
Extending Recommendation Systems with Software Maps

Jonas Trümper Jürgen Döllner
Hasso-Plattner-Institute – University of Potsdam, Germany
{jonas.truemper|juergen.doellner}@hpi.uni-potsdam.de

Abstract—In practice, recommendation systems have evolved
as helpful tools to facilitate and optimize software engineering
processes. Serving both developers and managers, specific
recommendation systems address their individual problems.
Yet, in a number of cases complementing them with other
techniques can enhance their use and extend their scope. In
this paper, we first discuss different perspectives on software-
engineering processes and examples of recommendation sys-
tems that support representatives of these perspectives. We then
identify how select software-map techniques can extend recom-
mendation systems to facilitate decision making by addressing
the perspectives’ information and communication needs.

Keywords-Decision making; Context; Computer aided anal-
ysis; Visualization

I. INTRODUCTION

Today’s recommendation systems (RS) for software engi-
neering provide meaningful insights and valuable proposals
(e.g., a ranked result list) to their users [1]. Focusing on
various sub-domains in software engineering, their appli-
cation ranges from refactoring suggestions to a manager’s
dashboard, which, e.g., recommends postponing a product
release due to a potentially critical increase in bug count
close to the scheduled release date.

Nevertheless, a recommendation naturally implies the
crucial question whether one will follow the given proposal.
Besides insufficient trust in recommendations [2], it may
simply be necessary for users to either understand why
a recommendation resulted or – despite a sophisticated
recommendation system – to check plausibility of a proposal
and its applicability to their current working context. So,
evaluation can be conducted along many dimensions and
can require additional context information to decide whether
to follow a given recommendation. That is, such decision-
making process finally transforms a machine-made proposal
into a man-made decision.

Moreover, an RS may trigger communication between
stakeholders in a software-engineering project to achieve a
multi-person decision. An RS, however, typically does not
provide a suitable means to communicate about the respec-
tive topic, which also is not its purpose. For instance, if an
RS indicates to a manager that code quality is decreasing and
poses a long-term risk, software architects and developers
ultimately have to explain whether that indication is true and
eventually convince the manager of their planned solution
to this issue.

Figure 1. Treemap of a system’s static structure (courtesy of Bohnet
and Döllner [3]) showing per-file outliers in max. function complexity (→
height), lines of code (→ size), and max. nesting level (→ color).

Software maps provide a powerful supportive means in
these cases to either serve information needs or to bridge
communication gaps. We use the term ‘software maps’
for visual techniques that combine thematic information
about software development processes (evolution), software
quality, structure, and dynamics and display that information
in a cartographic manner. Software maps can be used to
check upcoming decisions for plausibility (is a decision
for a specific alternative reasonable or are there arguments
against it?) and to determine whether decisions are overdue
(do any facts indicate that a decision should have been
made already?). For instance, in Fig. 1 a hierarchical system
structure is depicted by nested blocks and multiple software
quality attributes are combined as distinct visual attributes.
By this, the software map allows for reasoning about po-
tential code quality per module and whether a decision to
restructure the most monolithic and complex code entity
(large yellow block) should have been made already.

In this paper, we first briefly review different perspectives
on software-engineering processes and how they typically
relate to each other with respect to communication needs
and topics. The main contribution of this paper includes a
discussion of selected recommendation systems that aim at
supporting representatives of identified perspectives and a
proposal how software-map techniques can help making de-
cisions based on the respective system’s recommendations.

II. KEY PERSPECTIVES, INFORMATION NEEDS,
AND COMMUNICATION NEEDS

In many larger software development projects, there are
a number of key perspectives on the underlying process and
its deliverables that exist regardless of the methodology used

1

Management perspective

Software engineering

process

Quality perspective

Architecture perspective Code perspective

2

3 4

Figure 2. Typical perspectives in larger software engineering projects.
Links between perspectives represent communication channels.

for software development. First, these perspectives differ in
terms of abstraction level and, second, in information needs
and communication needs. Software engineering generally
does not focus on such interconnected view on these per-
spectives and their needs. Thus, we provide a discussion
of three of these perspectives (management, quality and
architecture) based on observations that we made in large
industrial software projects. In the remainder, existence of a
need is encoded by X and satisfaction of a need by X .

