation

tools for non-experts [20]. 3D maps which can be de-

signed and configured in real-time enable interactive vis-

ual tools for data analysis and decision making. These

dynamic 3D maps achieve a vivid and terse representation

of spatio-temporal data. As a consequence, a more intui-

tive access to spatio-temporal data as well as an improved

communication between geo-data and users result [18].

This paper describes concepts for implementing dy-

namic 3D maps based on a hybrid, multiresolution digital

terrain model and multiple texture layers.

The multiresolution terrain model used in this ap-

proach permits to integrate geometry data having different

topological structure – and can therefore precisely model

morphologically important terrain parts. Typically, a ter-

rain model is composed of a coarse regular grid combined

with TINs representing microstructures of the terrain such

as river beds or streets.

The multiresolution terrain model can be associated

with any number of texture layers. For each texture layer,

a multiresolution texture data structure is generated; the

selection of an LOD texture patch depends on the geomet-

ric resolution of the associated terrain patch. To render a

textured 3D map, the terrain patches actually used deter-

mine relevant LOD texture patches. Multitexturing, now

available even on "low-cost" graphics hardware, enables

an efficient rendering of multiple texture layers.

Multiple texture layers are deployed for 3D maps in

various ways. (1) Typically, a texture layer visualizes

thematic data related to a 3D map at different levels of

detail. (2) With high-level layer operations such as blend-

ing and masking, texture layers can be combined in a sin-

gle 3D map. (3) A texture layer may also be rebuilt and

redesigned at run-time. This mechanism permits the im-

plementation of dynamically changing 3D maps: the 3D

map can choose appropriate visual designs according to

design rules. These rules may consider camera settings

and screen resolution. Therefore, we can automate the

design of the map contents. (4) Furthermore for visualiz-

ing thematic data the map design may use representations

different from textures such as 3D geometric objects. The

behavior of 3D map objects is specified by associating

events and actions. These objects determine both interac-

tivity and intelligence of 3D maps, and complement the

3D map design.

Dynamic 3D maps facilitate the visual simulation of

environmental issues: Due to their effective and efficient

visual design capabilities, these maps can be used as inter-

active tools for presentation, exploration, and manipula-

tion of spatial data as required by a growing number of

applications such as spatial decision support systems, vir-

tual reality applications, real-time GIS, and interactive

cartographic environments.

The concepts described in this paper have been im-

plemented in a dynamic 3D map software prototype offer-

ing navigation, orientation, exploration, and analysis func-

tionality [2].

The remainder of this paper is structured as follows:

Section 2 briefly outlines the hybrid multiresolution ter-

rain model. Section 3 describes how multiresolution tex-

ture layers are associated with the level-of-detail terrain

geometry. Section 4 focuses on special issues regarding

shading textures. Section 5 describes applications of tex-

ure layers for visualizing thematic data, and Section 6

discusses how texture layers can be combined. Section 7

outlines the software architecture of our prototype imple-

mentation, and Section 8 gives some conclusions.

2. Hybrid Multiresolution Terrain Model

3D maps rely on terrain models as fundamental graph-

ics components. Due to the size of terrain models, mul-

tiresolution modeling is a well-known technique to sim-

plify terrain models for the purpose of real-time 3D visu-

alization. We briefly outline a hybrid multiresolution

model which integrates different existing, sophisticated

multiresolution structures within a single terrain model

and operates on geometry data sets having different topo-

logical structure. The core component of this approach is

the approximation tree data structure which constructs the

level-of-detail (LOD) surface models for a digital terrain;

it has been described in detail in [1].

2.1 The Approximation Tree Data Structure

An approximation tree is specified by a collection of

geometry data objects, e.g. regular grids or TINs, and a

set of tree nodes, called geometry patches (see Figure 1).

