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Figure 1: 2.5D Voronoi Map depicting geo-referenced data using progressive rendering (AA, DoF, SSAO, and soft shadows).

ABSTRACT
Information cartography services provided via web-based clients
using real-time rendering do not always necessitate a continuous
stream of updates in the visual display. This paper shows how
progressive rendering by means of multi-frame sampling and frame
accumulation can introduce high-quality visual e�ects using robust
and straightforward implementations. For it, (1) a suitable rendering
loop is described, (2) WebGL limitations are discussed, and (3) an
adaption of THREE.js featuring progressive anti-aliasing, screen-
space ambient occlusion, and depth of �eld is detailed. Furthermore,
sampling strategies are discussed and rendering performance is
evaluated, emphasizing the low per-frame costs of this approach.

CCS CONCEPTS
•Computingmethodologies→Rendering; •Human-centered
computing → Web-based interaction; Treemaps;
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1 INTRODUCTION
Todays interactive information cartography clients, e.g., 2.5D vi-
sualization of geo-referenced data or non-spatial software system
information (Limberger et al. 2013), are made accessible to users
via web applications preferably. For their visual display, real-time
rendering techniques optimized for a continuous stream of individ-
ual high-quality frames are applied. High-quality, in this context,
denotes synthesizing e�ects such as physical-based shading, anti-
aliasing (AA), screen-space ambient occlusion (SSAO), depth-of-�eld
(DoF), or soft shadows. Most of the respective rendering techniques
are designed and optimized for single-frame execution and are not
feasible when targeting end user platforms with heterogeneous
hardware and software settings, especially mobile devices. Their
requirements regarding GPU features and performance, memory,
and CPU resources makes it hard to implement them robustly in
order to create a homogeneous, high-quality rendering result that
works on a large number of end user devices and platforms.

The incremental nature of user interactions in information visu-
alization (Van Wijk 2005) does often not require strict continuity
in rendering due to (1) the lack of dynamic objects and anima-
tions, (2) infrequent data changes, and (3) mostly discontinuous
changes of the virtual camera (e.g., navigation). Thus, we suggest
to apply multi-frame sampling (Limberger et al. 2016) which dis-
tributes rendering cost over time while providing explicit quality
control primarily by the number of subsequent frames that are to
be accumulated. Furthermore, it increases the responsiveness of our
visualizations, reduces resource requirements, and facilitates the
use of straightforward rendering techniques. This paper discusses
how multi-frame sampling can be integrated using WebGL (Sec-
tion 3), describes utilization of THREE.js (Section 4) with respect to
AA, DoF, and SSAO, and presents a brief performance evaluation
and discussion (Section 5).
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Figure 2: Illustration of a single-frame SF and an equiva-
lent multi-frame MF. For MF a simpli�ed shadow pass and
4 SSAO samples per IF are su�cient; DoF and AA are inher-
ent due to camera and normalized device coordinate (NDC)
shifting. Image adapted from (Limberger et al. 2016).

2 RELATEDWORK
An integral part of today’s hardware-accelerated, real-time render-
ing is built on a variety of sampling strategies. Sampling can be
used to approximate continuous characteristic, e.g., reduce aliasing
artifacts caused by insu�cient depictions of continuous domains.
Although increasing the number of samples increases the resulting
image quality, it a�ects the rendering cost per frame (either time,
memory, or both). The multi-frame approach distributes and ac-
cumulates (Fuchs et al. 1985; Haeberli and Akeley 1990) samples
over a well-de�ned number of consecutive frames. Recently, more
techniques start to make use of previous frames, such as Nvidia’s
TXAA and subsequently MFAA (Nvidia 2015) that use reprojection
to access previous fragment information. In this paper we rely on
accumulation solely in order to keep the implementation as simple
as possible. If, however, dynamics are essential for the visualization,
multi-frame sampling could be enhanced by using reprojection for
per-fragment accumulation (instead of plain bu�er accumulation).
Another approach to account for local changes within the visual
display is to only update small viewport regions resulting in fast,
seamless convergence as long as regular, �xed sampling kernels
are applied. The foundation of sampling characteristics by means
of number, distribution, regularity, and completeness of samples
as well as temporal convergence constraints w.r.t. �nite quality are
covered by Limberger and Döllner (2016) and considered in this
work. Favoring responsiveness and overlaying high-quality fea-
tures later seems to gain popularity, as can be seen in Sketchfab and
3DS Max by Autodesk1. There are various other domains and web
applications which could take advantage in supporting multi-frame
sampling as well, such as rendering point clouds (Richter and Döll-
ner 2014) or applications using, e.g., Cesium or THREE.js (Cabello
2010). Similarly, the rendering of embed 3D graphics within the
HTML DOM (Jankowski et al. 2013) by means of X3DOM (Behr
et al. 2009) or XML3D (Sons et al. 2010) could be enhanced.

