
International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 33

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation.
Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner
is still a challenging task. Especially for mobile and web-based system environments, software and hardware
configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing ren-
derings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for
3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered
from server to client, what makes them strongly limited in terms of size and complexity of the models they
can handle. This paper introduces a new approach for provisioning of massive, virtual 3D city models on
different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled
from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by
a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering
techniques for high quality visualization of massive 3D models. By generating image tiles using this service,
the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity
of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applica-
tions is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily
deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the
overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and
thin-client applications can be compactly implemented for various devices and platforms.

Scalable Multi-Platform
Distribution of Spatial

3D Contents
Jan Klimke, Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

Benjamin Hagedorn, Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

Jürgen Döllner, Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

 Keywords: Image-Based Rendering, Mobile 3D Visualization, Tile-Based Provisioning,
Virtual 3D City Model, Web-Based 3D Portrayal

1. INTRODUCTION

Virtual 3D city models provide powerful user
interfaces for communication of 2D and 3D geo-
information. Through ̀ `the continuing desire for
more detail and realism, the model complexity

of common scenes has not reached its peak by
far” (Jeschke, Wimmer, & Purgathofer, 2005).
The ongoing development in remote sensing
and data processing technologies produces more
and more 3D model data in increasing amounts
and in continuously improving quality, which

DOI: 10.4018/ij3dim.2014070103

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

makes providing high quality visualization of
massive 3D geoinformation in a scalable, fast,
and cost efficient manner still a challenging task.

Today’s systems for mobile or web-based
visualization of virtual 3D city models, e.g.,
Google Earth, Apple Maps, or here.com,
mostly rely on streaming 3D geometry and
corresponding textures to client devices. In this
way, the applications running on those devices
need to implement the whole rendering part of
the visualization pipeline (Haber & McNapp,
1990), i.e., rasterization of images from com-
puter graphic primitives. The rasterization
process is a resource intensive task, which
requires specialized rendering hardware and
software components. Rendering performance
and their requirements regarding CPU, GPU,
main memory, and disk space, strongly depend
on the complexity of the model to be rendered.
Further, high-quality rendering techniques, e.g.,
for realistic illumination, shadowing, or water
rendering, increase the resource consumption
that is necessary to provide users with interactive
frame rates (more than 10 frames per second).
This makes it very hard to develop applications
that adapt to different hardware and software
platforms while still providing a high-quality
rendering and an acceptable frame rate also for
large 3D datasets. Building a fast, stable ap-
plication that renders large 3D models in high
quality on a variety of heterogeneous platforms
and devices, incorporates a huge effort in soft-
ware development and maintenance as well as
data processing, which usually raises with the
number of different platforms to be supported.

Approaches for image-based 3D portrayal
introduced recently (Doellner, Hagedorn, &
Klimke, 2012) tackle these problems by shifting
the more complex and resource intensive task
of image synthesis to the server side, which
allows for interactive thin client applications
on various end user devices. Such clients can
reconstruct lightweight representations of the
server side 3D model from server-generated
G-Buffer images (i.e., multi layer raster im-
ages that not only encode color values, but also
other information like depth, etc.). Image-based
portrayal provides two major advantages com-

pared to geometry-based approaches: a) They
decouple the rendering complexity on client
side from the model complexity on server-side
and b) they allow to deliver a homogeneously
high rendering quality to all end user platforms
and devices, regardless of the 3D capabilities
of these devices. Nevertheless, the operation
of such visualization applications needs a 3D
rendering service to generate these image-based
representations of the underlying 3D model.
This makes scaling the applications for many
simultaneously used clients a complex and
relatively expensive task, since each service
instance can only effectively serve a limited
number of clients.

In this paper we introduce a novel approach
for provisioning of massive, virtual 3D city
models on different platforms (web browsers,
smartphones, tablets) by means of an interactive
map showing synthetic, tiled images of the 3D
city model (oblique map). The key concept is
to synthesize these oblique views in a prepro-
cessing step by a 3D rendering service, to store
the corresponding tiles, e.g., on a web server,
to be easily accessible and usable by client
applications (Figure 1). Different stylizations,
combinations of thematic layers, map layers,
and viewing directions can be specified and
applied for the tile generation process, leading
to multiple tile sets, each storing not only a
RGB images but also additional information
such as world coordinates, depth information,
surface normals, object identities or thematic
information (G-Buffer). Client applications
can use the additional information, e.g., for
object-based interaction or additional client-side
rendering effects such as object highlighting.
In particular object identity information allows
client applications to set up to application spe-
cific functionality, e.g., to retrieve object-based
information from a remote server.

Compared to existing mobile 3D geovisual-
ization solutions, the presented approach scales
far better for large numbers of simultaneously
active users as the computationally expensive
task of 3D rendering of large-scale datasets is
shifted from application runtime to a preprocess-
ing step, generating the oblique views of the 3D

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 35

scene as image tile sets. These image tiles can
be deployed, stored, and accessed easily using,
e.g., conventional web servers or cloud storage
services, which are able to easily scale with the
number of concurrent users. This approach,
however, restricts the way users can interact
with the 3D scene; It is generally knows that
map-based access its the most efficient way to
explore and analyze spatial information. Our
oblique map approach supports map-based
interactions, but is restricted in terms of 3D
camera control.

