
Out-of-core Visualization of Classified 3D Point
Clouds

Rico Richter and Sören Discher and Jürgen Döllner

Abstract 3D point clouds represent an essential category of geodata used in a vari-
ety of geoinformation applications and systems. We present a novel, interactive out-
of-core rendering technique for massive 3D point clouds based on a layered, multi-
resolution kd-tree, whereby point-based rendering techniques are selected according
to each point’s classification (e.g., vegetation, buildings, terrain). The classification-
dependent rendering leads to an improved visual representation, enhances recogni-
tion of objects within 3D point cloud depictions, and facilitates visual filtering and
highlighting. To interactively explore objects, structures, and relations represented
by 3D point clouds, our technique provides efficient means for an instantaneous,
ad-hoc visualization compared to approaches that visualize 3D point clouds by de-
riving mesh-based 3D models. We have evaluated our approach for massive laser
scan datasets of urban areas. The results show the scalability of the technique and
how different configurations allow for designing task and domain-specific analysis
and inspection tools.

1 Introduction

In-situ and remote sensing technology (e.g., airborne, mobile, or terrestrial laser
scanning and photogrammetric approaches) allows for efficient and automatic cre-
ation of digital representations of spatial environments such as cities and landscapes
(Leberl et al, 2010; Lafarge and Mallet, 2012). These 3D point clouds are commonly
used as an input data for applications, systems, and workflows to derive mesh-based
3D models (Arikan et al, 2013; Beutel et al, 2010) such as for sites, buildings, ter-
rain, and vegetation. These models for example, can be used to create and main-
tain virtual 3D city models (Lafarge and Mallet, 2012; Kolbe, 2009), which can
be applied in urban planning and development, environmental monitoring, disas-
ter and risk management, and homeland security (Coutinho-Rodrigues et al, 2011).
Applications and systems using massive 3D point clouds are faced by increasing
availability (e.g., for whole countries), density (e.g., 400 points per m2), and captur-
ing frequency (e.g., once a year). However, they are limited due to their processing
strategies that generally do not scale and limited storage capacities. As a remedy
they frequently have to reduce the precision and density of the data. To process
and analyze large datasets such as massive 3D point clouds out-of-core or exter-
nal memory algorithms have been designed (Livny et al, 2009; Nebiker et al, 2010;

c©The Authors 2014. This is the authors’ version of the work. It is posted here for your personal
use. Not for redistribution. The definitive version will be published in 3D Geoinformation Science:
The Selected Papers of the 3D GeoInfo 2014 by Springer International Publishing. http://dx.
doi.org/10.1007/978-3-319-12181-9.

1

http://dx.doi.org/10.1007/978-3-319-12181-9
http://dx.doi.org/10.1007/978-3-319-12181-9


2 Out-of-core Visualization of Classified 3D Point Clouds

(a) (b)

Fig. 1 (a) Example of a massive 3D point cloud rendered in a uniform way by GL POINTS prim-
itives and textured by aerial photography. (b) Same scene rendered by class-specific point-based
techniques: different object classes can be better distinguished, holes on façades are filled, and
visual clutter in the background is reduced.

Ganovelli and Scopigno, 2012; Rodrı́guez and Gobbetti, 2013). For the inspection
and visualization of such datasets out-of-core real-time rendering systems enable
an interactive exploration by using specialized spatial data structures and Level-
of-Detail (LoD) concepts (Gobbetti and Marton, 2004; Wimmer and Scheiblauer,
2006; Richter and Döllner, 2010; Goswami et al, 2013). These systems generally
render all points in a ”uniform way” that does not take into account characteris-
tics of different object classes, such as vegetation, building, terrain, street, or water.
For example, building façades generally exhibit lower point density in contrast to
roofs and terrain. A uniform rendering, therefore, results in gaps between neighbor-
ing façade points (Fig. 1), complicating their perception as a continuous surface. If
points are rendered by the point primitives of the underlying rendering system (e.g.,
OpenGL’s GL POINTS) they are not scaled according to the camera distance mak-
ing it difficult to correctly estimate depth differences and leading to visual artifacts
due to overlapping of points close to each other. In addition, a uniform rendering
does not differentiate between surface characteristics such as planar (e.g., terrain),
structured (e.g., roof structures), and fuzzy areas (e.g., vegetation), complicating the
visual identification and categorization of objects and structures by the user.

