
In visual art, a single static image frequent-
ly represents much more than projected 3D

scenery. Artists include subtle visual elements outlin-
ing movements, indicating past or future events, sketch-
ing ongoing activities, or guiding the observer’s
attention. Artists have found ways to visualize physical
as well as nonphysical dynamics of scenes using graph-

ics techniques. In a sense, we can
consider these smart depictions—a
form of expressive, visual content
adopting the styles of visual art and
abstraction techniques. These
depictions can serve, for example,
as pictograms and signs that advise
and assist people. They’re also pre-
sent in comic books and story-
boards that effectively present
dynamics and narrate sequential
processes (see Figure 1).

Taking smart depictions a step
further, we created a system that
automatically generates smart, com-
pelling images of 3D scenes that
depict dynamics following tradi-

tional design principles of visual art, visual narrations,
and graphic design, such as those found in comic books1

and storyboards.2 (For an introduction to the terminol-
ogy, see the sidebar “Key Terms and Principles.”) These
media offer a rich vocabulary of visual art deployed as
techniques to facilitate visual communication of a wealth
of activities and events in static images. In particular, we
can symbolize in a single, static image past, ongoing, and
future activities as well as events taking place in 3D
scenes. Additionally, we can take into account nonvisu-
al information. For example, in the scope of narratives,
we can integrate information such as tension, danger,
and feelings into the symbolization process.

Designers and artists traditionally depict dynamics
by hand or use imaging or sketch tools. The challenge
for us was to find a solution for automating the process
of specifying, interpreting, and mapping dynamics of
and visual narrations in 3D scenes. Our general method
takes the following approach:

■ Depiction techniques analyze the scene and behavior
descriptions (for example, encoded in scene graphs)
and map found and relevant dynamics to dynamics
glyphs.

■ Dynamics glyphs represent additional graphics ele-
ments that augment the resulting image of the 3D
scene.

Designers can configure the way depiction techniques
operate, and they can edit the visual and textual appear-
ance of dynamics glyphs. Consequently, the system lets
us model “from word to image.”3

As an enabling technology, the system intensely uses
nonphotorealistic rendering.4 In fact, digitizing the
process of generating visual art is increasingly more fea-
sible because of expressive and artistic rendering algo-
rithms, most of them now operating in real time.

Compared to imaging and sketch tools, the dynam-
ics-depiction system offers several benefits:

■ It explicitly models graphical representations of
dynamics.

Smart Depiction for Visual Communication

Our smart depiction system

automatically generates

compelling images of

dynamics following

traditional visual art and

graphic design principles

(such as in comic books and

storyboards).

Marc Nienhaus and Jürgen Döllner
University of Potsdam, Germany

Depicting
Dynamics Using
Principles of Visual
Art and Narrations

40 May/June 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

1 Storyboard depiction illustrating the batting sequence of a boy playing
baseball. The depicted dynamics include the swing of the bat, the bat
hitting the ball, and the accelerated ball. Im

ag
e

co
ur

te
sy

 o
f M

ic
ha

el
 W

ie
se

 P
ro

du
ct

io
ns

; h
tt

p
:/

/w
w

w
.m

w
p

.c
om

■ We can apply it to any standard 3D scene description,
and it integrates smoothly into any scene graph-based
graphics system.

■ It supports design alternatives by selecting specific
types of dynamics and by configuring the symboliza-
tion process. This lets the user experiment and choose
the depictions that best communicate his or her ideas.

■ A user can easily modify a given depiction and accept
and adopt changes after a reconsideration phase to
start the next iteration step.

We can apply smart depictions in several scenarios:

■ Nonartists can model and generate smart depictions
of dynamics and visual narration out of common

scene descriptions based on the system’s built-in
analysis and symbolization capabilities.

■ Graphics artists can customize and automate the pro-
duction of smart depictions.

■ In planning and discussion processes, smart depic-
tions provide content-rich static imagery that’s well-
suited as a basis for manual and cooperative sketching
and illustrating.

■ In the preproduction phase of motion picture produc-
tions, smart depictions serve as storyboard-like depic-
tions derived from a previsualization of the scene,
including its narration and intended dynamics.

To see other ways researchers have attempted to apply
smart depictions, see the “Related Work” sidebar.

IEEE Computer Graphics and Applications 41

Key Terms and Principles
The following are key terms and principles that we use

throughout this article.

Visual and sequential art
Symbolization simplifies the perception of activities and

events by an iconic language that abstracts from reality. The
vocabulary of symbols includes arrows, strokes, bubbles,
and signs.

Motion lines indicate moving objects by well-placed
strokes. Streaking the background additionally indicates a
moving camera.

Ghost images mark past, present, and future positions of
objects by drawing multiple images of the original objects.

Visual metaphors indicate nonvisual phenomena like
sound, speech, smell, tension, and feelings using symbols
that are associated to a scene or story context.

Panels frame single depictions that form entities of a
narration. Each panel can depict a single activity or event
that contributes to the comprehension of a story.

Closure represents the ability to reconstruct and conceive
sequential processes and narrations based on depictions
that omit transitional steps and show only discrete
moments in different perspectives. (For example, arranging
a sequence as a collection of keyframe panels.)

Storyboarding shooting directions
Shots frame part of a staging; typically they indicate

camera placement and narration instructions for later
production.

Shot flow represents the visual connection of a sequence
of shots, whereby each shot can vary in size, aiming at a
consistent spatial–temporal order. Shot sizes include
medium and close-up shots.

Medium-shots frame only half the part of a scene object—
for example, to capture an actor’s gestures and body
language.

Close-ups frame a small part of a scene object in detail to
position the viewer closer to it—for example, to take a
position for a dialogue sequence.

Moving cameras
Crane shots define a mostly vertical uninterrupted

movement of a camera. In the beginning, they establish the
environment towering above the scene (establishing shot),
and then enter into details to direct the attention from the
general to the specific.

Tracking shots define a flowing movement of the camera,
tracking an object in a single shot or in a sequence of shots
to visualize the varying composition of multiple story
elements.