3 PROGRESSIVE RENDERING IN WEBGL
Instead of rendering a typical single frame (SF) in response to
changed inputs (e.g., mapped data, camera), multiple intermediate
frames (IF) are rendered and accumulated into a multi-frame (MF)
For it, a multi-frame number nMF is de�ned, denoting the number

1https://sketchfab.com/developers/viewer and http://www.autodesk.com/3ds-max

of intermediate frames to be rendered for a full multi-frame. Ev-
ery sampling kernel should be optimized for this exact number in
order to provide the best temporal convergence and quality (Fig. 2).

rgb8UI rgb32F

The progressive rendering control �ow should:
(1) (re)start rendering of a intermediate frames
immediately when any input changes. The ren-
derer should (2) display the accumulated results
of every intermediate frame, and (3) stop render-
ing when nMF frames were rendered, continue

displaying the �nal result. WebGL 1 provides RGB8 color bu�ers by
default, which limit the accuracy and quality of accumulation; small
changes in color get lost in the accumulation of later frames. Thus, a
comparatively smallnMF should be applied. Although �oat textures
are supported on most systems by extension (OES_texture_float)
they cannot be used as render target. Instead, the �oat color bu�er
(WEBGL_color_buffer_float) is required for a render target with
�oating point precision in order to increase accumulation quality.

4 PROGRESSIVE RENDERING IN THREE.JS
Switching the rendering engine of an existing application can be a
time consuming task. It is therefore often more sensible to integrate
new techniques into the existing rendering engine. As a proof of
concept we integrated multi-frame sampling into a THREE.js (Ca-
bello 2010) application which can be used as a blueprint for the in-
tegration of multi-frame sampling into other THREE.js applications.
One goal of the integration is to keep compatibility with THREE.js’
built-in rendering e�ects. For this, we implemented specialized
THREE.ShaderMaterials, reusing shader code for vertex transfor-
mation, lighting, texturing etc. of the THREE.js built-in materials.
The shader code components for the built-in materials, included in
THREE.ShaderChunk, can be combined to create custom materials.

4.1 Frame Accumulation
We use the three-effectcomposer2 library as a convenience to com-
bine subsequent post processing passes since it automatically pro-
vides the result of the previous render pass, the render target, and
a full-screen quad. The composer library provides a ShaderPass

class which makes it straightforward to implement full-screen post
processing passes by applying a con�gured fragment shader.

