Building an Interoperable GI S:
| ntegration of an Object-Oriented GIS Database Kerndl
and a Visualization Framework”

L. Becker, H. Ditt, J. Déllner K. H. Hinrichs, J. Reiber, A. Vbigtmann

FB 15, Institut fur Informatik, \&stfalische Whelms-Unwersitat,
Einsteinstr62, D-48149 MinsteGermay
email: {beclelu, ditt, dolinerkhh, reibeg, avoigt}@math.uni-muenstete

Abstract
Geo-Information Systems (GIS) are used @miaus application areas of the geosciences.
Advanced GlIS-applications Ekmeteorological simulations operate on three-dimensional
and time-arying data. An xensible databaseeknel supporting three-dimensional time-
varying data forms a promising base for implementing such applications since it can be
adapted to the indidual data modeling needs of an application. Aleesible visualization
framewvork supporting the visualization of data and their dynamics can be adapted to the
specific visualization needs of GIS-applications. Qe Object-Oriented DAtabaseCore
GOODAC is an &tensible database core which supports tiveldpment of ne-generation
GlS-applications. & describe the inggation of GOOIAC with the visualization and
animation frameork MAM/VRS which prwides etensible object-oriented technology for
the derelopment of scientific visualization components for 2D, 3D, and tiangivg data.

1 | ntroduction

During the last couple of years Spatial- and Geo-Information Systems (&Ehéan used in
various application areas, ékervironmental monitoring and planning, rural and urban plan-
ning, and ecological research. These classical applications usually are restricteditodw
sional data and require visualization capabilities which resemble classical paper nvaps. Ne
adwanced applications wer three-dimensional and timewying data found, for@mple, in
meteorological simulations or seismipéoration.

Currently aailable GIS were originally designed for the classical application areas mentioned
above. Therefore, these GIS are closed systems primarily designed for the storage, manage-
ment, and visualization of twdimensional geo-data. A prominemxiaenple of such a system

is ARC/INFO [More89]. Havever, new application areas requir@tensible technologies both

for the databasegknel which is responsible for storing and managamgpus types of 2D, 3D,

and time-arying data, and for the visualization system which must be capable of displaying
the data and their dynamics in multipkriations.

In this paperwe describe the concepts of grtating the geo-database core GOX@band the
visualization and animation framverk MAM/VRS. Furthermore, we discuss the benefits for

* This work is supported by the DFG (Deutsclsehungsgemeinschaft) under grant STR172/8-1.

GIS resulting from this intgation. The goal of our research is toypde an &tensible and
powerful framevork for the deelopment of n@-generation GIS applications.

The Object-Oriented Geo-DataModel OOGDM and its prototype implementation, beo
ObjectOrientedDatabaseCore GOOMAC, provide extensible object-oriented database tech-
nology for GIS ([BVH96], [VBH96b], [VBH97]). The data model supports commonly found
types of geo-data, and GO@D realizes anxéensible database core supporting thestig-
ment of nav-generation GIS applications on top of GOSD

The visualization and animation framerk MAM/VRS ([DH97a], [DH97b], [DH97c]) repre-
sents an open emonment for deeloping components for geo-based visualization and anima-
tion. MAM, the Modeling andAnimation Machine, supports highsel modeling of 3D
geometry and its dynamic. VRS, thrtual RenderingSystem, is an object-oriented 3D
rendering system which prigles a wariety of graphics primies and rendering techniques.

The tight coupling of GOORC and MAM/VRS is realized by we classes which use awme
approach, the so calletérators, to directly &ploit database structures for realizing graphics
primitives. Since the application is igtated with the database and the visualization frame-
work, data redundancies between the components arenped and the semantics of applica-
tion-specific data isvailable in all parts of the system. Both the data management and the
visualization components of a GIS applicatialtoon top of GOOBC and MAM/VRS can

be customized to fib@ctly the indvidual needs of the application.

GOODAC and MAM/VRS are implemented as C++ libraries. Both are embedded in the
object-oriented scripting language [incr Tcl] in order to support rapid prototyping of GIS
applications, to tak adwantage of the peerful and portable Tk user intede toolkit [Ou94],

and to support interage derelopment and testing.