The management perspective (1 in Fig. 2): Personnel
in this perspective are responsible for ongoing work and
future directions, and ultimately decide on resources. They
are typically non-technical staff and thus it is essential for
them to get condensed, high-level information as overview
of the situation (M1). However, during subsequent decision-
making processes, they may need on-demand access to addi-
tional, detailed information (M2). Some of this information
can be retrieved from update-to-date fact sheets of projects
(M3). In all remaining cases, personnel in this perspective
also communicate with other representatives of the man-
agement perspective as well as the quality perspective and
the architectural perspective (M4). A representation of the
subject information under discussion that is understood by
all participating personnel is essential then (M5).

The quality perspective’s (2 in Fig. 2) main objective
is to balance internal software quality (e.g., maintainable
code) and external software quality (functionality visible
to customers). With respect to external software quality,
requirements, their representation as tests, and their real-
ization are important subjects when representatives of this
perspective communicate with personnel in the management
perspective. In addition, they need to constantly determine
how well each sub module’s functionality is secured by tests
and where to invest future testing effort (Q1). For managing
internal software quality, up-to-date information on system
structure (Q2), on internal structure of modules (Q3), and
assessments of maintainability and change impact (Q4) are
important factors [4].

Table I
NEEDS OVERVIEW PER PERSPECTIVE.

Perspective Id Need description

Management
M1 Condensed, high-level information
M2 On-demand context information
M3 Up-to-date overview fact-sheets
M4 Discuss with other perspectives
M5 Representation understood by all parties

Quality
Q1 Info. on where to invest testing effort
Q2 Up-to-date system structure
Q3 Up-to-date internal module structure
Q4 Info. on maintainability and change impact

Architecture
A1 Up-to-date system structure
A2 Up-to-date information on development activity
A3 Multi-level representation of the system or facts
A4 Restructuring possibilities
A5 Change impact assessments
A6 Change effort assessments

The architecture perspective (3 in Fig. 2): These personnel
are in charge of a system’s architecture and coordinate
development efforts, so they need to be aware of a system’s
entire structure (A1) and current development activity (A2).
In addition, working out how to meet user requirements with
a software-based solution to implement the ‘big picture’ [5],
they are in contact with both the management perspective
as well as the code perspective. Therefore, they constantly
need to translate between both worlds, which in turn requires
suitable multi-level representations of systems (A3). Further,
their main concerns on a system-wide scope include (future)
maintainability and longterm risks. Essential methods in this
context include refactoring and restructuring. Both require
information on how a system’s structure can be changed
(A4), potential change impact [6] (A5), and change effort
(A6).

A. Summary

By analogy with individual viewing angles in Fig. 2, each
perspective has its own view and abstraction of a software
engineering process. This reflects in different requirements
with respect to needed information and information to be
communicated (Table I). As general rule, the more abstract
a perspective’s view on software-engineering processes, the
more multi-dimensional and holistic (i.e., ‘strategic’) are its
information and communication needs. On the contrary, the
more detailed the view of a perspective is, the more concrete
and analytical (i.e., ‘technical’) are its needs.

III. SOFTWARE MAPS AND
RECOMMENDATION TECHNIQUES

Recommendation techniques operate on different levels of
abstraction in software engineering, including management-
level, quality-level and architecture-level. We examine repre-
sentatives of these three levels that address identified needs.
Due to space restrictions, we only discuss a few prominent
examples. We then discuss where software maps can be
used to facilitate decision-making based on these techniques’
recommendations.

A. Techniques: Management Perspective

Techniques for predicting maintenance effort [7, 8] are
typically used by management personnel and provide in-
dications for problematic situations in projects (M1). Yet,
important context information is typically omitted, but is
often essential to find out whether such indicated problem
is really to be considered as severe. For instance, if an
RS demands for action due to a significant increase in
reported bugs, this does not automatically imply that external
software quality has dropped. This increase can as well be
due to increased test coverage in areas that were sparsely
tested before, but of which management personnel was not
aware. Resulting needs thus include an overview of other
indicators (M3), exploration techniques to identify possible
correlations between these indicators (M2) and suitable rep-
resentations (M5, A3) that management personnel can use
in discussions with personnel in the perspectives architecture
and quality (M4).

Treemaps [3], as an overview visualization, allow for
mapping multiple attributes to hierarchical structures such
as a system’s static structure or even a system’s landscape
composed of many software systems (M2, M5, A3). Ex-
ploring correlations between multiple dimensions, such as
aforementioned bug count and test coverage or development
activity (A2), then helps discussing (M4) and understanding
the real causes of recommendations, and thereby supports
deciding whether to follow recommendations.