Each geometry patch, i.e., each tree node, represents an

approximated terrain surface for a rectangular region at a

certain level of detail. A geometry patch provides a sim-

plification strategy, i.e., an algorithm for subdividing the

terrain domain and a strategy for selecting appropriate

points of the geometry data objects according to quality

and performance criteria. A simplification strategy oper-

ates on the data provided by geometry data objects which

include regular grid objects, TIN objects, and arbitrarily

triangulated meshes, and calculates or adjusts the internal

surface representation. The rendering algorithm selects

geometry patches based on screen-space and object-space

error criteria [16]. Geometry data objects can be organ-

ized in a hierarchical fashion, for instance, a grid data

object can have additional TIN objects which refine

subregions of the parent grid by microstructures [3]. The

hierarchy of geometry data objects is independent from

the hierarchy of geometry patches, i.e., the geometry data

objects are organized with respect to the application data

sources, whereas the approximation tree subdivides the

terrain recursively into non-overlapping rectangular ter-

rain patches at different levels of detail according to a

given strategy, e.g., quadtrees.

In the past a number of simplification strategies have

been proposed for generating multiresolution models for

Quadtree Patches (QTP)

TIN Patches (TP)

QTP

QTP QTP QTP TP

TP TP

TPTPTPTP

Geometric Data Objects Approximation Tree

TINRegular Grid

LOD Generation RenderingTraversal

Figure 1. A conceptual view of geometry data objects and approximation tree representations. TIN

data and regular grid data form a hybrid mesh. On the right side, the terrain model is visual-

ized without microstructures (top) and with microstructures (bottom).

digital terrains (e.g., hierarchical triangulations [9][8][7],

progressive meshes [14][15], LOD heightfields [17][19],

adaptive meshes [12], restricted quadtree triangulations

[21]). While all these techniques have their strengths and

weaknesses, the approximation tree concept allows devel-

opers to use those strategies which are most appropriate

for the specific application data sets by integrating them

into a uniform multiresolution model. Therefore the mul-

tiresolution model can be customized to the needs of an

individual application.

In Figure 1 the illustrated approximation tree repre-

sents a hybrid digital terrain model built from a regular

grid and additional TINs used to refine the grid partially.

Two simplification strategies are used: quadtrees for the

regular grid, and a binary partitioning method for the

TINs. In Figure 1 (right) the terrain is visualized without

and with microstructures. The original regular grid is ren-

dered by approximately 12.000 triangles, and the micro-

structures consist of 3.000 triangles. The improvement of

the visual quality resulting from the combined use of

coarse-grained and fine-grained structures is obvious: the

contours are sharp and the important morphology is repre-

sented correctly.

2.2 Properties of Approximation Trees

The key properties of approximation trees with re-

spect to 3D maps include:

Visual quality. The inclusion of microstructures (e.g.,

TINs) into coarse grid structures allows us to take advan-

tage of the low memory costs of grids and the exactness of

TINs. The goal here is to provide a sharp, morphologi-

cally correct image of a terrain. The microstructures im-

prove the human perception of the terrain by introducing

sharp edges which facilitate the recognition of forms and

shapes by the human visual system.

Preservation of semantics. Since the data sets for

coarse and fine structures are not converted or topologi-

cally transformed, the identity and semantics of the data

sets are preserved in the digital terrain model. The costs

for data transformation and duplication are saved, and

visualized data objects can be identified directly in the 3D

map.

Choice of LOD algorithms. Due to the object-oriented

architecture the approximation tree data structure is ge-

neric, i.e. it can be customized and extended by applica-

tion-specific simplification and approximation strategies.

For example, constrained Delauny triangulations [23] can

be integrated in the approximation tree.

3. Texture Layers

Texture mapping became a fundamental drawing

primitive [13], and is excellently supported by low-cost

graphics hardware. 3D visualization techniques use more

and more texturing as one main mechanism to model and

visualize geo-referenced topographic and thematic data. In

most 3D maps, 2D textures are projected onto digital ter-

rain models carrying thematic information. In the past

LOD mechanisms developed for the hierarchical represen-

tation of geometry data did not represent texture data in an

Image Pyramid Texture Tree

Sub Images

Relations to
Terrain
Patches

Approximation Tree

4.000x2.200

2.000x1.100

1x1

·

·

·
1.000x550

Terrain
Domain

Texture
Domain

Texture Layer

Figure 2. A conceptual view of a texture layer consisting of the image pyramid, the texture tree, and

the relations to the approximation tree.

