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Abstract—Understanding the execution of programs by means
of program traces is a key strategy in software comprehension.
An important task in this context is comparing two traces in
order to find similarities and differences in terms of executed
code, execution order, and execution duration. For large and
complex program traces, this is a difficult task due to the
cardinality of the trace data. In this paper, we propose a new
visualization method based on icicle plots and edge bundles.
We address visual scalability by several multiscale visualization
metaphors, which help users navigating from the main differences
between two traces to intermediate structural-difference levels,
and, finally fine-grained function call levels. We show how our
approach, implemented in a tool called TRACEDIFF, is applicable
in several scenarios for trace difference comprehension on real-
world trace datasets.

Index Terms—Trace analysis, Software visualization, Program
comprehension.

I. INTRODUCTION

Software maintenance is an important part of the software

engineering lifecycle [8], [24]. Within maintenance, program

comprehension accounts for over 40% of the effort [4]. Along

static analysis of the structure and dependencies of a system,

dynamic analysis of the system execution, or trace analysis, is

a key element for comprehension. Trace analysis can expose

the interaction of software artifacts at run-time, including

aspects such as late binding and data-dependent execution

paths, which are hard to find via static analysis [38]. Moreover,

comparing traces can yield unique insights into certain behav-

ior aspects: While comparing traces from different program

versions or even from different programs helps finding which

effects code changes have on runtime behavior, comparing

traces from multiple runs of the same program, e.g, helps

finding why different inputs do (or do not) result in different

outputs (variable execution context), and why multiple execu-

tions of the same functionality result in different outcomes

(non-determinism). For example, the latter is important to

ensure stability of execution in various deployment configura-

tions, which includes finding why programs exhibit different

behavior when running on different machines.

Trace analysis is hard for several reasons. First, the sheer

amount of data generated during tracing poses various anal-

ysis and (visual) representation challenges [38]. Second, the

analysis has to depict many types of information: time-stamps,

object identities, static program structure, and the relationships
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between such entities. If we want to compare two traces rather

than analyze a single trace, the data volume doubles, so we

need scalable and effective ways to show similarities and

differences between the two traces.

In this paper, we present a visualization method for the

interactive comparison of large traces from multiple runs of

the same program. In the visualization design, we focus on

two main goals. First, we address visual scalability by a mul-

tiscale design that supports exploration from coarse-grained

events of interest, such as aggregated execution similarities

and differences, to fine-grained events, such as function-

level call similarities. For this, we use and extend several

visual metaphors: space-filling plots (for the overview), shaded

icicle plots and tube bundles (for the intermediate level), and

attribute color-mapping and edge bundles (for the fine-grained

level). We propose several interaction mechanisms to help

specific user tasks at each level-of-detail, such as finding

the most (dis)similar execution fragments; explaining these

(dis)similarities by highlighting differences such as execution

swaps, call time-shifts, and call durations; and finding execu-

tion fragments replicated several times between traces.

We describe our visualization by the task-oriented model

of Maletic et al. [19]: Our task is to help users to compare

large-scale traces, specifically to (a) detect execution regions

that are (dis)similar; (b) explain the (dis)similarities at several

levels of detail; and (c) correlate execution (dis)similarities

with static program structure. Our audience includes software

engineers who want to understand execution aspects of large

software systems. The visualization targets static program

structure, trace information (function calls and call durations)

from two traces, and similarity relationships between the two

traces. We represent these data using a space-filling plot

(for overviews), icicle plots (for the call structure), and a

multiscale bundling metaphor (for the trace-to-trace similarity

relationships). Finally, the visualization medium consists of a

standard screen with two linked views.

II. RELATED WORK

Visual trace exploration has a long history in program

comprehension, and can be classified as follows.

Activity views: Execution traces are often visualized by

different variants of icicle plots. The horizontal axis maps

time, e.g., function call start and end moments [33] or

memory block allocation and release moments [21]. The

vertical axis maps call stack depth [33] or memory block
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address ranges [21]. Stacked timelines allow comparing

the evolution of several time series, such as repository

commit activities [37], to find event correlations. Multivariate

visualization, e.g., scatter plots and dimensionality reduction

techniques, help finding correlations in high-dimensional

datasets, such as multi-metric log files, or between datasets,

e.g., profiling data from different execution traces [18], [20].

Peer-to-peer download metrics [36] and execution traces [29]

are shown via linked Cartesian 2D plots.

