
Citation: Scheibel, W.; Blum, J.;

Lauterbach, F.; Atzberger, D.; Döllner, J.

Integrated Visual Software Analytics

on the GitHub Platform. Computers

2024, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Computers for possible

open access publication under

the terms and conditions of

the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Integrated Visual Software Analytics on the GitHub Platform
Willy Scheibel 1,* , Jasper Blum 1, Franziska Lauterbach 1, Daniel Atzberger 1 and Jürgen Döllner 1

1 Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam
* Correspondence: willy.scheibel@hpi.uni-potsdam.de

Abstract: Readily available software analysis and analytics tools are often operated within external 1

services, where the measured software analysis data is kept internally and no external access to the 2

data is available. We propose an approach to integrate visual software analysis on the GitHub platform 3

by leveraging GitHub Actions and the GitHub API, covering both analysis and visualization. The 4

process is to perform software analysis for each commit, e.g., static source code complexity metrics, 5

and augment the commit by the resulting data, stored as git objects within the same repository. We 6

show that this approach is feasible by integrating it into 64 open source TypeScript projects. Further, 7

we analyze the impact on Continuous Integration (CI) run time and repository storage. The stored 8

software analysis data is externally accessible to allow for visualization tools, such as software maps. 9

The effort to integrate our approach is limited to enabling the analysis component within the a 10

project’s CI on GitHub and embed an HTML snippet into the project’s website for visualization. This 11

enables a large amount of projects to have access to software analysis as well as provide means to 12

communicate the current status of a project. 13

Keywords: Software Analytics; Software Visualization; Software Maps; Continuous Integration 14

1. Introduction 15

During the software development process, a large amount of data is created and stored 16

in the various software repositories. For example, changes to the code are managed in a 17

version control system, tasks are organized in an issue tracking system, and errors that 18

occur are documented in a bug tracking system. Software analytics uses software data 19

analysis and information visualization techniques “to obtain insightful and actionable 20

information from software artifacts that help practitioners accomplish tasks related to 21

software development, systems, and users” [1]. The applications in which software analysis 22

is used are diverse [2], e.g., effort estimation [3], social network analysis [4], or using 23

visualization to support program comprehension tasks [5–7]. Of particular relevance is the 24

analysis of git repositories [8], as widely used type of repositories, and GitHub as popular 25

social coding platform [9]. Various platforms have been developed to provide software 26

analytics services to stakeholders [10–12]. These analytics services either integrate directly 27

into the Continuous Integration (CI) pipeline or they are to be operated externally [13]. 28

In both cases, only a higher-level view on the analysis results are reported back to the 29

developer by means of a review command, or a dashboard overview or visualization on 30

the services’ side. On the other hand, there are low-level tools available for direct use1, but 31

they are usually operated within those analytics services or their results are only used at 32

a higher level. While the techniques and tools are available for open source and industry 33

projects, the processing steps as well as the data storage of software analysis data is usually 34

considered separate to the source code repository. For example, the source code of an open 35

source project like Angular can be hosted on GitHub and build using GitHub Actions [14], 36

but software analysis is performed through external services and external storage – here, 37

1 https://analysis-tools.dev/

Version January 17, 2024 submitted to Computers https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0002-7885-9857
https://orcid.org/0000-0002-5409-7843
https://orcid.org/0000-0002-8981-8583
https://analysis-tools.dev/
https://www.mdpi.com/journal/computers

Version January 17, 2024 submitted to Computers 2 of 23

Figure 1. A 2.5D interactive software map visualization of the Microsoft vscode software project.

GitHub CodeQL2 and OpenSSF Scorecards3. Using readily available, external services 38

allows for easy-to-integrate software analysis, but the analysis results are kept internally 39

by the operators of those services – an association of source code to the derived analysis 40

data is not considered. This comes with a number of limitations on the availability and 41

reusability of those software data. For one, the performed analyses are I/O-intensive, 42

implementation-specific, and usually time-consuming, as whole software projects and 43

further software data repositories are parsed and analyzed. Second, the derived data is not 44

externally available for further processing and visualization. Third, using external services 45

limits the available analyses by means of mining tools, software metrics, and higher-level 46

analysis and reports. The latter two impedes easy access to “resources and tools needed for 47

practitioners to experiment and use MSR techniques on their repositories” [15]. Last, this 48

unavailability of the analysis data for third parties leads to multiple computations of such 49

analyses as there is a broad interest in software measurements, e.g., by the Mining Software 50

Repositories community and for software quality assurance and modern development 51

processes and practices. To summarize, current state of the art has the following limitations: 52

1. Readily available software analytics tools are often operated as external services, 53

2. where measured software analysis data is kept internal, 54

3. and no external use of the data is available. 55

We propose an approach to derive software analysis data during the execution of a 56

project’s CI pipeline and store the results within its source code repository. This approach 57

is exemplified using GitHub and GitHub Actions together with an exemplary set of static 58

source code complexity metrics. For this, we propose a default component to run for 59

software analysis, such that software metrics are computed and stored on a per-commit 60

basis. As accessible storage location, we use the git object database and mirror the commit 61

graph structure to augment existing commits with software analysis data. We use the 62

GitHub API to store the software analysis data within the git repository. This data can 63

later be used for further software analyses and software visualization (Figure 1). Although 64

CI and GitHub Actions are often used to ensure quality and thus approachability of a 65

project, using them to provide a form of public self-representation whose underlying data 66

is reusable is underrepresented [16,17]. We validate our approach with a case study on 67

64 open source GitHub projects written in TypeScript and show the performance impact 68

on the CI and memory impact on the git repository. Last, we discuss the approach in the 69

context of the diverse set of open source projects, different development environments, and 70

analysis scenarios. 71

The remainder of this paper is structured as follows. Section 2 introduces related work. 72

In Section 3, we present our approach and prototypical implementation for integrated 73

software analytics. In Section 4, we describe our case study and evaluation of run-time 74

2 codeql.github.com/
3 � ossf/scorecard

https://codeql.github.com/
https://github.com/ossf/scorecard

Version January 17, 2024 submitted to Computers 3 of 23

performance and memory overhead. We discuss the approach in Section 5, focusing on 75

limitations and extensibility. In Section 6, we conclude this work. 76

2. Related Work 77

Software analyses became a standard activity during software development that is 78

usually executed as part of the CI pipeline. Thereby, the activity can be decomposed into 79

several phases: (1) software repository mining, (2) optional intermediate storage, and (3) 80

communication of the results. Specific to our proposed approach, the corresponding related 81

work can be categorized into (1) tools for mining software repositories, (2) software metric 82

storage and storage formats, (3) and software visualization. As the overall process targets 83

an integration of software analytics into the GitHub platform, general software analytics 84

systems are related work as well. 85

2.1. Tools for Mining Software Repositories 86

Version control systems, such as git, enable collaborative work on software projects. 87

All activities and the entire history of a project are stored in a repository, which provides 88

much information for further analysis. Example applications for analyzing git repositories 89

include capturing static and dynamic software metrics [18–20], locating expertise among 90

developers [21], or measuring environmental sustainability [22]. The extraction of relevant 91

data requires efficient processing tools, e.g., for compiling software metrics [23]. An 92

example of such a tool is PyDriller, which allows efficient extraction of software metrics 93

from a git repository [24]. By combining different optimizations, e.g., in-memory storage 94

and caching, pyrepositoryminer provides an alternative tool that shows better performance. 95

Other examples with different aspects of variation are (1) ModelMine [25], a tool focusing 96

on mining model-based artifacts, (2) GitcProc [26], a tool based on regular expressions for 97

extracting fine-grained source code information, (3) Analizo [27], a tool with support for 98

object-oriented metrics in multiple languages, (4) LineVul [28], an approach for predicting 99

vulnerability within source code, and (5) srcML [29], an infrastructure for the exploration, 100

analysis, and manipulation of source code. 101

In addition to efficiently processing individual projects, it is often necessary to process 102

entire collections of projects, for example, to generate data for training ML procedures. One 103

of the first attempts to make data from GitHub accessible for research is Boa [30]. Besides 104

the infrastructure, it provides a domain-specific language and web-based interface to 105

enable researchers to analyze GitHub data. Similarly, GHTorrent provides an infrastructure 106

for generating datasets from GitHub [31], which can further be made available for local 107

storage [32]. An infrastructure that also provides a frontend is given by SmartSHARK [33]. 108

A technical hurdle in crawling large datasets from GitHub is the limitation of API requests. 109

Crossflow addresses this problem through a distributed infrastructure [34]. Besides source 110

code, other software repositories, e.g., issue tracking systems or mailing lists, are also 111

suitable for collecting information for subsequent analyses [35]. 112

2.2. Metric Storage Formats 113

Source code metrics and similar software analyses are directly derived from recorded 114

software data are often cached or stored after computation. This is feasible as such metrics 115

and analyses are determinate and desirable as their computation can be time- and memory- 116

intensive. For such storage, state-of-the-art approaches are applicable and usually chosen 117

based on structural complexity, amount of data, and a developers’ personal preference [36]. 118

As a result, there is a broad diversity in used data models, storage systems, and formats. 119

With a file focus, the common formats XML [37], ARFF [38], CSV [39], and JSON – more 120

specifically JSONL [40] – are used as well. Specific to the Moose system, there is also 121

the MSE file format to store static source code metrics [41]. As a standardized format 122

for static source code analysis results, there is the SARIF4 file format that is also used by 123