LOD-dependent way. Since map textures are at least as

complex as map geometry, we extend the concept of the

approximation tree by the texture tree. A texture tree

represents a 3D map texture at different levels of detail. A

3D map may have any number of texture layers, that is,

any number of texture trees. The approximation tree and

its associated texture trees cooperate tightly because the

selection of texture patches depends on the selection of

geometry patches.

3.1 Image Pyramid and Texture Tree

The construction of a texture layer involves two steps:

building an image pyramid and building a texture tree.

The image pyramid is derived from the original tex-

ture data [24], which might be contained, for example, in

a 2D image file. The image pyramid of a texture consists

of a sequence of images with decreasing resolution. Each

image is created by scaling down the predecessor image

by a factor of ½. The first image of the sequence is identi-

cal to the original texture data, the last image consists of

1 x 1 pixels. The initial image can have an arbitrary reso-

lution: Cartographic textures, for example, are likely to

have a width and height of several ten thousands pixels.

A texture tree is specified by a set of tree nodes,

called texture patches. The texture tree is constructed

symmetrically to the approximation tree. Thus, each tex-

ture patch is related to exactly one geometry patch, cover-

ing or at least overlapping the domain of the geometry

patch with respect to its geo-referenced coordinates.

Compared to the tree structure of the approximation tree,

the texture tree may prune subgraphs if texture patches

reference already a subimage of the image pyramid with

the highest resolution. Conceptually, a texture layer of a

3D map is represented by an image pyramid and a texture

tree (see Figure 2).

The rendering algorithm for 3D maps simultaneously

traverses the approximation tree and the texture trees for

all active texture layers, selecting geometry patches and

texture patches according to visual geometric and texture

approximation error thresholds.

A texture patch references a sub-image of one of the

pyramid's images. It references that image which has

highest resolution and satisfies the texture constraints im-

posed by the rendering system. For example, OpenGL

[25] defines a maximal texture size and requires that the

texture size is a power of 2. The sub-image contains the

data actually passed as texture data to the 3D rendering

system.

The implementation of texture trees is facilitated by

the memory-mapped files provided by the operating sys-

tem. They permit an application to map its virtual address

space directly to a file on disk. Memory-mapped files are

useful for manipulating extremely large image files since

their creation consumes few physical resources. Then,

smaller portions of the file called "views" can be mapped

into the address space of the process just before perform-

ing I/O. Without memory-mapping, image files not fitting

into main memory could not be used as initial images of

image pyramids.

If the rendering algorithm decides to use a certain ge-

ometry patch and has determined which texture patch to

use (in the case of a single texture layer), the texture data

is requested. If the texture patch is asked for the first time,

the texture patch starts a separate thread loading or calcu-

lating the appropriate texture data. As long as the thread is

not finished, the texture of the parent texture patch is used

instead, which covers the same domain as the child texture

patch by definition. Thus, the rendering of a 3D map is

progressively refined when texture patches are requested

for the first time, but real-time rendering is ensured.

3.2 Multiple Texture Layers

Multiple texture layers are used if multiple thematic

data sets have to be projected onto the digital terrain

model. For example, land use information and surface

temperatures for a given terrain could be visualized by

two independent texture layers. Both thematic data sets

could be represented by independent texture trees which

are used together for display.

Multiple textures are a powerful visual modeling tool:

a base texture may carry the shading information at a high

resolution thus overcoming the visual artifacts of Gouraud

shading, another texture may contain static thematic in-

formation, and yet another texture may contain a time-

variant texture visualizing flows or movements. The ren-

dering of multiple texture trees is supported efficiently by

the multi-texture functionality of the latest (and low-cost)

3D graphics hardware which accelerates the simultaneous

projection of two or more textures within one rendering

pass.

4. Shading of 3D Maps

3D maps are characterized by both topographic and

thematic information. The user perceives and recognizes

the morphology of a 3D map mainly by the silhouette and

shading of the terrain model. We take that into account in

two ways. The approximation tree offers the possibility to

visualize topographic detail by including microstructures

into the terrain model which leads to a more precise mod-

eling where it is actually necessary. The calculation of a

sophisticated shading texture, provided as a separate tex-

ture layer, is another possibility to improve the perception

of a 3D map.