2. FOUNDATIONS AND
RELATED WORK

A set of web standards and formats (e.g., We-
bGL (Jackson, 2013), X3D (“X3D Standard,”
2005), X3DOM (Behr et al., 2010)) tackle
the demand for plugin-free 3D rendering in
web browsers and form the basis of several
approaches and solutions in this field (Chris-

ten, Nebiker, & Loesch, 2012; Gesquière &
Manin, 2012; Prieto & Izkara, 2012). These
approaches utilize transferred 3D geometry
and textures for rendering. This makes render-
ing large models a resource intensive task for
client devices. While the camera interaction is
relatively unrestricted (free exploration of 3D
model), these approaches are limited in terms
of the implementation of high-end rendering
techniques. In order to maintain compatibility
to a large range of client hardware (different
desktop graphics, different mobile devices) and
software (WebGL capabilities of different web
browsers) the ability to stylize the underlying
model is limited. Also the size and complexity
of 3D data that can be rendered in interactive
frame rates is restricted by the client’s hardware.
In contrast, our approach of a tile-based oblique
3D map, performs styling in a preprocessing
step and by a dedicated high-performance
3D rendering service. As the computational
and memory capabilities required on client

Figure 1. Screenshot of the iOS-App smartMap Berlin from our case study running on an iPhone.
The App’s user interface is kept simple: Users can use zooming and moving gestures known from
2D map interfaces. Further an interaction item on the upper left provides stepwise rotation. The
mobile client can also be used to view large numbers of high detail 3D models since the client
side computational complexity does not depend on the complexity of the 3D model itself.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

side do neither depend on the model size nor
on the complexity of the rendering technique
applied, this approach provides a solution for
the distribution of massive 3D models in the
same graphical quality and expressiveness on
all devices.

In recent years, several approaches for
visualization of massive virtual 3D city models
on mobile devices or web browsers have been
published (Bao & Gourlay, 2006; Boukerche
& Pazzi, 2006; Lamberti & Sanna, 2007).
Döllner et al. (Doellner et al., 2012) provide
an approach using an image-based portrayal
service to generate several image layers (e.g.,
color, depth information, and object identity)
of a complex virtual 3D city model, that are
transferred to a client application running on
mobile devices. A corresponding client uses
the images generated for a specific point of
camera to create a lightweight reconstruction
of the server-side model using either a cube
map or geometry derived from the depth image
delivered by the server. The client application
in connection with the 3D rendering service al-
lows users to configure the visualization of the
server-side 3D model data to match their needs
in terms of data selection and styling. Gener-
ally, this approach does not apply very well
for a large number of concurrent users because
service responses can hardly be cached due to
the manifold combinations of styling options
and due to the fact, that the virtual camera is not
restricted but can be positioned at anytime and
anywhere in the 3D environment. The approach
presented in this paper combines the possibil-
ity to create preconfigured visualizations (in
terms of data selection and styling) with a near
optimal cacheability for single image tiles on
server and client side.

Examples of tile-based 3D oblique maps for
web browsers are developed, e.g., by the Chinese
companies edushi.com1 and Dushiquan2. They
provide access to very detailed virtual 3D city
models of Chinese cities. Besides high-quality
(and comic-like) visualization, these maps
provide client-side highlighting of objects
(e.g., buildings or areas) as well as information
retrieval for selected objects. Nevertheless (as

reported in Internet articles and forums) these
virtual cities are mainly crafted manually based
on existing maps and satellite imagery. This
means a rather low degree of automation in the
creation and updating process of these maps
and implies a rather high effort for keeping
the model up-to-date. Also, this provides only
limited possibilities for creating custom-styled
maps, e.g., for specific use cases or users,
and for the creation of different variants of
the maps, e.g., maps from a different viewing
direction and viewing angle or maps with dif-
ferent building variants. Possibly due to this,
users cannot adjust the map orientation of these
maps, which also limits the 3D impression of
the overall application. In contrast, the project
osm2world3 uses a much more automated ap-
proach for generating tiled image views from
publicly available OpenStreetMap data. From
this (still rather 2D data), 3D building geometry
is automatically derived; then, oblique map tiles
are rendered based on OpenGL or a POVray
ray tracing backend. The corresponding viewer
client allows users to rotate the view in four
steps, but currently does not provide object-
based interaction and data retrieval. Both of the
solutions presented do not offer a solution for a
native user experience on mobile devices, while
we target those devices explicitly to consider
the increasing importance of such devices.
Compared to the systems presented above, our
approach focuses on automation of processes
as well as providing a high graphical quality
for image tiles through implementing state of
the art rendering techniques in the rendering
service. Also, we focus on supporting complex
and ̀ `real-world” 3D geodata by handling huge
2D and real 3D geodata (including geometries,
textures, thematic information, object attributes)
and combining the virtual 3D city model with
additional information sources.