4 https://sarifweb.azurewebsites.net/

Version January 17, 2024 submitted to Computers 4 of 23

GitHub for their security dashboard. These approaches are not strictly used in isolation, 124

but can be used in combination as well [11,42]. Although stored as files, for subsequent 125

analyses in individual MSR use cases, these metrics are further gathered and stored into 126

own databases [43]. For example, relational databases as Postgres are used by projects as 127

source{d}5 and Sonarqube6. 128

2.3. Software Visualization 129

For the observation of recorded metrics by a user, they can be depicted using a table- 130

structured representation. However, this approach does not scale for even mid-sized 131

projects [44]. As software itself has no intrinsic shape or gestalt, the area of software 132

visualization provides techniques for representing software projects’ structure, behavior, or 133

evolution for supporting the stakeholders in different program comprehension tasks. In 134

many cases, the layout of a visualization is derived from a project’s folder hierarchy [45], 135

e.g., when using treemaps [46]. Software metrics can be mapped on the visual attributes 136

of treemaps, e.g., texture, color, and size [47]. Especially, 2.5D treemaps provide further 137

visual attributes, which motivates their use for exploring large software projects by means 138

of code cities [48], software cities [49], or software maps [5]. Besides hierarchy-preserving 139

visualizations, layouts can also be generated based on the semantic composition of software 140

projects [50,51]. In this case, abstract concepts in the source code are captured by applying 141

a topic model, which results in a high-dimensional representation of each source code file. 142

The local and global structures within the high-dimensional representation are captured in a 143

two-dimensional scatter plot after using dimensionality reduction techniques. By enriching 144

the visualization with cartographic metaphors or the placement of glyphs, software metrics 145

can be mapped in the visualization. 146

2.4. Software Analytics Systems 147

Various Software as a Service (SaaS) platforms have been developed to gain insights 148

from the development process and support developers in their work. Thereby, the intended 149

use case is either (1) software analytics for a single project or (2) software repository 150

mining for a large set of projects. The former use case is supported by platforms such 151

as Sonarqube and the source{d} Community Edition. The latter use case is supported by 152

research platforms such as MetricMiner [52] and GrimoireLab [53]. For metrics already 153

measured by GitHub, there is also Google BigQuery for Github7, which allows to access 154

the data using an SQL interface. Last, there are some software analytics platforms that are 155

deemed to be used for both use cases – serving both researchers and software developers 156

– such as Microsoft CODEMINE [11]. Another example is Nalanda, which comprises a 157

socio-technical graph and index system to support expert and artifact recommendation 158

tasks [12]. As main demarcation and apart from readily available tools, infrastructures 159

and full-featured, external software analytics services, we propose an extension to visual 160

software analytics by means of an integrated approach within the GitHub platform. 161

3. Approach 162

Our proposed approach consists of two components: software analysis and software 163

visualization. The software analysis component builds upon GitHub Actions to provide 164

per-commit software analysis while storing the results as blobs in the git objects database 165

of a project. The results are available for further processing and visualization for internal 166

and external use cases, e.g., software visualization (Figure 1). Our software visualization 167

demonstrator is implemented as a web application that fetches the analyzed data and 168

renders them in an interactive software map client. 169

5 https://github.com/src-d/sourced-ce
6 https://www.sonarsource.com/products/sonarqube/
7 cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code

https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code

Version January 17, 2024 submitted to Computers 5 of 23

1

2

3

4 5

Figure 2. Process overview showing the participation of different actors through our data processing pipeline triggered by a new
commit. After processing, a visualization component can query the resulting software analytics data and derive visualization artifacts,
such as software maps.

3.1. Process Overview 170

Both the analysis and the visualization operate in an isolated manner with a shared 171

point of interaction: the git repository of the software project on GitHub (Figure 2). The 172

analysis component integrates into the GitHub CI process and the visualization component 173

integrates into web pages, e.g., hosted by GitHub Pages. The overall process is split into 174

phases matching the two components and is summarized as follows: the analysis phase 175

including storage of the results (1 – 3), and the visualization phase (4 – 5). The analysis 176

phase is started when a developer creates and pushes a commit to the git repository, 177

starting its CI 1 . After project-specific analysis 2 , the software analytics data is added to 178

the repository as git blob objects 3 . This allows to annotate each commit of a repository 179

with project-specific software analysis data, such as source code metrics. Later, this data can 180

be queried and fetched from a client component 4 and used for visualizing the software 181

project 5 . For example, we use the data to derive a representative visualization of a 182

software project that can be shown to maintainer, developers, contributors, stakeholder, 183

and visitors (examples in Figure 6). Such a visualization can be embedded into a project’s 184

landing page and serve as a self-presentation to potential new collaborators and even 185

long-time collaborators. 186

3.2. Analysis 187

The analysis is designed to be part of a project’s CI process. As such, we designed 188

an extension to available CI processes on GitHub by means of a GitHub Action. This 189

action is specifically designed to analyze the source code for a given commit 1 , i.e., the 190

CI can be configured to execute this action on push to a branch. The general processing 191

approach for this action is to collect the source code, apply static source code metrics, and 192

store the results. However, choosing metrics for analysis is highly dependent on the used 193

programming languages, the quality goals, and available implementations. As such, we 194

see this as a major point of variation for future work. The interface for GitHub Actions for 195

integrating potential metrics implementations is a Docker container, which allows for a 196

highly flexible use of available tools and own developments of metrics. 197

3.3. Storage 198

The output of the analysis component is then stored within the git repository. Such a 199

repository could contain different types of objects, but for interoperability and available 200

Version January 17, 2024 submitted to Computers 6 of 23

3c4c9a

commit blob tree reference

“First commit”

10eda4

refs/metrics/10eda4

metrics.csv

.

refs/heads/mai n

8af cd6

“Add feature”

89b4c6

55dc13

“Remove file”

1f ae43

.

.

42dae1

file;loc;noc;…
test.ts;10;3;…

0aef da

refs/metrics/89b4c6

refs/metrics/1f ae43

metric blob

9de5da

file;loc;noc;…
test.ts;57;13;…

56bb21

Git Database Our addition

9de5da

file;loc;noc;…
test.ts;356;17;…

56bb21

Figure 3. Proposed data structure to save commit-based metadata in the git object database. Each commit with software data references
the original commit through name matching.

APIs we focused on files to represent software analysis data. Specific to our prototype, we 201

use a CSV file format where each line contains the measurements for a source code file, iden- 202

tified by its file path. Although these metric files are created within a Docker container, this 203

container has only read-only access to the git repository. Instead, we use the GitHub API to 204

store these files within blobs8. The API allows to manipulate the git trees and refs using the 205

/repos/{owner}/{repo}/git/trees and /repos/{owner}/{repo}/git/refs endpoints, 206

respectively. This file is then committed to the git repository using a commit-specific 207

git refs tree in the location refs/metrics/{sha} (Figure 3). This allows to query the 208

software analysis data within the refs/metrics subtree from a given git SHA later on. 209

For convenience, we create and maintain specific git refs to branches as well. The se- 210

quence of requests is as follows. We first create a tree by sending a POST request to the 211

/repos/{owner}/{repo}/git/trees endpoint. The APIs response will contain a SHA-1 212

hash of the newly created tree. We then create a reference under refs/metrics/{sha}, 213

storing the SHA reference to the tree. This is achieved by a further POST request to the 214

/repos/{owner}/{repo}/git/refs endpoint. This ensures that the blob tree is retrievable 215

for every analyzed commit. Last, we populate the tree with the CSV file. 216

3.4. Visualization 217

The per-commit software analysis data is then available for fetching and visualization 218

by the visualization component. This visualization is a hierarchy visualization by means of 219

a software map, as we chose to measure software metrics per file that is organized in a file 220

tree. The data retrieval consists of multiple requests and uses the GitHub API as follows. 221

The prototype first request the metrics reference for a certain commit using a GET request 222

to the endpoint /repos/{owner}/{repo}/git/refs. The retrieved tree SHA is then used 223

to request an intermediate blob tree at the /repos/{owner}/{repo}/git/trees endpoint. 224

This gives us a tree that stores the SHA reference to the blob containing our metrics data. 225

This hash is then used to request the blob using another GET request, this time to the 226

/repos/{owner}/{repo}/git/blobs endpoint. Once the blob is retrieved, the last step is 227

8 https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

Version January 17, 2024 submitted to Computers 7 of 23

Figure 4. A screenshot of the prototypical client, showing the TensorFlow.js project.

to decode the base64-encoded content of the blob to retrieve the metrics content that is 228

stored as a CSV string. 229

Parsing this string as tabular data results in a dataset suitable for software maps. 230

Thereby, the software map visualization technique is a 3D-extruded information landscape 231

that is derived from a 2D treemap layout. The tree structure for the treemap layout is 232

hereby derived from the tree structure of the file path. The available visual variables in the 233

visualization are footprint area (weight), the extruded height (height) and leaf color (color). 234

The visualization allows for basic navigation through the 3D scene, allowing users to make 235

themselves familiar with the project and build up a mental map [54]. 236

3.5. Prototype Implementation Details 237

We prototypically implemented the proposed approach as an open source project on 238

GitHub. It is available within the project github-software-analytics-embedding9. Addi- 239

tionally, we provide the GitHub Action on the market place10. Adding this action to a 240

repository enables the integration of the prototypical TypeScript source code metrics for 241

new commits. An example client11 that is build with React is hosted on GitHub Pages (Fig- 242

ure 4). However, the client could also be embedded on any self-hosted web page (such as 243

9 � hpicgs/github-software-analytics-embedding
10 https://github.com/marketplace/actions/analytics-treemap-embedding-action
11 https://hpicgs.github.io/github-software-analytics-embedding

https://github.com/hpicgs/github-software-analytics-embedding
https://github.com/marketplace/actions/analytics-treemap-embedding-action
https://hpicgs.github.io/github-software-analytics-embedding

Version January 17, 2024 submitted to Computers 8 of 23

1 <script
2 type="text/javascript"
3 src="https://cdn.jsdelivr.net/gh/hpicgs/github-software-analytics-embedding@0.8.0/frontend/

 embed/embed.umd.min.js"
4 owner="<GitHub owner>"
5 repo="<GitHub repository>"
6 commitSHA="<either SHA>"
7 branch="<or branch name>"
8 ></script>

Figure 5. HTML script tag that loads the client and initializes the visualization with the given GitHub project and commit.