We report how the visualization of massive 3D point clouds can be improved
based on object class information. Such information are computed with point cloud
classification approaches (Lodha et al, 2007; Carlberg et al, 2009; Richter et al,
2013), which typically analyze the 3D point cloud topology, i.e., geometric rela-
tionships between points such as connectivity, local flatness, normal distribution,
and orientation. We present a novel rendering approach that uses precomputed per-
point attributes, such as object class information, color information, and topologic
information to adapt the appearance of each point, i.e., its color, size, orientation,
and shape. Different photorealistic, non-photorealistic, and solid point-based ren-
dering techniques matching different surface characteristics are selected according
to each point’s classification. The class-specific rendering techniques can be config-
ured at runtime according to the application and aim of the presentation. To filter and
highlight points of specific object classes, focus + context visualization techniques,



2 Related Work 3

e.g., interactive and static lenses (Vaaraniemi et al, 2012; Trapp et al, 2008) can be
applied. Interactive visualization of massive 3D point clouds, that exceed available
memory resources and rendering capabilities, is achieved by storing points in a lay-
ered, multi-resolution kd-tree providing an object class specific subdivision of the
data.

This paper is structured as follows: Section 2 discusses previous work. The sys-
tem architecture is described in Section 3, focusing on point-based rendering tech-
niques and the multi-pass rendering approach. Section 4 introduces the out-of-core
rendering visualization based on the layered, multi-resolution kd-tree. In Section
5 we evaluate the performance of our system for massive datasets of urban areas.
Section 6 gives conclusions and outlines future research directions.

2 Related Work

A general overview of point-based rendering is given by Gross and Pfister (2007).
Several rendering techniques aim for a photorealistic and, thus, solid visualization
of 3D point clouds without holes in the surface (Sibbing et al, 2013; Yu and Turk,
2013). These techniques commonly represent points as splats, i.e., oriented flat disks
(Botsch et al, 2005; Zwicker et al, 2001), spheres, or particles. To visualize closed
surfaces, an adequate size and orientation have to be applied to each point (Kim
et al, 2012). These attributes can be calculated in a preprocessing step (Wu and
Kobbelt, 2004) or on a per-frame basis as proposed by Preiner et al (2012). However,
these techniques are difficult to apply for aerial 3D point clouds because of varying
point densities, e.g., on horizontal and vertical structures, as well as on fuzzy and
planar areas. In addition, it is difficult to combine these techniques with out-of-core
rendering techniques for 3D point clouds because the point density varies depending
on the LoD.

Non-photorealistic rendering techniques for 3D point clouds have been proposed
by Goesele et al (2010) and Xu et al (2004). We extended the silhouette highlight-
ing technique of Xu et al and added it to our set of rendering techniques. Olson et al
(2011) show how the complete set of silhouette points of a surface can be calculated
instant. However, that information comes with the cost of an additional preprocess-
ing step.

Out-of-core rendering systems for 3D point clouds have been presented in (Gob-
betti and Marton, 2004; Wimmer and Scheiblauer, 2006; Richter and Döllner, 2010;
Goswami et al, 2013). These systems use LoD data structures that aggregate or gen-
eralize points solely based on spatial attributes. This is not applicable for our pur-
pose because we need to separate points according to their object class at any time
during rendering to apply object class specific rendering techniques as well as to
render only selected object classes.

Point cloud classification of airborne laser scans has been discussed by several
authors in recent years. Identification of building, terrain, and vegetation points is
usually achieved by computing and weighting certain features (e.g., normal distribu-
tion, surface variation, horizontality) that describe the topology of the local neigh-
borhood of a point (Zhou and Neumann, 2008; Lodha et al, 2007). An alternative



4 Out-of-core Visualization of Classified 3D Point Clouds

to that approach is to use attributes specific to the respective scanning technology
(Yunfei et al, 2008) (e.g., intensity of returning signals) or information that can be
derived from additional geodata covering the same surface area (Kaminsky et al,
2009) (e.g., aerial images, infrastructure maps). In this contribution we compute ob-
ject class information for each point in a preprocessing pass with a hybrid approach
introduced by Richter et al (2013) that considers topologic features and additional
per-point attributes.

In general, object class information is used to extract mesh-based 3D models
(Zhou and Neumann, 2012) for specific categories such as vegetation, building, or
terrain models. However, it is rarely used to enhance the visual quality of a 3D point
cloud directly - aside from adapting the colorization of the points. A more advanced
rendering approach that does take semantics into account was presented by Gao
et al (2012). They aim for a solid, hole-free visualization of airborne laser scans by
resampling terrain segments and by applying a solid rendering style. The purpose
of this approach is quite similar to ours. However, our approach supports a larger
variety of rendering styles that may be applied to arbitrary object classes at runtime.
In addition, the preprocessing in our system is less demanding because we do not
differentiate between roof and building points.