Correlating views: Structure views are used to show the

static system structure that is mined, e.g., by static program

analysis [23]. Activity views are used to show dynamic data

such as execution or event logs. The linked views technique is

frequently used to correlate the two. For example, Cornelissen

et al. link a radial bundled node-link view (for static function

calls), an icicle plot (for static system structure), and a call

timeline (for dynamic execution information) by means of

selection and brushing to show which subsystems are active

in a given execution phase [5]. Similar techniques are used

in ISVis [14] (link execution and structure), Jinsight [25],

[26] (link execution and text), and Tarantula [15] and

Gammatella [16] (link structure and text).

Comparing sequences: Traces, or more generally (ordered)

sequences, can be compared by various techniques. For

sequences that also have a hierarchical structure, such as

program traces, many tree comparison methods exist [9].

TreeJuxtaposer [22] draws the two trees as dendrograms side

by side and uses color and interaction to highlight (dis)similar

subtrees. Holten et al. [13] extend this idea; trees are drawn

as icicle plots, and similar leaf nodes are explicitly connected

with bundled edges [12]. CodeFlows compares hierarchies of

non-uniform depth using shaded tubes [31]. Beck et al. use a

similar design to compare multiple hierarchies [1].

Although the bundled edge metaphor is visually scalable, it

is best suited to show how entire subsequences correspond to

each other. Finer-grained events, such as permutations within

similar subsequences, and also edges linking non-leaf nodes,

easily get lost within a bundle due to the inherent edge overlap.

To find similarities, several techniques exist that operate

on hierarchical structures or (ordered) entity sequences.

Ovation [7] uses a trace-specific similarity model based

on manually specified attributes, such as function name, to

find repetitions and similar patterns. TreeJuxtaposer finds

tree similarities by computing the ratio of two unordered

sets describing the tree’s nodes. In contrast to these fuzzy

matching techniques, De Pauw et al. [6] use exact matching

to classify repetitions in web service traces. Hamou-Lhadj and

Lethbridge [11] use a hashing-based approach to find patterns

and remove repetitions from traces. Code clone detection

techniques propose similar mechanisms to find (nearly)

similar sub-sequences in a hierarchy (see references in [31]).

All such techniques can be used, with small adaptations, in

our trace comparison context.

Scalability: Visual scalability, a long-standing challenge [25],

is addressed by visualizing restricted ranges of the execution

data [28]; aggregating trace data into coarse-scale event

graphs [3], [10], [17], [26], [27]; and by visual subsampling

techniques that combine subpixel-size events directly in

screen space [5], [21]. Although effective, all such techniques

have their limitations: Range visualization restricts the insight

to a predefined subset of an execution; aggregation can

produce a too coarse execution representation; and visual

subsampling does not show execution structure (call nesting).

Our trace comparison goal combines all the above chal-

lenges: Visualize pairs of large hierarchical sequences (hun-

dreds of thousands of calls in two traces), show call duration

and stack-depth information for each such item, and show

many-to-many similarities between calls located at any hier-

archy level.

III. TRACE COMPARISON

We model a trace as a tree T = { f} of function calls

f = (F, ts ∈ R
+
, te ∈ R

+
, p ∈ T,C = {ci ∈ T}). (1)

Here, F represents the definition, or identity, of the called

function. Depending on the application and data availability,

this can be a full syntax tree description of the function

declaration or just the fully qualified function name. The

values ts and te, where ts < te, are the start, respectively end

moments of the call. The caller of f is denoted by p. The set

C holds the children, or callees, of f , ordered by call times,

i.e., ∀ci ∈ C,c j ∈ C, i < j|te(ci) < ts(c j). Further, we denote

the call stack rooted at f by S( f ).
To compare two traces TA and TB, we first design a so-called

similarity function s : TA×TB → [0,1], where for any two calls

fA ∈ TA and fB ∈ TB, s( fA, fB) gives the similarity of the entire

call stacks S( fA) and S( fB). We compute s using the method

originally applied for detecting repeating patterns in a single

trace [2], but now using two traces, as follows. Each function

definition F is given a unique ID. For each call stack S( f ),
we compute the set Γ( f ) containing all IDs of calls in S

Γ( f ) = {F ′|∃ f ′ ∈ S( f ),F( f ′) = F ′} (2)

Next, given two calls fA ∈ TA and fB ∈ TB, we compute

s( fA, fB) =
‖Γ( fA)∩Γ( fB)‖

‖Γ( fA)∪Γ( fB)‖
(3)

where ‖ ·‖ denotes set size. For details, we refer to [2], [33].