Service-oriented architectures (SOA)
(Papazoglou, Traverso, Dustdar, & Leymann,
2007), as a paradigm for design and development
of distributed information systems, represent a
common approach to address these challenges.
3D geovisualization systems, based on the SOA
paradigm, encapsulate resource intensive tasks,

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 37

such as management, processing, transmission,
and rendering of massive 2D and 3D geodata
as services that can be reused by various client
applications(Basanow, Neis, Neubauer, Schil-
ling, & Zipf, 2008). Thus, client applications
do not need to implement such functionality,
but can reuse this functionality implemented
through services. While 2D geovisualization
systems can rely on standardized and robust
services such as the Web Map Service (WMS),
specified by the Open Geospatial Consortium
(OGC), only first approaches and implemen-
tations for service-based 3D geovisualization
have been suggested. The Web 3D Service
(W3DS) (Schilling & Kolbe, 2010) supports
streaming of 3D scenes (i.e., 3D geometry and
corresponding textures) to client applications,
which implement the rendering processes on
client-side. The Web View Service (WVS)
(Hagedorn, 2010) instance implements the
complete 3D rendering process on server side,
encapsulating the complexity of 3D geodata
management, processing, and rendering. The
two alternative approaches for 3D portrayal ser-
vices are currently undergoing an effort within
the OGC to harmonize them and to provide a
common base for service interfaces. A WVS
compliant rendering service is the core part
of our preprocessing pipeline for generating
orthographic views out of 3D city model data.
Due to the standards-based (WVS is currently
a discussion paper within the OGC) service
interface, we are able to exchange service
implementations and utilize third party remote
services for tile generation.

3. CONCEPT

The key concept of our approach is to synthe-
size tileable, oblique views on a given virtual
3D city model by a 3D rendering service in a
preprocessing step. This 3D rendering service
encapsulates all aspects related to 3D rendering
of massive, complex structured, heterogeneous
2D (e.g., terrain map layers) and 3D (terrain
data, textured building geometry) geodata. This
way, we decouple all the complexity related

to processing, management, and rendering of
3D geodata from client applications and ad-
ditionally from the capabilities of servers that
provide data for client applications at runtime.
A major advantage of this is the ability to select
the contents of an oblique view as well as its
stylization to match the purpose of a specific
application. In our approach, the geographical
spaces is separated into numbered tiles in dif-
ferent zoom levels, in analogy to existing tiling
schemes such as Time Map Service or WMS-T.
Each tile of an oblique dataset (a map layer of
the oblique map in a certain direction) has a
unique key that consists of three components:
the tile zoom level, the tile number in horizontal
axis, and the tile number in vertical axis of the
geographical coordinate system. Each image
tile is covering a spatial extent that is defined
by these components. Serving image tiles to cli-
ent applications only needs a conventional web
server or a cloud storage services implementing
a key value store. This allows the approach to
scale to a large number of concurrent users fetch-
ing tiles in parallel, since scaling the network-
based delivery provisioning of files to client
applications can easily be achieved. Oblique
views (Figure 1) are generated for different
viewing directions (currently the four prin-
cipal directions) allowing a stepwise rotation
of the view by clients through exchanging the
underlying image dataset (map layer). Minimal
implementations of client applications do only
need capabilities to fetch image tiles via HTTP
and display them, therefore they can be can be
very lightweight. Such client applications can
easily be implemented on mobile platforms (i.e.,
smartphones or tablets) or plugin free (based on
JavaScript) on web browsers. They provide a
map-like user interface (also called Slippy Map
(Sample & Ioup, 2010)) for exploring the city
model visualization allowing users to shift the
map center, to change zoom levels and to rotate
the overall view into one of the directions that
were pregenerated by the 3D rendering backend
beforehand.

The map-based approach implies a simple
and intuitive interaction, focusing on naviga-
tion the 3D and avoiding the difficulties of a

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

completely free 3D user interaction, in which
a user generally has to manage six degrees of
freedom. Most tasks, such as exploring a certain
area, do not require this full 3D camera control.
Up to a certain degree of necessary detail, the
provided interaction is regarded sufficient.
This way, users are able to explore the virtual
3D city model and connected data sets using a
well-established interaction paradigm.

In order to provide use-case specific the-
matic information, an application configuration
that is consumed by more generic client ap-
plications allows defining a set of information
items that are included in each generated map
application. Several kinds of thematic data
can be integrated into one application. Beside
conventional items, such as point of interest
(POI) information and 2D shapes (e.g., roads
or public transport lines), applications are able
to connect server-side information belonging to
specific features in a model to pixels displayed
in the front-end application. An overview over
the whole architecture for generating the neces-
sary application datasets (oblique map layers,

harmonized POI data, and configurations for
generic client applications) is provided in
Figure 2.