Related Work
In many domain-specific areas, researchers have

investigated smart depictions that aim to reduce design,
time, and cost efforts. In the domain of assembly
instructions, Agrawala et al.1 present a system that plans
assembly operations and produces compelling step-by-step
illustrations for assembling everyday objects. The
algorithmic techniques are based on design principles
derived from cognitive psychology research. In contrast, we
focus on producing images for communicating dynamics
and narrating visually based on concepts found in comic
books and storyboards.

In the scope of visualizing dynamics, Cutting2 surveys
traditional techniques for depicting motion in static images
from a perceptual point of view. He states that
representations of motion—compared to reproductions of

static scenes—haven’t been met adequately and
encourages focusing on techniques that have the ability to
convey motion in static images. He further introduces
criteria such as clarity of object, direction of motion, and
precision of motion to judge the efficacy of representations
of motion in art, science, and culture.

Comic books represent visual media that can
communicate complex narratives in a way that even
children can understand easily without reading words.
McCloud3 explains a wide variety of visualization and
abstraction techniques used to generate sequential art in
comic books. These include techniques to depict the
motion of single objects and to illustrate noises and
speeches bound to time.

Storyboard artists deploy similar techniques to visualize
continued on p. 42

Smart Depiction for Visual Communication

42 May/June 2005

and illustrate the storyline of a movie as storyboards; Katz4

and Begleiter5 present the underlying design principles.
Usually, storyboards are produced and reconsidered in
collaboration with the director and the screenwriter of the
motion-picture production; they provide a basis for
discussions about the screenplay. Storyboards deliver a
skeletal structure, which documents the set design and
depicts the shooting directions of the story used in
preparation for the production. As effective diagrams for
documenting, communicating, and discussing ideas, they
let outside participants understand the layout of the story
and set design.

Traditional 2D hand-drawn animations comprise well-
established techniques for conveying animations. Lasseter6

identifies and terms basic principles of traditional
animations, such as the squash-and-stretch technique. He
further postulates their importance for 3D computer
animations. Chenney et al.7 apply the squash-and-stretch
technique to generate comprehensible cartoon-style
animations by squashing and stretching objects through
motion.

In a time-lapsed animation, the deformations of objects
in each frame vividly depict the objects’ dynamics: their
velocity and acceleration. We deploy squash and stretch as
a technique to generate multiple images of an object in
motion using forward lean (see Figure A) to maintain the
clarity of the moving object and to indicate its direction of
motion in a static image.2

To visualize motion in still images, Hsu and Lee8

implement skeletal strokes for generating speed lines. Speed
lines (also known as motion lines) streak away from the
object in the opposite moving direction. Thereby, the lines
convey the object’s locomotion and velocity similar to
motion blur but in a static image using expressive
rendering.

Masuch et al.9

present one of the first
approaches in
computer graphics that
exclusively focuses on
presenting the motion
of objects in still images
using nonphotorealistic
rendering. They
complement speed
lines with repeatedly
drawn contours of
moving objects to
depict their motion in a
single image. Further
stylization—such as
different line styles—
provide a hand-drawn
impression.

Nienhaus and
Döllner10 introduce a
concept for deriving
and interpreting
dynamics provided by

scene and animation specifications. The framework maps
dynamics to dynamics glyphs that represent, for instance,
speed lines for depicting motion.

We extend our initial approach with a formal description of
the process for assembling dynamics in scene and behavior
graphs. We also note other improvements in this article.

References
1. M. Agrawala et al., “Designing Effective Step-by-Step Assembly

Instructions,” Proc. ACM Siggraph, ACM Press, 2003, pp. 828-
837.

2. J.E. Cutting, “Representing Motion in a Static Image: Constraints
and Parallels in Art, Science, and Popular Culture,” Perception, vol.
31, no. 10, 2002, pp. 1165-1193.

3. S. McCloud, Understanding Comics—The Invisible Art, Harper
Perennial, 1994.

4. S.D. Katz, Film Directing Shot by Shot: Visualizing from Concept to
Screen, Michael Wiese Productions, 1991.

5. M. Begleiter, From Word to Image—Storyboarding and the Film-
making Process, Michael Wiese Productions, 2001.

6. J. Lasseter, “Principles of Traditional Animation Applied to 3D
Computer Animation,” Proc. ACM Siggraph, vol. 21, no. 4, ACM
Press, 1987, pp. 35-43.

7. S. Chenney et al., “Simulating Cartoon Style Animation,” Proc.
2nd Int’l Symp. Non-Photorealistic Animation and Rendering, ACM
Press, 2002, pp. 133-138.

8. S.C. Hsu and I.H.H. Lee, “Drawing and Animation Using Skeletal
Strokes,” Proc. ACM Siggraph, ACM Press, 1994, pp. 109-118.

9. M. Masuch, S. Schlechtweg, and R. Schulz, “Speedlines—Depict-
ing Motion in Motionless Pictures,” Siggraph Conf. Abstracts and
Applications, ACM Press, 1999, p. 277.

10. M. Nienhaus and J. Döllner, “Dynamic Glyphs—Depicting
Dynamics in Images of 3D Scenes,” Proc. Smart Graphics, Springer,
2003, pp. 102-111.

Scene graph Behavior graph

tr0 : Translation

TimeTable {[30, 50], [0, 60]}

TimeCt [30, 50]
 Function 0: t → (x, y, z)

ball0 : Sphere

Sequence {[0, 50], [50, 60]}

TimeCt [0, 50]
 Curve 0: t → (x, y, z)

TimeCt [0, 10]
 Curve 1: t→ (x, y, z)

Simultaneity[0, 60]

TimeCt [0, 50]
 Function 1: t → (x, y, z)

col 0 : ColorAttributeGreen

tr1 : Translation

ball1 : Sphere

col 1 : ColorAttributeRed

tr2 : Translation

ball2 : Sphere

col 2 : ColorAttributeBlue

A Squash and stretch applied as a traditional animation principle to bouncing balls in a 3D scene. Their
animations and different time layout strategies have been modeled using scene and behavior graphs.

continued from p. 41

Specifying scenes and their dynamics
We’d like to show how we specify scenes and their

dynamics in our smart depiction system. These specifi-
cations represent the basis for all further functionality.