The remainder of this paper is structured as Wdloin sectior? we review the data model
OOGDM and the databaserkel GOOIAC. Sectior3 presents anvervien of the visualiza-
tion and animation framerk MAM/VRS. In sectiord we discuss stragees for intgrating
databasedrnel and visualization fram@rk. Sectiorb concludes this paper with a discussion
of the benefits of our inggated emironment for GIS and with arverview of future work.

2 TheGeo Object-Oriented Database Core GOODAC

During the last decade object-oriented databaseslteen subject to intemsiresearch. There

are \arious reasons for the attraetmess of these systemst la \ery important adantage is

that object-oriented data modeldesfnumerous benefits for data modeling of non standard
applications. Hwvever, GIS hae adopted object-oriented database technology and models in
part only Hence, GOOBC tries to preide the benefits of this current database technology for
the deelopment of GIS applications.

2.1 OOGDM - The Data M odel of GOODAC

GOODAC’s data model OOGDM ([BVH96], [VBH96a], [VBH96b]) is an object-oriented
data model aliing GIS application deslopers to define an object-oriented model for their
individual application. The core of OOGDM isvgn by a hierarchof classes which ser
most kinds of spatial data found in GlS-applications. OOGDM supports-rasignector

based data in 2D,1/§D, and 3D data space. Furthermore, OOGDM is capable of handling
time-varying data by the incorporation of concepts from temporal databases [VBH96b]. A
commonly used set of operations including, fearaple, geometric operations, topological
predicates and operations, and direction predicates is\aialde within the data model.

2.2 The Object Definition and Query Language of GOOBC

Associated with OOGDM are dbjectDefinition Language OOGDM-ODL and an SQL ik
query language OOGQILObject-OrientedGeo Query Language) [VBH96a]. OOGDM-ODL
supports the creation of weclasses for a database in a C+eldtyle. The object definition
language satisfies the intlual modeling needs of an applicatiorveleper who realizes GIS
applications: The application d&oper may eithengend the data model by deéng applica-
tion dependent classes from the predefined class higrafédOGDM or by defining classes
independently of OOGDM.

Queries to an OOGDM-based database can be formulated in the @Qjudiky and manipu-
lation language OOGQL. The design of OOGDM-ODL and OOGQL resemblesctardie
the languages proposed in {@bject Database Standard [ODMG96] by concepts for spatial
and temporal data. OOGQL can be customized byx@msion mechanism.

2.3 The Prototype

GOODAC ([BVH96], [VBH97]) is an etensible GIS database core which realizes the
OOGDM class hierargh OOGDM-based GIS applications are/éleped on top of GOOBC

in C++. The object-oriented database sys@ectSore [LLOW91] has been chosen as an
implementation base for GO@T. ObjectStore prodes support for object storage, multi-
user access, and transaction management. @@0O®basically realized by a balayer archi-
tecture which is shwn in figure 1. The top layer is tluescriptive layer which is the viev an
application deeloper and a user of the systerwénal’ he data model of this layer is OOGDM.
The bottom layer of GOOBC is therepresentation layer. The data model of this layer is the
so calledrepresentation data model consisting of arious representations for the geometry of
OOGDM-objects, arious implementations for geometric and topological operationsx inde
structures, and stream based query processing methods.

OOGDM-0ODL
C++-Interface 0O0GQL

Descriptive Layer -

OOGDM

Query Optimizer

Representation Data Model

Representation Layer ——— Data Dictionary

ObjectStore OODBMS

Figure 1. The architecture of GOODAC.

The core of application gelopment with GOOBC is the definition of ne classes for the
database of the application in OOGDM-ODL. These class definitions are precompiled into
C++ code. Aftenards, the application deloper has to add the code for the methods defined

for these ne& classes and for the rest of the application program. The code for modifying and
reading all attribtes defined in the OOGDM-ODL class definitions as well as code for the
predefined functionality of OOGDM-based classes is automatically generated by the system.

To meet the requirements dnous GIS-application areas, GO®0 has been designed to be

an etensible system. System and application programmers may add representations of types
(e.q., n&v representations for the geometry of spatial types), methods and functions for opera-
tions (e.g., n& GIS functionality), inde structures (e.g., me spatial and spatio-temporal
indices), query processing methods, axteémsions of the query optimizer

Due to the object-oriented paradigm GO8Drealizes a v form of interoperability where
applications intgrate seamless with the databasmekl, i.e., the applications directlyovk on

the objects and classes yided by the databasestnel. Hence, no cerrsion between the

main memory data structures of the applications and the data representation in the database is
required, and the semantics of the stored datzasaale to each application querying and
manipulating a database. This kind of coupling is usually not supported by classical closed
GIS.

