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Abstract—Maintenance of embedded software systems is
faced with multiple challenges, including the exploration and
analysis of the actual system’s runtime behavior. As a funda-
mental technique, tracing can be used to capture data about
runtime behavior as a whole, and represents one of the few
methods to observe and record data about embedded systems
within their production environments.

In this paper we present a software-based, function-
boundary tracing approach for embedded software systems.
It uses static binary instrumentation, which implies only
lightweight memory and performance overheads. To further
reduce these overheads, instrumentation can be configured per
trace, i.e., activated only for a specified group of functions
without having to recompile the system. The technique can be
characterized by its robust implementation and its versatile
usage. It is complemented by a visualization framework that
allows for analysis and exploration of a system’s runtime
behavior, e.g., to examine thread interaction. To show the
technique’s applicability, we conclude with a case study that
has been applied to an industrial embedded software system.

I. INTRODUCTION

Software maintenance is known to be a major factor
for costs in development of complex software systems [1],
[2]. Therein, a large amount of effort is spent for program
comprehension [3], [4] due to the size of a system’s im-
plementation and software aging [1]. With rapid growth
and widespread use of embedded systems', there is also
a growing demand for specialized techniques and tools
supporting maintenance of these systems.

One reason for this demand is that program comprehen-
sion of embedded systems is faced with further problems
compared to comprehension of general-purpose systems.
Most important, means for observing the runtime behav-
ior are severely limited. Traditional debuggers only yield
snapshots of a system’s state, i.e., they do not capture
data about its runtime behavior as a whole and require a
hardware interface to be present. Moreover, gathering this
data typically requires halting a system’s execution, thereby
significantly altering its timing behavior [5], which is re-
ferred to as the probe effect [6]. Supplementary techniques
such as, simulators or special hardware for obtaining data
on a system’s behavior, are often not applicable. Simulators,

'In contrast to general-purpose systems, embedded systems are designed
to accomplish a specific task.

for instance, may fail due to missing simulation drivers for
sensors or actors. Profilers and static checkers (e.g., Lint [7])
provide only aggregated data, which are of limited use for
detailed analysis of runtime behavior. Manual workarounds,
such as debug log output [8], are tedious and mostly prone
to the probe effect. Another downside is that a complete
cycle of building, linking and transferring the software to
the target system is involved for reconfiguring log output.

Tracing, which allows for recording a system’s runtime
behavior, can be applied to overcome the described situation
(1 and 2 in Fig. 1). However, analysis of resulting trace
data is typically non-trivial due to their sheer size [9].
Visual analysis of trace data provides a means to cope
with massive data and supports maintenance tasks such
as program comprehension [9], debugging [10], and per-
formance optimization [11] (3 and 4 in Fig. 1). Yet, for
embedded systems, tracing facilities based on additional
hardware, e.g., an Embedded Trace Macro Cell (ETM Cell)
or an In Circuit Emulator (ICE), are not provided for each
processor and are typically very expensive. Software-based
tracing techniques exist for general-purpose systems [12]-
[15], but we identified a lack of versatile and cost-efficient
solutions for embedded systems. Hence, a suitable tracing
technique for these systems allows for bridging the gap,
i.e., facilitate debugging and program comprehension of
embedded systems using existing visual analysis techniques.
Furthermore, the risk of encountering probe effects can be
lowered if systems can be designed with the permanent
injection of probes in mind [16]. Such instrumented software
could also be delivered to customers if the resulting overhead
of the instrumentation is low [16].

The main contributions of this paper are: (1) A concept for
tracing and visualizing the runtime behavior of embedded
systems. The proposed software-based tracing technique
records functionz—boundary traces (function entry, function
exit events) and does not require a debug interface to be
present. (2) We demonstrate the concept’s feasibility by a
prototype implementation that supports tracing of embedded
single-threaded and multithreaded C/C++ software systems.
(3) We show its usage and benefits by a conducted case

2The term function is used interchangeably with the terms method,
procedure, routine, etc.



study on an embedded software system (1.7 million lines of
code) of an industrial partner.

II. RELATED WORK

Software-based tracing techniques that are suitable for
embedded systems use static binary instrumentation (be-
fore runtime) or dynamic binary instrumentation (at run-
time). Existing representatives of the former, however, either
suffer from limited applicability by using a custom pre-
compiler [17], [18] to implement source-to-source transfor-
mations, drastically increase a binary’s size [14] or rely on
modifications to the operating system’s source code [19] and
typically require rebuilding the binary (or operating system)
for any adjustments to the instrumentation.