3 Class-Specific Point-Based Rendering

Our point-based rendering approach uses object class, color, and topologic infor-
mation on a per-point basis to individualize the appearance of each point. Different
point-based techniques are integrated by a multi-pass rendering technique responsi-
ble for the final image synthesis.

3.1 Data Characteristics

For a given raw 3D point cloud we compute per-point attributes in a preprocessing
step. These attributes include the following:

• Color. Color or color-infrared values can be extracted from aerial images, ideally
captured at the same point in time as the 3D point cloud. These values are gener-
ally used for a colorization, e.g., when a photorealistic and natural appearance of
the points is required.

• Object class information. This attribute denotes to which surface category a
point belongs. Typical object classes are vegetation, building, terrain, and water,
which can be derived by analyzing the 3D point cloud topology, i.e., local neigh-
borhood of a point. A more detailed subdivision of terrain (e.g., infrastructure,
land use) or building points (e.g., commercial, residence) can be made by taking
into account additional map data (e.g., infrastructure maps) (Richter et al, 2013).

• Surface normal. Per-point normals approximate the surface of the local point
proximity. They can be computed efficiently by analyzing the local neighborhood
of a point (Mitra and Nguyen, 2003) and are used to orientate the point primitive
according to the represented surface.



3 Class-Specific Point-Based Rendering 5

• Horizontality. This attribute indicates how vertical the surface normal of a point
is oriented, i.e., points representing horizontal surfaces (e.g., flat building roofs)
feature higher values than points on vertical surfaces (e.g., building façades)
(Zhou and Neumann, 2008). The horizontality can be used for a colorization
to accentuate detailed object structures (e.g., roof elements).

• Global height. This attribute describes the height of a point in relation to all
other points that belong to the same object class. Colorizing points based on
their global height emphasizes height differences for different objects belonging
to the same object class (e.g., trees with different heights).

• Local height. The local height describes the height of a point in relation to all
points belonging to the same object class in the point’s proximity. Using local
heights for a colorization allows to highlight edges and differences in the struc-
ture of an object (e.g., roof ridges and smokestacks).

All attributes can be used to adapt the appearance of a point, i.e., its color, size,
orientation and shape, at run-time. The color of a point can be chosen based on
its color value, object class, topology attributes (i.e., surface normal, horizontality,
global, or local height), or a combination of these. The orientation of a point can
either correspond to its surface normal, the current view direction or a defined uni-
form vector. In addition, size and shape type of a point can be set dependent on its
object class.

3.2 Point-Based Rendering Techniques

To efficiently render 3D point clouds, the Graphics Processing Unit (GPU) supports
point primitives, such as GL POINTS in OpenGL. However, these primitives have a
fixed size in pixels (Shreiner et al, 2013) (e.g., Fig. 1 (a) uses a size of 3 pixel), i.e.,
their size in object space varies according to their perspective depth. Depending on
the view position undersampling, i.e., holes between neighboring points (Fig. 1 (a)
- bottom), or oversampling, i.e., visual clutter due to overlapping points (Fig. 1 (a) -
top), occurs.

3.2.1 Point Splats

To avoid undersampling and oversampling due to changing view positions, the point
splats technique renders each point as an opaque disk defined in object space that can
be oriented alongside the surface normal (Rusinkiewicz and Levoy, 2000; Botsch
et al, 2005). The on-screen size depends on the current view position and angle,
ensuring a perspective correct visualization (Fig. 2 (a–f, i)). However, the perception
of depth differences between overlapping points that are colored homogeneously
(e.g., points belonging to the same object class), is generally limited.

3.2.2 Point Spheres

We implemented this point-based rendering technique to emphasize the three-
dimensional character of a point. The proposed point spheres extend the original



6 Out-of-core Visualization of Classified 3D Point Clouds

(a) Point Splats; aerial image colors. (b) Point Splats; aerial image colors. (c) Point Splats; aerial image colors.

(d) Points Splats; global height. (e) Point Splats; aerial image colors
and object class information.

(f) Point Splats; global height.

(g) Point Spheres; local height. (h) Silhouette Rendering; horizontal-
ity.

(i) Point Splats; object class informa-
tion.

(j) Silhouette Rendering; local height. (k) Solid Rendering; horizontality. (l) Silhouette Rendering; global
height.