2.4 Supporting Data I ntegrity

In GIS it is \ery important to ensure the igtety of the stored data. Usuallgttribute \alues

are restricted to a certain domain (e.g., populatid), or upon an update of the database
related attrilites or objects are changed (e.g., the population of a city must be updated if the
population of a city district changes). Constraints and triggers are welinktezhniques in
database systems which ensure thagiitieof the database by

. protecting the attriltes aginst incorrect &lues (constraints).
. automatically updating attriftes upon certainvents (trigger).

Hence, triggers prade some kind of acte behaior to the database. Sin€@bjectSore does

not support constraints and triggers, GOX@Drealizes its wn concept for constraints and
triggers. This support of automated ¢y checks simplifies the implementation of pre- and
postprocessing steps in GIS applications implemented on top of @OCOHowever, it is not

our intention to realize aactive database system [ACT96] since these systems require a much
more sophisticated realization of aetifeatures than our approach to constraints and triggers
provides.

Constraints and triggers are realized by deresion of our object definition language and by
corresponding »@¢ensions of GOOBC. OOGDM-ODL allavs the definition of constraints
and triggers for each classtiggers are declared in an ECA-stylevént-Condition-Action)
like rule. The conditions and actions for constraints and triggerg@messed by statements in
OOGQL. The support for timeavying data is intgrated into the constraint and trigger mecha-
nism. Details of our concept of constraints and triggers can be found in [DBVH97].

3 TheVisualization Framework MAM/VRS

Most &isting GIS preide intggrated visualization capabilities. Wever, in the last couple of
years computer graphics and computer animatioe hzade progress at an impregssspeed.
Therefore, may GIS cannot benefit from thesevd®pments (e.g., photorealistic and pseu-

dorealistic rendering techniques, interaetmanipulation of 3D objects, etc.) because their
graphics subsystems are either closed ortinto a specific rendering toolkit. In particular
high-end graphics haradwe is poorly used by GIS visualization subsysteras.ekample, on
high-end graphics arkstations, OpenGL can superimpose ordinamtutes with detail
textures in order to represent an additional layer of informationveer, this nev feature
cannot be accessed through black-box visualization components.

3.1 Design Issuesfor GIS Visualization Frameworks

In contrast to traditional visualization framerks and graphics capabilities of common GIS,
the object-oriented sof@ve system for interagi, animated 3D graphics MAM/VRS is based
on an open architecture which concentrates on thenolgpaspects:

3.1.1 Application Data Structuresfor Graphics Primitives

MAM/VRS graphics objects use as much as possible application data withgurngcthe data

into internal data structures. Most MAM/VRS graphics objects require so cedfatbr

objects provided by the application and use these iteratoesntmed the necessary data. A 3D

point set object, fon@mple, does not maintain an array of coordinates. It is associated with an
iterator object and uses that iterator to inquire the coordinates each time the point set is
rendered. It is up to the iterator's implementation to definethat data is calculated orwo

and where the data is stored.

3.1.2 Integrated and Sophisticated Management of Time

MAM/VRS visualizations are specified byawypes of graphgieometry graphs andbehavior

graphs. A geometry graph represents hierarchically nested 3D scenes in analogy to VRML
scene graphs. A beViar graph complements a scene description by representing its dynamic
aspects such as animations or user interaction capabilities. More abstraciprbgteahs

model the time andvent flovs of a visualization. MAM/VRS prades high-leel time
building blocks which deform or distnifbe time according to time layouts. hare useful to

build complex animations, such as a semantic-guided flight across a landscape (e.g., the virtual
camera could control the acceleration with respect to the landuse information underneath its
current position).

