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Abstract

Modeling and animating three-dimensional scenes involves inheréotltiés both in the specifi-

cation of scenes and in the implementation of computer animation systenmse¥ént an object-
oriented methodology for the integrated modeling of geométne, and behavioModels are
defined by two directed acyclic graphs and a set of constraingedimetry graph is used to spec-

ify hierarchically composed objects and their attributeshéhavior graph specifies time-depen-

dent behaviors, and theet of constraints is applied to both the geometry graph and the behavior
graph. Tme, behavigrand constraints are represented as objects, i.e. similar to geometric primi-
tives they are implemented as polymorphic basic building blocks. These blocks are lightweight,
share a common communication protocol and can be composed in almost arbitrary manner leading
to simple and elegant construction techniques as well aditgemtf implementations. ¥ have
implemented our methodology in MAM, the Modeling and Animation Machine. MAM is an exten-
sible and portable C++ toolkit whichfefs a rich set of modeling, animation and interaction
classes. It separates rendering and modeling and therefore allows easy integration of new modeling,
rendering, and interaction techniques.

Keywords. object-oriented animation, object-oriented 3D graphics, graphics software architecture,
scene representation.

1 Introduction

Object orientation is a natural concept for computer graphics. It helps to manage the inherent com:
plexity of three-dimensional modeling. First steps were made isgkikthen, who implemented in
GEO++ [11] the functionality of PHIGS [7] and GKS in an object-oriented fashion using Smalltalk.
For two-dimensional applications the object-oriented Iritas® system ([3],[6]) proved to be suc-
cessful. From the userperspective, object orientation is a natural way to express the modeling of
objects and tasks [4]. Computer animation adds additional complexity to graphics systems: Geomet:
ric modeling has to be combined with time-dependent behavior and constraints.

We propose a methodology with the following key goals:

« time, behavigrand constraints are first class notions, i.e. they are modeled as objects at the same
level of abstraction like geometric primitives;

* integration of geometric and chronological modeling;
« lightweight and cooperative polymorphic basic building blocks; and
 independence from the underlying rendering package.

Models are separated in three parts.gimmetry graph, thebehavior graph and aset of constraints.

A geometry graph is composed of basic building blocks which describe geometry and appearance. |
defines shapes and hierarchically nested coordinate frames. A behavior graph is composed of bas
building blocks which specify time-dependent actions, interactive beharidr constraints. The
geometry graph and the behavior graph are interrelated: The behavior graph specifies how nodes ¢
the geometry graph are transformed in time, or how they respond to interactive manipulation. Actions
are grouped in time by chronological container nodes, for instance in complex animations we must be
able to group actions hierarchically in time. Constraints can be added to all basic building béocks. W



distinguish between constraints which can be resolved diraaidyconstraints which are resolved by
an underlying constraint solver

Large and complex models can be built by composirgelaumbers of lightweight and cooperative
basic building blocks. Independence from the underlying rendering technique is achieved by separat
ing rendering and modeling in two fifent system layers. The rendering layer is based on abstract
graphical data types which are evaluated by virtual rendering devieelaW& encapsulated feif-

ent rendering packages, e.g. OpenGL [12], PEX [13], XGL[14], and Radiance[18], in this homoge-
nous interface in such a way that their full functionality is accessible.

2 Reated Work

Clockworks

One of the first object-oriented computer animation systems was Clockworks [1]. A Clockworks
model is formed by a collection of objects which communicate through messages. Directing objects
send messages to other objects in the scene at the times designated by a script. Clockworks scripts ¢
collections of messages. Clockworks uses the object-oriented paradigm but does not apply it to the
overall system structure. Building models by unordered collections of objects becomes increasingly
difficult as the number of objects grows. Furthermore, there is no notion for chronological modeling,
nor does Clockworks integrate constraint management.

GRAMS

The object-oriented Graphical Application Modeling Support System [4] provides a higher level of
abstraction for 3D graphics as compared to low-level rendering packages. HodwaMS does

not provide constraint management nor chronological modeling. There is no explicit concept of time,
therefore modeling of time-dependent and interactive behavior cannot be integrated in an object-ori-
ented fashion.