Techniques using dynamic binary instrumentation embed
code into the binary at runtime [20]. By contrast, dynamic
binary instrumentation typically results in significant run-
time overhead due to just-in-time recompilation. Substantial
space overhead is added by code cache(s) for instrumented
portions of the original code. Alternatively, callbacks of the
operating system [16] can be used to monitor interrupts
and scheduling events. This technique, though, faces strict
limitations with respect to measuring performance of specific
functionality or capturing function-boundary traces.

Orthogonal approaches aim at computing an instrumen-
tation scheme that ensures low runtime overhead [21],
[22]. These mechanisms could be used to simplify selective
instrumentation with our instrumentation concept. Similarly,
sampling can be used [18] to keep runtime overhead low.
That, however, looses precision and may miss executions
of functions of specific interest in debugging scenarios.
Other approaches aim to bring reproducibility to cyclic
debugging using interrupt checksums [23], but still require
cyclic debugging.

Hybrid hardware-/software-based and purely hardware-
based techniques differ fundamentally from our technique
by requiring hardware support. Hybrid solutions can use
re-programmable microcodes of processors [24] to trigger
tracing functionality whenever such a re-programmed mi-
crocode is executed. An industrial hybrid tracing-technique
is distributed by Rapita Systems>.

Pure hardware-based solutions for performance optimiza-
tion include instruction counters [25] or signal analysis
techniques [26]. In addition, record/replay techniques allow
for reproducible cyclic debugging [27]-[29]. Yet, besides
overcoming the problem of non-deterministic behavior, these
approaches have the same shortcomings as traditional debug-
gers. Techniques that are able to record function-boundary
traces similar to our approach make use of new processor
generations containing an embedded ICE [30] or the ARM
CoreSight [31] as an enhanced ARM processor architecture
that comprises an embedded macro cell specifically designed
for tracing purposes.

3http://rapitasystems.com/products/RTBx/, last accessed 04/02/2011
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Figure 1. Example of how tracing can facilitate software-maintenance
tasks: (1) Instrumentation, (2) trace recording at runtime, (3) visual analysis
of trace data — developers gaining insights, (4) applying necessary changes
to software artifacts.

III. EMBEDDED SYSTEMS: REQUIREMENTS FOR
SOFTWARE-BASED TRACING CONCEPTS

Application domains of embedded systems typically ex-
hibit fundamental differences to those of general-purpose
systems that directly influence feasibility of tracing concepts.
We identified the following requirements to be considered
by software-based tracing concepts for embedded systems.

R1) Cope with Strictly Limited Resources: Embedded
systems typically run on strictly limited resources compared
to general-purpose systems, which includes the amount of
available memory. Consequently, a tracing technique for
embedded systems should try to minimize the memory
overhead. This includes the tracing logic’s binary size, its
working memory and memory needed to store runtime
events. Obviously, it should lead to minimal processing
overhead as well.

R2) Run in the Same Process: In the context of embedded
systems, process management may not be supported by
the hardware or the operating system. To guarantee a high
applicability of a tracing concept, it should be able to run
in the same process as the instrumented software.

R3) Cope with Limited System Connectivity: Although
most currently available processors for embedded systems
feature a debug interface, it cannot be assumed that (a)
the debug interface has sufficient bandwidth for real-time
interaction with a probe, or (b) that the target system is
connected via another interface with sufficient bandwidth.
Hence, trace data likely cannot be retrieved from the em-
bedded system at runtime. Further, to be applicable in
production environments, the tracing concept should be able
to obtain information on a system’s behavior without an
external interface being permanently present.

R4) Be Independent of a Specific Operating System Fam-
ily: There is a wide variety of operating system families
for embedded systems. To guarantee wide applicability, the
concept should not depend on the availability of a specific
operating system family.
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Figure 2. Software-based tracing concept for embedded systems.
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Figure 3. Control flow within the instrumented target system: Original
control flow (dashed arrows), control flow redirected by hooks (solid
arrows).

IV. TRACING CONCEPT FOR EMBEDDED SYSTEMS

Our concept combines a number of techniques to fulfill
the mentioned requirements. The concept addresses three
phases of the analyzed system: Compilation, execution and
post-runtime (Fig. 2).