3.1.3 Integrated 3D Interaction Capabilities.

3D interaction is important for the direct manipulation of geo objeotsedample, in order to

place a n& building into a virtual landscape, the user needs a precise control mechanism in
3D space. MAM/VRS supports 3D interaction by an internal ray-trater ray-tracer calcu-

lates distances and positions of 3D rays and 3D objeatsexemple, one could simulate a

flight across a landscape and constrain the flight altitude to a certain distaneeyeiod,

the virtual camera wuld send out test rays in order to check and adjust its altitude. Note that
ray-tracing does not refer to the image synthesis process: here, ray-tracing is an analytical tool
applied to geo objects.

3.1.4 Multiple 3D Rendering Techniques

GIS applications hae different rendering requirements: real-time rendering for inteeacti
access must use aféifent rendering technology than high-quality image productions used for

computer generated videos. VRS ensures that the same visualization application can change
the underlying 3D rendering library withoutvirag to recode the application because of \&RS’
uniform and object-oriented intade. Currently VRS supports OpenGL for real-time
rendering, and RenderMan, WQRay, and Radiance for high-quality rendering with global
illumination efects. Nev rendering systems can be mtated by implementing so called
virtual rendering engines.

3.1.5 Automated Production of Computer Video Sequences

The generation of computer video sequences is a time consuming task. In paiticalar

sets are l@ye, the requirements of time and space are enormous. MAM/¥&8ates the
design and realization of computer animations due to utk-ib time management and
multiple 3D rendering techniques. An animation can be planned and modified asthrea-

time rendering system.olproduce the final video sequence, a high-quality rendering system
can be plugged in without writing additional code.

3.2 Architecture of the MAM/VRS Framewor k

The architecture basically consists ofotwayers, the MAM graphics layer and the VRS
rendering layerTherendering layer is responsible for the image synthesis basedw+ideel

3D rendering libraries, whereas tir@phics layer is responsible for composing 3D scenes and
specifying their dynamics.

The Mrtual Rendering System ([DH97b]) pridesgraphics objects which represent graphical
entities, e.g., colors, x@res, geometric transformations, and shapes. Shapes represent
concrete 2D or 3D objects. The appearance of shapes is modified by graphiaatesittrib
Graphics objects are processed amdluated byrendering engines which map graphics
objects to appropriate calls of the underlying 3D rendering systems. The application can define
nev mapping techniques by so callsdape painters and attribute painters. Painters are
objects which encapsulate the code for the actual mapping. Byjsdavelopers can add
application-specific rendering functionality to their visualization system.

VRS is athin object-oriented layents virtual rendering engines do notvhaa significant
impact on the rendering performance compared to applications which access a rendering
system directlyMoreover, the OpenGL rendering engine has been fine-tuned tovaciimost

the same performance as watOpenGL programs.

The Modeling and Animation Machine pides higheilevel modeling techniques for visual-
ization. MAM specifiesgeometry nodes and behavior nodes, and it is responsible for the
management ajeometry graphs andbehavior graphs. Geometry graphs consist of geometry
nodes, and bekieor graphs consist of behiar nodes. © visualize graphics objects, theare

to be associated with geometry nodes.ahimate them, tlyeare associated with behar
nodes. VRS and MAM are tightly coupled because M#&leometry nodes and bela
nodes manipulate and operate on associated, shared graphics obyeédésigrp VRS.

The framevork is implemented in C++. User intade bindings »ast for Windows,
OSF/Motif, and Tcl/Tk. Due to dirent application programming intades and indepen-
dence from winde systems and W-level 3D rendering libraries, the portability of
MAM/VRS is guaranteed. Figure 2 she the @erall architecture of MAM/VRS.

C++ App C++ App [incr T%']

: . Scrip
OSF/Motif Win 32 AMIVRS
i i H
H 1
Geometry
Shapes Nodes <
>
Nodes

<
[Rendering Engines] Py
wn
| OpenGL || Ry\e/|n£ner | | Radiance | | POV Ray |

Figure 2: The Architecture of MAM/VRS,

4 Integration of Database Kernel and Visualization

GOODAC and MAM/VRS provide database and visualization capabilities required to develop
GI S applications. The interface between the database kernel, the visualization framework, and
the GIS application must be designed very carefully because the interface has a major impact
on the overall system performance.

If we choose a loose coupling, database kernel and visualization framework exchange data
basicaly in three steps:

1. Convert objects of the source component into an exchange format.
2. Storethese intermediate objects.
3. Convert the intermediate objects into objects suitable for the target component.