Specification requirements
In computer graphics, hierarchical scene descriptions

have a long tradition, and various scene graph libraries
and scene description languages support them. In a typ-
ical scene specification, we arrange 3D shapes, appear-
ance attributes, geometric transformations, and
environmental objects into a hierarchical structure.
With these components, or scene nodes, developers con-
struct scenes composed of individual scene objects.

With respect to the specification of scenes, the fol-
lowing functional requirements are essential for the
scene graph library:

■ The scene specification must support a generic tra-
versal operation—for example, to access each indi-
vidual scene object, its components, and its scene
graph context.

■ The scene specification must allow for assigning
(semantics-based) identifiers to scene objects and for
defining complex scene objects.

With respect to the specification of dynamics, we
assume that it must allow for the following require-
ments:

■ identifying which time-dependent changes are
applied to a specific scene object,

■ determining the lifetime of each animation, and
■ evaluating the scene specifications for any given point

in time.

In our approach, we apply the scene graphs (see the
“Scene Graphs” sidebar) and behavior graphs as
described by Döllner and Hinrichs.5 Both types of
graphs are represented as directed acyclic graphs
(DAG).

Figure 2 (next page) illustrates a scene graph that
specifies a simple scene consisting of a sphere repre-
senting a ball and a polygon representing the ground.

IEEE Computer Graphics and Applications 43

Scene Graphs
The scene graph1 specifies 3D scenes in a hierarchical way

using scene nodes as building blocks. In general, a scene
graph library provides a collection of scene nodes, which
model structural and graphical aspects of 3D scenes. The
following are descriptions of the most important categories
of scene nodes:

■ Groups. Build up the hierarchical structure. Groups are also
used as inner nodes of a scene graph. Examples are the
Branch Node, which collect a number of subgraphs, and the
Switch Node, which select one out of many subgraphs as
an active child.

■ Shapes. Specify geometric objects and are arranged typi-
cally as leaf nodes. Examples include Box, Sphere, Cone,
and PolygonMesh.

■ Transformations. Specify geometric transformations. The
collection of transformation nodes along a path through
the scene graph defines the transformation from the local
to the world coordinate system. Examples include Transla-
tion, Scaling, Rotation, and DirectionOfFlight.

■ Appearance attributes. Specify properties and techniques
that define the visual appearance of scenes and scene
objects. Examples include Color, Material, and Texture as
well as attributes used in the scope of nonphotorealistic ren-
dering, such as EdgeEnhancement, CartoonStyle, and
SketchyDrawing.

■ Environmental attributes. Specify properties of the scene’s
environment. Examples include LightSource, PhongLight-
ingModel, GoochLightingModel, ShadowCaster, and
ShadowReceiver.

■ Nongraphics attributes. Provide application-specific and
semantics information within the hierarchical scene descrip-
tion. Examples include Identifier as a textual description of
a subgraph, and FilterTag.

As a general mode of operation, only the nodes along the

path from the root node to a specific node have an impact
on that node and its components.

Scene graph rendering
For image synthesis, the scene graph is traversed in

preorder (a specific order in which hierarchical graphs can
be traversed, such as top–down or left–right). During the
traversal, a graphics context manages hierarchically defined
attributes. According to the rendering technique, scene
graph rendering can imply multiple traversals of the scene
graph. For example, nonphotorealistic edge enhancement
produces several intermediate frame buffer results. Scene
graph rendering is a critical real-time process. The scene
graph library requires an efficient functionality to create and
modify scene graphs (such as adding new subgraphs) and
scene nodes (time-dependent properties).

Scene graph inspection
The scene graph inspection represents a generic traversal

function to report the structure and content of a scene
graph. The inspection allows for retrieving the hierarchy
layout (such as “Collect all nodes that represent a specific
character having a specific Identifier”), browsing through
the scene graph (reporting each node, its components, and
types), and detecting dependencies between attributes and
shapes (such as “Which attributes apply to a given shape?”
or “Which shapes are affected by a given attribute?”).
Consequently, inspection represents the tool to interpret
scene graphs. The user can invoke the inspection function
at any time, independently from scene graph rendering.

Reference
1. J. Döllner and K. Hinrichs, “A Generic Rendering System,” IEEE

Trans. Visualization and Computer Graphics, vol. 8, no. 2, 2002,
pp. 99-118.

The graph branches into two subgraphs for specifying
both the position (tr) and the color (col0) of the ball and
the color (col1) of the ground.

Specifying dynamics using behavior graphs
The behavior graph specifies time-dependent and

event-dependent aspects of scenes and scene objects.
For a given scene graph, one or more behavior graphs
may exist. Nodes of behavior graphs generally manipu-
late one or more nodes contained in the associated scene
graph. The nodes used to construct behavior graphs are
different from those of scene graphs.

The fundamental task of behavior graphs includes the
definition of lifetimes of activities and points in time of
events. Activities and events specify time-dependent
changes of scene node properties. Activities take place
during a defined, nonzero time interval, whereas events
have no measurable duration because they take place
instantaneously. Each node of the behavior graph pro-
vides its own time requirement, which represents the
time demand to process the activity and event.

Layout of time flows. Time-group nodes, a major
category of behavior-graph nodes, hierarchically orga-
nize the time flow at a high level of abstraction similar
to specifications in storybooks. A time-group node cal-
culates the lifetimes of its child nodes based on their
time requirements and its own time-layout strategy.
When a time-group node receives a time event, it checks
which child nodes to activate or deactivate and then del-
egates the time event to its active child nodes. Special-
ized time-group nodes include the following:

■ Sequence. Defines the total time requirement as the
sum of the time requirements of its child nodes. It del-
egates the time flow to its child nodes in sequential

order. Only one child node is alive at any given time
during the sequence’s lifetime.