GitHub pages) using just an HTML script tag (Figure 5). Our prototypical analysis module 244

is written in TypeScript. We decided to use TypeScript as a programming language because 245

it provides first-citizen support for TypeScript code analysis using the TypeScript compiler 246

API. The analysis code first creates an abstract syntax tree (AST) for each TypeScript file 247

in the specified repository path. Then, the AST is used for static source code analysis. We 248

decided to focus on a few simple software metrics, which include: 249

• Lines of Code (LoC) 250

• Number of Comments (NoC) 251

• Comment Lines of Code (CLoC) 252

• Density of Comments (DoC) 253

• Number of Functions (NoF) 254

The LoC metric returns the total number of source code lines a source file contains. NoC 255

counts the occurrence of comments, counting both single-line comments and multi-line 256

comments as one, while CLoC focuses on the code lines comments take up in a file. A 257

single-line comment would therefore count as one, while multi-line comments would count 258

as their respective number of lines. The DoC is calculated by dividing the sum of CLoC and 259

LoC by the CLoC. The number of functions NoF count the number of method declarations 260

and function declarations within a source code file. 261

4. Evaluation 262

We integrated our approach as GitHub Action into 64 open source TypeScript projects 263

of various sizes. Then, we benchmarked the performance of this action and resource 264

consumption within the git repository. Specifically, we compared the transmission size of a 265

single metric blob, the pure metric calculation time for all TypeScript files in the repository, 266

the total execution time of our GitHub Action, and an extrapolated metric blob memory 267

consumption when used for every commit on the main12 branch. Thereby, the integration 268

process consisted of forking and adding the GitHub workflow file to each of the repositories, 269

which took approximately two minutes per project. 270

4.1. Case Study 271

The projects were chosen to use TypeScript as one of their programming languages 272

while being either known to the authors or popular within the community (see details 273

in Table A1 and Table A2). These projects differ largely in size, application area and 274

development processes. The only common characteristic is the set of chosen programming 275

language TypeScript or the availability of TypeScript typings, i.e., that the project contains 276

.ts files. The size of the projects range from only a couple of files with a few hundred 277

lines of code to almost 35 k source code files with above 6.5 M lines of code. Four example 278

projects are highlighted in Table 1 and Figure 6; the remainder is available in the appendix, 279

12 The main branch is a placeholder identifier for the mainly used branch in the project. It may be named
differently, such as master, dev, or develop.

Version January 17, 2024 submitted to Computers 9 of 23

Table 1. Excerpt of the TypeScript repositories used for evaluation. The number of commits relate to the observed branch. The number
of files represent the number of TypeScript source code files in the most current commit on the branch. The lines of code (LoC) are the
lines of code from the TypeScript source code files. The overall share of TypeScript to the other programming languages (TS) is the
self-declaration of GitHub and is a rough estimate. The full list is provided in Table A1 and Table A2.

Project Location Branch # Commits TS # Files # LoC

AFFiNE � toeverything/AFFiNE canary 5 012 98.1 % 705 58 822
Angular � angular/angular main 28 924 84.5 % 6 438 762 820
Angular CLI � angular/angular-cli main 14 499 94.6 % 1 074 138 552
Angular Components � angular/components main 11 413 81.0 % 2 074 269 875

AFFiNE Angular

Angular CLI Angular Components

Figure 6. Excerpt comparison of TypeScript projects with increasing size and complexity using a software map visualization. The
number of lines of code (LoC) is mapped to weight, the number of functions (NoF) is mapped to height, and the density of comments
(DoC) is mapped to color. The full overview is provided in Figure A1 and Figure A2.

supplemental material, and online prototype (Table A1, Table A2, Figure A1, and Figure A2). 280

281

4.2. Repository Memory Impact 282

We measure memory footprint by the size of the base64-encoded metrics file response 283

of the API, although it may be stored compressed within the git repository. The memory 284

footprint of our analysis of a single commit scales linearly with the number of files within 285

a project (Figure 7). This is to be expected as each file in the repository is represented 286

through a single line in the metrics file, where each line stores the numerical values of 287

each metric with a strict upper bound on the character length. The memory footprint 288

seems rather high for large software projects as Angular or Visual Studio Code with a 289

couple of hundred kilobytes per commit. However, smaller projects can profit from a low- 290

consumption software analysis component. Further, the per-commit blob size is a trade-off 291

between a full CSV file of all files and their metrics and only a file for all changed files. 292

While the former approach allows to fetch all metrics for all files at once, which is especially 293

suitable for visualization, the latter approach allows for a much smaller memory footprint 294

https://github.com/toeverything/AFFiNE
https://github.com/angular/angular
https://github.com/angular/angular-cli
https://github.com/angular/components

Version January 17, 2024 submitted to Computers 10 of 23

1 10 100 1 000 10 000
0.1

1

10

100

1 000

Files

A
rt

ef
ac

ts
iz

e
in

kB

1.0675 · x − 3.09

103

104

105

106

107

Li
ne

so
fC

od
e

Figure 7. Memory impact of the metric file blob in kB on the repository per commit when measured by number of files (log-log axis).
Color represents the number of lines of code as a second visual indicator of correlation. A derived linear regression (gray line) suggests
that each file in the repository contributes approximately one kB of base64-encoded metric blob storage per commit.

and is considered a default approach in software analytics [24]. However, providing a full 295

visualization for the latter approach results in a multitude of requests. 296

While extrapolating the per-commit blob size to whole repositories naively, i.e., simu- 297

lating an integration of our approach from the first commit, the proposed technique shows 298

strong limitations Figure 8. The simulated extrapolation assumes that each and every 299

commit of the main branch would have it’s files analyzed and stored within the repository 300

with no data retention policy. As an upper bound, the results indicate a median increase of 301

the repository by the factor two with an absolute increase of 180 MB. This number will be 302

considerably smaller when taking into account (1) the compressed, binary representation of 303

the git blob, (2) a more sensible application of the approach by only major commits instead 304

of every one on the main branch, and (3) differential metric files containing only changed 305

files. Reducing this to an empirically validated factor is still future work. 306

4.3. CI Execution Time Impact 307

The time our metrics computation took does not scale linearly with the lines of code 308

of a project (Figure 9). However, even for large projects such as Visual Studio Code and 309

Angular, the time to measure all files is limited to a couple of seconds (up to 8.2 s for Visual 310

Studio Code). The maximum measured time was approximately 58 s for the Definitely 311

Typed project. Considering the overall execution time of the GitHub Action (Figure 10), 312

the process does not seem to scale linearly by neither Lines of Code nor number of files. 313

However, for projects below 1 000 000 LoC or below 10 000 files, this process does not run 314

longer than 10 seconds. 315

4.4. Practical Considerations & Recommendations 316

We conclude that the general runtime and repository size overhead is sensible for 317

small and mid-sized open source projects. The proposed approach in its current state – 318

prototypical, unoptimized, and limited in features – does scale for open source projects 319

up to medium size. An example project would be Angular CLI, which comes with 14.5 k 320

commits, around 1 k files and above 100 k LoC. The corresponding memory and runtime 321

impact would be 3 s of GitHub Action time (whereof 1.5 s is the metrics computation), 322

and 102 kB of base64-encoded metric blob size which would result in doubled repository 323

size when measured for every tenth commit on the main branch since the very start of the 324

project. Within our sample of 64 TypeScript projects and measured by memory impact 325

Version January 17, 2024 submitted to Computers 11 of 23

1 10 100 1 000
0.01

0.1

1

10

100

1 000

10 000

100 000

Base Repository Size in MB

Ex
tr

ap
ol

at
ed

M
em

or
y

C
on

su
m

pt
io

n
in

M
B

1.3036 · x − 1.12

10−1

100

101

102

103

104

105

M
et

ri
cs

Bl
ob

Si
ze

in
kB

Figure 8. Extrapolated repository size impact if every commit of the main branch would be augmented with software metrics
information, measured by base repository size (log-log axis). Color represents the per-commit metric blob size as a second visual
indicator. A derived linear regression (gray line) suggests that a repository would increase its size by 1.3-fold, i.e., the final size would
have factor 2.3. However, the spread is rather high and corresponds to the number of commits on the main branch of a repository.

when measured for each commit on the main branch, Angular CLI is larger than 54 projects 326

and smaller than 9 projects, resulting in the 86th percentile. Thus, the majority of projects 327

are smaller and applicable for our proposed approach. 328

5. Discussion 329

This analysis, however, comes with multiple assumptions and design alternatives. 330

As such, the measurements and results are specific to the chosen implementation and 331

environment, i.e., GitHub, its Actions as CI, git, the GitHub API, the TypeScript language, 332

an own metrics analysis component, and according integration and assumed usage by open 333

source developers. This comes with a number of threats to validity to our results, as well as 334

points for discussion on limitations through the specific environment we have chosen, and 335

a broad set of opportunities for extensions to the proposed approach. 336

5.1. Threats to Validity 337

We identified several potential threats to the validity of the results, covering both the 338

runtime analysis and the storage consumption analysis. 339

Runtime Analysis 340

For example, one limitation is our choice of a prototype implementation for the metrics 341

computation rather than employing existing, established tooling. This approach allowed 342

for a focused, controlled and low-profile metrics computation component to be used for the 343

proposed approach. However, we see our measured timings as some kind of lower bound 344

for the execution time of a static source code analysis. Further, the analysis component 345

cannot be considered production-ready by means of stability and available features. 346

As the analysis component with the specific metrics does not reflect the usual load an 347

actual analysis component would bring into a CI pipeline, the execution time is expected to 348

further increase through computational costs for additional or more complex metrics. We 349

assume that an alternative use of real-world metrics computation tools would increase the 350

measured timings, but not by multiple orders of magnitude. Further, the allocated runners 351

for the CI pose a threat to validity. To properly control for the allocated runners, the study 352

Version January 17, 2024 submitted to Computers 12 of 23

100
1 000

10 000

100 000

1 000 000

10 000 000
10

100

1 000

10 000

100 000

#Lines of Code

M
et

ri
cs

ca
lc

ul
at

io
n

ti
m

e
in

m
s

0.68527 · x − 0.75

102

102.5

103

103.5

104

104.5

105

#
Fi

le
s

Figure 9. Run-time performance impact of the proposed software analysis component, measured by lines of code (log-log axis). Color
represents the number of files as a second visual indicator that the anaylsis correlates with number of files as well. A derived linear
regression (gray line) suggests that the analysis component does not scale linearly with the project size.