4.1 Shading Textures

Typically, terrain models are shaded based on

Gouraud shading: for each triangle, the shades are calcu-

lated at the vertices, and all pixels in the interior of the

triangle are colored by interpolating these shades. As a

consequence, topographic detail within large triangles is

lost, i.e., the topographic quality of a terrain model de-

pends on its geometric resolution because the shading is

determined by the triangle vertices. In particular, a wrong

visual impression of the terrain’s topography results for

simplified, low-resolution parts of the terrain.

Strategies for appearance-preserving simplifications

take into account that pictorial information is an important

factor in perception and can re-introduce visual detail for

a geometrically simplified object [5][6]. The strategies

rely on the following principle: detailed textures contain-

ing appearance information such as shades or surface

normals are pre-computed based on the original geometric

model and stored separately. Visual detail is introduced

into the LOD models by projecting the pre-computed de-

tail textures. Our approach for visualizing topographic and

thematic terrain data on maps is based on that principle.

The appearance of topographic features can be pre-

served in LOD models by pre-calculating a topographic

texture. Topographic textures allow an application to rep-

resent topographic detail without representing that detail

geometrically (see Figure 3). Since topographic textures

are applied to terrain patches in screen-space, a pixel-

precise shading is obtained even for low-resolution terrain

parts because the shading quality depends only on the

resolution of the topographic texture and not on the geo-

metric resolution.

4.2 Calculation of Shading Textures

The calculation of a shading texture depends on sur-

face properties, surface geometry, topographic features,

light sources, and shading rules (e.g., cartographic terrain

shading).

In addition, it can take into account topographic fea-

tures which are classified based on TIN properties [22] in

- zero-dimensional features such as peaks, pits, and

saddles describing land form,

- one-dimensional features such as valleys and ridges

describing drainages and basins, and

- two-dimensional features such as convex, concave, or

flat landform elements.

Topographic textures can be calculated in a preproc-

essing step by an orthogonal projection of the full-

resolution illuminated terrain model into an offscreen or

an onscreen framebuffer. The contents of the framebuffer

are then used as image data to construct a texture layer.

To achieve a resolution higher than the maximal frame-

buffer size, the topographic texture can be composed of

tiles. The full-resolution terrain model can be shaded us-

ing the standard OpenGL lighting, an application-specific

illumination model (e.g., cartographic hill shading), or it

can be based on elevation mapping [10].

If the resolution of the topographic texture turns out

to be not sufficient, e.g., in situations where the camera is

close to a single polygon of a microstructure, the 3D map

calculates on the fly a more precise topographic texture

for that region, or even switches to standard Gouraud

shading.

Both impressive speed and quality improvements can

be achieved using topographic textures on low-cost 3D

graphics hardware with accelerated texture mapping be-

cause the texture-based approach bypasses the limited

geometric processing capabilities on these platforms and

saves the costs for per-frame lighting calculations.

Figure 3. A Gouraud shaded terrain with a high number of triangles (left). A similar terrain with a to-

pographic texture using a considerably lower number of triangles (right).

4.3 Examples of Shading Textures

In Figure 4, the shading texture takes into account self

shadowing of the terrain model. The self-shadowing is

calculated by ray intersection test between light source

and full-resolution terrain model. In the example, the

shading texture is overlaid with a complex cartographic

texture.

In Figure 5, a 3D map of the Himalaya mountains is

shown. The mountains are shaded using a technique which

takes into account the relative height of a terrain part, re-

sulting in a more vivid impression of the terrain model.

5. Visualizing Thematic Data

Visualizing thematic data is one of the main purposes

of a 3D map. As a key characteristic, thematic data rele-

vant for a 3D map must be geo-referenced and overlap the

terrain domain in order to be visualized by a 3D map.

5.1 Thematic Textures

A thematic texture is generated by mapping thematic

data to a 2D image, and constructing a texture layer based

on that image. For rendering of a 3D map, each texture

layer can be turned on or off. Frequently, several thematic

data sets are visualized simultaneously in 3D maps, for

example, road networks and land use information.

Thematic data may already be available as image such

as in the case of satellite images and cartographic textures.