Pereira et al. [9] present an approach to recommend
locality-oriented team allocation schemes based on teams’
communication requirements, which focuses on software
team allocation at global scope (M1). Communication
requirements are derived from module dependencies that
teams are assigned to. In particular, when faced with al-
ternative solutions exposing only subtle differences, in-depth
analysis of communication requirements with representatives
of the architecture perspective is inevitable to form a deci-
sion (M2, M4, M5).

Circular Bundleviews [10] (Fig. 3) provide a means to
address these needs by enabling analysis of aforementioned
dependencies (i.e., communication requirements) in detail
(M2): Hierarchy is mapped to concentric rings, where each
hierarchy level is represented by a ring, subdivided into the
number of elements at that level. The circle in between these
rings is then used to depict other relationships in a bundled
manner, which emphasizes hierarchical containment and
similar relationships. By this, the number of crossings and
resulting visual clutter is largely reduced and relationships
to modules with the same parent hierarchy are visually close
together. Relationships that cross module boarders – and are
thus likely to require cross-team communication – can be
clearly discerned from those that stay local within a team’s
module, which transforms the puzzling technical problem
(identify dependencies requiring communication) to a clear

Figure 3. A circular bundleview that depicts hierarchical structure as
concentric rings and bundles relationships between nodes in the center
(courtesy of Holten [10]).

indicator for all parties (M4, M5). Further, non-optimal
team allocation in existing projects can be identified, i.e.,
the map helps find out whether a decision to optimize team
allocation should have been made already.

B. Techniques: Quality Perspective

To set test emphasis (Q1), a prioritization of system mod-
ules to test is needed that essentially encodes their criticality.
A general approach to this problem is to determine a ranking
of complex and frequently changed modules [11]. While
these criteria allow for providing a helpful pre-selection, a
more fine-grained examination of respective modules will
typically follow. For example, locality of relationships plays
a role in criticality (Q2, Q3), i.e., the chance of a module to
cause a system failure correlates with the number of other
modules that depend on its correct behavior.

For this RSs, various software-maps can be used for
different levels of structural analysis. At high detail level,
DependencyViewer [12] depicts UML-like compound graphs
at package or class level (Java systems) (Q3). For larger
structures, circular bundleviews can be helpful: They vi-
sually distinguish rather local relationships (e.g., two sub-
modules of the same parent) from non-local relationships
through their hierarchical relationship bundling and remain
useful even with thousands of relationships (Q2).

Approaches to help maintain code correctness and to sup-
port maintainability (Q4) include assistance for API usage
[13, 14, 15] and recommendations for changing the invoca-
tion context of a method call to reflect the contexts of most
other calls to this method [16]. Both scenarios can involve
quite complex recommendations, especially in the context
of parallel execution which complicates understanding and
debugging processes, because there is no direct mapping
of source code to runtime behavior. For instance, to decide
whether a proposal to change a method invocation context is
applicable to a specific piece of code, the proposed context
changes and their impact on program behavior have to be
understood beforehand [4] (Q2, Q3, Q4). To support this,
call graphs [17] or call timelines [18] can be exploited during

proposal. They can provide a visual representation of pro-
posed changes by interleaving current code context with pro-
posed context and highlighting differences and can be used
as representation to discuss change impact (Q2, Q3, Q4).

C. Techniques: Architecture Perspective

Hummel et al. [19] present a system that primarily aids
architecture personnel both during the design phase of
software systems and during later restructuring measures.
It recommends similar (object-oriented) designs found in
open-source repositories by matching ‘footprints’ of respec-
tive classes (class name and methods) (A4). Based on the
assumptions that self-explaining class names and methods
enable us to conclude implemented functionality, this is
certainly a well-usable initial selection criterion. Applying a
proposed design, however, also implies accepting its associ-
ated maintenance effort, with all its benefits and weaknesses.
Hence, users likely need to conduct a careful analysis –
such as which relationships exist between classes (usage,
inheritance, etc.) – before applying any third-party design
(A5, A6).

Augmented user interfaces of development environments
help identifying refactoring opportunities based on code
smells [20, 21] (A4). Each refactoring suggestion is ex-
plained to show the reasoning behind. However, the more
complex the subject code is, the more complex it is to
envision what a refactored solution will look like and what
change impact is implied (A5, A6).