100
1 000

10 000

100 000

1 000 000

10 000 000

1

10

100

#Lines of Code

G
it

H
ub

A
ct

io
n

Ti
m

e
in

s

0.258546 · x − 1.86

102

102.5

103

103.5

104

104.5

105

#
Fi

le
s

Figure 10. Run-time performance of the full GitHub Action that includes the proposed software analysis component and metrics blob
storage, measured by lines of code (log-log axis). Color represents the number of files as a second visual indicator that the anaylsis
correlates with number of files as well. A derived linear regression (gray line) suggests that the analysis component does not scale
linearly with the project size.

Version January 17, 2024 submitted to Computers 13 of 23

should be conducted with self hosted runners. However, these runners are the default 353

runners that would be used by a majority of open source projects. 354

Storage Consumption Analysis 355

Regarding the storage consumption analysis, one threat is the inaccuracy in measuring 356

the metrics blob size. We measured the base64-encoded API response string, which repre- 357

sents an upper bound for the required storage within the repository. Further, the employed 358

extrapolation on the assumed storage are based on unknown actual usage scenarios. For 359

one, we suggest to use a GitHub Action that gets triggered on each commit on a set of target 360

branches. This may or may not be a sensible configuration. However, this configuration 361

largely influences the overall memory consumption over the history of a software project. 362

Further, the extrapolation assumes that the metrics blob file is constant in size, which 363

correlates with the number of files in a repository being constant. This is a factor that will 364

likely change over the history of a software project. 365

5.2. Limitations 366

An application of our approach to further open source projects on GitHub may be sub- 367

ject to technical limitations, for example overcoming scalability issues, handling advanced 368

git workflows, and facing security issues. 369

Scalability 370

Scalability for the proposed approach is a main topic as GitHub wants to ensure 371

continuous service for all its users, which concerns available space per repository and 372

execution time for the shared GitHub Action runners. While the default timeout for the 373

shared runners is at six hours13 and not likely to be a direct limitation based on our tested 374

open source projects, a more comprehensive analysis covering multiple commits within 375

one GitHub Action may run out of time. For those cases, GitHub allows to register and use 376

self-hosted runners14. Likewise, switching to an external CI service that would also allow 377

to run the analysis component – available using Docker – may come with higher limits for 378

computation. As another alternative, a developer of the project could execute the Docker 379

image on their local machine. 380

Further, git repositories on GitHub have a soft limit in size15. Executing the metrics 381

computation process for each and every commit and storing the full dataset in an ever- 382

growing software repository is bound to reach those limits. Mitigations include different 383

directions: (1) switching to an external file storage, such as git LFS, external databases, 384

or foreign git repositories16, (2) integrate data retention policies and remove metrics data 385

when superseded or obsolete, and (3) thin out the measured commits and focus on more 386

important commits such as pull requests and releases. 387

Advanced git Workflows 388

As a distributed version control system, git allows for more advanced usage scenarios 389

to advance and handle the history of a software project. One such feature is the rebase, 390

another would be a commit filter, but the overall category is a history rewrite. Such a 391

rewrite would derive new commits from existing ones while invalidating the latter ones. 392

Currently, our proposed approach would naively handle such rewrites by recomputing 393

the new commits as if they were normal commits. Any invalidation of stored metrics data 394

for the obsolete commits is currently missing. Specific to this issue, but also applicable 395

13 https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
14 https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-

self-hosted-runners
15 https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-

github
16 https://github.com/gitrows/gitrows

Version January 17, 2024 submitted to Computers 14 of 23

in a general sense, would be a handling of obsolete metrics data through the git garbage 396

collector. 397

Security Considerations 398

Further, the proposed public, side-by-side availability of software metrics is subject 399

to security considerations as the measured software may represent sensitive information. 400

The targeted use cases for our approach are open source repositories that wants to apply 401

lightweight software analysis on their already public source code. This public availability 402

makes these repositories subject to external source code mining on a regular basis [55]. 403

Anyone with software mining tools can download the source code, derive software metrics, 404

host them anywhere, and analyze them at their discretion. We argue that any security- 405

related attack vector is introduced with publishing the source code and not with making 406

own software metrics available. On the contrary, with our approach, we connect to the 407

original idea of developing source code publicly. A broad community can participate and 408

ensure a more healthy software development process and thus a more healthy software 409

project. One adaption to our approach to protect the measured software data is to use an 410

external database. This adaption, however, would prevent other use cases such as public 411

availability of visualizations of the software project. Security considerations in the area of 412

open source development remain their own field of study [56,57]. 413

5.3. Extensibility 414

The current state of the approach and prototype allows for a number of extensions in 415

various directions, namely other modes of integration into the development process, the 416

supported languages, supported metrics, available visualization techniques, and the types 417

of stored artifacts. The current, narrow focus on single implementation paths limits the 418

applicability of the approach considerably, as it is specifically designed and implemented 419

to work for the CI process of git repositories of the TypeScript parts of open source projects 420

hosted on GitHub, where a small set of static source code metrics are derived and later 421

visualized using the software map visualization technique. Applying further state-of-the- 422

art approaches in these directions would increase the fit for more use cases, application 423

scenarios, and software projects. 424

Modes of Integration into Development Process 425

To allow for a low-threshold integration into an open source project’s development 426

process, we proposed the integration into the GitHub CI processes using GitHub Actions 427

on a single commit at a time. However, there are further modes this software analysis 428

component can be integrated into the development process. For example, the trigger can 429

be changed to trigger on pull requests or releases, or even on manual start through a 430

contributor or even a software component. In the end, this storage can be considered a 431

caching mechanism where the the cache can be populated by triggering the execution 432

of the software analysis component and storing the data through the GitHub API. As 433

an alternative to the GitHub API, it is feasible to use the git API directly and pull and 434

push the according refs directly. This would also render this approach available to other 435

software project management platforms and even plain hosting of git archives. Further, 436

each analysis process is not technically limited to measuring one single commit in isolation. 437

This allows for (1) an extension to handle multiple individual commits and whole commit 438

ranges within a single analysis process, and (2) to use more information sources in addition 439

to the checked out commit, such as issue databases, development logs, CI logs, or source 440

code of other commits. An extended analysis however would increase the computation 441

time considerably. Specific to GitHub, there is currently a six-hour-long time limit for the 442

shared runners, which would allow for such an increased amount of analysis. 443

Version January 17, 2024 submitted to Computers 15 of 23

Supported Programming Languages 444

Next to the integration into GitHub and the development process, the approach 445

and prototype could be adopted to support further languages. As the implementation 446

details surrounding the analysis component do not rely on any specific language – they 447

are designed to be language agnostic –, supporting further programming languages is 448

straight-forward and usually implemented using language-agnostic tools. Allowing for 449

multiple programming languages is further important as software projects likely use 450

multiple languages within one repository [58]. 451

Supported Metrics 452

For demonstration purposes, we focused on static source code analysis metrics for our 453

analysis component. However, the design and implementation of the prototype specifically 454

allows to use a broad range of software analysis tools and custom implementations, and 455

thereby, languages as well. More importantly, a broad view on the state and evolution 456

of a software project comes with metrics explicitly covering system dynamics and the 457

evolution of metrics over time. As such, the current approach to store file-focused software 458

metrics will get obsolete and more diverse storage formats needs to be used. However, for 459

a low-threshold access to those metrics and no further dependency to third-party services, 460

we suggest to retain file-based storage within the git repository. 461

Visualization Approaches 462

While our current prototype is built upon static source code analysis metrics and 463

the software map visualization technique, the underlying idea of fetching the software 464

metrics directly from the repository does not limit the use of specific software visualization 465

techniques, e.g., source-code-similarity-based forest metaphors [59,60]. More specifically, 466

the integrated software analysis data is a specific kind of database, that each technique 467

should be adoptable to. Potential limitations come from the chose metrics measured and 468

chosen file formats, both of which can be chosen unrestricted by our proposed approach. 469

This flexibility enables contributors and developers to tailor the representation of their 470

project and researchers to test novel visualization techniques on already measured software 471

projects. 472

Stored Artifacts 473

Similar to the supported programming languages, metrics, and visualization tech- 474

niques, the files stored as blobs within the git software repository are not limited to the 475

proposed approach: storing software metrics. Instead, there are only a couple of limiting 476

factors to the blobs stored within the repository, which is the base blob size, the overall 477

repository size, the access speed through APIs, and possibly rate limits to ensure fair use of 478

the APIs. This allows for a more diverse use of the available storage to augment software 479

repositories. One example is to skip storage of the software metrics, but to derive and store 480

a static image of the software system instead. Although more complex, this corresponds to 481

the creation and storage of project badges – such as the shields.io service17 – directly within 482

the software repository. 483

6. Conclusions 484

When a software development team wants to integrate software analysis to their 485

project, selecting tools or services are a trade-off which usually results in (1) no control 486

over metric computation, or (2) no persistent availability of low-level analysis results. We 487

proposed an approach to augment git commits of GitHub projects with software analysis 488

data on the example of TypeScript projects and static source code metrics. The analysis 489

is performed as part of a GitHub Actions CI pipeline, whose results are added to the git 490

project as own blobs. These results are thus persistently stored within the project and 491

17 https://github.com/badges/shields

Version January 17, 2024 submitted to Computers 16 of 23

accessible through standard git interfaces and the GitHub API. The used analysis tool and 492

visualization technique are designed to be exchangeable. The requirements to satisfy are the 493

availability of analysis tools for Docker containers and the storage of software data within 494

the git repository. To demonstrate this approach, we visualized GitHub projects using a 495

basic React client and software maps as the visualization technique. We further performed 496

an evaluation on 64 open source GitHub projects using TypeScript as their main or auxiliary 497

language. The analysed suggests that small and mid-sized software repositories have 498

only little impact to their CI runtime and repository size, even with extensive use of the 499

proposed approach. 500

As such, we see primarily a low-threshold and low-cost adoption of our approach for 501

small and mid-sized open source projects that are otherwise struggling to setup their own 502

software analysis pipeline, e.g., using external services. With our approach, we strive for 503

direct access to abstract software information for the broad range of open source projects 504

and their public representation to allow for a quick overview and a gestalt-providing 505

component. Directly concerning open source projects and their development, we hope to 506

increase a project’s “ability to be appealing” [61] to both existing and new collaborators. 507

