
Sketchy Drawings – A Hardware-Accelerated Approach for Real-Time
Non-Photorealistic Rendering

Marc Nienhaus Jürgen Döllner*

Hasso-Plattner-Institute at the University of Potsdam

Introduction
In Non-Photorealistic Rendering (NPR), sketchy drawings are
essential to visually communicate and illustrate drafts and ideas,
for instance, in architectural or product design. However, current
hardware-accelerated, real-time rendering techniques do not
concentrate on sketchy drawings of arbitrary 3D scene
geometries.
We present an image-space rendering technique that uses today’s
texture mapping and fragment shading hardware to generate
sketchy drawings of arbitrary 3D scene geometry in real-time.
We stress sketchiness in our drawings by simulating uncertainty.
For simulating uncertainty we have to adjust visibility
information using depth sprites, which allow us depth testing and
3D scene composition.
Sketchy Drawing
Our sketchy drawings primarily include 1) visually important
edges and 2) simple surface-style rendering to convey scene
objects.We consider silhouette and crease edges as visually
important edges of 3D scene geometry. We obtain these edges by
extracting discontinuities in the normal and depth buffer
[Decaudin 1996]. The assembly of edges and their constituting
intensity values forms a single texture TEdge (Figure a) as
described in [Nienhaus and Döllner 2003].
We opt for unlit geometry as simple surface-style representation
of 3D scene geometry (Figure b). Therefore, we render
designated geometry directly into the texture TSurface using a
render-to-texture implementation.
Sketchiness is controlled by the degree of uncertainty, which is
applied for rendering edges and surfaces. To simulate
uncertainty, we create a screen-aligned quad that fits completely
into the viewport of the canvas and texture that quad using the
product of TEdge and TSurface. Furthermore, we apply an additional
texture TNoise whose texture values have been determined by a
noise function [Perlin 1985]. TNoise serves as an offset texture
when accessing TEdge and TSurface, i.e., texture values of TNoise
slightly perturb texture coordinates that access TEdge and TSurface.
To perturb texture coordinates of TEdge and TSurface non-
uniformly, we apply two different 2×2-matrices – one shifts
perturbed coordinates of TEdge and one shifts perturbed
coordinates of TSurface. Then, we merge texture values of TEdge
and TSurface resulting in a sketchy drawing. Figure a’ and b’ show
intermediate results after perturbing texture coordinates.
Adjusting Visibility Information
When rendering a screen-aligned quad that is textured with the
texture of 3D scene geometry, z-values as visibility information
of that geometry get lost. Furthermore, visibility information of
3D scene geometry is not available in its periphery when
uncertainty has been applied.
To control visibility we use depth sprites. Conceptually, depth
sprites are common 2-dimensional sprites that provide an
additional depth component at each pixel for depth testing.
We implement depth sprites using fragment programs [Kilgard
2003]. Initially, we generate a high precision depth texture TDepth
derived from 3D scene geometry (Figure c). Then, we render the
screen-aligned quad textured with TDepth. Thereby, we replace
fragment z-values produced by the rasterizer with texture values
received from TDepth using the fragment program.
To adjust visibility information of the preceding sketchy drawing
we additionally access TDepth twice while applying the same
perturbations to its texture coordinates. The first perturbation
adopts the offset used for accessing TEdge and the second

perturbation adopts the offset used for accessing TSurface. The
minimum value of both texture accesses produces the final
fragment z-value (Figure c’).
As a result our sketchy drawings include perturbations of
visually important edges and simple surface-style rendering,
and adjusts visibility information of 3D scene geometry
(Figure d).
Conclusions and Future Work
Our approach presents a first sketchy rendering technique that
takes fully advantage of graphics hardware fragment
programming capabilities and that actually achieves real-time
performance. In our future work, we expect to mimic hand-
drawn sketches more realistically by considering geometrical
properties derived from 3D scene geometry to precisely control
uncertainty offsets.

References
DECAUDING, P. 1996. Cartoon-looking rendering of 3D-Scenes.

Technical Report INRIA 2919. Université de Technologie de
Compiègne, France.

KILGARD, M. 2003. NVIDIA OpenGL Extension Specifications.
NVIDIA Corporation.

NIENHAUS, M., DÖLLNER, J. 2003. Edge-Enhancement – An
Algorithm For Real-Time Non-Photorealistic Rendering. In Journal
of WSCG’03. 11(2):346-353.

PERLIN, K. 1985. An Image Synthesizer. In Proceedings of ACM
SIGGRAPH ’85. 19(3):287-296.

* {nienhaus,doellner}@hpi.uni-potsdam.de

a) Visually important edges b) Simply shaded geometry c) Depth values of geometry

a’) Uncertainty applied to
visually important edges

d) The final sketchy drawing of Olaf includes uncertainty applied to edges and
surface style.

b’) Uncertainty applied to
simply shaded geometry

c’) Uncertainty applied to
depth values

Copyright held by the author 1