Phase 1 - Instrumentation: Before the binary is executed,
a library that comprises tracing functionality is added. The
binary is modified to trigger the tracing library at specified
points in execution, e.g., during function entry or exit. For
that, a compiler functionality to redirect the given control
flow at each function entry [32] is exploited. If a specific
compiler switch is given, function bodies are compiled with
modified prologs. Therein, control flow is redirected by
a hook to a hook implementation that records trace data
(Fig. 3). This redirection functionality is supported by most
modern compilers, so our concept is at least applicable to
hardware platforms supported by these compilers.

The proposed tracing technique still records both function
entry and exit events by dynamically instrumenting function
exits, so that performance and timing analysis becomes
possible. The advantage of dynamically instrumenting exit
hooks is that it (a) enables tracing of function exit events on
compilers that exclusively support insertion of function entry
hooks, and (b) simplifies selective instrumentation, because

only entry hooks need to be disabled — replaced by NOP
instructions — for deactivating a function’s instrumentation.

In addition, developers can insert custom hooks into a
system’s source code to record user-defined events with
payload data, e.g., to mark entry/exit of critical sections in
recorded trace data. In contrast to common log output, these
events become an integral part of trace data, allowing for
their visual analysis and exploration.

To reduce runtime overhead and trace size, tracing tech-
niques for general-purpose systems may perform analysis of
the recorded trace data at runtime to automatically disable
tracing of specific functions. For instance, frequently exe-
cuted utility functions, e.g., string concatenation, typically
contribute to a large amount to a trace’s size, but not to a
better comprehensibility of the data [33]. Such approaches
permit to obtain lower performance overhead even with
costly tracing implementations: The performance overhead
is only added to costly, less frequently executed, functions
and thus results in a lower relative and therefore lower
absolute overhead. Similarly, trace compression [34] is a
means to reduce the size of recorded data.

Selective instrumentation at runtime, however, requires
that a system’s code can be modified externally using a
debugger interface or that a system has sufficient computa-
tional power available to perform the runtime analysis itself.
The latter requirement holds as well for trace compression.
Even more so, it is important to keep the amount of recorded
data low: (a) The size of the trace-data storage may be very
limited, (b) recording less data also means lower runtime
overhead, and (c) the tracing technique should not distort
analysis results and should be suitable for every-day use,
even for normal builds.

Thus, we shift selective instrumentation to the first phase
(1 in Fig. 2) by modifying the binary prior to its execution.
Although compilers typically provide means to selectively
instrument on a per-file basis, we have experienced that
this is too coarse-grained in practice: Applying selective
instrumentation per function is necessary to achieve suffi-
cient control over recorded trace data and, at the same time,
runtime overhead. Binary patching is used to disable instru-
mentation of all functions after compilation, resulting in a
modified copy of a linked executable file that is then loaded
and executed. This binary can be used for normal runs in
production environments, implying almost no performance
overhead. Instrumentation for a selected group of functions
can later be enabled again, allowing for reconfiguring the
instrumentation without recompiling the binary.

An input set of functions for selective instrumentation
can typically be gathered from developer knowledge. If not,
however, a similar approach to the aforementioned utility
function classification is possible: Based on measured exe-
cution frequencies, functions are iteratively de-selected from
instrumentation until sufficiently low overhead is achieved.
Other alternatives are existing approaches that compute an
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Figure 4. Return address manipulation at runtime. (1) Entry hook

implementation manipulates a stack frame of an instrumented function to
redirect the control flow to the exit hook implementation. (2) Exit hook
implementation manipulates its own stack frame to proceed with normal
execution.

optimal instrumentation [21], [22] prior to execution.

Phase 2 - Tracing: After instrumentation, the binary and
the tracing library are loaded into the target system and
executed. Instrumentation of function exits is performed
at runtime using return address manipulation. The entry
hook implementation manipulates the stack of the respective
thread at runtime so that an instrumented function does not
return to its original caller, but instead returns to a second
instrumentation function, the exit hook implementation (1
in Fig. 4). After the exit hook implementation finishes, it
returns the control flow to the original caller (2 in Fig. 4).
Both hook implementations use a shared data structure, the
shadow stack, for returning to the original control flow and
to recognize exceptions properly.

The application domain and execution environment of an
embedded system define available storage for trace data.
Thus, the concept must not rely on virtually unlimited
storage size and support relocation of storage depending on
the concrete embedded system to instrument (2 in Fig. 2).

Phase 3 - Analysis: Recorded trace data is analyzed of-
fline, i.e., after the system ran. Access to that data is possible
by transferring it from an embedded system to a general-
purpose system. Any means that support transferring arbi-
trary data are suitable, such as memory card, wired/wireless
network or a debug interface. Debug information is used to
reconstruct human-readable names from raw trace data.