Fig. 2 Examples of massive 3D point clouds rendered with different rendering setups for vegeta-
tion (left), buildings (middle), and terrain (right).



3 Class-Specific Point-Based Rendering 7

Rendering Engine

Bulding

Main 

Memory

Rendering Technique 

Repository

...

Terrain

Vegetation

GPU Memory 

(VBO)

GPU Memory 

(FBO)

G-

Buffer
G-

BufferG-Buffer

G-

Buffer
G-

BufferG-Buffer

G-

Buffer
G-

BufferG-Buffer

G-

Buffer
G-

BufferG-Buffer

Screen

Point Cloud 

Renderer

Interaction 

Handler

Image 

Compositer
Level-of-Detail & 

Memory Manager

Fig. 3 Schematic overview of our class-specific point-based rendering system. Categorized by
object classes, points are transferred to GPU memory and rendered into separate G-Buffers that
are composed to synthesize the final image.

splat concept by rendering points as hemispheres instead of flat disks that are al-
ways facing the view position and, thus, look like spheres (Rusinkiewicz and Levoy,
2000). These hemispheres are created by (1) adding an offset to each depth value of
the rendered fragment and by (2) shading each fragment. The depth offset as well as
the shading color can be determined by projecting the fragment onto a plane defined
by the corresponding splat and by calculating the projected distance of the fragment
to the center of the splat. Point spheres are well suited for non-planar and fuzzy
surfaces, such as vegetation (Fig. 2 (g)).

3.2.3 Silhouette Rendering

Point-based silhouettes highlight and abstract silhouettes and distinctive surface
structures (e.g., depth differences). This technique extends the splat rendering ap-
proach and was originally proposed by Xu et al (2004). Similar to the rendering of
point spheres, color and depth of each fragment depend on its projected distance to
the center of the splat. In addition, the splat is divided into an inner and an outer
part. Fragments in the outer part represent the silhouette and are rendered with an
increased depth value and a distinct color. As a result, depth discontinuities between
overlapping points exceeding a given depth offset are highlighted (Fig. 2 (h, j, l)).

3.2.4 Solid Rendering

We developed this point-based rendering technique to render buildings with solid
and hole-free façades. As the point density on façades in airborne laser scans is



8 Out-of-core Visualization of Classified 3D Point Clouds

(a) (b) (c)

Fig. 4 Examples of focus + context visualization for classified 3D point clouds. (a) Regular visu-
alization with buildings partially occluded by vegetation. (b) Interactive focus + context lens. (c)
Static focus + context lenses positioned around building points.

very low in contrast to horizontal structures, the efficient identification of building
segments is limited because other structures behind a building are visible through
the façade (Gao et al, 2012). To overcome this, we use a second rendering pass to
fill the area below roof points with new primitives. The geometry shader is used to
render (1) a point-based splat, sphere or silhouette equal to the rendering techniques
presented above and (2) a quad that imitates the façade below a point. The quad
width is equal to the point size used in (1) whereas the height depends on the point’s
distance to the terrain level. All quads are aligned to the view direction and have the
same color or height-based color gradient to create a solid façade look (Fig. 2 (k)).

3.3 Image Compositing

To combine different point-based rendering techniques, we use multi-pass rendering
utilizing G-Buffers for image-based compositing (Saito and Takahashi, 1990) (Fig.
3). G-buffers are specialized frame buffer objects (FBO) that store multiple 2D tex-
tures for color, depth or normal values. Per object class we have one rendering pass.
The results are stored in G-Buffers that are combined by the final rendering pass.
This compositing pass allows to implement rendering techniques for focus + context
visualization (Vaaraniemi et al, 2012; Trapp et al, 2008) such as interactive lenses
(Fig. 4 (b)). Moreover, object class specific visibility masks, i.e., static lenses, can
be computed and applied during the rendering to highlight occluded structures (Fig.
4 (c)). Point-based rendering techniques can be independently selected, combined
and configured at run-time to adjust the appearance of each object class.

4 Out-of-Core Rendering

The interactive visualization of massive 3D point clouds exceeding available mem-
ory resources and rendering capabilities demands for out-of-core rendering tech-
niques that combine LoD concepts, spatial data structures, and external memory



4 Out-of-Core Rendering 9

Terrain Building

Vegetation Water

LoD-Node in 

Main Memory

LoD-Node on

Secondary Storage

Multi-resolution 

Kd-tree Layers 

Input Data:

Fig. 5 Schematic overview showing the structure of our layered, multi-resolution kd-tree. For each
object class a separate multi-resolution kd-tree is maintained.

algorithms. We developed a layered, multi-resolution kd-tree for massive 3D point
clouds that have been attributed with object class information. It is characterized by
the following properties:

• Object class specific subdivision of the data to enable a selective access and vi-
sualization (e.g., only building points).