GROOP

GROORP [5] constructs animated 3D graphic objects based on metaphors derived from movies: stage
actors, cameras. It consists of a scene construction and animation component, and a rendering cor
ponent based on OpenGL, it does not support other rendering packages. GROOP does not integra
constraint management. It builds models by collections of geometrically nested objects; attributes are
represented as separate objects. Also time is not a first class notion. Chronological and interactivi
modeling is not supported. The modeling of time-dependencies is based on “discrete” and “continu-
ous” objects which are controlled at each time step.

Openlnventor

Openlinventor ([10],[19]), a toolkit for interactive 3D graphicgamizes scenes in directed acyclic
graphs. There are three types of nodes: shapes, attributes, groups. Inventor graphs allow only certa
node types to be inserted, it is therefordidift to build new higher level objects using object-ori-
ented inheritance [5]. Furthermore, objects depend on the order they were inserted into eneade. T
dependent behavior is implemented through “sensors” based on the callback mechargssinot

a first-class notion, nor exists an explicit notion for chronological modeling. Geometry and interac-
tion are represented together in a single graph. Openinventor provides only a simple constraint mech
anism through attribute connections and engines. It is based on OpenGL and does not support othe
rendering packages.

TBAG

TBAG [15] is based on graphical abstract data types and explicit functions of time. Parameterized
geometric models are represented by mathematical formulas. A single class (“constrainable”) repre:
sents animation parameters of all types, user interaction and animations. TBAG provides a genera



approach to interaction by directly encoding interactions into constrainables. Models are composec
by values of graphical abstract data types for each time step. This is computationally expensive,
TBAG does not dér chronological modeling. For each frame, all objects used must be generated due
to the functional approach. TBAG does not suppoffediht rendering techniques. TBASGfunc-

tional approach to describe models is not suitable for real world scenes which in general can be
described easier in a declarative and hierarchical rather than a functional .rkamtiermore, the

same simplicity in constructing models can be achieved by an operational notation defined for build-
ing blocks.

Others

Mirage [16] is a high-level 3D object-oriented graphics system that supports a hierarchical temporal
coordinate system, but it does not treat time-varying values as a first-class notion. UGA [17] appears
to be the first 3D programming framework that supports direct expression of time-varying values as
functions of time and input. UGA focusses on language mechanisms such as delegation hierarchies
More application specific animation systems are Pinocchio [22] and SOLAR [21]. Pinocchio is an
animation system that controls human motion and provides sequencing facilities. The SOLAR lan-
guage provides abstraction levels that enable an animation sequence to be defined in steps.

In all these systems behavior is not separated from geomMsn; there is no explicit concept for
chronological modeling, e.g. simultaneous or sequential actions, which is essential for building com-
plex animation sequences. None of the systems treat constraints and time-dependencies as first cle
notions.

Furthermore, most toolkits rely on one specific low-level rendering package and do not support other
rendering techniques. The systemdediin the degree of object-orientation; no system provides a
fine-grained object-orientation, e.g. time, colors, points, constraints as objé&btsutthis, objects

are not lightweight enough to be shared, subclassed, and usagkindanbers [2].

3 Constructing Models

3D models are sets of interrelated objects which describe geotnetrgvior and constraints. The
geometry is represented by a directed acyclic graph of geometric transformations, shape objects, an
viewing objects calledeometry graph. The behavior is represented by a directed acyclic graph of
time-structuring objects, constraint objects, and animation objects befledor graph. All objects

are constrainable and maintain an ordered list of constraints. Independent constraints are adde
directly to the constrained object by inserting them in its constraint list. Constraints which belong to a
constraint net are part of the behavior graph and are maintained by an underlying constraint solver
The geometry graph, the behavior graph and the constraints are orthogonal to eadle.othey
complement each other and describe a complex animated model completely

Polymorphic building blocks are implementeddbyphs. Glyphs are objects which share a common

communication protocol and therefore can be composed almost arbibarityed glyph types rede-

fine existing protocols, delegate protocol requests, or add new protocols. Glyphs store information

redundancy-free, i.e. the information is not provided by other glyphs. Glyphs do not store context

information such as the current rendering device or the current modeling and transformation matrix.