As the frame accumulation pass requires the rendering result of
the previous IF, it is necessary to extend the EffectComposer (EC)
to store it. The EC uses an input bu�er and output bu�er in an
alternating way for consecutive post processing. We adjusted the
ECs render method by subclassing to ensure that input and output
bu�er are swapped an even number of times to guarantee the same
render target is used for the rendering result in each frame:� �

 class␣EffectComposer␣extends␣THREE.EffectComposer␣{
 ␣␣constructor(renderer,␣renderTarget)␣{
 ␣␣␣␣super(renderer,␣renderTarget);
 ␣␣␣␣this.ensureFinalSwap␣=␣true;␣}
 ␣␣render(delta)␣{
 ␣␣␣␣THREE.EffectComposer.prototype.render.call(this,␣delta);
 ␣␣␣␣//␣ensure␣that␣final␣rendering␣result␣is␣in␣renderTarget1
 ␣␣␣␣if␣(this.readBuffer␣===␣this.renderTarget1␣&&␣this.ensureFinalSwap)␣{
 ␣␣␣␣␣␣this.swapBuffers();

 ␣␣␣␣␣␣this.copyPass.render(this.renderer,␣this.writeBuffer,
 ␣␣␣␣␣␣␣␣this.readBuffer,␣delta);␣}␣}␣}� �

2https://github.com/hughsk/three-e�ectcomposer

https://sketchfab.com/developers/viewer
http://www.autodesk.com/3ds-max
https://github.com/hughsk/three-effectcomposer
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When a IF is rendered the writeBuffer is swapped with the render
target of the previous frame and passed to accumulation as texture.
For it, a render loop loads the kernel values to be applied for the
current IF and updates the blending weight for the accumulation
pass using a frame number. The number is reset if the con�guration
of the virtual camera changed or the rendered scene itself is updated,
causing a new multi-frame request. After a con�gured number of
IF the rendering loop is paused to reduce GPU and CPU load while
a static scene is displayed. The render loop itself is implemented
using the requestAnimationFrame function supplied by browsers,
which also restricts framerates to a maximum of 60 fps:� �

 function␣render()␣{
 ␣␣␣␣if␣(camera.needsUpdate␣||␣scene.needsUpdate)
 ␣␣␣␣␣␣␣␣frameId␣=␣0;␣//␣reset␣frame␣id␣if␣camera␣or␣scene␣has␣changed
 ␣␣␣␣if␣(frameId␣<␣numSampleFrames)␣{␣//␣render␣on␣demand
 ␣␣␣␣␣␣␣␣//␣load␣kernel␣values␣for␣current␣frame
 ␣␣␣␣␣␣␣␣renderPipeline.setCurrentFrame(frameId);
 ␣␣␣␣␣␣␣␣renderPipeline.render();␣//␣render␣scene
 ␣␣␣␣␣␣␣␣//swap␣targets␣to␣keep␣current␣frame␣for␣accumulation␣in␣next␣frame
 ␣␣␣␣␣␣␣␣renderPipeline.swapRenderTargets();

 ␣␣␣␣␣␣␣␣++frameId;␣}
 ␣␣␣␣requestAnimationFrame(render);␣}� �
4.2 Progressive Antialiasing
Anti-aliasing as technique massively improves the visual quality
of 3D renderings. Our implementation uses the multi-frame anti-
aliasing technique proposed by Limberger et al. (2016): per IF, a sub-
pixel o�set, provided via a uniform to the vertex shader, is applied
to the vertices’ xy-coordinates in NDC. We reuse existing THREE.js

uniforms, varyings, and local variables, e.g., projectionMatrix and
mvPosition to keep compatibility with built-in e�ects:� �

 ␣␣␣␣vec4␣ndcPosition␣=␣projectionMatrix␣*␣mvPosition;
 ␣␣␣␣//␣Add␣subpixel␣offset␣to␣ndc␣vertex␣position.
 ␣␣␣␣ndcPosition.xy␣+=␣ndcOffset␣*␣ndcPosition.w;
 ␣␣␣␣gl_Position␣=␣ndcPosition;� �

The subpixel o�set is chosen using shu�ed
poisson-disk sampling. The kernel is precom-
puted on the CPU depending on the number of
IF as sampling o�sets in [−0.5,+0.5] and trans-
formed into a subpixel o�set using the current
render target resolution. The technique produces

seemingly optimal results with about 16 IF. Since the accumulation
bu�er format is limited to 8 bit per color, additional frames yield
only marginal improvements:

