
Experimental Index Evaluation for Partial Indexes in
Horizontally Partitioned In-Memory Databases

Marcel Weisgut
Hasso Plattner Institute, University of Potsdam, Germany

marcel.weisgut@student.hpi.de

ABSTRACT
A horizontally partitioned storage layout for column-
oriented relational in-memory databases is a popular design
choice. One of the reasons for horizontal table partitioning is
the increased degree of flexibility in data placement, multi-
processing, and physical design decisions. For example, auxi-
liary data structures such as indexes or filters can be created
partition-wise with varying implementations.

However, creating indexes per partition can result in a
significant computational overhead for index lookup opera-
tions. In this work, we present a partial indexing idea to
overcome this overhead. Our proposed approach creates in-
dexes table-wise, but only tuples of frequently accessed par-
titions are indexed. Our research is still in progress. For the
realization of our partial index, the maintenance efficiency
of the underlying index structure is particularly relevant.
Thus, in this work, we evaluate different index implementa-
tions in their lookup speed, maintenance cost, and memory
consumption to identify suitable implementations to realize
partial indexes. The hash maps Robin Hood (RH) Flat Map
and Tessil’s (TSL) Sparse Map achieve overall the best eva-
luation results. Whereas the former is comparatively faster,
the latter has a lower memory footprint.

1. INTRODUCTION
Horizontal partitioning allows to create indexes partition-

wise with varying implementations [15, 16]. However, when
those indexes are utilized to find qualifying tuples for a given
search condition, one lookup operation for each partition’s
index of the corresponding table has to be performed.

Table 1 shows two exemplary joins that we executed with
our research database Hyrise1. Tables in Hyrise are hori-
zontally partitioned into partitions of 65 535 tuples. The de-
picted joins utilize indexes which are created partition-wise.
Both joins have the same predicate, the same indexed base
table as left input, and a filtered table as the right input.
The right, non-indexed table is referred to as probe table.

In query 19, the number of tuples in the probe table is
2 771 higher than in query 17. Although this number is small
compared to the number of tuples in the indexed table of al-
most 60 million, it results in a crucial additional effort for

1Source code at https://github.com/hyrise/hyrise

32nd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), September 01-03, 2021, Munich, Germany.
Copyright © 2021 for this paper by its authors. Use permitted under Crea-
tive Commons License Attribution 4.0 International (CC BY 4.0).

TPC-H
Query ID

Join predicate
Number of tuples

Indexed
table

Probe
table

17 l partkey = p partkey ∼60 M 1 986
19 l partkey = p partkey ∼60 M 4 757

Table 1: Example index (semi) joins generated in Hyrise with
the TPC-H queries 17 and 19 using scale factor 10.

the index probing compared to query 17. With the aforemen-
tioned partition size, the indexed table consists of 916 parti-
tions. Since indexes are created partition-wise, one equality
lookup for each of the 916 created indexes must be execu-
ted for each tuple of the probe table to retrieve matching
tuples of the indexed table. In total, this results in 1 819 176
equality lookups in query 17 and 4 357 412 in query 19.

Consequently, the index joins’ performance depends on
the partition count of the indexed data table and scales in-
versely proportional with it: As the number of partitions
increases, so does the number of indexes and the number of
lookup operations required.

Our ongoing research focuses on the design and exemplary
implementation of a partial indexing strategy to overcome
this computational index probing overhead. The contributi-
ons of this work are as follows:

• Partial Indexes. We introduce an idea of partial inde-
xes to reduce the shown computational index probing
overhead. Our partial indexes are to be created table-
wise instead of partition-wise, but they store only in-
dex entries for frequently accessed partitions.

• Index Benchmark Framework. We developed an open-
source C++ benchmark framework, which allows rese-
archers to measure the performance of read and wri-
te operations of secondary indexes. The evaluation
aspects are the latency of insert, delete, lookup and
bulk operations and the index memory consumption.