This information is passed to glyphs within the glyph protocol. The base glyph class defines no stor-

age. Shape glyphs, for example, store suitable rendering primitives, whereas polyglyphs store a list o

its children. Their lightweight has the following consequences:

* Glyphs can be shared since context information is passed to them through the protocol.

» Glyphs can be combined to a high degree because they represent only one type of modeling infor-
mation, and can be used indarnumbers due to the minimal overhead.
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» Theglyph class hierarchy is fine-grained and can be used efficiently for deriving new types.

Polyglyph

We distinguish three basic types of glyphs: leafglyphs, monoglyphs and polyglyphs (s. Fig. 1)*.

Leafglyphs have no children, their implementation of the glyph protocol is empty. The abstract base
class for shapes, for example, is derived from the leafglyph class.

Monoglyphs have at most one child called bodyglyph. They are transparent glyphs, i. e. by default all
operations are delegated to the bodyglyph. Monoglyphs are used to redefine communication proto-
cols partially.

Polyglyphs have an arbitrary number of ordered children. The most important polyglyphs are geo-
metric (resp. chronological) containers which determine the position of their children according to
geometric (resp. chronological) layouts.

3.1 Geometry Graph

The geometry graph is composed of geometric transformations, shape glyphs and viewing glyphs.
Transformation glyphs create hierarchically nested coordinate frames. Geometric groups organize
their children according to geometric layouts which calculate spatial positions and geometric vol-
umes for a group of glyphs based on their space requirements. Associating layouts with geometric
groups instead of subclassing the geometric group class offers the advantage that layouts can be
shared and can depend on each other. Examples:

*» Unconstrained space: Position and size of children are not changed and not restricted.

* Grid: Children are aligned to three-dimensiona grid points. The grid may be finite or infinite.
 Cdls: Children occupy cells of athree-dimensional cell array.

Geometric objects are generalized to shapes. Based on their dimensionality they are subdivided into
point-based, line-based and facet-based shapes. Shapes which possess physical properties such as
volume, center of mass etc., are generalized to analytic shapes. Shapes typically represent their form
in terms of abstract graphical data types provided by the rendering layer. For instance, physically
based superquadrics represent their form as quadrilateral mesh or directly asformula according to the
capabilities of the rendering device. Building shapes by aggregating abstract rendering data types
leads to elegant implementations because we can delegate management operations to these typesin
many cases, and can pass them without further conversion to the rendering device.

In Fig. 2 the geometry graph of avirtual hal isillustrated. The scene consists of one geometric group.
Columns and plinths build their own geometric group, prefixed by a color glyph. The logo on the
tableis built by aturtle path glyph. This glyph is a specialized shape glyph which interprets 3D turtle
commands and sweeps a disk along its path. In our example, we build the string “MAM”. The turtle-
path glyph is prefixed by arotation, a scaling, and a color glyph. The animation described in the next
section refers to these glyphs.

1. Classrelations and object relations are given in the Object Modeling Technique (OMT) notation [23].
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The appearance of shapes is modifiedtintbute glyphs. Attributes are monoglyphs which modify

the appearance of its bodyglyph provided that there is no attribute with higher pliavitywant to

fix a value of an attribute for a given subgraph temporarily we prefix the subgraph with an attribute
glyph having higher prioritye.g. a wire-frame drawing style can be imposed on the whole model
during user interaction. Prioritized attributes allow to overwrite attributes in subgraphs without hav-
ing to modify these subgraphs.

Examples for attributes are surface cpteflection properties, emission and transmission properties,
fog, and drawing styles. The attribute hierarchy is open because new attribute classes can be derive
from existing attribute classes in order to integrate functionality of the specific rendering device
types; e.g. there is a specialized XGL edge style glyph which defines edge antialiasing for XGL ren-
derers. A static attribute hierarchy would not permit the integration of specific rendering capabilities.