The above process delivers a potentially very large set of

pair-wise similarities between call stacks in the two traces, so

we reduce this set as follows. In practice, we are interested

only in call stacks having a large similarity s( fA, fB) > τ .

Setting τ ∈ [0.1,0.3] has given good results in our trace

comparisons. When such stacks exist, we say that there exists

a match k( fA, fB). For any such k, there exist also several

matches k′(u,v), where u ∈ S( fA), and v ∈ S( fB): Two similar

call stacks share similar substacks. We call the set of matches
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k′, which explain k, a group G( fA, fB). We further call k the

root match of G, and denote k as R(G) = (GA,GB).
We next partition all computed matches into a minimal set

of groups, as follows. Starting with no group, we traverse one

of the trees, e.g. TA, in breadth-first order. For each encoun-

tered call u ∈ TA, we iterate over its matches k(u,v ∈ TB).
If there is no current group G or u is not contained in GA

or v is not contained in GB, we create a new empty group

and make it current. Otherwise, we add k to G and continue

the traversal. We later use groups to create a visual trace

comparison (Sec. IV-B).

All in all, the trace comparison described above delivers a

set K = {k = ( fA ∈ TA, fB ∈ TB)} of groups containing matches

between sufficiently similar stacks, i.e., s( fA, fB)> τ . We next

show how we use these groups and the hierarchical trace data

to visually analyze trace similarities.

IV. VISUALIZATION DESIGN

We use a focus-and-context design that follows the well-

known information-seeking mantra “overview, zoom and filter,

and details on demand" [30] (see Fig. 1). First, we select a pair

of already computed traces (TA,TB) that we wish to compare.

If match data (Sec. III) is available for this pair, we use it

directly, else we compute it on demand and store it for later

use. After the trace pair and match data are loaded, we use

the overview window (described next in Sec. IV-A) to find

interesting execution areas, or focus areas, in the two traces.

These can be areas in a trace where many matches exist with

the other trace. Alternatively, we can select specific focus areas

in the two traces and compare them – for instance, compare

two executions around the same moment. After selecting the

focus areas, we can interactively examine the comparison

window to get insight on the (dis)similarities of the call stacks

in focus (see Sec. IV-B).

Overview window

Comparison window

Selection window Focus area (A)

Focus area (B)

correspondences

trace

(A)

trace

(B)

Fig. 1. Trace comparison visualization design.

A. Overview Visualization

The overview visualization shows an aggregated view of

both traces (Fig. 2), with the upper part of this view dedicated

to TA and the lower part to TB. For the full time extent of each

trace, we draw two graphs. For TA (Fig. 2, top trace), the lower

graph shows an icicle plot of the call stack. The upper graph

shows a bar chart drawn over N equal-sized time intervals,

with N set so that each interval maps to 10 screen pixels.

For each such time interval [tstart , tend ], we draw a bar whose

height encodes the sum of similarities s of the matches that

the trace has over [tstart , tend ]. For TB (Fig. 2, bottom trace),

we draw the same call stack and bar graphs, but mirrored

in the y direction. The inner icicle plots of the two traces

form a zoomed-out display similar to [34], which helps finding

deep calls or long-duration calls. The bar chart interpretation

is simple: High bars show execution areas where there are

many strong matches.

For each bar, we also compute the relative start-time δ of

the matched calls in the other trace over [tstart , tend ], i.e.

δ = ∑
f∈T |k( f ,g)∈K ∧ tstart≤ts( f )≤tend

|ts( f )− ts(g)| (4)

and color the bar based on δ using a red-gray-green colormap.

Red bars indicate matches from the current trace to the past

of the other trace; gray bars show matches between the two

traces which are aligned in time; and green bars show matches

from the current trace to the future of the other trace. When

hovering the mouse over a call f , we set the background of all

bars which have matches of calls in S( f ) to blue. For example,

in Fig. 2, the user sees calls which appear compactly grouped

in the focus region of TA. The blue bars in TB show that these

calls have matches scattered over a large portion of TB. Very

few of these are in TB’s focus. Thus, to better examine these

matches, the user can now shift TB’s focus to the left.