• Evaluation of In-Memory Secondary Indexes. We pre-
sent an experimental performance evaluation of dif-
ferent index implementations, including trees, radix
trees, and hash maps. We evaluated their read and
write efficiency and identified index candidates that
suite specifically well for our partial index.

2. PARTIAL INDEXES
An advantage of partition indexes is the high flexibility:

For each partition, it can be decided individually whether
an index is to be created. This makes it possible to create
indexes only for partitions whose data is accessed frequently.

https://github.com/hyrise/hyrise


Such flexibility is not provided with a traditional full table
index since it must always be updated when a tuple is inser-
ted into or deleted from the indexed table, or the search-key
value of an already indexed tuple is updated. Thus, partition
indexes are more efficient in terms of memory consumption
as they can selectively index data of a table whereas a full
table index contains index entries for all tuples of a table.

Our proposed partial index is a secondary index that
breaks the full table index’s requirement of indexing a table
entirely and can index one or more partitions. Thus, an ar-
bitrary subset of partitions can be indexed. In contrast to
tuple-wise indexing of traditional indexes, our partial index’s
maintenance operations are executed partition-wise. Conse-
quently, index entries are inserted into or deleted from the
partial index for the entire data of a given partition. In-
place updates are not considered in this work since our par-
tial index is specifically designed for insert-only in-memory
DBMSs that use multiversion concurrency control.

The Need for Maintenance Efficiency. Our partial index
only indexes partitions whose data is accessed frequently to
reduce the memory footprint. As the workload of a DBMS
can change over time [24], so does the frequency with which
data is accessed. With a changing set of partitions who-
se data is accessed frequently, existing partial indexes must
continuously be adjusted.

Consequently, the indexing algorithm required for our par-
tial index is adaptive. Depending on the workload, the algo-
rithm must continuously insert index entries partition-wise
into or delete them from partial indexes. The index main-
tenance effort of a partial index depends on factors such
as the size of the indexed table, the details of the indexing
algorithm (e.g., the access classification of data as frequent-
ly or rarely accessed), the executed database workload, and
the underlying data structure of the partial index. In this
work, we focus on the latter aspect and identify an index
implementation suitable for realizing our partial index.

3. INDEX BENCHMARK
We developed an open-source benchmark framework2 to

evaluate single-attribute in-memory secondary indexes in
their lookup speed, maintenance and memory performance.
It allows to run certain benchmark cases with different index
implementations on different datasets. The benchmark cases
measure the required execution times of the index operati-
ons. In selected benchmark cases, the index’s memory con-
sumption is additionally measured. The index implementa-
tions included in the framework as well as the framework
itself are written in C++.

3.1 Index Implementations
Unsync ART. The Unsync ART [1, 23] is an implementa-

tion of the ART (Adaptive Radix Tree), which is “a fast and
space-efficient in-memory indexing structure specifically tu-
ned for modern hardware” [22]. The ART is a specialized ra-
dix tree that adaptively and dynamically chooses a compact
data structure for each individual internal node, depending
on the number of child nodes.

MP Judy. Similar to the ART, the Judy Array is an ad-
aptive radix tree [12]. It is a variant of a 256-way radix tree
that is designed to reduce the number of cache misses by
using over 20 different compression techniques. We use the
Judy Array implementation of M. Pictor in this work [4].

2Source code at https://github.com/mweisgut/IMIB

TLX B+ Tree. This B+ tree, which is part of the TLX
collection [14, 11], is an improved version of the STX B+
Tree [13]. According to the description of the predecessor,
this data structure is an in-memory B+ tree that packs mul-
tiple value pairs into each node of the tree and thus reduces
heap fragmentation and utilizes cache-line effects [13].

Abseil B-Tree. This B-tree, which is part of Google’s open-
source collection of C++ libraries called Abseil [17, 18], is a
cache-friendly and space-efficient B-tree implementation.