3.1. Data Import 3D City Model
Data and Tile Generation

Image tiles are generated using a 3D render-
ing service that implements the complete 3D
rendering process for massive, heterogeneous
3D models. In particular we focus on CityGML
(Gröger, Kolbe, Nagel, & Häfele, 2012) as stan-
dard format for city model, since “CityGML is
a common information model for the represen-
tation of 3D urban objects” (Mao, 2011). The
thigh integration of 3D geometry, appearance
(materials and textures), and detailed models for
object semantics make CityGML a promising
base data source for applications. Further, the
rendering service is able to integrate a broad
range of other 3D formats for 3D data, e.g.,
KML/Collada, 3DS, OBJ, or the ShapeFile
format. Since usual 3D geodata formats are
designed for effective data exchange and not

Figure 2. An overview of the system for automated generation of application datasets from
different data sources. 3D city models where imported in a form optimized for interactive 3D
rendering into the rendering service. Application datasets, that define contents (oblique map
tiles, POI data, and external service URLs to be used) and behavior (e.g., which URL to load
on tap for POI items) are generated for being consumed by client applications.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 39

for efficient 3D rendering, the source data has
to be converted into a rendering optimized form
for two reasons: (1) 3D city model features are
usually modeled with regard object semantics
and geometric correctness. The suitability for
efficient 3D rendering of the 3D model data
plays a negligible role in data acquisition and
modeling. (2) Objects with individual real world
textures use to have several unique textures or
materials assigned to their surfaces. Each activa-
tion of such a texture during the 3D rendering
process requires changes of the rendering state,
which is a quite expensive operation during 3D
rendering. The occurrences of this operation
should therefore be minimized for an efficient
3D rendering.

The import of 3D model data is imple-
mented in a preprocessing tool that merges the
geometry from the source model that usually
has a fine-grained semantic model structure,
into geometry batches that can be efficiently
processed by modern 3D graphics hardware.
The optimal size of these batches depends on the
capabilities of target graphics hardware. There
is always a tradeoff between consumption of
memory and computing power for rendering
of unnecessary geometry (i.e., geometry that is
included in a batch but is not included within
the cameras view frustum, such as building
interior) and the amount of CPU processing that
is necessary to select and upload the geometry
batches to be processed for a single frame.

Besides processing and rendering of 3D ge-
ometry with large amounts of individual textures
is usually a very inefficient procedure, since the
rendering state needs to be changed every time
a different texture needs to be used. We address
this issue by merging all model textures into
a single texture atlas in order to optimize the
rendering performance and minimize necessary
texture switches. Modern graphics hardware
currently supports textures with a maximum of
16384 x 16384 pixels. The texture atlas created
during preprocessing of large, fully textured
virtual 3D city models, like the one generated
from the Berlin 3D city model, are usually far
bigger than this value. To address this problem,
we implement a Virtual Texturing (Lefebvre,

Darbon, & Neyret, 2004) technique that enables
the rendering system to manage nearly arbitrary
sized texture atlases and render those models
efficiently. The technique works in analogy to
the virtual memory management of modern
operating systems. The complete texturing of
the 3D city model uses a single physical texture
allocated in GPU memory. The physical texture
provides a number of equally sized slots for tex-
ture tiles created from the overall texture atlas.
During a prerendering pass per frame, an image
that contains the number of a visible texture
tile per pixel is generated using the GPU. The
image is analyzed to determine the texture tiles
that are currently not available in the physical
texture. The missing tiles for the current frame
are loaded from HDD into the GPU memory.
This process is very efficient, since only those
texture tiles are loaded from disk that are neces-
sary for texturing the geometry that is currently
visible. Due to this optimized mechanism for
texture management, very large city models
with individual textures can be handled by the
rendering system since the resource require-
ments, except for the required disk space, do
not depend on the amount of textures.

The 3D rendering service exposes a Web
View Service interface (WVS) for querying im-
ages of server-side 3D model data. As all core
3D rendering techniques are implemented and
performed on a dedicated 3D rendering server,
there are no multi-platform issues regarding the
stability and implementation of the 3D rendering
techniques for specific client hardware.

3.2. Accessing 3D City Model Data

A client application integrates application
specific spatial and georeferenced datasets.
Connecting application data with the virtual 3D
city model and its visualization is essential for
building useful applications based on virtual 3D
city models as it opens up the CityGML-based
virtual 3D city model as integration platform for
feature-based 2D and 3D geodata. The rendering
backend used for generating color image tiles is
also used to render object ID images (see Figure
3(c) and (d) for example tiles). Here it follows

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

the G-Buffer concept (Akenine-Möller, Haines,
& Hoffman, 2008; Saito & Takahashi, 1990),
well known in the 3D rendering domain, that
allows to create several rasterized information
layers per pixel. In this way, additional attributes
can be encoded in images on a per pixel basis.
Object ID images, as one type of such informa-
tion, assign an identification color per object
that is unique for this server and 3D city model.
The components of the color of a pixel encode
a 24bit integer number (allowing for about 16.7
million distinct objects per model) that can be
used to access data connected to the feature at
a pixel position. A mapping between object id
and feature id (the database identifier of the
underlying feature dataset) is stored on server
side. The object id number is assigned by the
rendering service during the import of the model
elements for rendering (i.e., CityGML datasets
or planning models). Using this relatively simple
mapping, a connection can be made between
pixels of image tiles and feature data in the
database. An application server holding the
feature data in a database is able to generate a
response for given object IDs (values extracted
from object ID images for specific positions)
or feature IDs (feature identifiers within the
database) that contain generically structured
data, containing named attribute groups and cor-
responding attributes for request. The requested
attribute groups can be configured via an URL
parameter. By using such a generic approach
as default behavior, we are able to implement
the presentation code in client applications also
in a generic way of providing feature attribute
lists or server-generated HTML to users. More
specific applications can be implemented using
external reference attributes leading to con-
nected data sources delivering more specific
data in specialized formats.