Viewing objects include camera glyphs, camera view specifications, lightsources and prebuilt virtual
environments (e.g. rooms, grounds and terrains). Camera glyphs are connected to rendering device
and typically located at the root of the geometry graph. Instead of specializing several camera types
we opt for delegating the view specification to projection objects and to provide several projection
constraints, e.g. the view plane constraint which sets and restricts the view plane normal, or the view
window constraint which sets and restricts the field of vieav instance, in Fi® a view plane con-

straint glyph is added to the camera glyph.

Lightsources are modeled by shapes with light emission. The illumination result depends on the
shape form. For instance, if a cone emitting light is oriented, the light spot follows. In partloailar
lighting model of MAM can be mapped to radiosity-based renderers. Good mappings exist also for
immediate-mode renderers such as PEX: positional lightsources correspond to spheres with ligh
emission, spotlights correspond to cones with light emission. The sphere at the ceiling2in Fig.
embeds a positional lightsource.

3.2 Behavior Graph

The behavior graph defines the behavior of the model. Behavior graphs specify story books, interac
tive behavior and relations with glyphs of the geometry grafttions are glyphs which control
behavior

Chronological Modeling

An important problem in the production of animation sequences is the chronological modeling. A
large amount of information is necessary to control and specify complex animations. Grouping
actions in time reduces its complexity [20]. Chronological modeling is supporteltdnyological



groups with chronological layout. Basic layout types are:

» Sequence: Glyphs become non-intersecting sequential spans of life.

« Simultaneity: Glyphs become simultaneous spans of life.

» Fade-in and fade-out: Fade-in layouts assign spans of life which start in cascading order and end a
the same point in time. Fade-out layouts are reversed fade-in layouts.

Layouts calculate the span of life for children of chronological groups. A span of life is defined by a

starting point and an end point in timen#dment is a point in time within a span of life. The time is

measured in virtual milliseconds. Instead of sending a global system time to glyphs, we send

moments since moments include additional information, e.g. actions know how long they will last.

Fig. 3 contains the behavior graph of a simple logo animation for the example #h Flge script is
defined as follows: 1. Scale the logo from 0 to 0.2 along the y-axis, i.e. make it visible. 2. Rotate it
around the center of the table twice; at the same time, scale it along the y-axis from .2 to .5, and the|
reverse this scaling. 3. Scale the logo down to make it invisible. Note that step 2 lasts 20 seconds; th
inner sequence does not define any time requirements; they are calculated from the simultaneit
group and assigned in equal parts to the subactions. The total animation time is 5+20+5=30 second:
If we would place a duration of 300 seconds at top of the behavior graph, the time requirements of the
children would be scaled proportionally

Glyphs specify time requirements consisting of desired, minimal, and maximal duratioes. T
requirements are specified by time-placement monoglyphs which redefine the corresponding proto.
cols. Time-placements include stretchable and shrinkable durations, fixed durations, natural dura-
tions, and time requirement copies from other glyphs. Not all glyphs of the behavior graph set their
time requirements explicitly; frequently they are determined automatically by time layinogslay-

outs may stretch the duration if more time is available and the glyipié requirement is stretch-

able. Analogouslthey shorten the duration if less time is available and the glyinie requirement

is shrinkable.

Time reversal monoglyphs invert the direction of the time progress. They are useful to model retro-
grade motions. Modeling of repeating actions is done tivitarepeat monoglyphs which map a span

of time modulo another span of time, e.g. to model a peneing rotation at a given speed, say 10
degrees per second, we compose a time repeat glyph of 10 seconds duration and a rotatioa glyph. V
add a mapping to the rotation glyph. For a given moment, a mapping object computes and returns .
numerical value. The linear mapping, for example, interpolates two given values during the span of
life provided by the moment.

Behavior graph
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Figure 3. Behavior graph for animating the logo in Fig. 2.



I nter active Behavior

The behavior graph defines also the interactive capabilities of models. Interaction controllers are
monoglyphs which consume and interpret events. For instance, we rotate a wheel interactively by
connecting the wheel with a select-and-drag interaction controller. Events are objects which describe
an incident of interest. Typically events are generated by the underlying user interface or the applica-
tion (synthetic events). The behavior graph root evaluates and delegates events to its children.