We further argue for versatility and flexibility of the underlying approach to store commit- 508

related data directly within the git repository. Concerning the MSR community, such a 509

broad integration of software metrics into the git repository would change availability and 510

use of the data for novel analyses and replicability of published results. Extrapolating, 511

large-scale evaluations of source code metrics can profit from already computed metrics 512

within each repository through our approach [62]. Further, dedicated software analysis 513

data repositories can be either derived directly from the software repositories, or these 514

repositories can be considered distributed datasets instead [55]. 515

For future work, we see a replacement of the analysis component for one with a 516

broad support for programming languages and software metrics. As such, we see the 517

other areas of software metrics – dynamic metrics, process metrics, developer metrics – 518

as well as higher-level key performance indicators that should be available as well. Next 519

to software measurements, the proposed approach can be used to store and provision 520

derived visualization artifacts [39]. Further, we consider to also allow developers perform 521

the analyses on their machines and commit the results alongside their changes into the 522

repository. This would allow for both CI and developers to perform measurements and 523

distribute the workload, e.g., when computing measurements for whole branches of a 524

project. From an MSR researchers’ perspective, augmenting the commits of distributed 525

software projects, for example through forks, by means of “rooted” repositories18 would 526

provide a greater impact, even with lower impact on overall repository size through reduced 527

copies. Concluding, augmenting software repositories and providing low-threshold and 528

easily accessible tooling further contributes to visual software analytics as a key component 529

in software development. 530

Author Contributions: Conceptualization, W.S. and J.D.; software, W.S., J.B. and F.L.; validation, 531

W.S. and D.A.; investigation, W.S. and D.A.; writing—original draft preparation, W.S., J.B. and F.L.; 532

writing—review and editing, W.S., D.A. and J.D.; visualization, W.S., D.A.; supervision, W.S., J.D.; 533

funding acquisition, J.D. All authors have read and agreed to the published version of the manuscript. 534

Funding: This work was partially funded by the Federal Ministry of Education and Research, 535

Germany through grant 01IS20088B (“KnowhowAnalyzer”). 536

Data Availability Statement: The data used, presented, and visualized in Figure 7 Figure 8, Figure 9, 537

Figure 10, Figure A1, Figure A2, Table A1, and Table A2 is available for download at DOI:XXX [63]. 538

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 539

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or 540

in the decision to publish the results. 541

18 � src-d/gitcollector

https://zenodo.org/XXX
https://github.com/src-d/gitcollector

Version January 17, 2024 submitted to Computers 17 of 23

References 542

1. Zhang, D.; Han, S.; Dang, Y.; Lou, J.G.; Zhang, H.; Xie, T. Software Analytics in Practice. IEEE Software 2013, 30, 30–37. 543

https://doi.org/10.1109/MS.2013.94. 544

2. Menzies, T.; Zimmermann, T. Software Analytics: So What? IEEE Software 2013, 30, 31–37. https://doi.org/10.1109/MS.2013.86. 545

3. Pospieszny, P. Software Estimation: Towards Prescriptive Analytics. In Proceedings of the 27th International Workshop on 546

Software Measurement and 12th International Conference on Software Process and Product Measurement. ACM, 2017, IWSM 547

Mensura ’17. https://doi.org/10.1145/3143434.3143459. 548

4. Zhang, W.; Wang, S.; Yang, Y.; Wang, Q. Heterogeneous Network Analysis of Developer Contribution in Bug Repositories. 549

In Proceedings of the International Conference on Cloud and Service Computing. IEEE, 2013, CSC ’13, pp. 98–105. https: 550

//doi.org/10.1109/CSC.2013.23. 551

5. Limberger, D.; Scheibel, W.; Döllner, J.; Trapp, M. Visual Variables and Configuration of Software Maps. Springer Journal of 552

Visualization 2023, 26, 249–274. https://doi.org/10.1007/s12650-022-00868-1. 553

6. Højelse, K.; Kilbak, T.; Røssum, J.; Jäpelt, E.; Merino, L.; Lungu, M. Git-Truck: Hierarchy-Oriented Visualization of Git Repository 554

Evolution. In Proceedings of the Working Conference on Software Visualization. IEEE, 2022, VISSOFT ’22, pp. 131–140. 555

https://doi.org/10.1109/VISSOFT55257.2022.00021. 556

7. Paredes, J.; Anslow, C.; Maurer, F. Information Visualization for Agile Software Development. In Proceedings of the 2nd Working 557

Conference on Software Visualization. IEEE, 2014, VISSOFT ’14, pp. 157–166. https://doi.org/10.1109/VISSOFT.2014.32. 558

8. Bird, C.; Rigby, P.C.; Barr, E.T.; Hamilton, D.J.; German, D.M.; Devanbu, P. The Promises and Perils of Mining git. In 559

Proceedings of the 6th International Working Conference on Mining Software Repositories. IEEE, 2009, MSR ’09, pp. 1–10. 560

https://doi.org/10.1109/MSR.2009.5069475. 561

9. Kalliamvakou, E.; Gousios, G.; Blincoe, K.; Singer, L.; German, D.M.; Damian, D. The Promises and Perils of Mining GitHub. 562

In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 2014, MSR ’14, pp. 92–101. https: 563

//doi.org/10.1145/2597073.2597074. 564

10. Vargas, E.L.; Hejderup, J.; Kechagia, M.; Bruntink, M.; Gousios, G. Enabling Real-Time Feedback in Software Engineering. 565

In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results. ACM, 2018, 566

ICSE-NIER ’18, pp. 21–24. https://doi.org/10.1145/3183399.3183416. 567

11. Czerwonka, J.; Nagappan, N.; Schulte, W.; Murphy, B. CODEMINE: Building a Software Development Data Analytics Platform 568

at Microsoft. IEEE Software 2013, 30, 64–71. https://doi.org/10.1109/MS.2013.68. 569

12. Maddila, C.; Shanbhogue, S.; Agrawal, A.; Zimmermann, T.; Bansal, C.; Forsgren, N.; Agrawal, D.; Herzig, K.; van Deursen, A. 570

Nalanda: A Socio-Technical Graph Platform for Building Software Analytics Tools at Enterprise Scale. In Proceedings of the 30th 571

Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 2022, 572

ESEC/FSE 2022, pp. 1246–1256. https://doi.org/10.1145/3540250.3558949. 573

13. Shahin, M.; Ali Babar, M.; Zhu, L. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, 574

Tools, Challenges and Practices. IEEE Access 2017, 5, 3909–3943. https://doi.org/10.1109/ACCESS.2017.2685629. 575

14. Henry, G. Dave Cross on GitHub Actions. IEEE Software 2024, 41, 146–148. https://doi.org/10.1109/MS.2023.3322339. 576

15. Hassan, A.E. The road ahead for Mining Software Repositories. In Proceedings of the Frontiers of Software Maintenance. IEEE, 577

2008, FOSM ’08, pp. 48–57. https://doi.org/10.1109/FOSM.2008.4659248. 578

16. Decan, A.; Mens, T.; Mazrae, P.R.; Golzadeh, M. On the Use of GitHub Actions in Software Development Repositories. In 579

Proceedings of the International Conference on Software Maintenance and Evolution. IEEE, 2022, ICSME ’22, pp. 235–245. 580

https://doi.org/10.1109/ICSME55016.2022.00029. 581

17. Khatami, A.; Zaidman, A. Quality Assurance Awareness in Open Source Software Projects on GitHub. In Proceedings of 582

the 23rd International Working Conference on Source Code Analysis and Manipulation. IEEE, 2023, SCAM ’23, pp. 174–185. 583

https://doi.org/10.1109/SCAM59687.2023.00027. 584

18. Honglei, T.; Wei, S.; Yanan, Z. The Research on Software Metrics and Software Complexity Metrics. In Proceedings of 585

the International Forum on Computer Science-Technology and Applications. IEEE, 2009, IFCSTA ’09, pp. 131–136. https: 586

//doi.org/10.1109/IFCSTA.2009.39. 587

19. Sui, L.; Dietrich, J.; Tahir, A.; Fourtounis, G. On the Recall of Static Call Graph Construction in Practice. In Proceedings of the 588

42nd International Conference on Software Engineering. ACM, 2020, ICSE ’20, pp. 1049–1060. https://doi.org/10.1145/3377811. 589

3380441. 590

20. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Transactions on Software Engineering 1994, 591

20, 476–493. https://doi.org/10.1109/32.295895. 592

21. Atzberger, D.; Scordialo, N.; Cech, T.; Scheibel, W.; Trapp, M.; Döllner, J. CodeCV: Mining Expertise of GitHub Users from Coding 593

Activities. In Proceedings of the 22nd International Working Conference on Source Code Analysis and Manipulation. IEEE, 2022, 594

SCAM ’22. https://doi.org/10.1109/SCAM55253.2022.00021. 595

22. Bozzelli, P.; Gu, Q.; Lago, P. A systematic literature review on green software metrics. Technical report, VU University, Amsterdam, 596

2013. 597

23. Ludwig, J.; Xu, S.; Webber, F. Compiling static software metrics for reliability and maintainability from GitHub repositories. In 598

