
1

Building an Interoperable GIS:

Integration of an Object-Oriented GIS Database Kernel

and a Visualization Framework*

L. Becker, H. Ditt, J. Döllner, K. H. Hinrichs, J. Reiberg, A. Voigtmann

FB 15, Institut für Informatik, Westfälische Wilhelms-Universität,
Einsteinstr. 62, D-48149 Münster, Germany

email: {beckelu, ditt, dollner, khh, reiberg, avoigt}@math.uni-muenster.de

Abstract
Geo-Information Systems (GIS) are used in various application areas of the geosciences.
Advanced GIS-applications like meteorological simulations operate on three-dimensional
and time-varying data. An extensible database kernel supporting three-dimensional time-
varying data forms a promising base for implementing such applications since it can be
adapted to the individual data modeling needs of an application. An extensible visualization
framework supporting the visualization of data and their dynamics can be adapted to the
specific visualization needs of GIS-applications. TheGeo Object-OrientedDAtabaseCore
GOODAC is an extensible database core which supports the development of new-generation
GIS-applications. We describe the integration of GOODAC with the visualization and
animation framework MAM/VRS which provides extensible object-oriented technology for
the development of scientific visualization components for 2D, 3D, and time-varying data.

1 Introduction

During the last couple of years Spatial- and Geo-Information Systems (GIS) have been used in
various application areas, like environmental monitoring and planning, rural and urban plan-
ning, and ecological research. These classical applications usually are restricted to two-dimen-
sional data and require visualization capabilities which resemble classical paper maps. New
advanced applications cover three-dimensional and time-varying data found, for example, in
meteorological simulations or seismic exploration.

Currently available GIS were originally designed for the classical application areas mentioned
above. Therefore, these GIS are closed systems primarily designed for the storage, manage-
ment, and visualization of two-dimensional geo-data. A prominent example of such a system
is ARC/INFO [More89]. However, new application areas require extensible technologies both
for the database kernel which is responsible for storing and managing various types of 2D, 3D,
and time-varying data, and for the visualization system which must be capable of displaying
the data and their dynamics in multiple variations.

In this paper, we describe the concepts of integrating the geo-database core GOODAC and the
visualization and animation framework MAM/VRS. Furthermore, we discuss the benefits for

* This work is supported by the DFG (Deutsche Forschungsgemeinschaft) under grant STR172/8-1.



2

GIS resulting from this integration. The goal of our research is to provide an extensible and
powerful framework for the development of new-generation GIS applications.

The Object-OrientedGeo-Data Model OOGDM and its prototype implementation, theGeo
Object-OrientedDatabaseCore GOODAC, provide extensible object-oriented database tech-
nology for GIS ([BVH96], [VBH96b], [VBH97]). The data model supports commonly found
types of geo-data, and GOODAC realizes an extensible database core supporting the develop-
ment of new-generation GIS applications on top of GOODAC.

The visualization and animation framework MAM/VRS ([DH97a], [DH97b], [DH97c]) repre-
sents an open environment for developing components for geo-based visualization and anima-
tion. MAM, the Modeling andAnimation Machine, supports high-level modeling of 3D
geometry and its dynamic. VRS, theVirtual RenderingSystem, is an object-oriented 3D
rendering system which provides a variety of graphics primitives and rendering techniques.

The tight coupling of GOODAC and MAM/VRS is realized by view classes which use a new
approach, the so callediterators, to directly exploit database structures for realizing graphics
primitives. Since the application is integrated with the database and the visualization frame-
work, data redundancies between the components are prevented and the semantics of applica-
tion-specific data is available in all parts of the system. Both the data management and the
visualization components of a GIS application built on top of GOODAC and MAM/VRS can
be customized to fit exactly the individual needs of the application.

GOODAC and MAM/VRS are implemented as C++ libraries. Both are embedded in the
object-oriented scripting language [incr Tcl] in order to support rapid prototyping of GIS
applications, to take advantage of the powerful and portable Tk user interface toolkit [Ou94],
and to support interactive development and testing.