1st Frame 4th Frame 16th Frame 64th Frame

4.3 Progressive Depth-of-Field
There are several approaches to implement DoF e�ects using several
rendering passes and di�erent G-Bu�ers (Bukowski et al. 2013;
Selgrad et al. 2015). These are quite complex to implement since
they rely on sophisticated combinations of these bu�ers. A multi-
frame DoF e�ect can be implemented similar to anti-aliasing: an
o�set is applied to the vertices’ xy-coordinates in view coordinates.
The o�set is scaled by the vertices z-coordinate and a con�gurable

focal distance. This e�ectively shifts a vertex within its circle of
confusion (CoC) gradually covering it with each subsequent frame.
The size of the CoC is con�gured by scaling the position o�set with
a constant factor. We reuse the the same kernel algorithm from the
anti-aliasing technique but scale it to [−1,+1] additionally.� �

 uniform␣vec2␣cocPoint;
 uniform␣float␣focalDistance;
 //␣...
 ␣␣␣␣mvPosition.xy␣+=␣cocPoint␣*␣(mvPosition.z␣+␣focalDistance);� �

The convergence of the e�ect depends on the con�gured CoC
factor and focal distance. The larger the CoC the more frames are
necessary. For very large CoC, the accumulation bu�er precision
may not be su�cient, resulting in visible visual artifacts.

1st Frame 4th Frame 16th Frame 64th Frame

4.4 Progressive SSAO
We use the Screen Space Ambient Obscurance as proposed by
McGuire et al. (2011), but with an optimized kernel for compa-
rable image quality to HBAO (Bavoil et al. 2008) with less samples.

The kernel uses a spiral shaped pattern that is
projected to a local tangent plane to produce the
sample o�sets. We precompute the kernel on the
CPU and provision it to the GPU as texture. Com-
pared to the original implementation we sort the
samples of the kernel in alternating order to en-

sure a more steady improvement in image quality for subsequent
IF. For n frames and m samples per frame the set of samples Si for
frame i are Si =

⋃m−1
j=0 {s(jn + i)}. Where function s(n) gives the

n-th sample of the original kernel. This order ensures that in each IF
samples with low, medium and high distance from the hemisphere
center are taken to account for di�erent scales of occlusion.� �

 function␣ssaoKernel(samplesPerFrame,␣spiralTurns,␣numFrames)␣{
 ␣␣␣␣var␣numSamples␣=␣samplesPerFrame␣*␣numFrames;
 ␣␣␣␣function␣samplePosition(sampleId)␣{
 ␣␣␣␣␣␣␣␣var␣alpha␣=␣(sampleId␣+␣0.5)␣/␣numSamples,
 ␣␣␣␣␣␣␣␣angle␣=␣alpha␣*␣spiralTurns␣*␣Math.PI␣*␣2.0;
 ␣␣␣␣␣␣␣␣return␣[angle,␣alpha];␣}

 ␣␣␣␣var␣imageData␣=␣new␣Float32Array(numSamples␣*␣2);
 ␣␣␣␣for␣(var␣y␣=␣0;␣y␣<␣numFrames;␣++y)␣{

 ␣␣␣␣␣␣␣␣for␣(var␣x␣=␣0;␣x␣<␣samplesPerFrame;␣++x)␣{
 ␣␣␣␣␣␣␣␣␣␣␣␣var␣sample␣=␣samplePosition(x␣*␣numFrames␣+␣y);
 ␣␣␣␣␣␣␣␣␣␣␣␣imageData[2␣*␣(x␣+␣y␣*␣samplesPerFrame)]␣=␣sample[0];
 ␣␣␣␣␣␣␣␣␣␣␣␣imageData[2␣*␣(x␣+␣y␣*␣samplesPerFrame)␣+␣1]␣=␣sample[1];␣}␣}

 ␣␣␣␣return␣imageData;␣}� �

We chose to omit the depth-aware bilateral �lter of the original
algorithm as the noise is drastically reduced within a few IF and it
produces better overall results:

1st Frame 4th Frame 16th Frame 64th Frame
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Census Districts Apartment Costs

Figure 3: Left: Census districts (1 sq. km. in average) depict-
ing average income (color) with respect to vacancy (height).
Right: Voronoi Map that correlates living space (height) of
available apartments (cells) to purchase cost (color).