3.3 Constraints

Constraints describe and maintain a set of relations on afinite set of objects. All glyphs are constrain-
able objects; constraints can be added to and removed from them. Constraints do not access object
datadirectly, they only use public methods of objects. We opt for not accessing object data directly in
order to be independent from the implementation of the glyph class, to allow objects to be distributed
over the network, and to maintain encapsulation. Current constraint solvers (e.g. [24]) are based on
atomic variables; using object data directly as these variables would violate the encapsulation princi-
ple. Instead, we define several controller classes which install a communication between protocol
constraints and constrainable glyphs. Typically constraints are contained in the behavior graph.

One of the most frequently used constraint types is the controller monoglyph. It associates an access
method of a target glyph with a time-dependent value. In general, controllers can be evaluated
directly, i.e. they do not depend on other constraints. A time-dependent rotation, for instance, consists
of two parts. arotation glyph in the geometry graph and a rotation controller in the behavior graph.
The rotation controller is a constraint which associates a mapping with arotation angle. Whenever a
new point in time is reached, the controller determines the new rotation angle according to the time-
to-angle mapping and assigns the new angle. Controller glyphs remember the original value of the
attribute they control. If the controller glyph dies, it restores this original value.

Freguently time-dependent behaviors are specified by numerical constraints. MAM defines a generic
numerical constraint. It determines a numerical value for a given moment. Frequently used numeri-
cal constraints are linear interpolation mappings or B-spline mappings. Time sensors are numerical
constraints which return the current system time. numerical constraints can be composed to form net-
works of constraints by connecting them with numerical operations, such as addition, multiplication,
etc., and are managed by an external constraint solver. Controller constraints communicate the result
of such a network to an object by sending the resulting value with the appropriate method to the
object.

To turn individual glyphs on or off, the alive state of glyphs can be constrained by life constraint
glyphs, e. g. an actor defined in the geometry graph. Per default, the geometry graph is alive during
the whole animation. To make an object disappear in some parts of the animation, we install alife
time constraint glyph in the behavior graph attached to this object. Aslong as this constraint is aive,
the associated object is turned off. Individual objects of the geometry graph can also be restricted in
their life time by life duration constraint glyphs. These constraints are added to the object and keep
the object alive during the specified timeinterval, and turn it off otherwise.

3.4 Editing and Persistency of Graphs

Animation and simulation applications can be based on building geometry graphs and behavior
graphs. The graph structure and the glyph concept lead to simple editing techniques for animations:
editing consists of creating and combining glyphs.

Geometry graphs and behavior graphs are persistent. Both are written in depth-first order to a C++
stream, respectively are read from the stream. The task of writing and reading is delegated to the
glyphs. Glyphs specify which of its data values are persistent, and can textually represent these val-



ues. Persistency of glyph associations is supported by an association manager. Persistency is avail-
able to devel opers of new glyph classes through inheritance.

Persistent graphs allow to transfer complex animated scenes in a compact form. In comparison to
MPEG [9], this approach offers the following advantages:

» Models retain their geometric and behavioral building blocks.

* Models are significantly smaller for large animation sequences.

» Therealization can take full advantage of locally available hardware.

* Models retain interactive behavior.

Of course, complex and rendering time consuming models must be prebuilt and compressed into
frame sequences as with MPEG. However, in the near future improved hardware graphics capabili-
ties allow to play and view interactive synthetic filmsin real time.

4 Dynamic Graph Modification

Sensors are glyphs which describe interactive behavior. Based on callbacks (modeled as objects),
they modify the subgraphs of the behavior graph. Imagine the following interaction behavior: A
wheel represented by a thin disc is rotated by a select-and-drag interaction. While dragging the
mouse, the wheel rotates. If the dragging acceleration exceeds a certain threshold, the wheel shall
continue to rotate. This complex interactive behavior can be achieved by a dynamic modification of
the behavior graph as follows (s. Fig. 4):

Geometry subgraph: Modificated behavior graphs:
. Before user interaction:
Rotation Disc Simultaneity ShapeSensor(D)
Callback: Install Dragging &
User selects the glyph D Acceleration Sensors

During user interaction (dragging the mouse):

Simultaneity ShapeSensor(D) AccelerationSensor DraggingSensor(R,M)) RotationCtrl
® 3 O o
Callback: Install ®
Threshold exceeded

Never-Ending Rotation

ShapeSensor(D)

During automatic rotation:
Callback: Remove Never-Ending Rotation

Simultaneity

RotationCitrl

(O¢|linear 0 - 360

O

TimeRepeat

lUser selects the glyph D

Automatic rotation stopped; no user interaction:
Simultaneity ShapeSensor(D)

Callback: Install Dragging &
Acceleration Sensors

Figure 4. Dynamic modification of graphs during interaction.