The remainder of this paper is structured as follows. In section2 we review the data model
OOGDM and the database kernel GOODAC. Section3 presents an overview of the visualiza-
tion and animation framework MAM/VRS. In section4 we discuss strategies for integrating
database kernel and visualization framework. Section5 concludes this paper with a discussion
of the benefits of our integrated environment for GIS and with an overview of future work.

2 The Geo Object-Oriented Database Core GOODAC

During the last decade object-oriented databases have been subject to intensive research. There
are various reasons for the attractiveness of these systems but a very important advantage is
that object-oriented data models offer numerous benefits for data modeling of non standard
applications. However, GIS have adopted object-oriented database technology and models in
part only. Hence, GOODAC tries to provide the benefits of this current database technology for
the development of GIS applications.

2.1 OOGDM - The Data Model of GOODAC

GOODAC’s data model OOGDM ([BVH96], [VBH96a], [VBH96b]) is an object-oriented
data model allowing GIS application developers to define an object-oriented model for their
individual application. The core of OOGDM is given by a hierarchy of classes which cover
most kinds of spatial data found in GIS-applications. OOGDM supports raster- and vector-



3

based data in 2D, 21⁄2D, and 3D data space. Furthermore, OOGDM is capable of handling
time-varying data by the incorporation of concepts from temporal databases [VBH96b]. A
commonly used set of operations including, for example, geometric operations, topological
predicates and operations, and direction predicates is also available within the data model.

2.2 The Object Definition and Query Language of GOODAC

Associated with OOGDM are anObjectDefinitionLanguage OOGDM-ODL and an SQL-like
query language OOGQL (Object-OrientedGeoQueryLanguage) [VBH96a]. OOGDM-ODL
supports the creation of new classes for a database in a C++-like style. The object definition
language satisfies the individual modeling needs of an application developer who realizes GIS
applications: The application developer may either extend the data model by deriving applica-
tion dependent classes from the predefined class hierarchy of OOGDM or by defining classes
independently of OOGDM.

Queries to an OOGDM-based database can be formulated in the SQL-like query and manipu-
lation language OOGQL. The design of OOGDM-ODL and OOGQL resembles and extends
the languages proposed in theObject Database Standard [ODMG96] by concepts for spatial
and temporal data. OOGQL can be customized by an extension mechanism.

2.3 The Prototype

GOODAC ([BVH96], [VBH97]) is an extensible GIS database core which realizes the
OOGDM class hierarchy. OOGDM-based GIS applications are developed on top of GOODAC
in C++. The object-oriented database systemObjectStore [LLOW91] has been chosen as an
implementation base for GOODAC. ObjectStore provides support for object storage, multi-
user access, and transaction management. GOODAC is basically realized by a two-layer archi-
tecture which is shown in figure 1. The top layer is thedescriptive layer which is the view an
application developer and a user of the system have. The data model of this layer is OOGDM.
The bottom layer of GOODAC is therepresentation layer. The data model of this layer is the
so calledrepresentation data model consisting of various representations for the geometry of
OOGDM-objects, various implementations for geometric and topological operations, index
structures, and stream based query processing methods.

The core of application development with GOODAC is the definition of new classes for the
database of the application in OOGDM-ODL. These class definitions are precompiled into
C++ code. Afterwards, the application developer has to add the code for the methods defined

Figure 1: The architecture of GOODAC.

OOGDM

C++-Interface

OOGDM-ODL

OOGQL

Representation Data Model

Query Optimizer

ObjectStore OODBMS

Descriptive Layer

Representation Layer Data Dictionary



4

for these new classes and for the rest of the application program. The code for modifying and
reading all attributes defined in the OOGDM-ODL class definitions as well as code for the
predefined functionality of OOGDM-based classes is automatically generated by the system.

To meet the requirements of various GIS-application areas, GOODAC has been designed to be
an extensible system. System and application programmers may add representations of types
(e.g., new representations for the geometry of spatial types), methods and functions for opera-
tions (e.g., new GIS functionality), index structures (e.g., new spatial and spatio-temporal
indices), query processing methods, and extensions of the query optimizer.