3.3. Application Contents

We distinguish two kinds of data to be integrated,
regarding their update frequency: (a) data that
changes frequently or has to be up-to-date in
order to keep the application useful (e.g., vehicle
positions, sensor values, etc.) and (b) data that

changes mostly infrequent or whose update
date is not very relevant (e.g., infrastructural
data, POIs, or landmarks). Data that changes
infrequently is harmonized to a common inter-
nal data format that is optimized for data size
and adjusted to the capabilities and needs of
client applications. Further, the geo locations
of geometries are translated into a common
geographical coordinate system in order to
keep client applications as simple as possible.
In this way, data formats that are consumed
directly by client applications can be reduced
to a minimum while keeping the size of the data
that has to be transferred minimal. This means,
e.g., to avoid transmission of unused attributes
or to aggregate data into one document which
would otherwise need several client requests
to a remote server per item that would imply
additional overhead for data transmission and
decoding on client side. The necessary service
and format adaptors are implemented as con-
figurable scripts that are executed regularly in
order to keep the server-side application data
as up-to-date as it is desired.

Client-side service adaptors are used for
frequently changing data or other data that
should be updated at runtime, such as real time
traffic data, object locations, or sensor values.
The services that provide this kind of data are
queried directly by client applications in order to
fetch the most up-to-date data that is available.
Client-side caching is the only way of optimiz-
ing the amount of data that is transferred for
this type of data, which allows users to control
how often the services are queried. Since we
cannot influence the format and complexity of
the information delivered by 3rd party services,
there can be a significant data overhead between
the data needed for immediate visualization
on the map and the data that is provided by a
service. Further, the service response time for
3rd party data, which contributes significant
parts to a user’s subjective impression of the
overall application performance, may vary
significantly.

Another type of application specific data
is additional 3D data that can be displayed in
client applications, e.g., alternative planning

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 41

models or visualization of specific areas in the
curse of time. This is implemented using overlay
tiles that are generated using models that are
integrated into the base city model, e.g., for
providing different planning variants or different
combinations of them as an option to inspect.
Tile sets for the affected areas can be activated
or deactivated in client applications. They are
rendered after the tiles of the base map (usually
the 3D city model with a specific map layer).
In this way, the visible image tiles of the base
model are exchanged against the alternative
ones covering the same area as transparent or
opaque overlay. The same client-side mecha-
nism applies for changing the styling of the
map that is described in more detail in Section
“Map Styling and Configuration”.

4. AUTOMATED GENERATION
OF APPLICATION DATASETS

For a cost efficient provisioning of customized
mobile and web-based applications based on
massive, information rich virtual 3D city mod-
els, we implemented a configurable process that
generates application datasets and configura-
tion files for generic client applications. These
files are encoded in JavaScript object notation
(JSON4), which is easy to use an implemented
for different target platforms (we developed a
browser-based variant, as well as native appli-
cations for Android and iOS). They contain all
the information that is specific for the area of
interest and the application use case (e.g., POI-
Data, custom map overlays, etc.). The overall

Figure 3. Examples for corresponding image tiles generated by the tileable color (subfigure a)
and b)) and corresponding object map images (subfigure c) and d). The object id images allows
client applications to connect each pixel position of the color image to a.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

process is running automatically in large parts,
including the import of 3D city model data into
the rendering service, generation of oblique
map tiles, and creation of according templates
for application configuration files. In this way,
application data can be regenerated, respectively
updated efficiently.

The overall application configuration that is
used for generating application specific datasets
is decided into two parts: The definition of tile
sets and the definition of POI datasets to prepare
per application. The generation process for tile
datasets can be parameterized in several ways.
First, a list of tile sets is defined, each defining
the 3D model data and its style.

The application metadata is consumed
by client applications to configure their map
contents and their interactive behavior (e.g.,
URL to fetch upon touch/click a map icon).
Map content definition primarily contains the
URL for tiles of map layers. Since map layers
may either be base layers, covering the whole
area of interest, or additional overlay layers
that can optionally be added or removed on
top of base layers.

5. MAP STYLING AND
CONFIGURATION

Custom application-specific styling of a 3D
view is one of the core advantages of our ap-
proach. In contrast to other solutions for mobile
and web-based visualization of large-scale geo-
data, our solution is based on synthesized views
on 3D city model data instead of providing the
3D geodata (respectively textured geometry)
itself to client applications. Here, the data dis-
played on a map can be selected fine grained
way. There is a wide range of options ranging
from including or omitting single features to
the replacement of complete area by planning
variants in order to visualize planned scenarios,
e.g., in a public participation application. Us-
ing our rendering system specific styling can
be applied to complete views as well as for
selected model elements (e.g. for drawing a

user’s attention to certain regions of interest in
specific zoom levels).