■ Simultaneity. Defines the total time requirement as
the maximum of the child nodes’ time requirements.
It delegates the time flow simultaneously to its child
nodes. The simultaneity layout shrinks or stretches
the time requirements of the child nodes or applies
alignment strategies to the lifetime of the child nodes
to fit the duration.5

■ Time table. Defines for each child node an explicit time
requirement. It manages activation and deactivation
of child nodes according to the child nodes’ lifetime.
For example, a time table can specify different start-
ing times for individual objects in an animation.

Figure A illustrates a time-lapsed animation of three
bouncing balls. Time layouts specify the lifetimes of each
dynamic—for instance, a time table specifies different
starting times for the green, red, and blue balls.

Activities and events. Having organized the over-
all time flow, constraint nodes let us specify activities
and events. Essentially they associate a time-to-value
mapping with the property of a scene node. For exam-
ple, constraint nodes can set up the position of an object
by associating a time-to-vector mapping with the
object’s midpoint. Time-to-value mappings of the form

f: Time → Type

can implement a variety of mappings, such as mapping
time to a constant value (constant map), to a value that
results from linear interpolation of specified values (lin-
ear map), and to a value that results from calculating a
point of a parameterized curve by interpreting time as
a curve parameter (curve map).

Smart Depiction for Visual Communication

44 May/June 2005

Scene graph

Behavior graph
Camera

tr: Translation

Ball: Sphere

Col0: ColorAttributeRed

ground: Polygon

col1: ColorAttributeGrey

Subgraph (Ball)

Subgraph (Ground)

Dynamic glyphs

Path glyphs
(fexible 3D arrow

Depiction target

TimeCt [0, 20]
 Curve0: t→ (x, y, z)

TimeCt [0, 30]
 Curve1: t→ (x, y, z)

Sequence {[0, 20], [20, 50]}

Path technique {ball}[4, 9]

Path {ball}[4, 9]

Path{Ball} [4, 9]
Squash-and-Stretch{Ball} [10]
Path{Ball} [11, 15]
Squash-and-Stretch{Ball} [16]
Path{Ball} [17, 19] (future)

Dynamics specification

Expressions (ball)

Request assembled
dynamics informationD

Invoke depiction techique
(for each exception)

Generate
and append

dynamic glyphs

{ball}

[4, 9]

2 System overview (left) illustrates the general workflow for generating dynamics depictions. The scene and
behavior graph specify the ball’s dynamics, which is the depiction target. Associating expression to the ball allows
for modeling the representation of motion. A combination of squash and stretch and arrows as dynamics glyphs
relate the dynamics of the bouncing ball in the past, present, and future (right).

A time constraint defined as

tct: (f(Time), SceneNodes) → SceneNodes

controls time-varying parameters of a scene node con-
tained in the scene graph. Whenever a constraint node
receives a time event during its lifetime, it calculates
new parameter values and assigns them to its con-
strained scene node. The generic class TimeCt takes care
of most constraint variants.

In Figure A, time-constraint nodes (see the behavior
graph) constrain translation nodes (see the scene
graph) to specify the balls’ movement. A function map,
which maps time to a value that results from a function
call, controls the fall of the green and red balls taking
into account gravity. In Figure 2, two adjoining curves
control the midpoint and, thus, the movement of the
bouncing ball. They process in sequential order to form
a single continuous trajectory.

Modifying local time flows. Time-modifier nodes
define time-to-time mappings, which we use to alter the
local time flow in behavior graphs. For instance, a
reverse modifier inverts the direction of the time
progress for its child nodes. Consider the bouncing ball
in Figure 2. Here, we could use a reversal node to invert
the ball’s direction. Similar modifiers exist, such as
repeating a time interval multiple times (repeat modifi-
er) or defining a creeping time progress (creep modifi-
er)—that is, slowing down progress in the beginning
and speeding it up at the end.

Behavior graph inspection. In analogy to scene
graphs, an inspection operation exists for behavior
graphs, which we use to examine the time flow and map-
pings. For a given time interval, we can reproduce acti-
vation and deactivation of behavior nodes, reproduce
the results of a mapping, and identify linkages of con-
straint nodes to scene nodes of the scene graph. Thus,
we can analyze the state of the 3D scene for a given point
in time.

Assembling dynamics information
In the next step for generating smart depictions, we

have to assemble dynamics information—that is, we
must detect information about which nodes of the scene
graph are affected by nodes in the behavior graph at any
point in time.

We first apply an inspection operation to the scene
graph to trace the path from its root node to a given
scene node node. As result, we get the path set P(node)
containing a sorted list of scene nodes with respect to
their scene graph depth:

P(node) = {objk : objk ∈ path, k = depth}

In particular, P(node) records all attributes and trans-
formations that could potentially impact a node node.

Then, we invoke an inspection of the behavior graph
to analyze its time layouts. As a result, we determine the
global lifetime of time-constraint nodes. Let tct be a time-
constraint node, then the analysis returns

Now, we relate both results to each other to determine
the set of time constraints that influence properties of
scene nodes of P(node):

C(node): = {tct(f, obj): obj ∈ P(node)}

We can further derive a subset of C(node) containing
time constraints that are active at a certain point in
time t:

Similarly, we can derive a subset of C(node) containing
time constraints that are active (anywhere) in a given
time interval [T0, T1]:

Taking also into account the set P(node) of scene nodes,
we can evaluate the state or condition of a scene node
at any point in time or time interval and identify the
types (or translation) of scene nodes that contribute to
a state change.

Because P(node) contains the transformation hierar-
chy, we can easily determine the trajectory of an object in
3D space by additionally sampling the set C[T0, T1](node) at
discrete points in time during its time interval. We can
then use position, velocity, and acceleration to depict an
animation.

In conclusion, the tuple

represents the assembled dynamics information of a
scene node during a time interval.

Characterizing dynamics
Once we’ve collected dynamics information for a

scene object, we have to select one of many possible
characteristics of the dynamics, which we want to visu-
alize in the final smart depiction. The later symboliza-
tion process uses this information, which the user
typically provides.