Due to the object-oriented paradigm GOODAC realizes a new form of interoperability where
applications integrate seamless with the database kernel, i.e., the applications directly work on
the objects and classes provided by the database kernel. Hence, no conversion between the
main memory data structures of the applications and the data representation in the database is
required, and the semantics of the stored data is available to each application querying and
manipulating a database. This kind of coupling is usually not supported by classical closed
GIS.

2.4 Supporting Data Integrity

In GIS it is very important to ensure the integrity of the stored data. Usually, attribute values
are restricted to a certain domain (e.g., population≥ 0), or upon an update of the database
related attributes or objects are changed (e.g., the population of a city must be updated if the
population of a city district changes). Constraints and triggers are well known techniques in
database systems which ensure the integrity of the database by

• protecting the attributes against incorrect values (constraints).
• automatically updating attributes upon certain events (trigger).

Hence, triggers provide some kind of active behavior to the database. SinceObjectStore does
not support constraints and triggers, GOODAC realizes its own concept for constraints and
triggers. This support of automated integrity checks simplifies the implementation of pre- and
postprocessing steps in GIS applications implemented on top of GOODAC. However, it is not
our intention to realize anactive database system [ACT96] since these systems require a much
more sophisticated realization of active features than our approach to constraints and triggers
provides.

Constraints and triggers are realized by an extension of our object definition language and by
corresponding extensions of GOODAC. OOGDM-ODL allows the definition of constraints
and triggers for each class. Triggers are declared in an ECA-style (Event-Condition-Action)
like rule. The conditions and actions for constraints and triggers are expressed by statements in
OOGQL. The support for time-varying data is integrated into the constraint and trigger mecha-
nism. Details of our concept of constraints and triggers can be found in [DBVH97].

3 The Visualization Framework MAM/VRS

Most existing GIS provide integrated visualization capabilities. However, in the last couple of
years computer graphics and computer animation have made progress at an impressive speed.
Therefore, many GIS cannot benefit from these developments (e.g., photorealistic and pseu-



5

dorealistic rendering techniques, interactive manipulation of 3D objects, etc.) because their
graphics subsystems are either closed or linked to a specific rendering toolkit. In particular,
high-end graphics hardware is poorly used by GIS visualization subsystems. For example, on
high-end graphics workstations, OpenGL can superimpose ordinary textures with detail
textures in order to represent an additional layer of information. However, this new feature
cannot be accessed through black-box visualization components.

3.1 Design Issues for GIS Visualization Frameworks

In contrast to traditional visualization frameworks and graphics capabilities of common GIS,
the object-oriented software system for interactive, animated 3D graphics MAM/VRS is based
on an open architecture which concentrates on the following aspects:

3.1.1 Application Data Structures for Graphics Primitives

MAM/VRS graphics objects use as much as possible application data without copying the data
into internal data structures. Most MAM/VRS graphics objects require so callediterator
objects provided by the application and use these iterators toembed the necessary data. A 3D
point set object, for example, does not maintain an array of coordinates. It is associated with an
iterator object and uses that iterator to inquire the coordinates each time the point set is
rendered. It is up to the iterator‘s implementation to define how that data is calculated or how
and where the data is stored.

3.1.2 Integrated and Sophisticated Management of Time

MAM/VRS visualizations are specified by two types of graphs:geometry graphs andbehavior
graphs. A geometry graph represents hierarchically nested 3D scenes in analogy to VRML
scene graphs. A behavior graph complements a scene description by representing its dynamic
aspects such as animations or user interaction capabilities. More abstract, behavior graphs
model the time and event flows of a visualization. MAM/VRS provides high-level time
building blocks which deform or distribute time according to time layouts. They are useful to
build complex animations, such as a semantic-guided flight across a landscape (e.g., the virtual
camera could control the acceleration with respect to the landuse information underneath its
current position).