One of the most influencing parts of the
visualization for oblique map tiles is the under-
lying terrain map. Depending on the purpose of
an application, the terrain map can communi-
cate different kind of information. Therefore,
selection of rendered terrain map layers is one
of the key decisions when defining a styling for
an oblique map layer. The rendering service is
able to integrate terrain map layers from WMS
instances over the network or local maps that
have been deployed to the rendering server
machine previously.

Further, maps with different representations
of the 3D data depending on the current zoom
level could be generated. Examples for promis-
ing approaches for view dependent stylization
of virtual 3D city models were provided, e.g.,
by Semmo et al.(Semmo, Trapp, Kyprianidis,
& Döllner, 2012) or Pan et al. (Pan et al., 2013).
By emphasizing features that are important for
orientations on larger scales (also by partially
moving from 3D to 2D representations) and
providing a detailed 3D visualization on smaller
scales, such techniques can help to improve a
users perception and orientation in virtual 3D
city models. This stylization is currently not
implemented within the rendering service, but
provides a promising option for providing a
new type of high quality 3D visualization to
broader user basis.

Modern web (e.g. using HTML5 Canvas
elements) and mobile APIs (e.g., iOS or Android
SDK) allow for an efficient implementation of
2D graphics effects with a minimum of system
requirements. Given the fact, that object id
images are transferred to clients alongside the
color images, object-based rendering effects
such as highlighting of single objects or groups
of objects can be implemented (see Figure 4 for
an example). Using such techniques, further
features, i.e., visual search through highlighting
objects matching a specific search query, can
be applied to applications.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 43

6. CASE STUDY - REAL-
ESTATE MARKETING

In our case study we have built the application
“smartMap Berlin” (see Figure 1) targeting
a use case in the area of business real-estate
marketing. Our cooperation partner “Berlin
Partner GmbH” conducts the city marketing
for the city of Berlin and provides consulting
services for companies interested in settling in
the Berlin metropolitan region. Since finding a
real-estate property that fits a company’s needs
is one of the major challenges, their real-estate
portal offering numerous real-estate properties
in different categories is a major part of their
services.

The virtual 3D city model of the city of
Berlin is one of the largest and most complete
city models in the world. It covers the whole
urban area of Berlin that consists of about 890
square kilometers and roughly 600,000 building
models, far most of them modeled in CityGML
LOD2 and textured with real-world textures.
About 350 building models are included as
LOD3 or LOD4 with a highly detailed outer
shell or even modeled interiors. All in all, the
model comprises about 5 millions single tex-

tures for building models. Additionally a high
resolution aerial photography and several other
map layers for terrain texturing are available
from standards-based Web Map Services(de La
Beaujardiere, 2004).The target of the project
is to apply city models with a high usability. A
very strong argument for using our approach
was that transmitting the original 3D data of
the city model to the clients would hardly pos-
sible due to legal restrictions and security - 3D
geodata is stored and managed only by the
dedicated 3D server.

We configured the process to generate three
different combinations of underlying map (an
aerial photo, an OpenStreetMap-based map,
and an official map of berlin using a 1:5000
scale) as base layers. Each layer was generated
for all four principal directions in eight zoom
levels, leading to 412885 JPEG-encoded im-
age tiles per direction and base layer resulting
in an overall data size for all base-layers and
all map orientations of about 40 GB (leads to
average tile size of about 8 kB). The overall
area covered by the map is around 1700 km2,
which is far more than the area of the city
alone, but necessary to cover all of the cities’
area in one rectangular map area. The tile sets

Figure 4. Example for client-side rendering effects implemented using a HTML5 canvas object id
images. Subfigure (a) shows a debug view with object ids blended into the color image. Subfigure
(b) shows the result of the highlighting effect for a specific object id.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

are organized in a way that the distinct map
zoom levels form a hierarchical quadtree that
is inspired by a conventional Tile Map Service5.
Since we generated the tile images as oblique
views with a viewing angle of 30 degrees to
ground level, our tiles cover twice the area of
conventional TMS tiles within an equal zoom
level. To compensate that, clients compute the
required tile numbers in a custom way to match
with the maps georeference.

The core functionality of the system is
to explore the available real-estate offers and
provide information about the social, economic,
and infrastructural context of the city of berlin.
For our partner, it was essential not to show
out-of-date real estate offers, since Berlin
Partner consultants use the application in in-situ
counseling sessions together with customers.
This is why we implemented a special type of
client-side data adaptor to query the real-estate
service, which is also the basis for the real-estate
portal website. The service provides a list of
available real estates as well as details per offer
encoded in JSON. The overview list is fetched
on start of the application. Any additional
detail data for single real-estate properties,
i.e., images, detailed descriptions, and pricing
information, is requested on demand from the
real-estate service.

The POI information for infrastructure,
economy, and social information is considered
to change very infrequently. Therefore, they are
integrated into the application through a unified
JSON format that is held on a server together
with the tile data. Precaching and format ho-
mogenization assures, that the data originating
from different sources can be accessed with
the same simple format and the same (low)
server-side latency.