A characteristic of dynamics represents a token that
classifies the kind of activity performed or event trig-
gered by a scene object—the depiction target—in an
informal way. In the case of a sphere as depiction target
moving between two positions, we can declare a path
characteristic to refer to the depiction target’s trajectory.

Basic characteristics of dynamics, which are elements

D P node C node
T T

node
T T

0 1 0 1,

: ,
,





= () (





))





C node
tct f obj ob

T T

t t

0 1

0 1

,

,
():

, :










=
() jj P node

T T t t

∈ ()
∧ 



∩ 



 ≠ /











0 1 0 1
0, , 

C node
tct f obj t t t

obj
t

t t() =
() ≤ ≤



:

, : ,
,

0 1
0 1

∈∈ ()










P node

tct f obj t t t
t t

0 1
0 1,

, ,




() ∀ ∈


: active 

∧ ∀ ∉



inactive t t t

0 1
,

IEEE Computer Graphics and Applications 45

of an extensible set of tokens, include the following:

■ Path. Indicates a schematic description of a movement
of a depiction target.

■ Motion. Indicates a more natural and informal
description of a movement in contrast to the path
characteristic.

■ Still. Indicates past, present, and future positions and
orientations of a depiction target.

■ Collision. Indicates a collision with other scene objects
as an event related to a depiction target.

Symbolization and depiction techniques
Having assembled dynamics information and chosen

its characteristics, we can now symbolize the dynamics.
This process is encapsulated with depiction techniques,
which implement specific characteristics of dynamics
by mapping assembled dynamics information to visual
elements. These elements represent dynamics glyphs—
that is, visual elements symbolizing activities and events
in static images of 3D scenes. Technically, scene graphs
specify dynamics glyphs, and these scene graphs link to
the main scene graph as subgraphs for rendering.

For example, we implemented depiction techniques
for symbolizing path and motion characteristics (see Fig-
ure 3). The path technique visualizes the trajectory of a
movement; it constructs a flexible 3D arrow aligned to
it that’s oriented toward the viewer. For depicting
motion, the motion technique generates motion lines (see
the “Key Terms and Principles” sidebar), and includes
additional strokes to provide a jittered appearance to
make the motion easier to perceive (see Figure 3).

In Figure 3a, the path and the nondeformed ball visu-
alize its motion in a motionless way. The ball seems to
rest at that point of travel. Figure 3b shows deformation
of the ball using a squash-and-stretch technique depict-
ing believable motion. For Figure 3c, the sketchy depic-
tion corresponds to an efficient drawing style and
implies a fast-moving ball. In Figure 3e, we used motion

lines for those parts of the character that move in the
main direction of the motion and additional strokes for
those that swing in opposite directions.

A depiction technique requests assembled dynamics
information for a given time interval and for a given
depiction target as a main information source. Formal-
ly, we can define a depiction technique as a mapping of
the depiction targets’ dynamics to a set of dynamics
glyphs for the time interval [T0, T1]:

Figure 2 illustrates the path of a bouncing ball. The
path technique generates arrows for the ball’s trajecto-
ry. For this, it determines the position of the depiction
target at different points in time to reconstruct that path.
The still technique constructs ghost images (see the “Key
Terms and Principles” sidebar) of the ball in a squash-
and-stretch style at discrete points in time. The depic-
tion technique maps position, velocity, and acceleration
to symbolize the ball in that traditional form. (We use
the acceleration of the ball to determine the transition
between squash and stretch modes.)

Thus, with depiction techniques, the system maps
triples consisting of characteristics of dynamics, a time
interval, and assembled dynamics information to sets
of dynamics glyphs.

Interactive composition of depictions
In practice, depicting dynamics represents a creative

process and depends largely on the intentions and skills
of the graphics designer. To give designers and artists
as much control as possible, our system lets these depic-
tions be interactively composed and customized. For
this, we provide an expression-like language, which lets
users invoke and set up depiction techniques.

Expressions let users create, store, apply, and configure

DepictionTechniqueCharacteristic :
,

D
T T

0 1






→

depiction target

DynamicsGlyphs

Smart Depiction for Visual Communication

46 May/June 2005

Motion {PaperPlane} (0, 4)
Still {PaperPlane} (4)
Motion {PaperPlane} (5, 9)
Still {PaperPlane} (9)
Motion {PaperPlane} (10, 14)
Still {PaperPlane} (14)
Motion {PaperPlane} (15, 19)
Still {PaperPlane} (19)
Motion {PaperPlane} (20, 24)
Still {PaperPlane} (24)

Motion {Mannequin} (1, 2)
Still {Mannequin} (2)
Speak {Mannequin} (2)

3 (a–c) Different symbols for a moving ball. (d) Flight of a paper plane using motion lines starting from the endings of the wings.
(e) Running, talking character.

(a)

(b)

(c) (d) (e)

dynamics depictions. In particular,
users can directly set up parameters
of depiction techniques to do the fol-
lowing:

■ Control the visual appearance of
dynamics glyphs. As an example,
we consider the still characteristic
that indicates positions and ori-
entations of depiction targets as
ghost images. The depiction tech-
nique can simply render the depic-
tion target, render the depiction
target in a squash-and-stretch
style to additionally visualize its velocity by deforma-
tions (see Figures A and 2), or render a sketchy repre-
sentation to mimic a hand-drawn illustration (see
Figure 3).

■ Control the composition of dynamics glyphs. For exam-
ple, the collision technique symbolizes potential col-
lisions between two given scene objects. The user can
define the set of dynamics glyphs for visualizing col-
lisions by rendering associated sounds as texts (see
Figure 4).

■ Control the composition of time. Defining what is past,
present, and future is crucial for dynamics represen-
tations in images. For instance, the dashed arrow in
Figure 2 effectively illustrates the path of the bounc-
ing ball in the future. The user can provide temporal
hints with expressions as an optional parameter.