3.1.3 Integrated 3D Interaction Capabilities.

3D interaction is important for the direct manipulation of geo objects. For example, in order to
place a new building into a virtual landscape, the user needs a precise control mechanism in
3D space. MAM/VRS supports 3D interaction by an internal ray-tracer. The ray-tracer calcu-
lates distances and positions of 3D rays and 3D objects. For example, one could simulate a
flight across a landscape and constrain the flight altitude to a certain distance above ground;
the virtual camera would send out test rays in order to check and adjust its altitude. Note that
ray-tracing does not refer to the image synthesis process: here, ray-tracing is an analytical tool
applied to geo objects.

3.1.4 Multiple 3D Rendering Techniques

GIS applications have different rendering requirements: real-time rendering for interactive
access must use a different rendering technology than high-quality image productions used for



6

computer generated videos. VRS ensures that the same visualization application can change
the underlying 3D rendering library without having to recode the application because of VRS’s
uniform and object-oriented interface. Currently, VRS supports OpenGL for real-time
rendering, and RenderMan, POV Ray, and Radiance for high-quality rendering with global
illumination effects. New rendering systems can be integrated by implementing so called
virtual rendering engines.

3.1.5 Automated Production of Computer Video Sequences

The generation of computer video sequences is a time consuming task. In particular, if data
sets are large, the requirements of time and space are enormous. MAM/VRS facilitates the
design and realization of computer animations due to its built-in time management and
multiple 3D rendering techniques. An animation can be planned and modified with a fast real-
time rendering system. To produce the final video sequence, a high-quality rendering system
can be plugged in without writing additional code.

3.2 Architecture of the MAM/VRS Framework

The architecture basically consists of two layers, the MAM graphics layer and the VRS
rendering layer. Therendering layer is responsible for the image synthesis based on low-level
3D rendering libraries, whereas thegraphics layer is responsible for composing 3D scenes and
specifying their dynamics.

The Virtual Rendering System ([DH97b]) providesgraphics objects which represent graphical
entities, e.g., colors, textures, geometric transformations, and shapes. Shapes represent
concrete 2D or 3D objects. The appearance of shapes is modified by graphical attributes.
Graphics objects are processed and evaluated byrendering engines which map graphics
objects to appropriate calls of the underlying 3D rendering systems. The application can define
new mapping techniques by so calledshape painters and attribute painters. Painters are
objects which encapsulate the code for the actual mapping. This way, developers can add
application-specific rendering functionality to their visualization system.

VRS is athin object-oriented layer. Its virtual rendering engines do not have a significant
impact on the rendering performance compared to applications which access a rendering
system directly. Moreover, the OpenGL rendering engine has been fine-tuned to achieve almost
the same performance as native OpenGL programs.

The Modeling and Animation Machine provides higher-level modeling techniques for visual-
ization. MAM specifiesgeometry nodes and behavior nodes, and it is responsible for the
management ofgeometry graphs andbehavior graphs. Geometry graphs consist of geometry
nodes, and behavior graphs consist of behavior nodes. To visualize graphics objects, they have
to be associated with geometry nodes. To animate them, they are associated with behavior
nodes. VRS and MAM are tightly coupled because MAM’s geometry nodes and behavior
nodes manipulate and operate on associated, shared graphics objects provided by VRS.

The framework is implemented in C++. User interface bindings exist for Windows,
OSF/Motif, and Tcl/Tk. Due to different application programming interfaces and indepen-
dence from window systems and low-level 3-D rendering libraries, the portability of
MAM/VRS is guaranteed. Figure 2 shows the overall architecture of MAM/VRS.



7

4 Integration of Database Kernel and Visualization

GOODAC and MAM/VRS provide database and visualization capabilities required to develop
GIS applications. The interface between the database kernel, the visualization framework, and
the GIS application must be designed very carefully because the interface has a major impact
on the overall system performance.

If we choose a loose coupling, database kernel and visualization framework exchange data
basically in three steps:

1. Convert objects of the source component into an exchange format.
2. Store these intermediate objects.
3. Convert the intermediate objects into objects suitable for the target component.

This loose coupling of components leads to problems resulting from the potential data redun-
dancy and from loss of information during the conversion processes. Hence, the semantics of
the objects used by the application program is usually not accessible by the visualization
component which naturally restricts visualization techniques. The loose coupling is the most
popular interface provided by classical GIS.