V. CASE STUDY

We discuss a case study that we conducted on an industrial
embedded system: An electronic postage system [35]. The
multithreaded software system for its control unit consists of
approximately 1.7 million lines of code, with the majority in
C++ and some portions in C, and Assembler. It runs on an
ARM-based circuit-board and is compiled using the Green
Hills Software’s MULTI v4.2.4, which produces an ELF

binary. Express Logic’s ThreadX 5 serves as the operating
system. While development took about 2 years, maintenance
of the code base is ongoing for 3 years.

As part of a maintenance task involving performance op-
timization, developers had two technical questions regarding
comprehension of the system’s runtime behavior:

1) Is there any time-critical execution path of which
execution time in the current implementation is close
to violating its permitted execution time?

2) Which portions of the concerned code have significant
potential for further performance optimization?
Using log output to answer the first question turned out to
be troublesome. Running the system with a few added log
statements already caused a violation of a timing constraint.
Numerous time-intensive build-and-run cycles would have
been necessary to obtain a set of log statements that would
not violate any timing constraints and provide a reliable
answer. We thus applied the tracing technique by adding
custom events for marking time critical sections to: (a) The
start of a time critical action, (b) the end of this action and
(c) the point in execution where the action needs to be fin-
ished. Alternatively, it would also be possible to instrument
methods close to these points in execution to gather estimate
measurements without the need for recompilation, but we

decided to use custom events for simplicity.

With the tracing technique being lightweight, a trace was
recorded successfully. We identified the construction of the
print image, which is used for franking a letter, as a critical
path. The construction finished just in time before the image
was needed for printing it to a moving envelope that passes
the print head.

We asked expert developers of our industrial partner
which findings they expected for the second question with
respect to construction of the print image. They were aware
that synchronous communication with a security device
would consume a considerable share of the overall execution
time. However, since this procedure was already optimized
from two communication cycles down to a single cycle,
only minor performance improvement — at the expense of
maintainability — is possible. As it was further unclear
how much time was consumed by the remaining code, we
used the visualization framework to answer that question
and to verify the developers’ expectations. Functions were
selectively instrumented if developers considered them to be
relevant for the question and if they were not categorized as
utility functions (Section 1V).

The visual representation [36] of recorded trace data
allowed for identifying how functions are composed to
implement high-level tasks (a in Fig. 5). Based on this, with
the developers we were able to assess whether execution
time of a respective task was reasonable. We found that the
developers’ expectations regarding communication with the
security device was correct (b in Fig. 5). Complementarily,
we discovered that a large share of the remaining time for
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a) Visualization of a thread’s trace data captured during franking a letter. Stack grows from top to bottom, time progresses from left to right.

Left part, phase 1: Calculating postage data and communication with the security device. Right part, phase 2: Generating print image from postage data. b)
Detailed view on phase 1: Measuring execution cost (in xs) for communicating with the security device. c¢) Detailed view on phase 2: Measuring execution

cost (in ws) for updating date and time of the print image.

generating a print image is spent on updating the portion
that holds the current date (c in Fig. 5). A conclusion from
these findings is that the date element of the print image
is currently processed for each letter. This element can,
however, be pre-computed and cached. By that, a significant
reduction in execution time for each franked letter was
achieved.

VI. MEMORY AND PERFORMANCE OVERHEAD

We first show the lightweight memory and performance
overheads of our approach and further evaluate the compile-
time effort for re-configuring instrumentation.

A. Memory Overhead

Memory overhead is added by (1) stack frames for func-
tions of the tracing library, (2) per-thread shadow stacks,
and (3) the buffer for trace data. The binary representation
of the tracing library itself and required hooks add further
memory overheads. The latter two, however, are typically
insignificant compared to the size of the instrumented system
and will not be discussed in this paper.

Tracing techniques with hook implementations that are
active while an instrumented function is executed, add
memory overhead per stack frame. In contrast, our technique
adds only a constant overhead for each thread’s stack, since
our hook implementations are only active before and after
an instrumented function is executed.

Further, each per-thread shadow stack has a predefined,
fixed size. The number of instrumented functions on the
program stack may exceed this size, but the exit hook
implementation will not be executed in this case. Each
shadow stack element uses 12 bytes to store caller, callee,
and respective stack pointer, 4 bytes each.