5 RESULTS
Performance. For performance evaluation we tested the imple-

mentation with three datasets of di�erent sizes as scenarios in our
information cartography framework (Fig. 3). For each scenario, we
used height and color mapping for visualization to assure the same
real time mapping shaders to be used. The scenarios di�er mainly
in the number of objects to be included (small - 96 objects with
8100 vertices, medium - 6693 objects with 240984 vertices, and large
- 22840 objects with 823716 vertices). We tested the implementa-
tion on two resolutions (1920x1080 and 1280x720) and with and
without multi-sampling e�ects (SSAO, DOF, and Antialiasing - 32
intermediate frames) using the Chrome browser (version 56) on a
Mac operating system. The hardware was set up as follows: Intel
Core i7, 2.6 GHz, 16 GB RAM, GPU GT 650M with 1GB RAM. The
selected GPU hardware marks an expected mean target hardware
to be addressed. Result �gures can be found in Table 1.

Scenario IF MF IF MF
1080p 1080p* 1080p 720p 720p* 720p

small 28.7 16.8 688.2 18.0 16.8 1075.0
medium 65.9 37.3 1851.0 42.1 17.0 1265.0
large 77.4 45.2 2163.0 67.5 48.1 1695.0
*rendering without AA, DoF, SSAO etc.

Table 1: Frame times inms for 1080p and 720p resolutions. IF
denotes an intermediate frame within a mullti-frame (MF).

Discussion. The measurements show that the multi-frame sam-
pling e�ects a�ect the performance for frame rendering by approxi-
mately factor 2. The reason for this di�erence is the general render-
ing and shading overhead that is required by the single rendering
techniques and not signi�cantly in�uenced by the progressive accu-
mulation of intermediate framebu�ers. Since intermediate frames,
especially the �rst ones of a multi-frame may contain visible arti-
fact, the single rendering techniques do not need to be con�gured
using high quality settings. In this way, they do not in�uence the
rendering performance of the overall system as much as they would
if multi-frame sampling would not be applied. The additional mea-
surements have shown, that the rendering is accumulated in linear
time depending on the overall frame rate by the number of se-
lected intermediate frames. Table 1 shows, that the �nally rendered

image is ready after about 2100 ms for very large scenes with 32
intermediate frames on medium range hardware.

6 CONCLUSION AND FUTUREWORK
This paper describes how multi-frame sampling can be used to incor-
porate high-quality e�ects in web-based rendering engines. In addi-
tion to these e�ects, massive lighting can be used for highlighting
of blocks with local light impact, and glossy screen space re�ections
and transparency become feasible. A drawback of our THREE.js in-
tegration is that it might introduce unnecessary copying passes for
an uneven number of post processing passes. A complete rewrite
of the EffectComposer with multi-frame sampling in mind could
address this but might break compatibility with existing e�ects that
use the library. Additionally, the use of THREE.ShaderMaterials for
the integration of multi-frame sampling e�ects is not optimal be-
cause of the way these materials are implemented in THREE.js. If the
same shader is used in a scene with di�erent uniform con�gurations
the shader material needs to be instanced multiple times which
results in multiple WebGL shader and program objects. This might in-
troduce uncessary shader compilations and context switches. This
could be addressed by refactoring THREE.js to allow the reuse of
WebGL program objects over multiple material instances. With the in-
creasing support for WebGL 2 new image formats become available
for the use as render targets. As the precision of the accumulation
bu�er has a in�uences the quality, render targets with higher bit
depth could help to improve the image quality.
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