In our approach, a tight coupling of GIS application, database kernel, and visualization frame-
work is chosen. A GIS application shares the data types used in the database kernel by deriving
application-dependent spatial classes from the OOGDM class hierarchy. The usage of unique
data types within the application and the database provides efficient processing of the persis-
tent data without data redundancy and conversion operations.

The integration of the database kernel and the visualization framework requires a different
strategy since both systems have been developed independently and can be used independently
of each other. While OOGDM has been designed to meet the requirements of GIS applica-

Figure 2: The Architecture of MAM/VRS.

M
A

M
V

R
S

OpenGL Render Radiance
Man

POV Ray

C++ App
OSF/Motif

C++ App
Win 32

[incr Tcl]
Script

Shapes

Attributes

Rendering Engines

Geometry
Nodes

Behavior
Nodes

iMAM/iVRS



8

tions, the data model provided by MAM/VRS reflects the needs of 3D graphics and animation.
Of course, there is a certain analogy in their class hierarchies. For example, vector-based data
classes provided by the database kernel, e.g., polylines, polygonal regions, and solids, can be
represented by sets of line segments, triangles, and simplices provided by the visualization
framework. Furthermore, 2D and 3D meshes of triangles and simplices available in the visual-
ization framework can be used for the visualization of the raster-based classes of the database
kernel. However, we cannot expect to merge these class hierarchies due to their different
semantics and requirements. In our approach, we integrate database and visualization by visu-
alization view classes embedded in the visualization framework and by providing a uniform
embedding in a scripting language.

4.1 Visualization View Classes

Visualization view classes manage the mapping of database objects to graphics objects. In
general, a visualization view class will base that mapping on the geometric and thematic data.
The tight coupling of the database objects and graphics objects is realized by iterator objects.
The iterators provide an efficient way to establish a direct link between database kernel and
visualization framework. An overview of the architecture of our integrated system is given in
figure 3.

A visualization view class is associated with database classes and derives for these database
classes iterator classes. These iterator subclasses are specific to the database classes and may
take advantage of their internal data representation. The main purpose of iterators is the
sequential access of geometric or graphics data in a form suitable for MAM/VRS. The conver-
sion is carried out on the fly without an intermediate storage. Furthermore, visualization view
classes instantiate MAM/VRS graphics objects and connect them to iterators.

Visualization view classes can map database objects to graphics objects in various ways. Since
most classes of graphics objects in MAM/VRS rely on embedded data provided by iterators,
visualization techniques can be realized efficiently.

OOGDM/GOODAC

GIS Application

C++ API[incr Tcl] API

Figure 3: Architectural Overview of the Integration of GOODAC and MAM/VRS.

MAM/VRS

C++ API [incr Tcl] API

GIS Database Kernel Visualization Framework

Graphical User Interface (GUI)

Data Processing & Analysis Visualization

Visualization View
Classes

e.g. Iterators



9

Example:
Consider the visualization of a digital elevation map (DEM) which is represented in the
database by the classDEM, a subclass of classGrid2D, i.e., a two-dimensional matrix of
elevation information. Figure 4 shows the class hierarchy described in this example. A
DEM is visualized by an object of classRMesh provided by MAM/VRS.RMesh objects
represent triangulatedn x m meshes. The interface betweenGrid2D andRMesh is estab-
lished by the iterator classesRGrid2DVertexIterator andRGrid2DNormalIterator, both
are derived from classMIterator<MVector>, the base class of all MAM/VRS iterators.
Each iterator object is associated with anGrid2D object and anRMesh object.

If the DEM is requested to render itself, theRMesh object actually uses the iterator
objects to inquire the coordinates and the color data. Both types of iterators perform a
row-by-row scan of the DEM‘s elevation matrix. Iterator objects of class
RGrid2DVertexIterator return MVector objects, the 3D point and 3D vector class of
MAM/VRS. Iterator objects of classRGrid2DNormalIterator return MVector objects
which represent surface normal vectors of a DEM entry. The computation of the normal
vectors can be based on different rules, e.g., geometric normals. Iterators perform their
computations on the fly, i.e., no data storage or duplication is required.