It may also be generated by applying design rules for the-

matic data. A simple design rule, for example, could as-

sign color values to the image elements based on a color

function. A more elaborated design rule could paint carto-

graphic signatures into the image.

In our approach, design rules have access to the fol-

lowing parameters:

• Image space properties: Size of the image to be gen-

erated, resolution of the canvas, and image area of the

terrain patch to which the texture should be applied.

• Drawing context: Brush size, brush type, brush color,

and paint mode. Used by drawing operations.

• Object space properties: Area of the geometry patch

in geo coordinates, surface elements of the geometry

patch, image area of the geometry patch to which the

texture will be applied.

• Thematic properties: Thematic values available for

the area covered by the geometry patch, meta infor-

mation for the thematic data, for example scalar data

type, interpolated data, etc.

• Environmental parameters: Camera distance, posi-

tion, direction, field-of-view, and light sources (inten-

sity, direction, and light color).

The mapping of thematic data to an image may also

depend on the LOD of the terrain patch for which the

thematic texture should be constructed. In this case, the

texture tree patches reference subimages which may have

Figure 4. Shading texture with self shadowing,

combined with a cartographic texture.

Figure 5. Cartographic shading rules as an ex-

ample for application-specific shading.

a completely different design. A LOD-dependent 3D map

texture is specified by design rules which take into ac-

count the LOD. LOD-dependent 3D map textures are

used, for example, to implement cartographic generaliza-

tion schemes (see Figure 6).

5.2 3D Map Objects

In contrast to traditional digital maps, a 3D map may

contain 3D objects. For the design of a 3D map, these

objects offer an additional way to represent thematic data.

Together with texture layers, they are in particular useful

to implement map designs which express thematic data in

dependency of the level of detail required by 2D textures

and 3D glyphs.

In our implementation, design rules are not limited to

map thematic data to images. In addition, design rules

may decide – at a certain level of detail – to map thematic

data to a collection of 3D map objects. We identified the

following basic 3D map objects:

• 3D Icons: A 3D icon consists of one, two, or three

perpendicular and rectangular textured quads. These

quads are rendered as billboards. The visualization of

trees by 3D icons is a well-known example.

• 3D Labels: They provide 2D characters as icons, and

are rendered as billboards.

• 3D Shapes: A 3D shape provides any type of 3D ge-

ometry and must be geo-referenced. Examples are

bridges and buildings.

For example, land use information can be visualized

by a 2D thematic texture but is complemented in the case

of buildings by small 3D icons (see Figure 7) which pro-

vide additional information about the building height and

type. The buildings, however, are only shown close to the

camera.

6. Combining Texture Layers

If a 3D map includes more than one texture layer, it

must be specified how these layers are combined. Multiple

texture layers can be rendered using multitexturing [25].

Thus, we can provide all texture combination modes

available from the underlying 3D rendering system. The

operations provided by OpenGL, which is used in our

implementation, include blending, adding, subtracting,

and multiplying textures. This way, texture layers are kept

independent, that is, no costly 2D image operation is nec-

essary in order to combine several texture layers.

Hardware multitexturing supports the rendering of mul-

tiple texture layers. Typically two or four independent

Figure 6. LOD-dependent design rules for forest land use. The exact boundaries of forest areas are

visualized if the camera comes close to the terrain. The textures are computed on the fly.

Figure 7. Buildings as 3D map objects, com-

plementary to the texture design of

land use information.

textures can be specified together with their combination

modes, and applied simultaneously to the terrain model.

During the simultaneous traversal of the approximation

tree and all active texture trees, the textures referenced by

the texture patches are activated. Note that even if no

hardware multitexturing is available, multiple texture lay-

ers can be rendered using multiple rendering passes.

6.1 Weighted Interpolation of Textures

The weighted interpolation of two texture layers is

frequently needed for 3D maps. The weight is simply

specified by an alpha texture, whereby both texture layers

are combined in the relation α:(1-α). Both thematic tex-

tures and the alpha texture may have different resolution.

The alpha texture may either be pre-computed or

specified interactively. Since a typical alpha texture does

not require a high resolution, for example the highlight

lens in Figure 8 and the "thematic lens" in Figure 9 use a

128x128 texture, the contents of the alpha texture can be

calculated during the interaction with the user. In the case

of static lens shapes, it suffices to manipulate the texture

coordinates of the alpha texture layer, that is, the alpha

texture needs not to be recalculated at all.