Proceedings of the International Conference on Systems, Man, and Cybernetics. IEEE, 2017, SMC ’17. https://doi.org/10.1109/ 599

smc.2017.8122569. 600

https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1109/MS.2013.86
https://doi.org/10.1145/3143434.3143459
https://doi.org/10.1109/CSC.2013.23
https://doi.org/10.1109/CSC.2013.23
https://doi.org/10.1109/CSC.2013.23
https://doi.org/10.1007/s12650-022-00868-1
https://doi.org/10.1109/VISSOFT55257.2022.00021
https://doi.org/10.1109/VISSOFT.2014.32
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/3183399.3183416
https://doi.org/10.1109/MS.2013.68
https://doi.org/10.1145/3540250.3558949
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/MS.2023.3322339
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/SCAM59687.2023.00027
https://doi.org/10.1109/IFCSTA.2009.39
https://doi.org/10.1109/IFCSTA.2009.39
https://doi.org/10.1109/IFCSTA.2009.39
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/SCAM55253.2022.00021
https://doi.org/10.1109/smc.2017.8122569
https://doi.org/10.1109/smc.2017.8122569
https://doi.org/10.1109/smc.2017.8122569

Version January 17, 2024 submitted to Computers 18 of 23

24. Spadini, D.; Aniche, M.; Bacchelli, A. Pydriller: Python framework for mining software repositories. In Proceedings of the 26th 601

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 602

ACM, 2018, ESEC/FSE ’18, pp. 908–911. https://doi.org/10.1145/3236024.3264598. 603

25. Reza, S.M.; Badreddin, O.; Rahad, K. ModelMine: a tool to facilitate mining models from open source repositories. In Proceedings 604

of the 23rd International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. ACM, 605

2020, pp. 9:1–5. https://doi.org/10.1145/3417990.3422006. 606

26. Casalnuovo, C.; Suchak, Y.; Ray, B.; Rubio-González, C. GitcProc: A tool for processing and classifying GitHub commits. In 607

Proceedings of the 26th SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2017, ISSTA ’17, pp. 396–399. 608

https://doi.org/10.1145/3092703.3098230. 609

27. Terceiro, A.; Costa, J.; Miranda, J.; Meirelles, P.; Rios, L.R.; Almeida, L.; Chavez, C.; Kon, F. Analizo: an Extensible Multi-Language 610

Source Code Analysis and Visualization Toolkit. In Proceedings of the Brazilian Conference on Software: Theory and Practice – 611

Tools, 2010, CBSoft ’10. 612

28. Fu, M.; Tantithamthavorn, C. LineVul: A Transformer-Based Line-Level Vulnerability Prediction. In Proceedings of the 19th 613

International Conference on Mining Software Repositories. ACM, 2022, MSR ’22, pp. 608–620. https://doi.org/10.1145/3524842. 614

3528452. 615

29. Collard, M.L.; Decker, M.J.; Maletic, J.I. srcML: an infrastructure for the exploration, analysis, and manipulation of source code: a 616

tool demonstration. In Proceedings of the International Conference on Software Maintenance. IEEE, 2013, ICSM ’13, pp. 516–519. 617

https://doi.org/10.1109/ICSM.2013.85. 618

30. Dyer, R.; Nguyen, H.A.; Rajan, H.; Nguyen, T.N. Boa: A language and infrastructure for analyzing ultra-large-scale software 619

repositories. In Proceedings of the 35th International Conference on Software Engineering. IEEE, 2013, ICSE ’13, pp. 422–431. 620

https://doi.org/10.1109/ICSE.2013.6606588. 621

31. Gousios, G. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working Conference on Mining Software 622

Repositories. IEEE, 2013, MSR ’13, pp. 233–236. https://doi.org/10.1109/MSR.2013.6624034. 623

32. Mattis, T.; Rein, P.; Hirschfeld, R. Three trillion lines: infrastructure for mining GitHub in the classroom. In Proceedings of 624

the Conference Companion of the 4th International Conference on Art, Science, and Engineering of Programming. ACM, 2020, 625

Programming ’20, pp. 1–6. https://doi.org/10.1145/3397537.3397551. 626

33. Trautsch, A.; Trautsch, F.; Herbold, S.; Ledel, B.; Grabowski, J. The SmartSHARK ecosystem for software repository mining. In 627

Proceedings of the 42nd International Conference on Software Engineering: Companion Proceedings. ACM, 2020, pp. 25–28. 628

https://doi.org/10.1145/3377812.3382139. 629

34. Kolovos, D.; Neubauer, P.; Barmpis, K.; Matragkas, N.; Paige, R. Crossflow: a framework for distributed mining of software 630

repositories. In Proceedings of the 16th International Conference on Mining Software Repositories. IEEE, 2019, MSR ’19, pp. 631

155–159. https://doi.org/10.1109/MSR.2019.00032. 632

35. Dueñas, S.; Cosentino, V.; Robles, G.; Gonzalez-Barahona, J.M. Perceval: Software Project Data at Your Will. In Proceedings 633

of the 40th International Conference on Software Engineering: Companion Proceeedings. ACM, 2018, ICSE ’18, pp. 1–4. 634

https://doi.org/10.1145/3183440.3183475. 635

36. Foltin, E.; Dumke, R.R. Aspects of software metrics database design. Wiley Software Process: Improvement and Practice 1998, 636

4, 33–42. https://doi.org/10.1002/(SICI)1099-1670(199803)4:1<33::AID-SPIP94>3.0.CO;2-D. 637

37. Prause, C.R.; Hönle, A. Emperor’s New Clothes: Transparency Through Metrication in Customer-Supplier Relationships. In 638

Proceedings of the Proc. International Conference on Product-Focused Software Process Improvement. Springer, 2018, PROFES 639

’18, pp. 288–296. https://doi.org/10.1007/978-3-030-03673-7_21. 640

38. Sayyad Shirabad, J.; Menzies, T. The PROMISE Repository of Software Engineering Databases. School of Information Technology 641

and Engineering, University of Ottawa, Canada, 2005. 642

39. Scheibel, W.; Hartmann, J.; Limberger, D.; Döllner, J. Visualization of Tree-structured Data using Web Service Composition. 643

In VISIGRAPP 2019: Computer Vision, Imaging and Computer Graphics Theory and Applications; Springer, 2020; pp. 227–252. 644

https://doi.org/10.1007/978-3-030-41590-7_10. 645

40. Heseding, F.; Scheibel, W.; Döllner, J. Tooling for Time- and Space-Efficient Git Repository Mining. In Proceedings of the 19th 646

International Conference on Mining Software Repositories. ACM, 2022, MSR ’22, pp. 413–417. https://doi.org/10.1145/3524842. 647

3528503. 648

41. D’Ambros, M.; Lanza, M.; Robbes, R. An extensive comparison of bug prediction approaches. In Proceedings of the 7th Working 649

Conference on Mining Software Repositories. IEEE, 2010, MSR ’10, pp. 31–41. https://doi.org/10.1109/MSR.2010.5463279. 650

42. Reniers, D.; Voinea, L.; Ersoy, O.; Telea, A.C. The Solid* toolset for software visual analytics of program structure and metrics 651

comprehension: From research prototype to product. Elsevier Science of Computer Programming 2014, 79, 224–240. https: 652

//doi.org/10.1016/j.scico.2012.05.002. 653

43. Dick, S.; Meeks, A.; Last, M.; Bunke, H.; Kandel, A. Data mining in software metrics databases. Elsevier Fuzzy Sets and Systems 654

2004, 145, 81–110. https://doi.org/10.1016/j.fss.2003.10.006. 655

44. Ball, T.; Eick, S. Software visualization in the large. IEEE Computer 1996, 29, 33–43. https://doi.org/10.1109/2.488299. 656

45. Scheibel, W.; Trapp, M.; Limberger, D.; Döllner, J. A Taxonomy of Treemap Visualization Techniques. In Proceedings of the 657

15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. INSTICC, 658

SciTePress, 2020, IVAPP ’20, pp. 273–280. https://doi.org/10.5220/0009153902730280. 659

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3417990.3422006
https://doi.org/10.1145/3092703.3098230
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1145/3397537.3397551
https://doi.org/10.1145/3377812.3382139
https://doi.org/10.1109/MSR.2019.00032
https://doi.org/10.1145/3183440.3183475
https://doi.org/10.1002/(SICI)1099-1670(199803)4:1<33::AID-SPIP94>3.0.CO;2-D
https://doi.org/10.1007/978-3-030-03673-7_21
https://doi.org/10.1007/978-3-030-41590-7_10
https://doi.org/10.1145/3524842.3528503
https://doi.org/10.1145/3524842.3528503
https://doi.org/10.1145/3524842.3528503
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1016/j.scico.2012.05.002
https://doi.org/10.1016/j.scico.2012.05.002
https://doi.org/10.1016/j.scico.2012.05.002
https://doi.org/10.1016/j.fss.2003.10.006
https://doi.org/10.1109/2.488299
https://doi.org/10.5220/0009153902730280

Version January 17, 2024 submitted to Computers 19 of 23

46. Johnson, B.S.; Shneiderman, B. Tree-Maps: A Space-filling Approach to the Visualization of Hierarchical Information Structures. 660

In Proceedings of the 2nd Conference on Visualization. IEEE, 1991, VIS ’91, pp. 284–291. https://doi.org/10.1109/VISUAL.1991 661

.175815. 662

47. Holten, D.; Vliegen, R.; van Wijk, J. Visual Realism for the Visualization of Software Metrics. In Proceedings of the 3rd 663

International Workshop on Visualizing Software for Understanding and Analysis. IEEE, 2005, VISSOFT ’05, pp. 1–6. https: 664

//doi.org/10.1109/VISSOF.2005.1684299. 665

48. Wettel, R.; Lanza, M. Visualizing Software Systems as Cities. In Proceedings of the 4th International Workshop on Visualizing 666

Software for Understanding and Analysis. IEEE, 2007, VISSOFT, pp. 92–99. https://doi.org/10.1109/VISSOF.2007.4290706. 667

49. Steinbrückner, F.; Lewerentz, C. Understanding Software Evolution with Software Cities. SAGE Information Visualization 2013, 668

12, 200–216. https://doi.org/10.1177/1473871612438785. 669

50. Kuhn, A.; Loretan, P.; Nierstrasz, O. Consistent Layout for Thematic Software Maps. In Proceedings of the 15th Working 670

Conference on Reverse Engineering. IEEE, 2008, WCRE, pp. 209–218. https://doi.org/10.1109/WCRE.2008.45. 671