The above mechanisms allow users to quickly find several

zones of interest in the two traces: Low bars show execution

areas which have no, or very low-similarity, matches in the

other trace. These areas are likely less interesting for further

analysis. High gray bars indicate areas which have well-

aligned matches. High red or green bars indicate areas which

are executed at different time instants in the other trace, which

are arguably the most interesting to analyze. Bar backgrounds

help panning the foci of the two traces to find matching calls.

Using these cues, users can select the areas of interest for

their specific use-cases, and next use the comparison window

(Sec. IV-B) to gain finer-grained insight.

B. Match Visualization

Given a match-rich focus area in a trace-pair, the compar-

ison window shows details on these matches, as follows (see

Fig. 3). First, we render the two call stacks using two mirrored

icicle plots, where the x extent (width) of the elements shows

call duration, and the y axis encodes stack depth. We also use

cushion shading to emphasize call stack structure [34]. Finally,

we outline found call repetitions (Sec. III) in red (cf. [2]).

Next, we use edge bundles to connect matched calls in the

two traces. We start by the hierarchical edge bundling (HEB)

design of Holten et al. [12], [13]: Match edges are routed along

a tree structure computed using the hierarchy represented by

the icicle plot nodes, mirrored along the x axis. However, our

data differs from Holten’s in several important respects:
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}
}

focus for TA
focus for TB

TA

TB

correlation highlights call stacks

Fig. 2. Overview visualization. The top and bottom parts show the match highlights and call stacks for the two compared traces, respectively.

a) b) c)

AC
BD

Fig. 3. Original HEB bundling (a) and its control tree (b). Undulation artifacts due to node widths are visible. Our modified bundling (c).

R1: Our icicle plot nodes have highly different widths (since

we encode call duration in width);

R2: We have to draw matches between non-leaf nodes (which

encode execution similarities at coarser scales);

R3: The empty vertical space between the two icicle plots

can be quite small (due to the arbitrary depth of the call

stacks). Nodes of the upper icicle plot can fall below the

lower icicle plot nodes (Fig. 4 b). This never happened

in earlier HEB designs;

R4: Many icicle plot nodes have subpixel size (short function

calls). For large traces, using such nodes in the HEB algo-

rithm creates cluttered bundles and slow-to-draw images.

Given the above, using the original HEB method creates

strong visual artifacts. Several examples follow. Fig. 3 a

shows two wave-like structures in the bundles (marked in red

and yellow). These appear since the nodes A and C are not

centered horizontally within their respective parents B and

D (issue R1). Figs. 4 a,b show several very sharp bundle

bends (red markers) and undulations (green marker) due to

the relatively small space between the traces (issue R3). For

large traces containing hundreds of thousands of calls such

problems become only bigger and more frequent.

To solve such issues, we modify the HEB layout, as follows.

First, for call stacks containing only nodes narrower than one

pixel, we solely render their bounding box (pink rectangles in

Figs. 4 a,b). This upper-bounds the number of rendered shapes

at a time, which ensures a high frame rate, and also makes the

image less cluttered (issue R4). Next, we reserve a horizontal

band B centered around the mid-line of the match view (see

Figs. 4 a,b). This is the area where bundling will take place.

For each group G, we build a separate control tree-pair, one

tree for S(GA) and one for S(GB). As tree control points, we

use only the centers of those nodes in S(GA) and S(GB) which

are broader than 1 pixel and also fall outside B, which we next

call key nodes.

When constructing the control tree for a group G, we also

clamp the x coordinate of each node f to the x range of the

control-points of all child nodes in S( f ) that have matches

in G. This shifts the control points horizontally so that the

resulting control tree has far less right-left twists. In turn, this

reduces the amount of horizontal undulations in the resulting

bundles, and thereby removes artifacts of type R1 and R2

(compare Fig. 3 c with the original HEB in Fig. 3 a).

Given the above control tree, we next add the non-key nodes

(narrower than 1 pixel or falling within B) to the tree, as

follows. For each non-key node n, we ascend its call stack

until we find a parent pn which was added to the control tree.

Such a parent always exists, as nodes closer to the call-stack

root are broad and far away from B. Next, we scan the control

tree downwards from pn and find the node q whose control

point is geometrically closest to n, and add n as a child of q in

the control tree. Hence, all non-key nodes are added as leaves

to the control tree. As such, the coarse-level structure of the

control tree and, more importantly, its height are not changed,

and matches from non-key nodes are smoothly ‘merged’ into

the bundles of key nodes. Comparing Figs. 4 c,d, which use

our modified bundling, with Figs. 4 a,b (original HEB), we

see that the undesired sharp bends and undulations have been

removed, and the bundle appears centered within the x extents

of the matched nodes.