This loose coupling of components leads to problems resulting from the potential data redun-
dancy and from loss of information during the conversion processes. Hence, the semantics of
the objects used by the application program is usually not accessible by the visualization
component which naturally restricts visualization techniques. The loose coupling is the most
popular interface provided by classical GIS.

In our approach, atight coupling of GIS application, database kernel, and visualization frame-
work ischosen. A GIS application shares the data types used in the database kernel by deriving
application-dependent spatial classes from the OOGDM class hierarchy. The usage of unique
data types within the application and the database provides efficient processing of the persis-
tent data without data redundancy and conversion operations.

The integration of the database kernel and the visualization framework requires a different
strategy since both systems have been devel oped independently and can be used independently
of each other. While OOGDM has been designed to meet the requirements of GIS applica

tions, the data model provided by MAM/V RS reflects the needs of 3D graphics and animation.
Of course, there is a certain analogy in their class hierarchies. For example, vector-based data
classes provided by the database kernel, e.g., polylines, polygonal regions, and solids, can be
represented by sets of line segments, triangles, and simplices provided by the visualization
framework. Furthermore, 2D and 3D meshes of triangles and simplices available in the visual-
ization framework can be used for the visualization of the raster-based classes of the database
kernel. However, we cannot expect to merge these class hierarchies due to their different
semantics and requirements. In our approach, we integrate database and visualization by visu-
alization view classes embedded in the visualization framework and by providing a uniform
embedding in a scripting language.

4.1 Visualization View Classes

Visualization view classes manage the mapping of database objects to graphics objects. In
general, avisualization view class will base that mapping on the geometric and thematic data.
The tight coupling of the database objects and graphics objects is realized by iterator objects.
The iterators provide an efficient way to establish a direct link between database kernel and
visualization framework. An overview of the architecture of our integrated system is given in
figure 3.

A visualization view class is associated with database classes and derives for these database
classes iterator classes. These iterator subclasses are specific to the database classes and may
take advantage of their internal data representation. The main purpose of iterators is the
sequential access of geometric or graphics datain aform suitable for MAM/VRS. The conver-
sion is carried out on the fly without an intermediate storage. Furthermore, visualization view
classesinstantiate MAM/V RS graphics objects and connect them to iterators.

Visualization view classes can map database objects to graphics objects in various ways. Since
most classes of graphics objects in MAM/VRS rely on embedded data provided by iterators,
visualization techniques can be realized efficiently.

GIS Application
Graphical User Interface (GUI)
Data Processing & Analysis Visualization
[incr Tcl] API C++ APl C++ APl [incr Tcl] API
Visualization View

OOGDM/GOODAC Classes MAM/VRS
e.g. lterators

GIS Database Kernel Visualization Framework

Figure 3: Architectural Overview of the Integration of GOODAC and MAM/VRS,

Example:

Consider the visualization of a digital edion map (DEM) which is represented in the
database by the claB£M, a subclass of cla§xid2D, i.e., a tvo-dimensional matrix of
elevation information. Figure 4 s the class hierarghdescribed in thisxample. A
DEM is visualized by an object of claBMesh provided by MAM/VRS.RMesh objects
represent triangulatedx m meshes. The intex€e betweerid2D andRMesh is estab-
lished by the iterator class&&rid2DVertexlterator and RGrid2DNormallterator, both
are denved from clasdMliterator<M\Vector>, the base class of all MAM/VRS iterators.
Each iterator object is associated withGind2D object and afRMesh object.

If the DEM is requested to render itself, tRblesh object actually uses the iterator
objects to inquire the coordinates and the color data. Both types of iterators perform a
row-by-rov scan of the DEM's elation matrix. Iterator objects of class
RGrid2DVertexiterator return MVector objects, the 3D point and 3Deetor class of
MAM/VRS. lIterator objects of clasRGrid2DNormallterator return MVector objects

which represent suate normal gctors of a DEM entryThe computation of the normal
vectors can be based onfdrent rules, e.g., geometric normals. Iterators perform their
computations on the fly.e., no data storage or duplication is required.

So far, the geometry of database objects has beeeditdk graphics objects. The thematic part

of the database objects can be mapped either by additional graphics objects or by color infor-
mation applied toxasting graphics objects. It is up to the visualization stiateov to map
thematic data.