For both RSs, circular bundleviews as interactive tool can
be applied to conduct what-if analyses on software-system
structures [22] (A1, A4, A6). They can also be used during
collaborative decision processes involving multiple develop-
ers to decide upon multiple refactoring options by virtually
editing such structures and supporting visual exploration
of implied change impact (A5) and development activities
(A2).

In a similar manner, a technique for comparing multi-
dimensional relationships between nodes uses linearized
two-dimensional plots [23]. In such plot, each dimension
of links is ‘rolled out’ next to previous ones (Fig. 4). Nodes
and their hierarchy are always aligned along the vertical axis
(A1), links along the horizontal axis. By that, correlations
between analyzed relationship dimensions can be identified
by similar or repeating patterns on the horizontal axis (A3):
For instance, this can be used to concurrently analyze
selected relationships of modules before and after a proposed
refactoring (A5).

D. Software Maps: Fitness for Purpose

Different software map techniques fit different levels of
abstraction, tasks and communication (Table II). Treemap
and circular bundleview can be used for high-level, holistic
depiction of complex structures. So they serve well as
communication means for various perspectives in software

Figure 4. A software map depicting multi-dimensional relationships
between entities (courtesy of Beck et al. [23]).

Table II
FITNESS FOR PURPOSE OF DISCUSSED SOFTWARE MAPS.

Technique Compre-
hensibility

Strategic Technical Addressed
needs

Treemap • • • • • •
M2, M4,
M5, A3,

A2

Circ. Bundleview • • • • • • •
M2, M4,
M5, A2,

A4, A5, A6
Multi-Dim Plot •• • •• A1, A3, A5

Call Graph • • •• Q3, Q4
Dep. Viewer • • • • Q2, Q3

Call Timeline • • • • Q3, Q4

engineering processes and can also be understood by non-
technical staff for strategic purposes. The bundleview’s
edge-grouping technique further reduces complexity when
displaying large sets of relationships. On the contrary, high-
detail depictions, such as UML graphs and call timelines,
focus on specific properties of software-engineering data.
Thus, they work particularly well for in-depth analysis of
that data. But in turn, they are typically less intuitive for
non-technical staff and mostly work for discussions among
technical staff.

IV. RELATED WORK

Teyseyre and Campo [24] provide a broad overview of
three-dimensional tools and techniques for software visual-
ization and examine potential application domains of these
techniques. Their evaluation focuses on three-dimensional
techniques, leaving aside important two-dimensional one.
Roman and Cox [25], Petre et al. [26], and Maletic et al.
[27] categorize a number of software visualization tools by
several criteria, including supported tasks and audience. In
contrast, they do not evaluate how the tools can be useful
with respect to both the important collaborative aspects
as well as decision-making processes inherent to software
engineering projects.

V. CONCLUSIONS

We have presented an overview of perspectives on soft-
ware engineering processes that we observed during visits to
industry partners. For each perspective, we identified com-
munication and information needs, derived from its respon-
sibility and typical communication links. We subsequently

examined a number of existing recommendation systems that
support activities performed by personnel representing these
perspectives. Identified decision-making processes were then
used to discuss how these processes can be further assisted
by means of different software maps.

A key benefit of this extension to recommendation sys-
tems is that software maps provide a complementary picture
of underlying software engineering data and processes. Be-
sides our arguments, the real usefulness of software maps
as extensions to recommendation systems yet remains to be
proven by installing them in software engineering projects
and conducting empirical validation. Nevertheless, we feel
confident that their benefits will convince future users.

REFERENCES

[1] M. Robillard, R. Walker, and T. Zimmermann, “Rec-
ommendation systems for software engineering,” IEEE
Softw., vol. 27, pp. 80–86, 2010.

[2] G. C. Murphy and E. Murphy-Hill, “What is trust in
a recommender for software development?” in Proc.
RSSE. ACM, 2010, pp. 57–58.

[3] J. Bohnet and J. Döllner, “Monitoring code quality and
development activity by software maps,” in Proc. MTD.
IEEE, 2011, pp. 9–16.

[4] A. J. Ko, R. DeLine, and G. Venolia, “Information
needs in collocated software development teams,” in
Proc. ICSE. IEEE, 2007, pp. 344–353.

[5] P. Kruchten, The Rational Unified Process: An Intro-
duction. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2003.