Let us note that most existing applications of HEB feature

edges which connect equally-sized nodes, located at the same

hierarchy level, and which are laid out regularly, e.g. along

lines [1], [13] or circles [13]. Our modified bundling relaxes

these restrictions, so it can be used in other contexts where

the original HEB method delivers suboptimal results.

C. Multiscale Visualization

Although our modified HEB method helps answering ques-

tions on the sizes and time offsets of matching execution frag-

ments, several questions remain (see e.g. Fig. 5). First, a HEB

rendering cannot show permutations in matched sequences,

since the inherent overdraw caused by tight bundles makes it

very hard, if not impossible, to follow individual edges. Such

permutations are inherent to our match computation. Second,

we recall that matches between shallower call levels are more

relevant than deeper-level matches (Sec. III). However, HEB

renders all edges identically, so we cannot easily spot more

important edges. Finally, HEB represents edges as 1D curves.

This makes it hard to see, for such an edge, which are the

durations of the matched elements it connects.
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a) b)

c) d)

B

B

Fig. 4. Original HEB bundling (a,b) showing sharp bends (red markers) and undulations (green marker). Our modified bundling (c,d).

We address the above issues by a multiscale HEB

visualization, inspired by image-based edge bundling

(IBEB) [32], i.e., we draw edges as shaded 2D tubes instead

of 1D curves as in HEB (Fig. 5 c). This is explained next.

Tube layout: Consider two calls f and g that are connected

by a match k. Let x f , y f , w f be the x and y coordinates of

the center and width of the icicle plot rectangle for f , and

xg, yg, wg the similar quantities for g (see Fig. 5 a). Let γ
be the modified HEB curve that connects the two centers,

computed as described in Sec. IV-B. Let t : [0,1] be an arc-

length parameterization for γ . We construct two curves γL and

γR which represent the left, respectively right, curved borders

of our tube shape. If γL = (γL
x (t),γ

L
y (t)), we set

γL
x (t) = γx(t)−φ(t)

(

(1− t)
w f

2
− t

wg

2

)

γL
y (t) = γy(t)

where φ : [0,1]→ [0,1] is a function that models the gradual

shrinking, or thinning, of the tube from its ends towards its

center. Profiles that generate bundle-like tubes are given by

φ(t) = λ +
1−λ

2
(1+ cos2πt). (5)

Similarly, we construct the tube’s right-border curve γR as

γR
x (t) = γx(t)+φ(t)

(

(1− t)
w f

2
− t

wg

2

)

γR
y (t) = γy(t).

Tube shading: We visually emphasize our tube bundles by

pseudo-shading using a cushion-like luminance texture, dark at

the borders γL and γR and bright in the center (γ). For this, we

define a 1D convex parabolic shading profile ranging from 0

(dark) to 1 (bright), similar to the well-known cushion treemap

design [35]. Next, we render our shape by discretizing γL and

γR with 50..100 sample points, and drawing the resulting quads

using a 1D texture encoding our shading profile. Fig. 5 c

shows the result: The tubes appear like 3D shaded shapes

that smoothly connect their corresponding icicle-plot elements.

The design of the profile φ ensures that the tubes follow the

shapes of their corresponding edge bundles – compare e.g.

Figs. 5 b,c. This allows us to smoothly toggle between line

and tube visualizations, or generate visualizations containing

both tubes and lines in the same image.

Our tubes are visually quite similar to IBEB bundles.

However, important differences exist: First, while IBEB

constructs tube-like shapes in order to simplify an existing

HEB drawing, our tubes represent one-to-one our edges,

as our aim is to show the time (horizontal) extents of all

matched icicle plot nodes. Second, IBEB has a highly involved

implementation, which uses edge clustering, image blurring,

distance transforms, and skeletons. We only use a few simple

curve interpolation and hardware-accelerated 1D texture

mapping operations. Consequently, our method renders the

same amounts of shaded tubes as IBEB, roughly 10..20 times

faster than the latter. This is essential for interactive analysis,

as typical trace-pairs can contain thousands of matches.