Example:

Consider agin the visualization of a DEM. &hae described he spatial coordinates

and the normal ectors are embedded in graphics objectsRyid2DVectorIterator

objects andRGrid2DNormallterator objects. © visualize the landuse information for a
DEM, we assign colors to the mesh based on a thematic color scale. Colors are assigned
to a mesh by a color iteratdn the &le, we devie a color iterator clasRLanduse-
Colorlterator which has to returiviColor objects. AnMColor object contains the RGB
coeficients and the transpargncoeficient. The color iterator will actually use the asso-
ciated database landuse object to inquire landuse information for a spatial position.

Alternatively, we could color the mesh with respect to the height of DEM entries,
whereby the colors are calculated based on a color scale. This approach can be imple-
mented by the iterator subcldB8EMHeightColorterator.

Both landuse and height information layers are visualized by the same paradigm: color
iterators infiltrate directly application semantics in MAM/VRS objects. &buld also
design an appropriatextieire coordinate iterator to map an additional information layer
onto the mesh.

Iterator classes are introduced at theelleof useraccessible classes of the data model
OOGDM. For each useaccessible class of OOGDM, thertex and normal iterator classes
are proided by dedult.

Obviously, the concept of embedded data in graphics objects does not reqplicg eorver-

sion of data between databaszrel and visualization fram@rk, and thereby an erroneous

data redundancbetween both components is y@eted. The visualization directly accesses

the objects of the database and transfers the information contained in the database into a
format which can be processed by th&-level rendering engines underlying the visualization

MAM/VRS Visuadlization View Classes GOODAC

Miterator<MVector>

vertices, ‘.- T TTETTTTR
normals RGrid2DVertexlterator

RGrid2DNormallterator

OOGDMGHid2D |

colors : X A

DEMView | DEM I Landulse|

| MIterator<MCoIorl> |

T—{ RDEMHeightColorlterator

texture —{ RLanduseColorlterator

oordinates

Miterator<MVector> |

Figure 4: .Class Relations for the DEM Visualization.

framework. This transfer is done each time a database object is rendered on the screen. To
provide smooth animations and to speed up user-interaction (e.g., interactive exploration of 3D
scenes) graphics objects can be cached. However, the visualization view classes keep track of
modifications to the database objects such that cached data is always updated if database
objects have been modified.

The tight coupling of database and visualization offers extensible and customizable visualiza-
tion techniques to GIS applications. To prove the applicability of our approach, we have real-
ized a GIS application for the modeling of nocturnal cold air dainage flows Figure 5 shows
an example visualization taken from this application.

4.2 Interactive Modification of Database Objects

As a consequence of the tight coupling of database and visualization, it is easy to implement
interactive modification techniques for database objects. The visualization framework
MAM/VRS provides tag objectsto assign application-specific identifiers and group identifiers
to graphics objects. Tags represent the hooks for any type of database editor. Tags are created
by visualization view classes and are associated with the graphical representations of database
objects. The tags are used to formulate scene requests and to build object-specific interactions.
Interaction techniques can use tags to identify the relevant objects and to report them to the
database editor. In addition, interaction techniques can use the built-in ray tracer to inquire
spatial relationships of 3D objects.

Since database objects and their visual representations are connected by iterators, modifica-
tions apply directly to the visual representation as well as to the database. Moreover, 3D inter-
action techniques developed in computer graphics can be exploited. For example, the height of
a building located in a DEM can be interactively modified by a 3D scroll bar (i.e. a cylinder
erected upon the landscape with a small slider box). Figure 6 illustrates the data flow during an
interactive modification of database objects.

10

=] DEM Viewer 0.9

File Model Optionz Window Help

&V Ready,
Figure5: Sample DEM Visualization.
. . User Interface

Database Visualization View & Visualization User

— Objects
obtain object ate obiect
~_] information Fﬁ?ﬁarﬁatieo?\)
O or changes or changes see objects
o+ 0 T -
< : Q O - make changes

Q modify propagate

— objects changes

Application based on GOODAC and MAM/VRS

Figure 6: Data Flow during Visualization and Modification of Database Objects.