7. DISCUSSION

For most purposes, such as user orientation
within or exploration of urban areas, the very
simple mode of presentation and user interac-
tion used in our oblique view applications turns
out to be very effective in use and efficient

in deployment. The complexity that comes
with applications allowing a free 3D camera
navigation in virtual 3D environments is often
not needed by users to perform typical tasks
using a virtual 3D city model. While a free 3D
camera navigation in conventional applications
enables users to perform tasks such as evalu-
ation of lines of sights or in-detail inspection
of objects in 3D, the map-like interaction and
presentation used in our approach is reducing
the mental effort for navigating a 3D environ-
ment. Nevertheless, since there are only a limited
number of camera orientations that can be used
to explore the virtual 3D city model, object
occlusion cannot be avoided. The degree of
the occlusion is dependent on the current map
zoom levels (closer camera distances to objects
cause larger numbers of potentially interesting
objects to be occluded) and the shape of the
underlying model (e.g., height of buildings and
the general building density). For application
cases, where occlusion caused by buildings is a
problem, special rendering styles, such as semi
transparent buildings or geometry cuts at a given
height, could be applied to buildings occluding
objects of interest for a particular application.
Further, client applications could be extended
to include a in detail inspection mode provid-
ing detail views for specific areas of interest.
Currently we did not implement such additional
interaction and presentation techniques, since
these are very application specific. Since our
current application focuses on a viewing scale
that allows to judge the context of an real es-
tate offered, the implemented presentation and
interaction techniques where seen sufficient by
users of the application to navigate through the
virtual 3D city model.

Model data access plays a viable role
when using 3D city model applications. Since
the functionality to be implemented in client
applications is kept simple (map presentation,
web-based information retrieval for model
features via URLs), concrete application logic
can be implemented in application servers.
This also enables the integration of existing
web-based application into browser-based apps
as well as into mobile applications running on

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 45

smartphones or tablet. This way, functionality
and system components that have been cre-
ated before to support work processes can be
reused also for 3D city model applications with
no or little adjustments regarding the layout
and compatibility with touch enabled devices.
Nevertheless, the approach of generating con-
figurable client applications is still limited in
terms the way existing web-based solutions
integrate into such an application. It is not
possible to provide a native user interface for
client web services that do not implement a
specific standard, e.g., a transactional WFS for
viewing or editing feature data. Custom service
endpoints need to be implemented as a plugin
for client application, as it was done for the
real-estate service used for our demonstration
case. Therefore code changes are necessary
to integrate new types of services into client
mobile applications.

8. CONCLUSION AND
FUTURE WORK

In this paper we presented a novel approach
for provisioning applications based on mas-
sive virtual 3D city models on heterogeneous
platforms, namely mobile devices, running
Android or iOS operating systems, and web
browsers. The process involves only a very
limited amount of manual customization for
applications dependent on the actual use case,
which makes the provisioning and operation
of high quality 3D visualization applications
for a larger audience very cost effective and
easy to handle.

The approach can be extended towards
automatic derivation of applications for ex-
ploration for complex indoor models, which
have not been addressed yet. Especially the
exploration of complex modeled building
structures, including stories, provides promising
possibilities for generating, e.g., a smartMap
layer per story and allowing users to select the
story to show on client side. Further, these ap-
plications provide possibilities to integrate 3D
city model visualization into existing systems

and workflows (e.g., for real-estate marketing)
generating additional values for these systems.

The potential of additional G-Buffer layers
for the interactivity and client-side rendering
of map layers are not yet finally exploited.
Additionally to the object ID maps, which are
currently used for identifying single objects
within the map, maps encoding the object type
or category can be used either to implement cli-
ent side highlighting effects for specific types
of objects as well as providing a type sensitive
interaction within the map application. Cur-
rently, the configuration for tile generation and
POI-data integration is created by hand. A user
interface for the overall process for application
data generation could speed up the overall
process and would also allow non-expert users
to configure and generate application datasets.

ACKNOWLEDGMENT

This project was supported by the Berlin Partner
GmbH by providing us with the virtual 3D city
model of Berlin, which was funded partially by
the European Fund for Regional Development.
Further we thank 3D Content Logistics GmbH
for their support during this project.

REFERENCES

Akenine-Möller, T., Haines, E., & Hoffman, N.
(2008). Real-Time Rendering (3rd ed., p. 1045).
Natick, MA, USA: A. K. Peters, Ltd. doi:10.1201/
b10644

Bao, P., & Gourlay, D. (2006). A framework for
remote rendering of 3-D scenes on limited mobile
devices. IEEE Transactions on Multimedia, 8(2),
382–389. doi:10.1109/TMM.2005.864337

Basanow, J., Neis, P., Neubauer, S., Schilling,
A., & Zipf, A. (2008). Towards 3D Spatial Data
Infrastructures (3D-SDI) based on open standards -
experiences, results and future issues. In Advances
in 3D Geoinformation Systems (pp. 65–86). Ber-
lin, Heidelberg: Springer Berlin Heidelberg. doi:
doi:10.1007/978-3-540-72135-2

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014

Behr, J., Jung, Y., Keil, J., Drevensek, T., Zoellner,
M., Eschler, P., & Fellner, D. (2010). A scalable
architecture for the HTML5/X3D integration model
X3DOM. In Proceedings of the 15th International
Conference on Web 3D Technology - Web3D ’10
(p. 185). New York, New York, USA: ACM Press.
doi:10.1145/1836049.1836077