• Adaptive multi-resolution LoDs to preserve a defined rendering budget (e.g., 30
frames per second).

• Efficient and adaptive memory management (e.g., by using equal-sized LoD
chunks).

• Object class specific LoD selection to fulfill different requirements for specific
rendering techniques (e.g., varying point densities).

4.1 Layered Multi-Resolution Kd-Tree

Most spatial data structures use kd-tree, quadtree, or octree derivations to arrange
3D point clouds in a preprocessing step (Rusinkiewicz and Levoy, 2000; Gobbetti
and Marton, 2004; Wimmer and Scheiblauer, 2006; Richter and Döllner, 2010;
Goswami et al, 2013). The construction of quadtrees and octrees can be performed
faster in contrast to kd-trees because there is no need to sort the points. However,
the use of quadtrees and octrees for irregular and sparse distributed data, e.g., air-
borne laser scans, results in tree nodes with a varying number of points. Out-of-core
memory management has to implement efficient caching and memory swapping
mechanisms that benefit from equal-sized data chunks. For that reason, we decided
to use kd-trees to arrange the data. All points belonging to the same object class are
arranged in a sub-tree consisting of nodes with an equal number of points (Fig. 5).



10 Out-of-core Visualization of Classified 3D Point Clouds

#Points

Spatial Distribution

Left Subtree Right Subtree

Median Chunk

Representative Points

Fig. 6 Illustration of the histogram-based construction of the kd-tree to reduce preprocessing times
for massive 3D point clouds.

Each of these nodes corresponds to a LoD for a spatial area with the root node rep-
resenting the overall expansion of the 3D point cloud and child nodes subdividing
the area of their parent node. Each point is stored only once in the tree, and all nodes
together are equal to the input 3D point cloud.

4.1.1 Construction

The layered, multi-resolution kd-tree is constructed in a preprocessing step. It can
be stored on secondary storage and therefore applied for arbitrary sized 3D point
clouds. First, the given 3D point cloud is subdivided based on object classes. Sec-
ond, for each object class the corresponding points are arranged in a multi-resolution
kd-tree. The construction of a kd-tree with an equal number of points per node, i.e.,
a balanced kd-tree, is implemented by a multi-pass histogram-based approach that
avoids a time-consuming sorting of the entire data for each tree level. In a first pass,
we iterate over the 3D point cloud to fill a histogram that describes the spatial distri-
bution and extent of the data. Similar to a voxel grid, the histogram organizes points
into a number of equal-sized spatial chunks. For each chunk, the number of points
belonging to the respective area and a representative point are stored (Fig. 6). Based
on the number of points per chunk and the spatial extent of the histogram, a median
chunk can be determined that contains the median point required to construct the
kd-tree. A second iteration over the 3D point cloud is used to fill up the current node
with representative points (i.e., to create a LoD) and to assign all points to the left or
right part of the tree. Only points belonging to the median chunk need to be sorted to
determine the exact median element. The median element for the split is chosen so
that the number of points to the left is a multiple of the number of the points stored
per node. This is important to construct a balanced kd-tree with equal sized nodes
with exception of one leaf node. The out-of-core construction process subdivides
point data on the file system until data chunks can be processed in main memory.



4 Out-of-Core Rendering 11

Building Water Terrain Vegetation

Building Water Terrain Vegetation

Water Terrain Vegetation

(a)

(b)

(c)

Fig. 7 Illustration of an exemplary GPU memory usage that is balanced during rendering accord-
ing to memory requirements of LoD nodes that belong to different object classes. (a) to (b) illustrate
how unused memory is assigned to other object classes. (b) to (c) illustrate the balancing process
when the visualization of one object class (e.g., building) is disabled.

4.2 Layered Kd-Tree Rendering

The rendering process can be divided into three stages that are performed per frame.
The first stage is responsible for the data provision, caching, and transferring of
points from secondary storage to main memory as well as from main memory to
GPU memory using the layered, multi-resolution kd-tree. The second stage applies
one of our point-based rendering techniques (Sec. 3) to all points belonging to the
respective object class. The last stage seamlessly combines all class-specific render-
ing results into one final image (Sec. 3.3).