4.3 Embeddingin an Object-Oriented Scripting Language

In general, scripting languages offer many advantages for high-level programming compared
to system programming languages because they are easier to learn and understand, provide a
tight binding to user interfaces, and alow for rapid and interactive prototyping. Their main
disadvantage is that they cannot implement large object-oriented systems. The interpretative
tool command language Tcl [Ou94], its GUI toolkit Tk, and the object-oriented Tcl extension

11

[incr Tcl] [ML97] together represent a widely used and one of the magénhd object-
oriented scripting languages.

Both the databasesknel GOOIAC and the visualization framerk MAM/VRS are imple-
mented by C++ libraries.olintggrate both systems at the application programming aderf
level, we hae embedded them into the object-oriented scripting language [incr Tcl].

Our approach for embedding C++ classes in [incr Tcl] is based on theifgleoncept: Br
each C++ class there is one “mirror class” in [incr Tcl] whose class memivera bae-to-one
relationship to their C++ counterpart®rfeach object created in the C+onld, there is a
“mirror object” in the [incr Tcl] vorld. A mirror object delgates all requests to its corre-
sponding C++ object. That dgkttion guarantees optimal fieility and performance: The
complete functionality of the databasertel and the visualization framerk is available
through the [incr Tcl] integfce. Havever, there is no lack of performance since the database
and the visualization functionality is notexuted in the interpretag scripting languageubin

the natve C++ code.

If the application deeloper atends the databaserkel or the visualization framerk by nev
classes derved from the eisting class hierarchies, these classes mustvagable to the
[incr Tcl] interface as well. The same applies to application-dependent classéspédd inde-
pendently of GOOBC and MAM/VRS which should also bgalable to the [inciTcl] inter-
face. D support the automatic iggeation of application-specific classes, a generator [DH97d]
has been deloped which creates the [in€cl] classes from information obtained by parsing
the corresponding C++ header files.

The interpretatie object-oriented scripting language [incr Tcl]y®d to be aaluable tool for
developing user intedices, too. Tk d&krs a platform-independent collection of easy to
customize user inteate components. Due to the nature of a scripting language, usexcaterf
design can be done interaetly. New parts of an application can also beveleped in the
scripting language, can be tested within the interpvetatvironment, and can later be ported
to C++.

5 Conclusions and Future Work

Traditional GIS are based on a closed architecture, primarily and historically designed for
handling 2D geo data. kever, nev applications, e.g., in geology or meteorologgquire
three-dimensional and timextying data. This shift has to be reflected by araaded archi-
tecture for GIS.

The intgration of the object-oriented GIS databasenkl GOOIAC and the object-oriented
visualization and animation franverk MAM/VRS has a series of benefits for thevelep-
ment of GIS:

. GIS benefit from object-oriented database technologyiged by GOORC. Geo
objects, for gample, are inherently persistent withoutving to write persistenc
routines.

. Geo objects are #fiently infiltrated in the visualization framerk without loss of
semantics. The inggation of our databasesknel and visualization fram@rk ensures
that no data redundancies ocadug., the visualization obtains its data directly from the

12

database. This option is nowadlable with systems operating independently and
exchanging data, fon@mple, via a file system.

. Both GOODAC and MAM/VRS can bextended to meet the requirements of wlial
GIS applications. The databasertkel can bexd¢ended to diciently support the storage
and retri@al of data for a wide range of GIS applications. The visualization franke
can be gtended by application-specific visualization classes foamckd and optimized
usage.

. 2D, 3D, and time-arying data arexplicitly supported by both the databasarkel and
the visualization frameork. The dynamics of data can be visualized by inteselgti
exploring the data or by animation sequences.

. GOODAC provides tools for the delopment of GIS-applications in C++oiFexample,
using the OOGDM-ODL class definitions the precompiler automatically generates the
required C++-class definitions. Furthermore, constraints and triggers support the realiza-
tion of application-dependent pre- and postprocessing methods.

. The construction of interage editors for database objectsasifitated since all compo-
nents are ingrated and data semantics is accessible within all system components.
Interaction techniques benefit from thélbin interaction capabilities of MAM/VRS.

. A GIS application can choose betweerfadé#nt rendering systems and griate future
rendering systems due to the virtual rendering system.