In general, each expression requires the dynamics’
characteristics that identify the depiction technique, the
time interval to specify the period for depicting dynam-
ics, and optional parameters to configure the depiction
technique.

System overview and user involvement
Figure 2 summarizes the general workflow of our sys-

tem so far. To model the intended depiction of an
object’s dynamics, the user selects a scene node in the
scene graph as a depiction target and defines a set of
expressions. Once associated with the depiction target,
the system evaluates the set of expressions as follows:

1. For each expression, the system invokes the corre-
sponding depiction technique, whereby the tech-
nique choice is based on the characteristics of
dynamics given by the expression.

2. The depiction technique requests the dynamics
specification to retrieve assembled dynamics infor-
mation for the specified depiction target and time
interval.

3. The depiction technique interprets retrieved data
and constructs dynamics glyphs.

4. Dynamics glyphs, eventually, are linked to the main
scene graph.

The pseudocode in Figure 5 illustrates the evaluation of

IEEE Computer Graphics and Applications 47

4 Animation sequence showing a batter hitting a ball. (a) Illustration of the time-lapsed animation. (b) Batter when he hits the ball,
and the path of the ball after being hit. (c) Depicting the hit by symbolizing the collision and the noise. The depiction shows the same
action but in a sketchy style. (d) Narrating the batter’s motion sequence, resulting in a more vibrant depiction. (e) Showing the batter
realizing his excellent hit.

(a)

(b)

(c) (d) (e)

procedure evaluate(SetOfExpression exprs, DepictionTarget obj) begin
∀ expr ∈ exprs begin

DepictionTechnique dt ← findTechnique(expr.Characteristic)

SceneNode dynGlyphs ← dt.depict (, expr.Parameter)

SceneGraph.append(dynGlyphs)
end

end

depiction target
expr.TimeIntervalD

5 Mapping dynamics to dynamics glyphs using expressions and depiction techniques.

a depiction target and its associated set of expressions.
The system renders the 3D scene together with the

dynamics glyphs. It doesn’t render the depiction target
itself because its picture is inessential and, in particular,
would interfere with the depictions of its dynamics.

In our implementation, selecting a depiction target
triggers the inspection of both the scene and behavior
graphs. Then, we can invoke and process depiction tech-
niques in real time, so that the user can interactively
experiment with techniques using expressions and nav-
igate the 3D scene. The sets of expressions (except for
optional parameters) in the insets of Figures 2, 3, 6, and
7 define the corresponding depictions.

Using semantics for depictions
Until now, we have merely considered scene nodes as

depiction targets. However, a scene graph representa-
tion is sometimes not sufficient to unambiguously define
a depiction target. That is, semantics information about
scene objects must be available. In particular, depictions
of activities and events depend on semantics informa-
tion because generally no obvious depiction techniques
exist like in the case of depicting motion and path. For
instance, we can’t generate and position meaningful
bubbles symbolizing speeches and thoughts until defin-
ing the character and its head explicitly (see Figures 3
and 4).

Assigning semantics to scene objects
Specifying scene objects with semantics information

is subject to 3D scene modeling. We can assign seman-
tics information to scene objects with a specialized
attribute class called identifier. Identifier attributes per-
mit hierarchical semantic descriptions for complex
scene objects.

If a scene node contains an identifier, techniques look-
ing for that kind of information will search in that node
and its subgraphs. Otherwise, they will prune that node
in the traversal. In this manner, our system can assem-
ble a collection of scene nodes for one depiction target
with specific semantics.

We define S as the set of scene nodes that contribute
to a semantics description:

S = {node: node contributes to semantics}

The system assembles dynamics information for each
scene node. So,

provides all assembled dynamics information that influ-
ence the depiction target with the specified semantics.

An independent subgraph represents each of the
characters in Figures 3 and 4 . The subgraph contains
further subgraphs, each of which represent parts of the
body such as a head, arm, or hand. In this case, S consists
of those shapes that form the visible corpus of the char-
acter. Once we assign animation data, such as motion
capture data, D Character

[t0, t1] provides all dynamics informa-
tion of the character. Consequently, depiction tech-
niques can locate single parts of the body, identify their
relations to each other, or consider the character as a
whole at any point in time for generating dynamics
glyphs. So, by defining the character through a hierar-
chical composition of identifiers, we can narrate the bat-
ting sequence in Figure 4.

Semantics-related depictions
For scene graphs enhanced by semantics information,

we can refine depiction techniques and the characteris-
tics of dynamics.

Semantics-related depiction techniques. For
a specific characteristic of dynamics, we can implement

D D node S
T T

S
T T

node

0 1 0 1,

: :
,





= ∈








 

Smart Depiction for Visual Communication

48 May/June 2005

Path {Camera} (0, 10)
Inset-View {Camera} (9)

ShotFlow {Camera} (0, 10)

6 Camera-related depiction techniques can visualize (a) crane shots or
(b) close ups in storyboard-like depictions. An additional inset view charac-
teristic in (a) illustrates a medium shot of the scene; it was inspired by the
long crane shot from the movie Notorious. For generating the sketchy
depictions we deploy sketchy drawing, a real-time, nonphotorealistic ren-
dering technique.

(a)

(b)

depiction techniques that convey dynamics more pre-
cisely for objects with specific semantics than a depic-
tion technique implemented for a general scene object.
For instance, a depiction technique that’s specialized for
camera semantics can symbolize the trajectory of a cam-
era (path characteristic) as an extruded rectangular
frame (see Figure 6). Moviemakers often use this sort
of depiction in storyboards to visualize a long crane shot
(see the “Key Terms and Principles” sidebar).2 In addi-
tion to the camera’s position, an extruded frame encodes
its viewing direction and alignment.

Another example considers the depiction technique
for the still characteristic of the paper plane semantics:
It deforms the wings and endings of the paper plane
under cross-acceleration similar to a real paper plane.
This leads to a more dramatic appearance of the paper
plane in a visual narration of its flight.