Tube stacking: To combine our shaded tubes in a final image,

we add a z (depth) coordinate γz to our curve γ , computed

by linearly interpolating the call-stack depths of its endpoints

f and g, and next set γL
z = γR

z = γz. Rendering our tubes

with standard depth (Z) buffering shows higher-level (coarser)

matches behind lower-level (finer) ones. Due to Z buffering,

we also directly handle matches that connect different stack-

depths in the two traces.
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b) c)

xf,yf

xg,yg

wf

wg

0

1

t

φ(t)λ

γ

γL γR

a)

Fig. 5. Tube design (a). Tube bundles (c) add more information on the match start and endpoints and nesting than line bundles (b).

Fig. 5 c shows the overall result of our bundled tubes.

In contrast to line bundles (Fig. 5 b), we now clearly see

the time extents of the matched call stacks, encoded as tube

thickness, and we can separate coarse matches (thick tubes)

from fine ones (thin tubes). Also, crossings are now clearer.

The overall result is a multiscale match visualization, where

matches of high-level and long call stacks (which are more

important) are visually prominent.

Th

Tf

Tg

Tj

f1

f2

g1

g2

h2

h1

j2

Fig. 6. Finding execution duplicates.

Finding execution replications: Tube bundles also help find-

ing fragments from a trace that are replicated several times

into the other trace. Fig. 6 shows this: At a coarse level, the

largest visible tube Tf (behind all other tubes) shows a strong

similarity between the largest part of the top trace (stack rooted

at f1) and the first part of the bottom trace (stack rooted at

f2) Finer-grained tubes explain this similarity: For example,

the tube Tg shows that the above stacks are similar because

the sub-stack rooted at g1 (top trace) is similar to the bottom-

trace sub-stack rooted at g2. This similarity is in turn explained

by the tube Th, which shows that the sub-stack rooted at h1

(top trace) is similar to the one rooted at h2 (bottom trace).

However, we see that the sub-stack rooted at g1 (top trace) is

also similar to a second sub-stack rooted at j2 (bottom trace).

This is shown by several diagonal tubes marked as Tj.

D. Attribute Mapping

We enrich our trace visualization by mapping several

attribute values that are relevant to questions of interest. The

key use-case is to explain the computed matches: Given two

matched stacks, connected by HEB curves or tubes, we want

to know why the two stacks are similar and where they differ.

We address this as follows.

Finding permutations: As outlined earlier, our match

computation is insensitive to permutations. This is desirable

for discovering stacks that match regardless of call order.

However, permutations mean execution-order differences

that should be highlighted. Visually detecting small-scale

permutations can be hard using the tube metaphor only.

Given a match k = ( f ,g) with call start times ts( f ) and

ts(g) respectively, we address this problem by mapping the

difference |ts( f )− ts(g)| to the saturation of a base color

(red), and use the resulting color for our HEB curves or

tubes. Fig. 7 shows the result: Matches with similar starting

times show up as gray. Matches with different starting times

appear as red. In our example, call A from the beginning of

trace T1 matches B at the end of trace T2, and call C from the

end of T1 matches three times (D, E , F) at the beginning of T2.

Finding trace-centric outliers: A generalization of the above

use-case is to show whether a call f in a stack TA occurs

at the same relative position (with respect to TA’s root) as

its match g in a stack TB. To show this, we use the partition

of the traces into groups (Sec. III). For a group G, rooted

at GA and GB respectively in the two traces, we first select

a viewpoint, i.e., decide if we want to examine matches

from the perspective of TA or TB. We do this by moving the

mouse cursor in the upper half, respectively lower half, of

the match view. If we select the viewpoint of TA, we next

color each match k( fA, fB) ∈ G by the value
ts( fB)−ts(GB)
te(GB)−ts(GB)

using a rainbow (blue-to-red) colormap. The interpretation of

this color mapping is as follows (see Fig. 8): Matched calls,

which occur at the same relative moments in the two traces
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Fig. 7. Finding execution permutations.

(with respect to the start times of the root calls GA and GB

respectively), have a color that follows the rainbow gradient,

i.e., are blue if they occur early, and red if they occur late.

Calls fA ∈ TA that occur relatively later in TB or calls fB ∈ TB

that occur relatively later in TA appear as red outliers on a

cold (blue..green) background – see insets in Fig. 8. Similarly,

calls in one trace, which are matched at earlier moments in

the other trace, appear as cold outliers on a warm background.