To optimize real-time rendering, alpha texture layers

can be applied to the terrain by disabling the RGB chan-

nels of the framebuffer, rendering the terrain only into the

alpha channel of the framebuffer (assigning the weight to

the framebuffer pixels) where the forthcoming thematic

texture has to appear, enabling the RGB channels and

alpha testing, and finally rendering the thematic textures

in the next passes with the appropriate alpha operators.

6.2 Texture Sequences

Another frequent demand of the 3D map design is to

visualize dynamic thematic data. If, for example, time-

varying thematic data has been pre-computed as a se-

quence of texture layers, the data changes can be animated

by interpolating between two consecutive texture layers

(see Figure 10). The interpolation through a texture se-

quence uses basically the same mechanism as the

weighted interpolation. An animation results if we interpo-

late between each pair of adjacent textures of the se-

quence.

Figure 8. Highlight lens modeled by a trans-

parency texture, a shading texture,

and a cartographic texture.

Figure 9. Thematic lens modeled by a weighted

interpolation between two thematic

textures.

α 1-α

Figure 10. Interpolation through a sequence of tex-

tures, animating the flooding in a terrain.

7. Software Architecture

Figure 11 illustrates the software architecture of the

prototype implementation of 3D maps. The implementa-

tion is based on the object-oriented modeling and anima-

tion toolkit MAM/VRS [11] which consists of two system

layers, the Virtual Rendering Systems VRS as a thin ob-

ject-oriented layer above OpenGL and the Modeling and

Animation Machine MAM responsible for 3D scene mod-

eling, 3D interaction, and animation.

A collection of 3D map software components has

been developed which interface the data structures and

operations for approximation trees and texture trees, shad-

ing textures, and texture layer management. 3D maps can

be embedded into applications as black-box components.

Applications which want to extend the implementation can

directly access the C++ classes implementing 3D maps.

Design rules can be specified in the scripting language

Tcl; the Tcl interpreter is embedded into the C++ applica-

tion at run-time.

8. Conclusions

3D maps and their texture-based design lead to pow-

erful tools for exploring and analyzing environmental is-

sues and geo data. Their ability to use data sets with dif-

ferent topological structure and preserving the semantics

is essential for planing and simulation applications in or-

der to achieve a high visual quality of the terrain model.

The tight integration of textures and geometry by the ap-

proximation tree and texture tree permits an efficient and

flexible application of textures as main tools for designing

dynamic 3D map contents. Since topographic textures can

be used to encode topographic information, topographic

details are preserved which would otherwise be lost due to

the LOD models. The texture-based approach for design-

ing 3D maps benefits from recent developments in low-

cost graphics hardware which more and more provides

fast texturing capabilities. The procedural specifications

of thematic textures offers possibilities for easy customi-

zation of 3D maps. 3D map objects complement thematic

textures and permit to use the third dimension for map

design.

Technical details and the prototype implementation

are available at the following WWW site:

http://www.mamvrs.de

Acknowledgements

We would like to thank Konstantin Baumann and Oliver Kerst-

ing for implementing the presented concepts.

References

[1] K. Baumann, J. Döllner, K. Hinrichs, O. Kersting (1999). A

Hybrid, Hierarchical Data Structure for Real-Time Terrain Visu-

alization, Proceedings Computer Graphics International '99, 85-

92.

[2] G. Buziek, J. Döllner (1999). Concept and Implementation

of an Interactive, Cartographic Virtual Reality System. Interna-

tional Cartographic Conference, Ottawa,.

Approximation Tree
Texture Tree

Texture Layer Management
Shading Textures

Virtual Rendering System

Dynamic
3D Maps

Modeling & Animation Machine

Objected-Oriented 3D Rendering

3D Scene and Behavior Modeling

OpenGL

Application

Tcl
Interpreter

Scripting

Figure 11. Software architecture of the prototype implementation of the 3D maps.

[3] G. Buziek, I. Kruse (1992). The DTM-System TASH in an

Interactive Environment. EARSeL Advances in Remove Sens-

ing, 1(3):129-134.