The following pseudocode illustrates the modified
selection procedure for semantics-related depiction
techniques:

DepictionTechnique dt ← findTechnique
(obj.Semantics,

expr.Characteristic)

Semantics-related characteristics of dynam-
ics. Semantics information leads to a broader vocabu-
lary of characteristics of dynamics—that is, for specific
semantics we can add new characteristics and the
appropriate depiction techniques for them.

For example, in cinematography a shot flow is clearly
a characteristic of camera semantics. So, we can add that
characteristic and implement its depiction technique
regarding design principles for cameras inspired by sto-
ryboard depictions. Figure 6 illustrates a shooting direc-
tion from a medium shot to a close up. Here, both frames
indicate which part of the scene is visible when taking
the shot at certain points in time. The arrows indicate
the movement of the camera for taking the close up. To

cope with the manifold ways of camera movements and
illustrations of shooting directions deployed by story-
board artists, we believe that much potential exists for
exploring semantics-related depiction techniques.

Information retrieval functions
Depiction techniques request D S

[t0, t1] to retrieve encod-
ed time-dependent data (see Figure 2), such as the
reconstruction of the transformation hierarchy. To facil-
itate the actual implementation of depiction techniques,
we define information retrieval functions (such as the
hierarchy retrieval function) that search for and ana-
lyze semantics-related data of a depiction target for a
specific point in time.

A center retrieval function, for instance, determines
the center of a depiction target, which we need to depict
the object’s trajectory. For a ball (or sphere) the center
is likely to be the origin of its coordinate system in model
space, whereas a character’s center isn’t well defined.
The center might be located in the character’s geomet-
rical bounding box. This isn’t appropriate because the
box adjusts to its animated geometry. So, we opt for the
hip as a character’s center. In conclusion, the path tech-
nique applies to both the ball and the character for con-
structing path glyphs. Thus, retrieval functions allow
for invoking depiction techniques for a broader set of
semantics.

Core retrieval functions implement computational
geometry algorithms. For instance, depiction techniques
frequently require extreme points of 3D geometries for
constructing motion lines. An extreme points retrieval
function determines these points by evaluating the spa-
tial arrangement of the vertices in strips, which are
aligned to the object’s moving direction.4 In contrast,
the extreme points retrieval function for the paper plane
semantics provides the endings of its wings that typi-
cally produce turbulences (depicted by motion lines in
Figure 3).

For a character, retrieval functions considering

IEEE Computer Graphics and Applications 49

Scene graph Behavior graph

Translation0

TimeCt [0, 40]
 Curve0: t→ (x, y, z)

TimeTable 〈[0, 40], [10, 30]〉 Simultaneity [0, 30]

Sphere {ball}

Sphere {ball}

Tailspin {ball}(0, 30)

Path {ball}(0, 40)

Translation1

TimeCt [0, 20]
 Curve1: t→ (x, y, z)

Scene graph Behavior graph

Translation
TimeCt [0, 30]
 Curve: t→ (x, y, z)

Sphere {ball}

Rotation
TimeCt [0, 30]
 Linear: t→ angle

7 (a) Pattern-based techniques analyze scene and behavior graphs leading to advanced depiction techniques such as the split path or
the tailspin. Techniques also exist for identifying patterns in the set of expressions. (b) Applying the split operation to a path depicts
the ball’s movement and its acceleration. The sketchy depiction also includes a causing event. The ball is catapulted and, thus, acceler-
ated by an external force.

(a) (b)

human measurements6 can determine information that
isn’t available at first glance. For instance, facial mea-
surement retrieval functions can, based on the position
and orientation of a character’s head, provide the posi-
tion of the eyes, nose, and mouth even though they
aren’t modeled explicitly. In this way, the speaking tech-
nique can align the cone of the bubble toward the char-
acter’s mouth in Figures 3 and 8. Thus, retrieval
functions in combination with semantics information
can provide beneficial information.

Pattern-based symbolization
Besides modeling depictions interactively using

expressions, further analysis of dynamics by identifying
patterns assists the process of symbolization. Pattern-
based techniques allow for determining relations

■ in the composition of scene and behavior graphs,
■ in the set of expressions, and
■ among different dynamics that influence one another.

Thus, pattern-based techniques can give clues for pro-
ducing depictions automatically and can enhance their
comprehensibility.

Composition of scene and behavior graphs.
At a higher level of abstraction, the assembly of both
scene and behavior graphs and their relations can reveal
patterns. In particular, animating those transformations
that influence scene objects can lead to advanced char-
acteristics of dynamics, including the following:

■ Turnaround. If a scene object rotates about an axis in
model space, a constraint node in the behavior graph
animates the rotation angle of a rotation transforma-
tion located directly before the object in its scene
graph path (P(node)). Whenever we detect this com-
position, we can create a turnaround characteristic
for its motion yielding in a bent arrow aligned around
the axis with a certain distance (see Figure 8).

■ Tailspin. If a tailspin animates a scene object, then a
simultaneity group having two child nodes (one for
constraining its position and one for constraining its
rotation angle) encodes these dynamics in a behav-
ior graph. The system then maps a path characteris-

tic to a tailspin characteristic to symbolize the dynam-
ics with specific path glyphs (see Figure 7).

■ Split path. If at least two scene objects that build up
one depiction target follow the same trajectory in the
beginning of an animation and then follow individ-
ual trajectories, their paths split smoothly into two. If
we encounter a configuration of diverging paths in
scene and behavior graphs, we can apply a split-path
characteristic (see Figure 7).

■ Explode. The pattern indicating an explosion char-
acteristic is similar to that of the split path, but this
time many scene objects of a single depiction target
might abruptly change their direction of motion arbi-
trarily. Then, semantics-related explosion techniques
either symbolize each launching part separately or
produce a cloud of dust. They can also intensify the
perception of the explosion by semantics-related
sound using text.