Depicting similarity: A final use-case is to show the simi-

larities s of the detected matches (Sec. III). This allows us to

further separate strong (relevant) matches from less relevant

ones, i.e., further explain why two stacks are similar or not.

For this, we map, for each HEB tube, its similarity s to the

tube’s transparency or strength of a white specular highlight:

For tubes thinner than 16 pixels, we use transparency, since

these tubes are too thin to show a specular highlight. For

thicker tubes, we use highlights, since these tubes must be

opaque so that the nesting effect (Sec. IV-C, Fig. 5) is visible.

Fig. 9 shows the result: Tubes with strong specular highlights,

like the red tube to the right, stand out in the image, and

indicate strong (important) matches. Diffusely shaded or half-

transparent tubes attract less attention, which is in line with

them being weak (unimportant) matches. For example, we

see that all tubes that diagonally cross the image are both

thin and half-transparent. This tells that the two compared

traces are quite similar, the differences being relatively short-

lived call stacks (thin tubes) which are permuted between

the two traces (crossing tubes) and which are not strongly

similar (transparent tubes). Encoding the similarity in specular

highlights and transparency has the advantage that we still can

use hue for showing other attributes, as described earlier.

E. Interaction

Both traces in the match view can be interactively zoomed

and horizontally panned (see Fig. 10 a and b respectively).

Also, clicking on a call stack in a trace automatically aligns it

with all matched groups in the other trace. This helps bringing

into focus matched sequences in the two traces.

strong
similarity

weak
similarity

Fig. 9. Depicting match similarity.

Brushing with the mouse over a call stack restricts color

mapping (Sec. IV-D) to matches contained in groups rooted

in that stack. All other matches are drawn in gray. This helps

focusing the analysis on specific match groups.

The bundling parameters can be adjusted to obtain several

effects: Tube thickness λ ∈ [0,1] (Eqn. 5) can be set to create

thinner tubes (with less occlusions, Fig. 10 c) or thicker tubes

(which better show call nesting, Fig. 10 d). The thickness

of the band B (Sec. IV-B) can be set to create shallower

bundle control trees (which help following the main bundles,

Fig. 10 e) or taller control trees (which help seeing where the

tubes connect to the icicle plots, Fig. 10 f).

V. APPLICATIONS

We describe the usage of TRACEDIFF for the analysis of a

large trace-pair – approx. 150.000 calls and 1.500 function def-

initions. The two traces were recorded while an instrumented

open-source C# IDE (approx. 1 MLOC, 45 contributers, 8

years of development) loads two different solution files, i.e.,

varying input data. As we are running the same code twice,

we expect to see strong overall correlation across the two

traces. Figs. 11 a,b show a completely zoomed-out view of the

compared traces. As we can see from the overview window,

trace 1 (Figs. 11 c,d top) takes roughly a third of the execution

time of trace 2 (Figs. 11 c,d bottom). Our questions are: Since

these traces have significantly different lengths, do important

similarities in the recorded executions yet exist? Where are

these similarities, and which parts are different?

In the correlation view (Figs. 11 a,b), we see that icicle-plot

shapes for the two traces differ a lot. Hence, the two traces

encode quite different dynamics in terms of call lengths and

stack depth. Further inspection of the overview shows that

trace 1 contains matches to trace 2 only within its first two-

thirds (blue bars, overview top), while trace 2 contains matches

over its full extent (blue bars, overview bottom). This is our

first hint that the traces contain similar execution patterns.

Next, we want more insight into these patterns. For this, we

focus on the first two-thirds of trace 1 and on the entire trace 2.

When we look at the match view, we see that there exist
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Fig. 8. Finding trace-centric outliers with respect to the bottom trace (left) and the top trace (right)

c) thin bundles (λ=0.05)

d) thick bundles (λ=0.7)

e) shallow control trees

f ) tall control trees

a) zoomed-out and aligned bundle

b) zoomed-in and non-aligned bundle

Fig. 10. Bundling parameters. The resulting bundle shapes are stable and readable for various zoom, pan, and tube shape values.

quite a number of execution similarities. At the coarsest level,

we identify five match groups (A − E). Three such groups

(C,D,E) account for relatively short-duration sequences. The

remaining two groups (A,B) account, together, for over 50%

of the execution. Also, we discover that there are no matches

between the begin and end phases of the two traces. We next

use the permutation colormap (Fig. 11 c) to examine groups A

and B, and quickly see several saturated red lines appearing:

These are matched execution fragments that occur at different

moments in their respective match groups. In group A, we see

that the first phase of trace 1 (small bundle A′) matches very

well the last phase of trace 2 – the executed pattern has been

shifted between the two traces. In group B, we find a more

complex pattern: the first phase of trace 2 matches a large

interval of trace 1 – the red lines in group B are concentrated

at the bottom but fan-out at the top. Hence, the first phase of

trace 2 has been spread over the whole execution of trace 1.