A shape selection sensor waits for an event which selects glyphs. Whether a glyph has been selected
may be tested with the picking facility of many rendering packages. If the shapeis selected, it adds an
acceleration sensor, a dragging sensor, and a rotation controller for R. The dragging sensor informs
the mapping M about the mouse movements. M is used by the rotation controller to calculate the
rotation angle . The acceleration sensor waits until the acceleration exceeds a critical value. In this
case, the acceleration sensor removes itself and installs a never-ending rotation for the R and a new



calback for the shape sensor. If the user selects the disk, the never-ending rotation subgraph is
removed.

5 Implementation

We implemented the proposed methodology in MAM, a C++ object-oriented 3D modeling and ani-
mation toolkit. MAM applications can be divided logicaly in three layers:

« Application layer: Manages application objects.

» Modeling layer: Manages the geometry and behavior graph which visualize the application data.

« Rendering layer: Communicates with the underlying rendering package.

Application designers normally interact with the modeling layer, whereas devel opers of new render-
ing features interact with the rendering layer. The system structure isillustrated in Fig. 5.
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Figure 5. MAM application structure.

Rendering Layer

5.1 Modeling Layer and Rendering L ayer

The modeling layer mediates between the application and the rendering layer. The application does
not have to care about the rendering, since glyphs transform themselves into objects suitable for the
rendering layer.

Virtual rendering devices are objects which understand a set of rendering operations called the ren-
dering protocol. This rendering protocol is based on a set of abstract graphical data types. These
include rendering primitives (e.g. lines, facets), rendering attributes (e.g. textures, surface proper-
ties), and numerical data types (projection matrices). For specific rendering devices we can derive
specialized rendering attributes to access rendering package specific features. For instance, the base
edge style defines edge color and edge width, the XGL edge style defines additionally edge antialias-
ing.

The rendering protocol standardizes the access to the underlying capabilities of low-level rendering
packages. Therefore MAM applications can exchange rendering devices even at run time. Further-
more, this abstraction provides an easy interface to complex and hard-to-learn low-level graphic
packages.

New renderers can be added to the rendering layer if they implement the rendering protocol. These
operations include the capability to render a minimal set of rendering primitives and rendering
attributes. Adding a new rendering device type does not affect the modeling layer or the application
layer.

To enable rendering of more complex primitives as those guaranteed by the rendering protocol the
modeling layer and the rendering layer can communicate. For example, glyphs can inquire from the



renderer the types of primitives supported and their respective rendering costs. Therefore glyphs can
improve rendering by using the most efficient rendering primitives of arenderer. If the set of render-
ing primitives were fixed the capabilities of high-performance renderers would be restricted.

5.2 Kitsand Classes

MAM isimplemented as alibrary of approximately 150 C++ classes. We distinguish between model-
ing classes and rendering classes. The former define glyph types, the latter define abstract graphical
data types and rendering devices. To provide an easy access to classes, glyphs are produced by kits.
Kits are object factories which are user-oriented interfaces giving easy access to frequently used
objects and object configurations. They hide much of the complexity of class hierarchies and class
constructors. For instance, the block glyph has only one general constructor requesting the origin and
three spanning vectors. The shapekit produces with this class genera parallelepipeds, rectangular

blocks, and cubes. Thus, eliminating the need for subclasses leads to slimmer class hierarchies.

class ShapeKit : public virtual Kit {
public:

virtual GShape& bl ock(Mector centre, Vector dir_x, M/ector dir_y, Mector dir_z) const;
virtual GShape& bl ock(Mector centre, float size_x, float size_y, float size_z) const;
virtual GShape& cube(M/ector centre, float size) const;

b

Kits also manage the persistency of glyphs, i.e. they handle the storage and the retrieval of glyphs
from streams. MAM defines the following kits: geometry kit, shape kit, viewing kit, time-structuring
kit, and animation kit. Additionally, the MAM kit can link application-defined kits at run time.