■ Expand/collapse. We interpret an animated scale
transformation by enlarging or scaling down a single
scene object with an expansion or collapse charac-
teristic. If the scaling is located directly before the
scene object, then the object pulses. Otherwise, if fur-
ther transformations—such as translations—are
located in between, the object additionally moves in
3D space. The expand/collapse technique handles
expansions and collapses differently. The technique
symbolizes the expansion through multiple arrows
starting at the scene object’s center heading in dif-
ferent directions while increasing their width. They
end at the estimated boundary of the enlarged object.
In the collapse mode, the technique inverts the direc-
tion of the arrows, so that they point to the object’s
center. In case of an assembly of diverging objects, we
again apply the explode characteristic.

Set of expressions. A set of expressions that the
user specifies can be subject to automatic enhance-
ments. Our system provides a join operation and a split
operation to assist dynamics interpretations.

■ Join operation. We can sometimes depict expressions
that temporarily overlap through specialized charac-
teristics of dynamics. The join operation scans the set
of expressions and merges applicable expressions into

Smart Depiction for Visual Communication

50 May/June 2005

8 (a) Bent
arrow indicat-
ing a single
rotation used to
illustrate a
character turn-
ing his head to
look around.
(b) Motion lines
producing a
streaked back-
ground indicate
the motion of
both the cam-
era and the
character.

(a) (b)

single expressions to invoke advanced depiction tech-
niques. For instance, a collision might occur during
an object’s motion. Visualizing both separately can
produce dynamics glyphs that overlap in the depic-
tion producing disturbing effects. Combining both
enhances glyph constructions because a specialized
depiction technique smoothly incorporates them for
rendering.

■ Split operation. A single expression of a long time inter-
val can be split into several expressions because a more
fine-grained schema might depict the dynamics more
appropriately. To facilitate a split operation, our sys-
tem queries associated aspects of dynamics to derive
indicative information such as velocity or acceleration.
For instance, the motion characteristic of an acceler-
ating object can be split into several expressions for
motion to depict the dynamics in several time intervals
and thus dramatize acceleration (see Figure 7).

Interacting dynamics. The dynamics of depiction
targets can influence depictions of other objects’ dynam-
ics. For instance, well-placed motion lines distinguish
fast from very fast movements. Generally this is the case
with a fixed camera. But if the camera is moving with
the object, we apply a traveling shot characteristic. Here,
the object remains focused while motion lines are then
used for the background to depict the motion of both
the camera and the object1 (see Figure 8). So, the rela-
tions of different dynamics have influence over depic-
tion techniques in the whole. The pattern-based
approach for symbolization helps us resolve cases in
which dynamics influence one another.

Future work
We presented an automated depiction system for ana-

lyzing and symbolizing dynamics. Based on common
scene and behavior specifications, the system produces
smart depictions in a cost- and time-efficient way, and
users can extend it with application-specific analysis and
symbolization techniques. In our experience, nonpho-
torealistic 3D rendering techniques fit best to achieve
results that come close to traditional and artistic works.

We noticed that new designs of dynamics glyphs could
be systematically implemented on top of the presented
framework. Future work might investigate which visual
design of dynamics glyphs to use—for example, in the
scope of virtual and augmentedreality applications. For
the placement of dynamics glyphs, we could further
automate the layout (such as for frames and bubbles).

The semantics-based analysis and symbolization must
be analyzed in more detail. In particular, all kinds of
camera-related depictions, which are relevant in the
preproduction of a movie, need to be optimized further.

In addition, a pattern catalogue should be investigat-
ed. Although we identified pattern-based techniques
and can cope with the mapping of patterns to glyphs,
pattern-based techniques—in particular, interacting
dynamics—are subject to future research. More tech-
niques, patterns, and glyphs should be investigated for
speech and sound as an interesting class of dynamics
and an important category of multimedia content.

We believe that our techniques for depicting dynam-

ics enhance image quality even for standard interactive
and animated computer graphics applications, since
they let us outline certain activities, visually indicate
events, or enhance certain actors or objects. Depicting
dynamics as a mostly automated process shows much
potential for rendering more than just 3D scenery into
single images. ■

Acknowledgments
We thank the Academy of Film and Television “Konrad

Wolf,” Babelsberg (HFF), and Ulrich Weinberg for
inspiring discussions. We also thank the Virtual Ren-
dering System team (http://www.vrs3d.org) at the
Hasso-Plattner-Institute for their technical support.

References
1. S. McCloud, Understanding Comics—The Invisible Art,

Harper Perennial, 1994.
2. S.D. Katz, Film Directing Shot by Shot: Visualizing from Con-

cept to Screen, Michael Wiese Productions, 1991.
3. M. Begleiter, From Word to Image—Storyboarding and the

Filmmaking Process, Michael Wiese Productions, 2001.
4. T. Strothotte and S. Schlechtweg, Non-Photorealistic Com-

puter Graphics—Modeling, Rendering, and Animation, Mor-
gan Kaufmann, 2002.

5. J. Döllner and K. Hinrichs, “Object-Oriented 3D Modeling,
Animation and Interaction,” J. Visualization and Comput-
er Animation, vol. 8, no. 1, 1997, pp. 33-64.

6. A.R. Tilley and Henry Dreyfuss Associates, The Measure of
Man and Woman: Human Factors in Design, John Wiley &
Sons, 2001.

Marc Nienhaus is a PhD candi-
date and research assistant at the
Hasso-Plattner-Institute at the Uni-
versity of Potsdam, Germany. Nien-
haus also studied mathematics and
computer science at the University of
Münster. His research interests

include real-time rendering, nonphotorealistic rendering,
and depiction strategies for symbolizing dynamics. He’s a
student member of the ACM and IEEE. Contact him at
marc.nienhaus@hpi.uni-potsdam.de.

Jürgen Döllner is a professor in
the Hasso-Plattner-Institute at the
University of Potsdam, Germany,
where he directs the computer graph-
ics and visualization division. His
research interests include real-time
3D rendering, nonphotorealistic ren-

dering, spatial visualization, and software architectures
of graphics systems. Döllner studied mathematics and com-
puter science, and received a PhD in computer science from
the University of Münster. Contact him at doellner@
hpi.uni-potsdam.de.

IEEE Computer Graphics and Applications 51