A compact 21-byte data structure encodes each event to
keep space and runtime overheads low; lookup of function

names using debug symbols is done offline: In the trace
data, functions are referred to by their memory address.
Besides minimizing the size of recorded data, the speed
of recording is crucial. As others have shown [16], storing
trace data inside a circular RAM buffer is fast enough
for most embedded systems. We therefore chose the same
storage for the trace data. In the current implementation,
the instrumented system holds an extra 512 Kbytes for
the RAM buffer that stores the most recent 24,966 events

512x1024 bytes __
(22502t butes — 94, 966).

B. Performance Overhead and Selective Instrumentation

We measure the performance overhead of our tracing
library used in the case study (Section V) by comparing
the execution time (Fig. 6) of the following configurations:
(a) Original, (b) instrumented, but tracing disabled using
NOPs, (c) selectively instrumented 22% of all functions
(~24,500). Measurements using a fully instrumented binary
failed because timing constraints were violated, causing
security mechanisms of the system to halt execution. For
each configuration, execution time was measured 10 times.

Configuration c) shows an overhead of 18%, which is a
non-negligible slowdown — especially if a larger portion of
a system would be instrumented and executed. Yet, when
analyzing the recorded trace for execution frequencies of
functions (Fig. 7), a high peak for function 10 indicates
that performance overhead could be further reduced in
exchange for little loss of detail by disabling this single
function. In addition, during development of the prototype
implementation, our focus was mainly on feasibility. Thus,
we see potential for further performance improvements
using inlining, less copy operations etc. More importantly,
execution with deactivated tracing causes an overhead of
merely 2%. Hence, such binaries can typically be used as a
replacement for the original binaries.
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some loss of detail in recorded trace data.

The performance of selective instrumentation itself was
measured as the time required to replace all hook calls by
NOP instructions: On average, it took about 3.4 seconds
with a standard deviation of o = 0.058 on a 2 GHz CPU
with 2 GB RAM. Re-activating the hooks by replacing
the NOP instructions again is about the same complexity.
Hence, selective instrumentation could be integrated as an
additional, regular build step.

VII. THREATS TO VALIDITY AND LIMITATIONS

The conducted case study is prone to some threats.
First, available computational power and available writable
storage may restrict the maximum number of hooks that
can be inserted or even prevent instrumentation at all. If
no additional processing power is available for executing
tracing functionality — without violating timing constraints
— then observing a system’s behavior will fail at some point.
In that case, however, it is still possible to analyze data
that was captured up to this point. Second, the case study
demonstrated the technique’s usefulness with regard to tim-
ing analysis. Investigation of further possible maintenance
tasks is still to be conducted. Third, the case study is limited
to capturing runtime data of a single process.

We identified the following restrictions of the technique:
(a) The concept relies on storage for per-thread shadow
stacks. If that is not available, no function exit events can be
instrumented. (b) Selective instrumentation without recom-

piling and relinking is only supported for compiler-generated
hooks, so reconfiguring custom events involves rebuilding
(parts of) a binary. (c) Recorded data is influenced by the
tracing technique itself as the technique is executed within
a target system. That is, if frequently executed functions
are instrumented, relative tracing overhead distorts measured
data to some degree.

VIII. CONCLUSIONS

Embedded systems pose numerous challenges to pro-
gram comprehension, including non-determinism, complex
debugging setups, and shortcomings in simulation of sensors
or actors. A lack of appropriate tools renders overcoming
these challenges a time-consuming and error-prone task in
software maintenance. Existing tracing techniques that aim
to provide better tool support, however, rely on dedicated
interfaces, are not available for all processor types, and are
hardly applicable in production environments.

We have presented a software-based technique for tracing
runtime behavior of embedded software systems that meets
the specific requirements of embedded systems. We further
conducted a case study on an industrial embedded system
that demonstrates how the technique works within a practical
maintenance situation. The technique enables developers to
replace common debugging workarounds, such as log output
and guesswork, by an efficient trace analysis technique.
Independence of a debug interface is a key characteristic
of the technique and enables its usage in production envi-
ronments as well. As a result, such integration has potential
to ease another common problem of software maintenance:
Reproducing bugs that are encountered in a customer’s
production environment.

As future work, we plan to enable longer trace runs by
triggering serialization of trace data to persistent storage
while a target system is idle. In addition, we want to integrate
approaches that help automate selective instrumentation for
given storage size and software system. Complementary, en-
riching trace data by operating system events, e.g., schedul-
ing, would provide valuable extra information.
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