Example

The listing below shows the source code to construct the virtual hall geometry graph shown in Fig. 2.

01 MAM mam /1 object factory

02 GG yph& geonetry_graph = mamsinple_view) * /] constrained canera gl yph
03 ( mam geonetricgroup() /1 default: unit cube

04 + mamcolor(.7,.7,.7) * ( mam geonetri cgroup() /1 70% gray hall

05 + mam cyl i nder (Mector (. 05,0, .05), Mector(.05,.9,.05), .1) // first colum

06 + mam bl ock( M/ector (0,0,0), .1, .03, .1) /1 and its plinth

07 + ... /] nore colums

08 )

09 + mamreflection(.8,.8)*mam checkerboard( /'l specular reflection floor
10 Mvector (0, 0,0), M/ector(1,0,0), Mector(o0,0,1), 10, 10, 0,0,1, 1,0,0

11 ) /'l tesselation: 10x10

12 + mamcolor(0,1,0) * (nmam geonetricgroup() // green table
13 + mam cyl i nder (Mvector(.5,0,.5), Mector(.5,.18,.5), 0.05)) // table-leg

14 + mam bl ock(MWector(.4,.18,.4), .2, .02, .2) /1 table-top: thin block
15 + mamtransl ate(Mector(.4,.2,.4))*mam scal e(M/ector(.5,.5,.5))*

16 mam col or (0,0, 1) *mam turtl epath(...) /1 logo as turtle path
17 )

18 + nmam positional _|light(Mector(.5,.9,.5), .07) /1 lightsource at the ceiling
19)

Figure 6. Code for the virtual hall geometry graph of Fig. 2.

First, we construct a MAM object factory. Line 2 creates a camera glyph together with a view plane
constraint; the function’MAM : si npl e_vi ew returns areference to the camera glyph. Next, the body-
glyph of the camera, a geometric group, is constructed. The first child of this group is another geo-
metric group modified by a color glyph. To connect glyphs, the’*’ and '+’ operators are overloaded.
"+’ adds bodyglyphs to monoglyphs; '+’ adds children to polyglyphs. In line 4, all parts of the hall
(i.e. columns and plinths) are added. 'mMaM : cyl i nder ’ returns a cone glyph. As parameters we pass
both endpoints and the radius. 3D points are given as Mect or objects. Line 6 adds a block glyph
given by its corner and its width, height, and length. The whole geometric group is modified by the
color glyph added in line 4. Colors can be passed as Mol or objects or (for convenience) directly by
its RGB values. The checkerboard is built in lines 9-10; we pass the origin, two spanning vectors, the
tessellation (10x10 quads), and the colors. Lines 12-13 construct the table. The table consists of acyl-

10



inder and a thin block. The logo built by a turtle path glyph is scaled and translated by the corre-
sponding monoglyphs (lines 15-16). The logo takes gsnaents 3D turtle commands given as a
string. Note that shape glyphs do not store explicitly transformation matrices; they are composed anc
passed as renderinggaments during the traversal of the geometry graph. Line 18 adds a small light
emitting sphere which is positioned at the ceiling.

The behavior graph is built analogously (s. listing belowyaMm':sinultaneity’ and

01 MAM nmam

02 Gd yph& behavi or_graph = mam si nul taneity()

03 + geonetric_graph

04 + ( mam sequence()

05 + mam dur ati on(5)*mam do_scal e(S, mam |inear(Mector(0,0,0), Mector(.2,.2,.2)))
06 + ( mam sequence()

07 + mam dur ati on(20) *mam ti me_r epeat (10) *mam do_rotate(R, nmam | i near (0, 360))
08 + ( mam sequence()

09 + mam do_scal e(S, mam |inear(Mector(.2,.2,.2), Mector(.2,.5,.2)))

10 + mam do_scal e(S, mam |inear(Mector(.2,.5,.2), Mector(.2,.2,.2)))

11 )

12 )

13 + mam dur ati on(5) *mam do_scal e(S, mam |inear (Mector(.2,.2,.2), Mector(0,0,0)))

14 )

Figure 7. Code for the virtual hall behavior graph of Fig. 2.