BB-Tree. The BB-Tree [2] is an “almost-balanced k-ary
search tree, where inner nodes recursively split the data
space into k partitions according to a delimiter dimension
and k−1 delimiter values. Data objects are stored in leaf no-
des (buckets). When too many data points are inserted (or
deleted) and buckets overflow (or underflow), the structure
is rebuilt to achieve a balance that is beneficial regarding
the depths of leaves.” [30].

RH Flat Map. The Robin Hood (RH) Flat Map [5] is a fast
and memory efficient hash map. For collision resolution, it is
based on robin hood hashing. The hash map stores its data
in a flat array, which results in very fast access operations.

RH Node Map. Similar to the Robin Hood Flat Map, the
Robin Hood Node Map [5] is a fast and memory efficient hash
map, based on robin hood hashing. Unlike the RH Flat Map,
the RH Node Map stores its data with node indirection.

PG Skip List. A skip list is a linked list extended by ad-
ditional pointers to skip nodes when searching for certain
stored elements [27]. The skip list included in the bench-
mark framework is an implementation of P. Goodliffe [7].

TSL Robin Map. Similar to the above listed RH Maps,
Tesssil’s (TSL) Robin Map [6] is a fast hash map based on
robin hood hashing.

TSL Sparse Map. Tessil’s (TSL) Sparse Map [9] is a me-
mory efficient hash map that uses sparse quadratic probing.
The design goal of this map is to be the most memory effi-
cient possible while keeping reasonable performance.

STD Hash Map. This map is provided by the C++ standard
library as unordered_map. It“is an associative container that
contains key-value pairs with unique keys” [10].

3.2 Index Operations
Insert (I). The Insert operation creates a new key-value

entry in the index. Therefore, the key and the value have
to be provided as the operation’s input parameters. If an
entry with the given key exists in the index, the entry is not
added. An exception is the PG Skip List, which overwrites
the existing entry.

Delete (D). The Delete operation removes the stored entry
that contains a given key from the index.

Equality Lookup (EL). The Equality Lookup expects a key
as an input parameter and returns the associated value if
the index contains a key-value entry with the given key.

Range Lookup (RL). The Range Lookup operation expects
two keys as input parameters, representing a key range, and
returns the values of all the stored entries whose key is within
the given key range.

Bulk Insert (BI). Inserting a large number of entries is re-
ferred to as bulk loading. Since the TLX B+ Tree provides
two different functionalities in this regard, we distinguish
between a bulk insert and a bulk load. The Bulk Insert ope-
ration inserts multiple key-value entries into the index wi-
thout the requirement of the index being empty before.

Bulk Load (BL). Similar to the Bulk Insert, the Bulk Load

https://github.com/mweisgut/IMIB


inserts multiple key-value entries into the index. Unlike the
Bulk Insert, the index must be empty before. For example, a
bulk load of the TLX B+ Tree means that for a given sorted
sequence of index entries, the leaves are created first, and the
overlying levels of the B+ tree are constructed afterward.

Index Implementation I D EL RL BI BL
Unsync ART 3 3 3 7 7 7
TLX B+ Tree 3 3 3 3 3 3*
Abseil B-Tree 3 3 3 3 3 7
BB-Tree 3 3 3 3 7 3
MP Judy 3 3 3 7 7 7
RH Flat/Node Map 3 3 3 7 3 7
PG Skip List 3 3 3 3 3 7
TSL Robin/Sparse Map 3 3 3 7 3 7
STD Hash Map 3 3 3 7 3 7

Table 2: Index operations supported by the evaluated index
implementations. * The entries to be inserted must be sorted.

3.3 Benchmark Cases
The benchmark framework contains the benchmark cases

Insert, Delete, Equality Lookup, Range Lookup, Bulk Insert
and Bulk Load. These are designed to evaluate the index
operations listed in Section 3.2. Due to space limitations,
we only present the Equality Lookup, Delete, and Bulk Insert
cases. The descriptions of all benchmark cases can be found
in the code repository of our benchmark [3].