. Developers benefit from the object-oriented scripting language because it shovidns de
opment time and ales for interactre and rapid prototyping of database, visualization,
and user intedfice components. The complete functionality of the databarselkand
visualization frame/ork is accessible within the scripting language without a significant
loss of performance due to the embedded C++ classes.

Future vork on MAM/VRS and GOOBC includes the deelopment of n& visualization and
interaction strages for high-dimensional data, thevdlpment of aitOpenGl Sinterface, the
addition of classes for thEGDC-standard of geo-spatial metadata, and the realization of
further query processing methods.

Acknowledgments

The contrilutions of Lars Bernard, Jan Buddey3ten KahlerHolger Lange, Benno Schmidt,
and Timann Steinbeag to the GOOIBC prototype and ofdbias Gloth, Olrer Kersting, Bjorn
Lojewski, and Marc Nienhaus to MAM/VRS are gratefully acktexiged.

13

Literature

[ACT96]

[BVH96]

[DBVH97]

[DH974a]

[DHO7D]

[DH97c]

[DH97d]

[ML97]

[ODMG96]

[LLOWO1]

[More89]
[Ou94]
[VBH96a]

[VBHO6b]

[VBHO7]

ACT-NET ConsortiumThe Active Database Management System Manifesto: A Rulebase of
ADBMS Features, ACM SIGMOD Record, 25 (3), 1996, 4@9.

L. Becler, A. Voigtmann, K. H. HinrichsDevel oping Applications with the Object-Oriented
GISKernel GOODAC, Proc. 7th Int. Symp. On Spatial Data Handling (SDH’96), Delft, The
Netherlands, 1996, 5.A-15A.18.

H. Ditt, L. Becler, A. Voigtmann, KH. Hinrichs: Constraints and Triggersin an Object-
Oriented Geo Database Kernel, Proc. 8th Int. \WWrkshop on Database and Expert Systems
Applications (DEXA97), Toulouse, France, 1997, 50815.

J.DélIner, K. H. Hinrichs: Support of Explicit Time and Event Flows in the Object-Oriented
Visualization Toolkit MAM/VRS, in: Proceedings of igualization and Mathematics "97,
Berlin-Dahlem, German 1997.

J.Doliner, K. H. Hinrichs: The Design of a 3D Rendering Meta System, in: Eurographics
Workshop on ProgrammingaPadigms for Graphics “97, Budapest, Hanyg1997.

J.Ddllner, K. H. Hinrichs: Object-oriented 3D Modeling, Animation, and Interaction, The
Journal of \kualization and Computer Animation, 8, 33-64, 1997.

J. Déllner K. Hinrichs:Object and Class Management in a Hybrid Architecure using [incr
Tcl] and C++. Interner Bericht, Uniersity Muensterl997.

M. McLennanincr Tcl] - Object-Oriented Programming in Tcl/Tk, online document, see
http://www.tcltk.com/itcl/

R. G. G. Catell (ed.)fhe Object Database Standard: ODMG-93, Release 1.2, Morgan-
Kaufmann Publishers, San Francisco, CA, 1996.

C. Lamb, G. Landis, J. Orenstein, DelMfeb:The ObjectSore Database System, Commu-
nications of the &M, 34 (10), 1991, 5063.

S. MorehouseThe Architecture of ARC/INFO, Auto-Carto 9 Conf., S. 266-277.
J. OusterhoutTcl and the Tk Toolkit, Addison-W\sley, 1994.

A. Voigtmann, L. Becér, K.H. Hinrichs:An Object-Oriented Data Model and a Query
Language for Geo Information Systems, Bericht Nr 5/96-I, Institut fiir Informatik, \&/stf.
Wilhelms-Unversitat, MiinsterGerman, 1996.

A. Voigtmann, L. Becér, K. H. Hinrichs:Temporal extensions for an Object-Oriented Geo-
Data-Model, Proc. 7th Int. Symp. On Spatial Data Handling (SDH’96), Delft, The Nether-
lands, 1996, 11A.2511A.41.

A. Voigtmann, L. Becér, K. H. Hinrichs:Physical Design Aspects of an Object-Oriented
Geo Database Kernel, Proc. 8th Int. Wrkshop on Database and Expert Systems Applica-
tions (DEXA97), Toulouse, France, 1997, 52834.

14