[6] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: A study of developer work habits,” in
Proc. ICSE, 2006, pp. 492–501.

[7] S. Henry and S. Wake, “Predicting maintainability with
software quality metrics,” J SOFTW MAINT RE-PR,
vol. 3, no. 3, pp. 129–143, 1991.

[8] J. H. Hayes, S. C. Patel, and L. Zhao, “A metrics-based
software maintenance effort model,” in Proc. CSMR.
IEEE, 2004, pp. 254–258.

[9] T. A. B. Pereira, V. S. dos Santos, B. L. Ribeiro,
and G. Elias, “A recommendation framework for allo-
cating global software teams in software product line
projects,” in Proc. RSSE. ACM, 2010, pp. 36–40.

[10] D. Holten, “Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data,” IEEE TVCG,
vol. 12, pp. 741–748, 2006.

[11] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol,
“Not all classes are created equal: toward a recom-
mendation system for focusing testing,” in Proc. RSSE.
ACM, 2008, pp. 6–10.

[12] M. Wilhelm and S. Diehl, “Dependency viewer - a
tool for visualizing package design quality metrics,”
in Proc. VISSOFT. IEEE, 2005, pp. 34–35.

[13] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Rec-
ommending source code examples via api call usages
and documentation,” in Proc. RSSE. ACM, 2010, pp.
21–25.

[14] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das,
“Perracotta: mining temporal api rules from imperfect
traces,” in Proc. ICSE. ACM, 2006, pp. 282–291.

[15] T. Xie and J. Pei, “Mapo: mining api usages from open
source repositories,” in Proc. MSR. ACM, 2006, pp.
54–57.

[16] B. Fluri, J. Zuberbühler, and H. C. Gall, “Recommend-
ing method invocation context changes,” in Proc. RSSE.
ACM, 2008, pp. 1–5.

[17] J. Bohnet, S. Voigt, and J. Döllner, “Locating and
understanding features of complex software systems by
synchronizing time-, collaboration- and code-focused
views on execution traces,” in Proc. ICPC. IEEE,
2008, pp. 268–271.

[18] J. Trümper, J. Bohnet, and J. Döllner, “Understanding
complex multithreaded software systems by using trace
visualization,” in Proc. SOFTVIS. ACM, 2010, pp.
133–142.

[19] O. Hummel, W. Janjic, and C. Atkinson, “Proposing
software design recommendations based on component
interface intersecting,” in Proc. RSSE. ACM, 2010,
pp. 64–68.

[20] E. Murphy-Hill and A. P. Black, “An interactive ambi-
ent visualization for code smells,” in Proc. SOFTVIS.
ACM, 2010, pp. 5–14.

[21] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactor-
ing suggestions based on historical volatility,” in Proc.
CSMR. IEEE, 2011, pp. 25–34.

[22] M. Beck, J. Trümper, and J. Döllner, “A visual analysis
and design tool for planning software reengineerings,”
in Proc. VISSOFT. IEEE, 2011, pp. 54–61.

[23] F. Beck, R. Petkov, and S. Diehl, “Visually exploring
multi-dimensional code couplings,” in Proc. VISSOFT.
IEEE, Sep. 2011, pp. 1–8.

[24] A. R. Teyseyre and M. R. Campo, “An overview of
3d software visualization,” IEEE TVCG, vol. 15, pp.
87–105, 2009.

[25] G.-C. Roman and K. C. Cox, “A taxonomy of program
visualization systems,” IEEE Computer, vol. 26, no. 12,
pp. 11–24, 1993.

[26] M. Petre, A. F. Blackwell, and T. R. Green, Software
Visualization - Programming as a Multimedia Experi-
ence. MIT Press, 1998, ch. Cognitive Questions in
Software Visualisation, pp. 453–480.

[27] J. I. Maletic, A. Marcus, and M. L. Collard, “A
task oriented view of software visualization,” in Proc.
VISSOFT. IEEE, 2002, pp. 32–40.

This is a preprint version of the paper. The official print version can be obtained from the IEEE
Computer Society. When citing the paper, please use the following BibTeX entry:

@inproceedings{TD2012,
author = { Jonas Trümper and Jürgen Döllner },
title = { Extending Recommendation Systems with Software Maps },
booktitle = { Proceedings of the 3rd International ICSE Workshop on
Recommendation Systems for Software (RSSE) },
year = { 2012 },
publisher = { IEEE Computer Society }
}