At first, the root nodes of all class-specific sub-trees are loaded into main mem-
ory. Each chunk is equal to a LoD node and is mapped into a vertex buffer object
(VBO) resident in GPU memory. The VBO is divided into equal sized chunks that
can store exactly one LoD node. The layered, multi-resolution kd-tree is used to
determined LoD nodes that need to be transferred to or can be removed from the
VBO. The decision to add or remove a LoD node from memory depends on the pro-
jected node size (PNS). Therefore, the bounding sphere of the node is projected into
screen space, and the number of covered pixels is compared to the number of points
per node (Richter and Döllner, 2010). The threshold applied to the PNS depends on
the point-based rendering technique, available memory, and computing capability
of the GPU. Each object class has its own memory budget (Fig. 7) and is balanced
permanently during the rendering process because the amount of memory required
by an object class may vary due to the following reasons:

• Only a small number of points belonging to an object class is visible during the
exploration.

• Visualization of certain object classes is disabled.
• Close up views require a high point density for an object class (e.g., for build-

ings).

Object classes can be rendered with different LoDs because the required number
of points for an appropriate rendering result depends on the structure. For example,
buildings may require to be rendered with more points due to detailed roof structures
in contrast to terrain or vegetation that can be rendered with less points. To ensure
a hole-free surface, the lower point density can be compensated by using larger
primitives, e.g., splats for terrain or spheres for vegetation.



12 Out-of-core Visualization of Classified 3D Point Clouds

Table 1 Characteristics of the datasets used to evaluate the performance of the presented point-
based rendering approach.

Dataset 1 Dataset 2 Dataset 3
Point Density 10 pts/m2 28 pts/m2 100 pts/m2

Number Points 5 Billion 7.1 Billion 80 Billion
Data Size 112 GB 159 GB 1788 GB

Table 2 Rendering performance in frames per second (fps) using the proposed out-of-core render-
ing approach. Each dataset is evaluated for a close and a far perspective.

Dataset 1 Dataset 2 Dataset 3
Far Close Far Close Far Close

#Rendered Points in Million 2.32 0.50 3.42 0.85 4.85 1.04
GL POINTS 86.39 378.07 60.02 246.12 40.24 194.35
Point Splats 51.84 214.32 32.27 138.67 23.01 108.63

Point Spheres 49.57 203.81 28.31 133.72 22.35 107.07
Silhouette Rendering 46.07 195.65 26.66 127.38 22.18 106.97

Solid Rendering 27.32 100.13 20.22 63.78 18.74 59.45
Combination 1 (Fig. 2, row 3) 40.51 200.97 27.33 128.73 22.45 107.75
Combination 2 (Fig. 2, row 4) 33.28 126.31 22.21 80.80 19.90 68.47

5 Results and Applications

We have evaluated the presented system and all implemented point-based rendering
techniques with three massive 3D point clouds containing up to 80 billion points
(Table 1). For implementation we used C++, OpenGL, GLSL, and OpenScene-
Graph. Measurements and tests were performed on an Intel Xeon CPU with 3.20
GHz, 12 GB main memory, and a NVIDIA GeForce GTX 770 with 2 GB device
memory.

As shown in Fig. 8, interactive frame rates can be achieved for each rendering
technique as long as the overall number of rendered points does not exceed a certain
threshold (e.g., 6 million points for the solid rendering approach). The highest frame
rate could be observed for GL POINTS, which was expected since these primitives
are supported natively by the GPU. Point Spheres as well as our solid and silhouette
rendering approach extend the concept of Point Splats and increase the computa-
tional effort during rendering. Consequently, lower frame rates were achieved when
using these techniques for rendering as opposed to Point Splats. Furthermore, the
performance for Point Spheres is higher than for Point Silhouettes due to a more
hardware demanding shading implementation (e.g., conditional branching).

Since the proposed out-of-core rendering approach limits the number of rendered
points by dynamically selecting them, arbitrarily large datasets with varying point
densities can be rendered in real-time as well (Table 2).



7 Acknowledgements 13

fps

#Points in Million

60

30

1.0 2.0 3.0 4.0 5.0 6.0

Point Splats

glPoints

Point Spheres

Solid Rendering

Silhouette Rendering

Fig. 8 Rendering performance in frames per second (fps) using different sized subsets of the
datasets from Table 1.