51. Atzberger, D.; Cech, T.; Scheibel, W.; Limberger, D.; Döllner, J. Visualization of Source Code Similarity using 2.5D Semantic 672

Software Maps. In VISIGRAPP 2021: Computer Vision, Imaging and Computer Graphics Theory and Applications; Springer, 2023; pp. 673

162–182. https://doi.org/10.1007/978-3-031-25477-2_8. 674

52. Sokol, F.Z.; Aniche, M.F.; Gerosa, M.A. MetricMiner: Supporting researchers in mining software repositories. In Proceedings of 675

the 13th International Working Conference on Source Code Analysis and Manipulation. IEEE, 2013, SCAM ’13, pp. 142–146. 676

https://doi.org/10.1109/SCAM.2013.6648195. 677

53. Dueñas, S.; Cosentino, V.; Gonzalez-Barahona, J.M.; San Felix, A.d.C.; Izquierdo-Cortazar, D.; Cañas-Díaz, L.; García-Plaza, A.P. 678

GrimoireLab: A toolset for software development analytics. PeerJ Computer Science 2021, 7, e601. https://doi.org/10.7717/peerj- 679

cs.601. 680

54. Archambault, D.; Purchase, H.; Pinaud, B. Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic 681

Graphs. IEEE Transactions on Visualization and Computer Graphics 2011, 17, 539–552. https://doi.org/10.1109/TVCG.2010.78. 682

55. Ma, Y.; Dey, T.; Bogart, C.; Amreen, S.; Valiev, M.; Tutko, A.; Kennard, D.; Zaretzki, R.; Mockus, A. World of code: enabling a 683

research workflow for mining and analyzing the universe of open source VCS data. Springer Empirical Software Engineering 2021, 684

26, 1–42. https://doi.org/10.1007/s10664-020-09905-9. 685

56. Hoepman, J.H.; Jacobs, B. Increased Security through Open Source. Communications of the ACM 2007, 50, 79–83. https: 686

//doi.org/10.1145/1188913.1188921. 687

57. Wermke, D.; Wöhler, N.; Klemmer, J.H.; Fourné, M.; Acar, Y.; Fahl, S. Committed to Trust: A Qualitative Study on Security 688

& Trust in Open Source Software Projects. In Proceedings of the Symposium on Security and Privacy. IEEE, 2022, SP ’22, pp. 689

1880–1896. https://doi.org/10.1109/SP46214.2022.9833686. 690

58. Mayer, P.; Bauer, A. An Empirical Analysis of the Utilization of Multiple Programming Languages in Open Source Projects. In 691

Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering. ACM, 2015, EASE ’15. 692

https://doi.org/10.1145/2745802.2745805. 693

59. Li, D.; Wang, W.; Zhao, Y. Intelligent Visual Representation for Java Code Data in the Field of Software Engineering Based on 694

Remote Sensing Techniques. MDPI Electronics 2023, 12. https://doi.org/10.3390/electronics12245009. 695

60. Atzberger, D.; Cech, T.; de la Haye, M.; Söchting, M.; Scheibel, W.; Limberger, D.; Döllner, J. Software Forest: A Visualization 696

of Semantic Similarities in Source Code using a Tree Metaphor. In Proceedings of the 16th International Joint Conference on 697

Computer Vision, Imaging and Computer Graphics Theory and Applications. INSTICC, SciTePress, 2021, IVAPP ’21, pp. 112–122. 698

https://doi.org/10.5220/0010267601120122. 699

61. Meirelles, P.; Santos Jr., C.; Miranda, J.; Kon, F.; Terceiro, A.; Chavez, C. A Study of the Relationships between Source Code 700

Metrics and Attractiveness in Free Software Projects. In Proceedings of the Brazilian Symposium on Software Engineering. IEEE, 701

2010, SBES ’10, pp. 11–20. https://doi.org/10.1109/SBES.2010.27. 702

62. Ray, B.; Posnett, D.; Filkov, V.; Devanbu, P. A large scale study of programming languages and code quality in GitHub. In 703

Proceedings of the 22nd SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014, FSE ’14. 704

https://doi.org/10.1145/2635868.2635922. 705

63. Scheibel, W.; Blum, J.; Lauterbach, F.; Atzberger, D. Data for ..., 2024. https://doi.org/10.5281/zenodo.XXXXXXXX. 706

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 707

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 708

people or property resulting from any ideas, methods, instructions or products referred to in the content. 709

https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISSOF.2005.1684299
https://doi.org/10.1109/VISSOF.2005.1684299
https://doi.org/10.1109/VISSOF.2005.1684299
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1177/1473871612438785
https://doi.org/10.1109/WCRE.2008.45
https://doi.org/10.1007/978-3-031-25477-2_8
https://doi.org/10.1109/SCAM.2013.6648195
https://doi.org/10.7717/peerj-cs.601
https://doi.org/10.7717/peerj-cs.601
https://doi.org/10.7717/peerj-cs.601
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1145/1188913.1188921
https://doi.org/10.1145/1188913.1188921
https://doi.org/10.1145/1188913.1188921
https://doi.org/10.1109/SP46214.2022.9833686
https://doi.org/10.1145/2745802.2745805
https://doi.org/10.3390/electronics12245009
https://doi.org/10.5220/0010267601120122
https://doi.org/10.1109/SBES.2010.27
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.5281/zenodo.XXXXXXXX

Version January 17, 2024 submitted to Computers 20 of 23

Table A1. The TypeScript repositories used for evaluation. The number of commits relate to the observed branch. The number of
files represent the number of TypeScript source code files in the most current commit on the branch. The lines of code (LoC) are the
lines of code from the TypeScript source code files. The overall share of TypeScript to the other programming languages (TS) is the
self-declaration of GitHub and is a rough estimate. Continuation in Table A2.

Project Location Branch # Commits TS # Files # LoC

AFFiNE � toeverything/AFFiNE canary 5 012 98.1 % 705 58 822
Angular � angular/angular main 28 924 84.5 % 6 438 762 820
Angular CLI � angular/angular-cli main 14 499 94.6 % 1 074 138 552
Angular Components � angular/components main 11 413 81.0 % 2 074 269 875
Ant Design � ant-design/ant-design master 26 917 99.2 % 822 53 436
Apollo Client � apollo-client main 12 105 98.4 % 313 97 443
Babylon.js � BabylonJS/Babylon.js master 42 282 88.2 % 1 829 447 296
Bun � oven-sh/bun main 8 399 5.4 % 607 188 673
cheerio � cheeriojs/cheerio main 2 905 74.2 % 35 13 074
Definitely Typed � DefinitelyTyped/DefinitelyTyped master 85 867 99.9 % 34 067 6 769 450
Deno � denoland/deno main 10 516 22.2 % 1 386 197 437
Electron � electron/electron main 27 898 31.1 % 195 54 764

Electron React Boilerplate � electron-react-boilerplate/electron-
react-boilerplate main 1 122 81.3 % 6 520

esbuild � evanw/esbuild main 4 026 4.0 % 19 6 576
eslint-plugin-import � import-js/eslint-plugin-import main 2 203 0.2 % 50 347
Formly � ngx-formly/ngx-formly main 1 790 98.8 % 608 31 366
freeCodeCamp.org’s open-source code-
base and curriculum � freeCodeCamp/freeCodeCamp main 34 553 64.1 % 390 33 026

github-software-analytics-embedding � hpicgs/github-software-analytics-
embedding dev 164 1.6 % 11 748

GraphQL Code Generator � dotansimha/graphql-code-generator master 8 130 83.4 % 437 83 693
Hoppscotch � hoppscotch/hoppscotch main 5 127 61.5 % 587 75 922
Hydrogen � nteract/hydrogen master 2 372 68.7 % 36 5 685
ice.js � alibaba/ice master 3 067 83.4 % 503 33 575
Ionic � ionic-team/ionic-framework main 13 427 56.2 % 1 034 89 790
Joplin � laurent22/joplin dev 10 687 66.5 % 1 795 190 253
mean stack � linnovate/mean master 2 232 51.3 % 33 868
Mermaid � mermaid-js/mermaid develop 9 152 30.6 % 175 23 159
Mitosis � BuilderIO/mitosis main 1 514 98.3 % 420 45 541
Monaco Editor � microsoft/monaco-editor main 3 327 36.4 % 329 123 664
MUI Core � mui/material-ui master 23 644 55.9 % 1 646 95 283
Nativefier � nativefier/nativefier master 1 288 87.5 % 62 9 289
NativeScript � NativeScript/NativeScript main 7 345 85.9 % 1 200 3 226 971
NativeScript Angular � NativeScript/nativescript-angular master 1 867 92.0 % 385 21 038

https://github.com/toeverything/AFFiNE
https://github.com/angular/angular
https://github.com/angular/angular-cli
https://github.com/angular/components
https://github.com/ant-design/ant-design
https://github.com/apollographql/apollo-client
https://github.com/BabylonJS/Babylon.js
https://github.com/oven-sh/bun
https://github.com/cheeriojs/cheerio
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/denoland/deno
https://github.com/electron/electron
https://github.com/electron-react-boilerplate/electron-react-boilerplate
https://github.com/electron-react-boilerplate/electron-react-boilerplate
https://github.com/evanw/esbuild
https://github.com/import-js/eslint-plugin-import
https://github.com/ngx-formly/ngx-formly
https://github.com/freeCodeCamp/freeCodeCamp
https://github.com/hpicgs/github-software-analytics-embedding
https://github.com/hpicgs/github-software-analytics-embedding
https://github.com/dotansimha/graphql-code-generator
https://github.com/hoppscotch/hoppscotch
https://github.com/nteract/hydrogen
https://github.com/alibaba/ice
https://github.com/ionic-team/ionic-framework
https://github.com/laurent22/joplin
https://github.com/linnovate/mean
https://github.com/mermaid-js/mermaid
https://github.com/BuilderIO/mitosis
https://github.com/microsoft/monaco-editor
https://github.com/mui/material-ui
https://github.com/nativefier/nativefier
https://github.com/NativeScript/NativeScript
https://github.com/NativeScript/nativescript-angular

Version January 17, 2024 submitted to Computers 21 of 23

Table A2. The TypeScript repositories used for evaluation. The number of commits relate to the observed branch. The number of
files represent the number of TypeScript source code files in the most current commit on the branch. The lines of code (LoC) are the
lines of code from the TypeScript source code files. The overall share of TypeScript to the other programming languages (TS) is the
self-declaration of GitHub and is a rough estimate. Continuation from Table A1.