Boukerche, A., & Pazzi, R. (2006). Remote rendering
and streaming of progressive panoramas for mobile
devices. In Proceedings of the 14th annual ACM …
(pp. 691–694). Retrieved from http://dl.acm.org/
citation.cfm?id=1180785

Christen, M., Nebiker, S., & Loesch, B. (2012). Web-
based large-scale 3D-geovisualisation using WebGL.
International Journal of 3-D Information Modeling,
1(3), 16–25. doi:10.4018/ij3dim.2012070102

De La Beaujardiere, J. (2004). OGC Web Map Service
Interface. Open Geospatial Consortium. Retrieved
from http://www.opengeospatial.org/standards/wms

Doellner, J., Hagedorn, B., & Klimke, J. (2012).
Server-based rendering of large 3D scenes for mobile
devices using G-buffer cube maps. In Proceedings
of the 17th International Conference on 3D Web
Technology (pp. 97–100). New York, NY, USA:
ACM. doi:10.1145/2338714.2338729

Gesquière, G., & Manin, A. (2012). 3D visualiza-
tion of urban data based on CityGML with WebGL.
International Journal of 3-D Information Modeling,
1(3), 1–15. doi:10.4018/ij3dim.2012070101

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-
H. (2012). OpenGIS® City Geography Markup
Language (CityGML) Encoding Standard Version
2.0.0. Retrieved from http://www.opengeospatial.
org/standards/citygml

Haber, R. B., & McNapp, D. A. (1990). Visualiza-
tion Idioms: A Conceptual Model for Scientific
Visualization Systems. In Visualization in Scientific
Computing (pp. 74–93). IEEE.

Hagedorn, B. (2010). Web view service discussion
paper, Version 0.6. 0. Open Geospatial Consortium
Inc. Retrieved from http://scholar.google.com/scho
lar?hl=en&btnG=Search&q=intitle:Web+View+Se
rvice+Discussion+Paper#0

Jackson, D. (2013). WebGL Specification. Khronos
Group. Retrieved from https://www.khronos.org/
registry/webgl/specs/latest/1.0/

Jeschke, S., Wimmer, M., & Purgathofer, W. (2005).
Image-based representations for accelerated render-
ing of complex scenes. STAR Reports, Eurographics,
1–20. Retrieved from http://www.cg.tuwien.ac.at/
research/publications/2005/jeschke-05-ISTAR/
jeschke-05-ISTAR-Paper.pdf

Lamberti, F., & Sanna, A. (2007). A streaming-based
solution for remote visualization of 3D graphics
on mobile devices. IEEE Transactions on Visual-
ization and Computer Graphics, 13(2), 247–260.
doi:10.1109/TVCG.2007.29 PMID:17218742

Lefebvre, S., Darbon, J., & Neyret, F. (2004). Unified
Texture Management for Arbitrary Meshes. Retrieved
from http://hal.inria.fr/inria-00070783/

Mao, B. (2011). Visualization and Generalization
of 3D City Models. Royal Institute of Technology.

Pan, B., Zhao, Y., Guo, X., Chen, X., Chen, W., &
Peng, Q. (2013). Perception-motivated visualization
for 3D city scenes. The Visual Computer, 29(4),
277–286. doi:10.1007/s00371-012-0773-1

Papazoglou, M. P., Traverso, P., Dustdar, S., &
Leymann, F. (2007). Service-Oriented Computing:
State of the Art and Research Challenges. Computer,
40(11), 38–45. doi:10.1109/MC.2007.400

Prieto, I., & Izkara, J. L. (2012). Visualization of 3D
city models on mobile devices. In Proceedings of the
17th International Conference on 3D Web Technology
- Web3D ’12 (Vol. 1, p. 101). New York, New York,
USA: ACM Press. doi:10.1145/2338714.2338731

Saito, T., & Takahashi, T. (1990). Comprehensible
Rendering of 3-D Shapes. Computer, 24(4), 197–206.

Sample, J. T., & Ioup, E. (2010). Tile-Based Geo-
spatial Information Systems. Boston, MA: Springer
US; doi:10.1007/978-1-4419-7631-4

Schilling, A., & Kolbe, T. H. (2010). Draft for Candi-
date OpenGIS® Web 3D Service Interface Standard.
Open Geospatial Consortium. Retrieved from http://
portal.opengeospatial.org/files/?artifact_id=36390

Semmo, A., Trapp, M., Kyprianidis, J. E., & Döllner,
J. (2012). Interactive Visualization of Generalized
Virtual 3D City Models using Level-of-Abstrac-
tion Transitions. In Computer Graphics Forum
(Vol. 31, pp. 885–894). doi: doi:10.1111/j.1467-
8659.2012.03081.x

X3D Standard. (2005). Web 3D Consortium. Re-
trieved from http://www.web3d.org/x3d/specifica-
tions/x3d_specification.html

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of 3-D Information Modeling, 3(3), 33-47, July-September 2014 47

ENDNOTES

1 http://sh.edushi.com
2 http://bj.o.cn
3 http://osm2world.org
4 http://json.org
5 http://wiki.osgeo.org/wiki/Tile_Map_Ser-

vice_Specification