6 Conclusions and Future Work

We have shown that out-of-core rendering for massive 3D point clouds can be im-
proved by using point-specific attributes such as topologic or semantic informa-
tion. In particular, object class information can be used to select specialized point-
based rendering techniques that take into account class-specific surface character-
istics (e.g., solid, planar, non-planar, fuzzy). In addition, it enables focus + context
techniques, e.g., lenses for filtering and highlighting. This way we can improve the
visual appearance and facilitate recognition of objects within 3D point clouds. Fur-
thermore, our approach offers many degrees of freedom for graphics and interaction
design. This approach also allows us to dissolve occlusion and enable a task-specific
interactive exploration. The proposed layered, multi-resolution kd-tree enables in
addition to a spatial data selection an object class specific selection of LoDs. Hence,
memory and processing resources can be used economically and adaptively. In fu-
ture work, we plan to integrate point-based rendering techniques that enable a per-
frame reconstruction of object surfaces (Preiner et al, 2012), e.g., for terrain or roof
points. In addition, we want to combine 3D point clouds from aerial scans with data
from mobile and terrestrial scans to increase the number of available object classes.

7 Acknowledgements

This work was funded by the Federal Ministry of Education and Research (BMBF),
Germany within the InnoProfile Transfer research group 4DnD-Vis (www.4dndvis.
de) and the Research School on Service-Oriented Systems Engineering of the
Hasso Plattner Institute. We would like to thank virtualcitySYSTEMS for providing
datasets.

www.4dndvis.de
www.4dndvis.de


14 Out-of-core Visualization of Classified 3D Point Clouds

References

Arikan M, Schwärzler M, Flöry S, Wimmer M, Maierhofer S (2013) O-snap:
Optimization-based Snapping for Modeling Architecture. ACM Transactions on
Graphics 32(1):6:1–6:15

Beutel A, Mølhave T, Agarwal P (2010) Natural neighbor interpolation based grid
DEM construction using a GPU. In: 18th SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp 172–181

Botsch M, Hornung A, Zwicker M, Kobbelt L (2005) High-quality surface splatting
on today’s GPUs. In: Eurographics Symposium on Point-Based Graphics, pp 17–
24

Carlberg M, Gao P, Chen G, Zakhor A (2009) Classifying Urban Landscape in
Aerial Lidar Using 3D Shape Analysis. In: 16th IEEE International Conference
on Image Processing, pp 1701–1704

Coutinho-Rodrigues J, Simão A, Antunes C (2011) A GIS-based multicriteria spa-
tial decision support system for planning urban infrastructures. Decision Support
Systems 51(3):720–726

Ganovelli F, Scopigno R (2012) OCME: Out-of-Core Mesh Editing Made Practical.
Computer Graphics and Applications 32(3):46–58

Gao Z, Nocera L, Neumann U (2012) Visually-complete aerial LiDAR point cloud
rendering. In: 20th International Conference on Advances in Geographic Infor-
mation Systems, pp 289–298

Gobbetti E, Marton F (2004) Layered point clouds: a simple and efficient multires-
olution structure for distributing and rendering gigantic point-sampled models.
Computers & Graphics 28(6):815–826

Goesele M, Ackermann J, Fuhrmann S, Haubold C, Klowsky R, Steedly D, Szeliski
R (2010) Ambient point clouds for view interpolation. ACM Transactions on
Graphics 29(4):95:1–95:6

Goswami P, Erol F, Mukhi R, Pajarola R, Gobbetti E (2013) An efficient multi-
resolution framework for high quality interactive rendering of massive point
clouds using multi-way kd-trees. The Visual Computer 29(1):69–83

Gross M, Pfister H (2007) Point-based Graphics. Morgan Kaufmann Publishers Inc.
Kaminsky R, Snavely N, Seitz S, Szeliski R (2009) Alignment of 3D point clouds

to overhead images. In: Computer Vision and Pattern Recognition Workshops, pp
63–70

Kim HJ, Öztireli AC, Gross M, Choi SM (2012) Adaptive surface splatting for facial
rendering. Computer Animation and Virtual Worlds 23(3-4):363–373

Kolbe TH (2009) Representing and Exchanging 3D City Models with CityGML. In:
3D geo-information sciences, chap 2, pp 15–31

Lafarge F, Mallet C (2012) Creating Large-Scale City Models from 3D-Point
Clouds: A Robust Approach with Hybrid Representation. International Journal
of Computer Vision 99(1):69–85

Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A (2010)
Point Clouds: Lidar versus 3D Vision. Photogrammetric Engineering and Remote
Sensing 76(10):1123–1134



References 15

Livny Y, Kogan Z, El-Sana J (2009) Seamless patches for GPU-based terrain ren-
dering. The Visual Computer 25(3):197–208