Project Location Branch # Commits TS # Files # LoC

NativeScript Command-Line Interface � NativeScript/nativescript-cli main 6 470 26.7 % 515 110 724
NativeScript-Vue � nativescript-vue/nativescript-vue main 72 79.2 % 32 2 197
NgRx � ngrx/platform main 1 906 87.3 % 1 230 136 981
ngx-admin � akveo/ngx-admin master 554 67.2 % 242 14 329
Noodle � noodle-run/noodle main 651 55.1 % 34 1 494
Nuxt � nuxt/nuxt main 5 242 98.4 % 404 30 741
Nx � nrwl/nx master 11 218 96.7 % 2 975 406 848
Prettier � prettier/prettier main 9 026 5.8 % 557 10 345
Prisma � prisma/prisma main 10 256 98.2 % 1 702 147 821
Quasar Framework � quasarframework/quasar dev 13 575 0.3 % 300 66 316
React � facebook/react main 16 135 0.5 % 7 895
RealWorld � gothinkster/realworld main 949 86.8 % 104 6 549
Rush Stack � microsoft/rushstack main 19 801 96.0 % 1 315 167 304
RxDB � pubkey/rxdb master 10 244 96.0 % 558 79 486
SheetJS � SheetJS/sheetjs github 770 12.3 % 52 12 644
Slidev � slidevjs/slidev main 1 560 66.6 % 101 9 127
Socket.IO � socketio/socket.io main 2 008 66.2 % 55 10 796
Storybook � storybookjs/storybook next 56 100 69.1 % 1 496 154 002
Strapi Community Edition � strapi/strapi develop 33 413 73.6 % 1 835 174 912
TensorFlow.js � tensorflow/tfjs master 6 076 80.3 % 2 532 330 668
themer � themerdev/themer main 1 732 98.6 % 74 9 537
TOAST UI Editor � nhn/tui.editor main 362 85.8 % 315 46 744
Turbo � vercel/turbo main 5 842 8.2 % 359 27 344
TypeORM � typeorm/typeorm master 5 361 99.8 % 3 150 266 117
TypeScript RPC � k8w/tsrpc master 419 99.3 % 74 14 860
uni-app � dcloudio/uni-app dev 10 295 0.7 % 102 11 078
Visual Studio Code � microsoft/vscode main 117 393 93.7 % 4 555 1 293 371
Vue � vuejs/vue main 3 591 96.7 % 388 72 050
vuejs/core � vuejs/core main 5 502 96.5 % 457 121 640
Vuetify � vuetifyjs/vuetify master 15 303 51.4 % 451 40 627
webgl-operate � cginternals/webgl-operate master 1 844 70.3 % 181 44 000
webpack � webpack/webpack main 16 408 0.2 % 72 20 931

https://github.com/NativeScript/nativescript-cli
https://github.com/nativescript-vue/nativescript-vue
https://github.com/ngrx/platform
https://github.com/akveo/ngx-admin
https://github.com/noodle-run/noodle
https://github.com/nuxt/nuxt
https://github.com/nrwl/nx
https://github.com/prettier/prettier
https://github.com/prisma/prisma
https://github.com/quasarframework/quasar
https://github.com/facebook/react
https://github.com/gothinkster/realworld
https://github.com/microsoft/rushstack
https://github.com/pubkey/rxdb
https://github.com/SheetJS/sheetjs
https://github.com/slidevjs/slidev
https://github.com/socketio/socket.io
https://github.com/storybookjs/storybook
https://github.com/strapi/strapi
https://github.com/tensorflow/tfjs
https://github.com/themerdev/themer
https://github.com/nhn/tui.editor
https://github.com/vercel/turbo
https://github.com/typeorm/typeorm
https://github.com/k8w/tsrpc
https://github.com/dcloudio/uni-app
https://github.com/microsoft/vscode
https://github.com/vuejs/vue
https://github.com/vuejs/core
https://github.com/vuetifyjs/vuetify
https://github.com/cginternals/webgl-operate
https://github.com/webpack/webpack

Version January 17, 2024 submitted to Computers 22 of 23

AFFiNE Angular CLI Angular Ant Design

Apollo Client Babylon.js Bun Cheerio

Angular Components vuejs/core Definitely Typed Deno

Electron Electron React Boilerplate esbuild eslint-plugin-import

freeCodeCamp.org github-software-analytics-embedding GraphQL Code Generator Hoppscotch

Hydrogen ice.js Ionic Joplin

MUI Core mean stack Mermaid Mitosis

Monaco Editor Nativefier NativeScript Angular NativeScript Command-Line Interface

AFFiNE Angular CLI Angular Ant Design

Apollo Client Babylon.js Bun Cheerio

Angular Components vuejs/core Definitely Typed Deno

Electron Electron React Boilerplate esbuild eslint-plugin-import

freeCodeCamp.org github-software-analytics-embedding GraphQL Code Generator Hoppscotch

Hydrogen ice.js Ionic Joplin

MUI Core mean stack Mermaid Mitosis

Monaco Editor Nativefier NativeScript Angular NativeScript Command-Line Interface

AFFiNE Angular CLI Angular Ant Design

Apollo Client Babylon.js Bun Cheerio

Angular Components vuejs/core Definitely Typed Deno

Electron Electron React Boilerplate esbuild eslint-plugin-import

freeCodeCamp.org github-software-analytics-embedding GraphQL Code Generator Hoppscotch

Hydrogen ice.js Ionic Joplin

MUI Core mean stack Mermaid Mitosis

Monaco Editor Nativefier NativeScript Angular NativeScript Command-Line Interface

AFFiNE Angular CLI Angular Ant Design

Apollo Client Babylon.js Bun Cheerio

Angular Components vuejs/core Definitely Typed Deno

Electron Electron React Boilerplate esbuild eslint-plugin-import

freeCodeCamp.org github-software-analytics-embedding GraphQL Code Generator Hoppscotch

Hydrogen ice.js Ionic Joplin

MUI Core mean stack Mermaid Mitosis

Monaco Editor Nativefier NativeScript Angular NativeScript Command-Line Interface

AFFiNE Angular CLI Angular Ant Design

Apollo Client Babylon.js Bun Cheerio

Angular Components vuejs/core Definitely Typed Deno

Electron Electron React Boilerplate esbuild eslint-plugin-import

freeCodeCamp.org github-software-analytics-embedding GraphQL Code Generator Hoppscotch

Hydrogen ice.js Ionic Joplin

MUI Core mean stack Mermaid Mitosis

Monaco Editor Nativefier NativeScript Angular NativeScript Command-Line Interface

Figure A1. Comparison of TypeScript projects with increasing size and complexity using a software map visualization. The number of
lines of code (LoC) is mapped to weight, the number of functions (NoF) is mapped to height, and the density of comments (DoC) is
mapped to color.

Version January 17, 2024 submitted to Computers 23 of 23

NativeScript NativeScript-Vue ngx-admin Formly

Noodle Nuxt Nx NgRx

Prettier Prisma Quasar Framework React

RealWorld Rush Stack RxDB SheetJS

Slivev Socket.IO Storybook Strapi Community Edition

TensorFlow.js themer TypeScript RPC TOAST UI Editor

Turbo TypeORM uni-app Visual Studio Code

Vue Vuetify webgl-operate webpack

NativeScript NativeScript-Vue ngx-admin Formly

Noodle Nuxt Nx NgRx

Prettier Prisma Quasar Framework React

RealWorld Rush Stack RxDB SheetJS

Slivev Socket.IO Storybook Strapi Community Edition

TensorFlow.js themer TypeScript RPC TOAST UI Editor

Turbo TypeORM uni-app Visual Studio Code

Vue Vuetify webgl-operate webpack

NativeScript NativeScript-Vue ngx-admin Formly

Noodle Nuxt Nx NgRx

Prettier Prisma Quasar Framework React

RealWorld Rush Stack RxDB SheetJS

Slivev Socket.IO Storybook Strapi Community Edition

TensorFlow.js themer TypeScript RPC TOAST UI Editor

Turbo TypeORM uni-app Visual Studio Code

Vue Vuetify webgl-operate webpack

NativeScript NativeScript-Vue ngx-admin Formly

Noodle Nuxt Nx NgRx

Prettier Prisma Quasar Framework React

RealWorld Rush Stack RxDB SheetJS

Slivev Socket.IO Storybook Strapi Community Edition

TensorFlow.js themer TypeScript RPC TOAST UI Editor

Turbo TypeORM uni-app Visual Studio Code

Vue Vuetify webgl-operate webpack

NativeScript NativeScript-Vue ngx-admin Formly

Noodle Nuxt Nx NgRx

Prettier Prisma Quasar Framework React

RealWorld Rush Stack RxDB SheetJS

Slivev Socket.IO Storybook Strapi Community Edition

TensorFlow.js themer TypeScript RPC TOAST UI Editor

Turbo TypeORM uni-app Visual Studio Code

Vue Vuetify webgl-operate webpack

Figure A2. Comparison of TypeScript projects with increasing size and complexity using a software map visualization. The number of
lines of code (LoC) is mapped to weight, the number of functions (NoF) is mapped to height, and the density of comments (DoC) is
mapped to color.

	Introduction
	Related Work
	Tools for Mining Software Repositories
	Metric Storage Formats
	Software Visualization
	Software Analytics Systems

	Approach
	Process Overview
	Analysis
	Storage
	Visualization
	Prototype Implementation Details

	Evaluation
	Case Study
	Repository Memory Impact
	CI Execution Time Impact
	Practical Considerations & Recommendations

	Discussion
	Threats to Validity
	Limitations
	Extensibility

	Conclusions
	References