So far, the geometry of database objects has been linked to graphics objects. The thematic part
of the database objects can be mapped either by additional graphics objects or by color infor-
mation applied to existing graphics objects. It is up to the visualization strategy how to map
thematic data.

Example:
Consider again the visualization of a DEM. We have described how spatial coordinates
and the normal vectors are embedded in graphics objects byRGrid2DVectorIterator
objects andRGrid2DNormalIterator objects. To visualize the landuse information for a
DEM, we assign colors to the mesh based on a thematic color scale. Colors are assigned
to a mesh by a color iterator. In the example, we derive a color iterator classRLanduse-
ColorIterator which has to returnMColor objects. AnMColor object contains the RGB
coefficients and the transparency coefficient. The color iterator will actually use the asso-
ciated database landuse object to inquire landuse information for a spatial position.

Alternatively, we could color the mesh with respect to the height of DEM entries,
whereby the colors are calculated based on a color scale. This approach can be imple-
mented by the iterator subclassRDEMHeightColorIterator.

Both landuse and height information layers are visualized by the same paradigm: color
iterators infiltrate directly application semantics in MAM/VRS objects. We could also
design an appropriate texture coordinate iterator to map an additional information layer
onto the mesh.

Iterator classes are introduced at the level of user-accessible classes of the data model
OOGDM. For each user-accessible class of OOGDM, the vertex and normal iterator classes
are provided by default.

Obviously, the concept of embedded data in graphics objects does not require explicit conver-
sion of data between database kernel and visualization framework, and thereby an erroneous
data redundancy between both components is prevented. The visualization directly accesses
the objects of the database and transfers the information contained in the database into a
format which can be processed by the low-level rendering engines underlying the visualization



10

framework. This transfer is done each time a database object is rendered on the screen. To
provide smooth animations and to speed up user-interaction (e.g., interactive exploration of 3D
scenes) graphics objects can be cached. However, the visualization view classes keep track of
modifications to the database objects such that cached data is always updated if database
objects have been modified.

The tight coupling of database and visualization offers extensible and customizable visualiza-
tion techniques to GIS applications. To prove the applicability of our approach, we have real-
ized a GIS application for the modeling of nocturnal cold air drainage flows. Figure 5 shows
an example visualization taken from this application.

4.2 Interacti ve Modification of Database Objects

As a consequence of the tight coupling of database and visualization, it is easy to implement
interactive modification techniques for database objects. The visualization framework
MAM/VRS provides tag objects to assign application-specific identifiers and group identifiers
to graphics objects. Tags represent the hooks for any type of database editor. Tags are created
by visualization view classes and are associated with the graphical representations of database
objects. The tags are used to formulate scene requests and to build object-specific interactions.
Interaction techniques can use tags to identify the relevant objects and to report them to the
database editor. In addition, interaction techniques can use the built-in ray tracer to inquire
spatial relationships of 3D objects.

Since database objects and their visual representations are connected by iterators, modifica-
tions apply directly to the visual representation as well as to the database. Moreover, 3D inter-
action techniques developed in computer graphics can be exploited. For example, the height of
a building located in a DEM can be interactively modified by a 3D scroll bar (i.e. a cylinder
erected upon the landscape with a small slider box). Figure 6 illustrates the data flow during an
interactive modification of database objects.

Figure 4: .Class Relations for the DEM Visualization.

RMesh

MIterator<MVector>

RGrid2DVertexIterator

RGrid2DNormalIterator

RDEMHeightColorIterator

OOGDMGrid2D

LandUseDEM

vertices,
normals

MAM/VRS Visualization View Classes GOODAC

RLanduseColorIterator

MIterator<MVector>

colors

texture
coordinates

MIterator<MColor>
DEMView



11

4.3 Embedding in an Object-Oriented Scripting Language

In general, scripting languages offer many advantages for high-level programming compared
to system programming languages because they are easier to learn and understand, provide a
tight binding to user interfaces, and allow for rapid and interactive prototyping. Their main
disadvantage is that they cannot implement large object-oriented systems. The interpretative
tool command language Tcl [Ou94], its GUI toolkit Tk, and the object-oriented Tcl extension

Figure 5: Sample DEM Visualization.