Lodha SK, Fitzpatrick DM, Helmbold DP (2007) Aerial Lidar Data Classification
using AdaBoost. In: Sixth International Conference on 3-D Digital Imaging and
Modeling (3DIM), pp 435–442

Mitra NJ, Nguyen A (2003) Estimating surface normals in noisy point cloud data.
In: 19th Annual Symposium on Computational Geometry, pp 322–328

Nebiker S, Bleisch S, Christen M (2010) Rich point clouds in virtual globes – A
new paradigm in city modeling? Computers, Environment and Urban Systems
34(6):508–517

Olson M, Dyer R, Zhang H, Sheffer A (2011) Point set silhouettes via local recon-
struction. Computers & Graphics 35(3):500–509

Preiner R, Jeschke S, Wimmer M (2012) Auto Splats: Dynamic Point Cloud Visu-
alization on the GPU. In: Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization, pp 139–148

Richter R, Döllner J (2010) Out-of-core Real-time Visualization of Massive 3D
Point Clouds. In: 7th International Conference on Computer Graphics, Virtual
Reality, Visualisation and Interaction in Africa, pp 121–128

Richter R, Behrens M, Döllner J (2013) Object class segmentation of massive 3D
point clouds of urban areas using point cloud topology. International Journal of
Remote Sensing 34(23):8408–8424

Rodrı́guez M, Gobbetti E (2013) Coarse-grained multiresolution structures for mo-
bile exploration of gigantic surface models. In: SIGGRAPH Asia Symposium on
Mobile Graphics and Interactive Applications, pp 4:1–4:6

Rusinkiewicz S, Levoy M (2000) QSplat: A multiresolution point rendering system
for large meshes. In: ACM SIGGRAPH, pp 343–352

Saito T, Takahashi T (1990) Comprehensible Rendering of 3-D Shapes. SIGGRAPH
Computer Graphics 24(4):197–206

Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Version 4.3, 8th edn.
Addison-Wesley

Sibbing D, Sattler T, Leibe B, Kobbelt L (2013) SIFT-Realistic Rendering. Interna-
tional Conference on 3D Vision pp 56–63

Trapp M, Glander T, Buchholz H, Döllner J (2008) 3D Generalization Lenses for
Interactive Focus + Context Visualization of Virtual City Models. In: 12th Inter-
national Conference on Information Visualisation, pp 356–361

Vaaraniemi M, Freidank M, Westermann R (2012) Enhancing the visibility of labels
in 3D navigation maps. In: Lecture Notes in Geoinformation and Cartography, pp
23–40

Wimmer M, Scheiblauer C (2006) Instant points: Fast rendering of unprocessed
point clouds. In: Eurographics Symposium on Point-Based Graphics, pp 129–137

Wu J, Kobbelt L (2004) Optimized Sub-Sampling of Point Sets for Surface Splat-
ting. Computer Graphics Forum 23(3):643–652



16 Out-of-core Visualization of Classified 3D Point Clouds

Xu H, Nguyen MX, Yuan X, Chen B (2004) Interactive Silhouette Rendering for
Point-Based Models. Eurographics Symposium on Point-Based Graphics pp 13–
18

Yu J, Turk G (2013) Reconstructing surfaces of particle-based fluids using
anisotropic kernels. ACM Transactions on Graphics 32(1):5:1–5:12

Yunfei B, Guoping L, Chunxiang C, Xiaowen L, Hao Z, Qisheng H, Linyan B,
Chaoyi C (2008) Classification of LIDAR point cloud and generation of DTM
from LIDAR height and intensity data in forested area. In: International Society
for Photogrammetry and Remote Sensing Congress, pp 313–318

Zhou QY, Neumann U (2008) Fast and Extensible Building Modeling from Air-
borne Lidar Data. In: 16th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pp 1–8

Zhou QY, Neumann U (2012) 2.5D Building Modeling by Discovering Global Reg-
ularities. In: Computer Vision and Pattern Recognition, pp 326–333

Zwicker M, Pfister H, van Baar J, Gross MH (2001) Surface splatting. In: ACM
SIGGRAPH, pp 371–378


	Out-of-core Visualization of Classified 3D Point Clouds
	Introduction
	Related Work
	Class-Specific Point-Based Rendering
	Data Characteristics
	Point-Based Rendering Techniques
	Image Compositing

	Out-of-Core Rendering
	Layered Multi-Resolution Kd-Tree
	Layered Kd-Tree Rendering

	Results and Applications
	Conclusions and Future Work
	Acknowledgements
	References