To learn more about the discovered matches, we now apply

the trace-centric color mapping (Fig. 11 d), and move the

mouse into trace 2. If we look at the color gradient in group

A (trace 2), we spot several outliers (permutations) of the

standard blue-to-red colormap (white markers, Fig. 11 d).

These are functions that are called relatively earlier (blue lines)

or relatively later (red lines) in trace 1. To see where these

calls match in trace 1, we can visually follow the line colors

from bottom to top. This outlines a second usage of our color

mapping: Besides identifying time-shift outliers, colors help in

following correspondences between the two traces. In contrast,

the color gradient in group B (trace 2) does not show such

interruptions of the rainbow pattern, which smoothly goes

from blue (left) to red (right). Hence, the matches in group

B indicate that the execution order between the two traces is

preserved. A second difference between groups A and B is

visible: At the right of A, we see a shiny orange tube (T ,

Fig. 11 d). This indicates that the last part of the sequences

described by group A has a very strong similarity. We see no

such shiny tubes in group B. This shows that the execution of

A contains much stronger similarities than the execution of B.
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Finally, if we look at the last part of the matched sequences in

group B (red lines), we see that these lines have a large vertical

spread, both in trace 1 and 2 (dotted markers, Fig. 11 d).

Hence, the last parts of these matched sequences occur over a

short period of time (narrow red bundle) and deep call stack

(large vertical spread). The entire analysis described above

took around five minutes.

Finally, we note the added value of aggregating small-

duration calls (Sec. IV-B): In Fig. 11, such calls are indicated

by the relatively large pink rectangles. As we can see, there

are several such tall rectangles, which have around 30% of

the height of the match view. If we did not perform the

call aggregation, there would be very little, if any, vertical

space between the two traces in which to draw the bundles,

and this would lead to an unreadable match visualization.

Our aggregation and subsequent modified HEB layout creates

sufficient vertical space for the bundle visualization.

VI. DISCUSSION

Generality: The correspondence visualization, though demon-

strated on traces, works for any hierarchical sequence compar-

ison for which match data is available. The matches are not

restricted in any way, i.e., they can be many-to-many matches

on any level in the hierarchy.

Visual scalability: An enhanced HEB technique eliminates the

visual artifacts created by the original HEB. By combining this

with a multiscale correspondence visualization, we can encode

additional attributes in the correspondences, such as the width

of matched elements. All in all, this lets us visually compare

hundreds of thousands of calls in two traces at interactive rates.

Ease of use: The interaction techniques allow for easy user

input; to explore the underlying trace and match data, users

only need to learn how to point, click, zoom and pan. Brushing

techniques implicitly translate point actions into selections

both on the call stacks and the correspondence visualization.

Flexibility: By these inputs, users can easily adjust the an-

alyzed subset of the data and adjust level of detail. The

multiscale correspondence visualization automatically adapts

to the selected level of detail. The color mappings address

specific questions in the given context of trace comparison.

Limitations: While our visual design is definitely more scal-

able than those of other techniques, such as HEB or Code-

Flows, it will as well create clutter for very large hierarchical

sequences and numerous many-to-many matches.

VII. CONCLUSIONS

We have presented TRACEDIFF, a visual tool that pro-

poses several novel interactive visualization techniques for

the analysis of the similarity of large execution traces. We

address visual scalability and readability by introducing a

modified hierarchical edge bundling layout and icicle plot node

aggregation. We extend edge bundles to shaded tube bundles

in order to visualize the time-extents of execution patterns,

and also explain execution matches by multiscale nesting.

We use attribute mapping to colors and highlights to further

add similarity information and also assist finding execution

permutations and time shifts. We demonstrate our techniques

on the analysis of a large execution trace.

Further work will address different designs for the tube bun-

dles to encode additional attributes. Also, given the high visual

scalability of our approach, we plan to extend its application

to the visual comparison of multiple execution traces and of

traces from different program versions or different programs.
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