Figure 6: Data Flow during Visualization and Modification of Database Objects.

see objects

make changes

User

Application based on GOODAC and MAM/VRS

Database Visualization View User Interface

obtain object

modify

propagate object

propagate
objects

information
or changes

changes

information
or changes

& VisualizationObjects



12

[incr Tcl] [ML97] together represent a widely used and one of the most powerful object-
oriented scripting languages.

Both the database kernel GOODAC and the visualization framework MAM/VRS are imple-
mented by C++ libraries. To integrate both systems at the application programming interface
level, we have embedded them into the object-oriented scripting language [incr Tcl].

Our approach for embedding C++ classes in [incr Tcl] is based on the following concept: For
each C++ class there is one “mirror class” in [incr Tcl] whose class members have a one-to-one
relationship to their C++ counterparts. For each object created in the C++ world, there is a
“mirror object” in the [incr Tcl] world. A mirror object delegates all requests to its corre-
sponding C++ object. That delegation guarantees optimal flexibility and performance: The
complete functionality of the database kernel and the visualization framework is available
through the [incr Tcl] interface. However, there is no lack of performance since the database
and the visualization functionality is not executed in the interpretative scripting language but in
the native C++ code.

If the application developer extends the database kernel or the visualization framework by new
classes derived from the existing class hierarchies, these classes must be available to the
[incr Tcl] interface as well. The same applies to application-dependent classes developed inde-
pendently of GOODAC and MAM/VRS which should also be available to the [incrTcl] inter-
face. To support the automatic integration of application-specific classes, a generator [DH97d]
has been developed which creates the [incrTcl] classes from information obtained by parsing
the corresponding C++ header files.

The interpretative object-oriented scripting language [incr Tcl] proved to be a valuable tool for
developing user interfaces, too. Tk offers a platform-independent collection of easy to
customize user interface components. Due to the nature of a scripting language, user interface
design can be done interactively. New parts of an application can also be developed in the
scripting language, can be tested within the interpretative environment, and can later be ported
to C++.

5 Conclusions and Future Work

Traditional GIS are based on a closed architecture, primarily and historically designed for
handling 2D geo data. However, new applications, e.g., in geology or meteorology, require
three-dimensional and time-varying data. This shift has to be reflected by an advanced archi-
tecture for GIS.

The integration of the object-oriented GIS database kernel GOODAC and the object-oriented
visualization and animation framework MAM/VRS has a series of benefits for the develop-
ment of GIS:

• GIS benefit from object-oriented database technology provided by GOODAC. Geo
objects, for example, are inherently persistent without having to write persistency
routines.

• Geo objects are efficiently infiltrated in the visualization framework without loss of
semantics. The integration of our database kernel and visualization framework ensures
that no data redundancies occur, i.e., the visualization obtains its data directly from the



13

database. This option is not available with systems operating independently and
exchanging data, for example, via a file system.

• Both GOODAC and MAM/VRS can be extended to meet the requirements of individual
GIS applications. The database kernel can be extended to efficiently support the storage
and retrieval of data for a wide range of GIS applications. The visualization framework
can be extended by application-specific visualization classes for advanced and optimized
usage.

• 2D, 3D, and time-varying data are explicitly supported by both the database kernel and
the visualization framework. The dynamics of data can be visualized by interactively
exploring the data or by animation sequences.

• GOODAC provides tools for the development of GIS-applications in C++. For example,
using the OOGDM-ODL class definitions the precompiler automatically generates the
required C++-class definitions. Furthermore, constraints and triggers support the realiza-
tion of application-dependent pre- and postprocessing methods.

• The construction of interactive editors for database objects is facilitated since all compo-
nents are integrated and data semantics is accessible within all system components.
Interaction techniques benefit from the built-in interaction capabilities of MAM/VRS.

• A GIS application can choose between different rendering systems and integrate future
rendering systems due to the virtual rendering system.