[4] J. Certain, T. Popovic, T. DeRose, D. Duchamp, Salesin, W.

Stuetzle (1996). Interactive Multiresolution Surface Viewing.

Proceedings of SIGGRAPH '96, 91-98.

[5] J. Cohen, M. Olano, D. Manocha (1998). Appearance-

Preserving Simplification. Proceedings of SIGGRAPH '98, 115-

122.

[6] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno (1998).

A General Method for Preserving Attribute Values on Simplified

Meshes. Proceedings Visualization '98, 59-66.

[7] P. Cignono, E. Puppo, R. Scopigno (1995). Representation

and Visualization of Terrain Surfaces at Variable Resolution.

Proceedings International Symposium on Scientific Visualiza-

tion '95, World Science, 50-68.

[8] L. DeFloriani (1989). A Pyramidal Data Structure for Tri-

angle-Based Surface Description. IEEE Computer Graphics and

Applications, 67-78.

[9] L. DeFloriani, E. Puppo (1995). Hierarchical Triangulation

for Multiresolution Surface Description. ACM Transactions on

Graphics, 14(4):363-411.

[10] S. Dietrich (2000): Elevation Maps. NVIDIA Corporation,

White Paper, http://www.nvidia.com

[11] J. Döllner, K. Hinrichs (1997). Object-oriented 3D Model-

ing, Animation and Interaction. The Journal of Visualization and

Computer Animation, 8(1):33-64.

[12] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Al-

drich, M. Mineev-Weinstein (1997). ROAMing Terrain: Real-

time Optimally Adapting Meshes, Proceedings Visualization '97,

81-88.

[13] P. Haeberli, M. Segal (1993). Texture Mapping as a Fun-

damental Drawing Primitive, Proc. of the 4th Eurographics

Workshop on Rendering, M. Cohen, C. Puech, F. Sillion (Eds),

259-266.

[14] H. Hoppe (1996). Progressive Meshes. Proceedings of

SIGGRAPH '96, 99-108.

[15] H. Hoppe (1997). View-Dependent Refinement of Progres-

sive Meshes. Proceedings of SIGGRAPH '97, 189-198.

[16] R. Klein, G. Liebich, W. Strasser (1996). Mesh Reduction

with Error Control. Proceedings Visualization '96, 311-318.

[17] D. Koller, P. Lindstrom, W. Ribarsky, L. F. Hodges, N.

Faust, G. Turner (1995). Virtual GIS: A Real-Time 3D Geo-

graphic Information System, Proceedings Visualization '95, 94-

100.

[18] M. Kraak (1994). Interactive Modelling Environment for

Three-dimensional Maps: Functionality and Interface Issues. In:

A. M. MacEachren, D. R. Fraser Taylor (Eds.), Visualization in

Modern Cartography, Pergamon, 269-285.

[19] O. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N.

Faust, G. A. Turner (1996). Real-time continuous level of detail

rendering of height fields. Proceedings SIGGRAPH '96, 109-

118.

[20] A. M. MacEachren, D.R. Fraser Taylor (1994). Visualiza-

tion in Modern Cartography, (Modern Cartography, Vol 2), Per-

gamon.

[21] R. Pajarola (1998). Large Scale Terrain Visualization Using

The Restricted Quadtree Triangulation. Proceedings Visualiza-

tion '98, 19-26.

[22] M. van Kreveld (1997). Digital Elevation Models and TIN

Algorithms. In: M. v. Kreveld, J. Nievergelt, T. Roos, and P.

Widmayer (Eds.), Algorithmic Foundations of Geographic In-

formation Systems, Lecture Notes Computer Science, Springer-

Verlag, 1340:37-78.

[23] A. Voigtmann, L. Becker, K. Hinrichs (1997). A Hierarchi-

cal Model for Multiresolution Surface Reconstruction. Graphical

Models and Image Processing, 59:333-348.

[24] L. Williams (1983). Pyramidal parametrics. Computer

Graphics (SIGGRAPH '83 Proceedings), 17(3):1-11.

[25] M. Woo, J. Neider, T. Davis (1997). OpenGL Programming

Guide, 2nd. Edition, Addison-Wesley.