"MAM : sequence’ construct chronological groups with corresponding chronological layout. As first
child, we add the camera which will be alive during the whole animation. This is done explicitly
since there may be animations which switch betwedardiit camerasMAM : duration’ in line 5

returns a monoglyph which defines the time requirement of its bodyghyph: do_scal e’ returns a
constraint which sets the scale vector of the scale gb/pbcording to a given constraint. In this
example, the scale vector is determined by a linear time-to-vector mapping constructed by
"MAM : | i near (Mvector, Mector)’. This numerical constraint interpolates the given vectors during
the span of time of the constraint glyph. In line 7, we stack together three monoglyphs: duration, time
repeaterand rotation constraint associated with the rotation gR/phthe geometry graph and a lin-

ear numerical constraint. In this caseMm : 1 inear (float, float)’ returns a numerical time-to-

float constraint. It interpolates during the assigned life time of the constraint (10 sec.) the interval
[0..360]. The duration of the sequence added in line 8 is determined implicitly through the duration in
line 7: Since the sequence does not define own time requirements, the time requirements of its parel
will be assigned to it.

6 Conclusions

We have presented an object-oriented methodology for geometric, chronological, and behavioral
modeling. Models are built by geometry graphs, behavior graphs and constraints. Graph nodes an
constraints are represented as glyphs, i.e. as lightweight basic building blocks which share a commo
communication protocol and which can be combined in almost arbitrary manner

Shape glyphs, viewing glyphs, and prioritized attribute glyphs cover the traditional three-dimensional
modeling, whereas time-structuring glyphs like chronological groups, time repeatereversals,

and duration placementsferf chronological modeling techniques. All glyphs are constrainable and
maintain a list of constraints which apply to them. Directly attached constraints allow the integration
of a wide set of simple constraints. Constraints which cannot be resolved directly are integrated as
behavior graph glyphs and managed by a constraint solver

Building models with highly reusable small building blocks leads to comprehensible modeling tech-
niques and to faster and simpler implementations. Particulbeygraph notation enables geometric

and animation editing. Dynamic behavior changes can be modeled by dynamic modifications of the
behavior graph.
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The methodology is implemented in MAM as a strongly fine-grained object-oriented system which is
broken up in several object factories to provide easy access to glyphs. The system is implemented &
C++ class library and portable acrosdatint rendering techniques and rendering packages. MAM
works with several commonly used rendering packages and takes full advantage of their capabilities
by establishing a communication between the modeling and the rendering layer

Currently we are integrating more rendering packages, more modeling techniques, e.g. fractal geom
etry, and constraint-based modeling glyphs. Furthermore, we are integrating more three-dimensiona
interaction behaviors for virtual environments.
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Appendix: ClassHierarchy (Core Classes Only)

—__PointShape H<H PointSet <H ParticleSystem
| ™ LineShape _ <<H LineSet FractalLine
FaceShame
TriangleSet
TriangleStrip
LeafGlyph ™ Povaon ]
CheckerBoard
| NURBS F<H_RotatedCurve ]
ComplexShape TurtlePath
Reflection
Attribute
FacetStyle
EdgeStyle
MonoGlyph
SharedObject on'1:t08 €
o L essellaton
Hal
AttributeCitrl
Glyph —[_LifeTimecT
2 (GeometryGraph, LiteCT
BehaviorGraph - -
< LightCtrl
RotationCtrl
ScaleCtrl
TranslateCtrl
ReflectCtrl
WindowCT
OrbitCT
FixTimeSetter
—_ TimePlacement TimeSetter FlexTimeSetier
NaturalT imeSetter
— TimeRepeat Rotation
Transform Translation

GeometricLayout

[“GeometricGroup | [
L PolyGlyph I-<|
{ChronologicalGroup |

[ChronologicalLayout
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