• Developers benefit from the object-oriented scripting language because it shortens devel-
opment time and allows for interactive and rapid prototyping of database, visualization,
and user interface components. The complete functionality of the database kernel and
visualization framework is accessible within the scripting language without a significant
loss of performance due to the embedded C++ classes.

Future work on MAM/VRS and GOODAC includes the development of new visualization and
interaction strategies for high-dimensional data, the development of anOpenGIS-interface, the
addition of classes for theFGDC-standard of geo-spatial metadata, and the realization of
further query processing methods.

Acknowledgments

The contributions of Lars Bernard, Jan Budde, Torsten Kähler, Holger Lange, Benno Schmidt,
and Tilmann Steinberg to the GOODAC prototype and of Tobias Gloth, Oliver Kersting, Björn
Lojewski, and Marc Nienhaus to MAM/VRS are gratefully acknowledged.



14

Literature

[ACT96] ACT-NET Consortium:The Active Database Management System Manifesto: A Rulebase of
ADBMS Features, ACM SIGMOD Record, 25 (3), 1996, 40- 49.

[BVH96] L. Becker, A. Voigtmann, K. H. Hinrichs:Developing Applications with the Object-Oriented
GIS-Kernel GOODAC, Proc. 7th Int. Symp. On Spatial Data Handling (SDH’96), Delft, The
Netherlands, 1996, 5.A.1- 5A.18.

[DBVH97] H. Ditt, L. Becker, A. Voigtmann, K.H. Hinrichs:Constraints and Triggers in an Object-
Oriented Geo Database Kernel, Proc. 8th Int. Workshop on Database and Expert Systems
Applications (DEXA’97), Toulouse, France, 1997, 508- 515.

[DH97a] J.Döllner, K. H. Hinrichs:Support of Explicit Time and Event Flows in the Object-Oriented
Visualization Toolkit MAM/VRS, in: Proceedings of Visualization and Mathematics `97,
Berlin-Dahlem, Germany, 1997.

[DH97b] J.Döllner, K. H. Hinrichs:The Design of a 3D Rendering Meta System, in: Eurographics
Workshop on Programming Paradigms for Graphics `97, Budapest, Hungary, 1997.

[DH97c] J.Döllner, K. H. Hinrichs:Object-oriented 3D Modeling, Animation, and Interaction, The
Journal of Visualization and Computer Animation, 8, 33-64, 1997.

[DH97d] J. Döllner, K. Hinrichs:Object and Class Management in a Hybrid Architecure using [incr
Tcl] and C++. Interner Bericht, University Muenster, 1997.

[ML97] M. McLennan:[incr Tcl] - Object-Oriented Programming in Tcl/Tk, online document, see
http://www.tcltk.com/itcl/

[ODMG96] R. G. G. Catell (ed.):The Object Database Standard: ODMG-93, Release 1.2, Morgan-
Kaufmann Publishers, San Francisco, CA, 1996.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, D. Weinreb:The ObjectStore Database System, Commu-
nications of the ACM, 34 (10), 1991, 50- 63.

[More89] S. Morehouse:The Architecture of ARC/INFO, Auto-Carto 9 Conf., S. 266-277.

[Ou94] J. Ousterhout:Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[VBH96a] A. Voigtmann, L. Becker, K.H. Hinrichs:An Object-Oriented Data Model and a Query
Language for Geo Information Systems, Bericht Nr. 5/96-I, Institut für Informatik, Westf.
Wilhelms-Universität, Münster, Germany, 1996.

[VBH96b] A. Voigtmann, L. Becker, K. H. Hinrichs:Temporal extensions for an Object-Oriented Geo-
Data-Model, Proc. 7th Int. Symp. On Spatial Data Handling (SDH’96), Delft, The Nether-
lands, 1996, 11A.25- 11A.41.

[VBH97] A. Voigtmann, L. Becker, K. H. Hinrichs:Physical Design Aspects of an Object-Oriented
Geo Database Kernel, Proc. 8th Int. Workshop on Database and Expert Systems Applica-
tions (DEXA’97), Toulouse, France, 1997, 529- 534.