Equality Lookup. The time required to execute a given
sequence of equality lookups is measured. Before executing
and measuring the equality lookups, the index is initialized
and a given sequence of index entries is inserted using the
insert operation.

Delete. The execution time required to delete a given se-
quence of index entries using the delete operation is measu-
red. Before the delete operations are executed and measured,
the index is initialized and the entire sequence of index ent-
ries to be deleted is inserted using the insert operation. The
order in which the entries are deleted corresponds to the
insertion order.

Bulk Insert. The execution time required to insert a given
sequence of index entries using the bulk insert operation is
measured. Before the execution and measurement, the in-
dex is initialized. Besides, the index’s memory footprint is
measured. Therefore, the allocated memory is measured be-
fore the index’s initialization and after inserting the index
entries. The difference of the allocated memory values is con-
sidered the index’s memory consumption.

3.4 Datasets
To execute the different benchmark cases for the index

implementations, different data is needed. For all the bench-
mark cases, a sequence of keys is required as input for the
benchmark. This input represents a sequence of index ent-
ries, where a single key represents the search-key value and
the position of the key, starting at one, represents the tuple
identifier (TID). We refer to this input data as entry keys.

We use dense and sparse unsigned integer values as the
entry keys to evaluate the index implementations. Addi-
tionally, we consider both ascending sorted and unsorted
keys. The sorted dense dataset contains sequentially incre-
asing, consecutive integer values, starting at one. For the
unsorted dense dataset, the sorted dense keys are randomly
shuffled. The unsorted sparse data sequence contains ran-

domly picked, unique unsigned integer values. This sequence
is sorted in ascending order for the sorted sparse data.

Additionally, search-key values and ranges of search-key
values are required as input data for the Equality Lookup
and the Range Lookup experiments, respectively. From a se-
quence of entry keys, a number of keys is randomly selected
as equality lookups data sequence. For the range lookup key
ranges, a number of key ranges is selected from a given se-
quence of entry keys. For each of the selected ranges, the
number of qualifying keys is the same.

For our evaluation, we use five different sizes per combi-
nation of dense/sparse and ascending/random entry keys.
The datasets have the sizes of two, four, six, eight, and ten
million entry keys. Furthermore, we use one million lookup
operations in the respective benchmark cases. For the range
lookups, we used a selectivity of 0.01%.

4. EVALUATION
Since all of the index implementations listed in Section 3.1

support unique keys but not non-unique keys, we only use
datasets with unique entry keys in our evaluation. For a
given dataset, we ran the benchmark cases using 64-bit un-
signed integers as search-keys and TIDs. The measurements
reported are the median of 12 runs.

Join operations between foreign and primary keys are an
exemplary database use case in which an index for a column
with unique unsigned integer values can be utilized. Primary
keys are often IDs, which are often represented as unsigned
integer values. This applies, for example, when primary keys
are surrogate keys.

The index benchmark cases were executed on a machi-
ne with four Intel(R) Xeon(R) CPU E7-4880 v2 CPUs on
which each socket serves as a non-uniform memory ac-
cess (NUMA) node. Each NUMA node has 512 GB of
DDR3-1600 memory. Benchmarks were bound to a single
NUMA node using numactl -N 2 -m 2. The index bench-
mark was compiled with clang 9.0.1-12 and the options
-O3 -march=native. We used the C++ standard library ver-
sion libstdc++.so.6.0.28.

4.1 Results
Due to space limitations, we only show the benchmark re-

sults for the Equality Lookup, Delete, and Bulk Insert bench-
mark cases. The remaining benchmark results can be found
in our code repository [3].

Equality Lookups. Figure 1 shows the cumulative executi-
on time of one million equality lookups performed with va-
rious entry key distributions, entry key orderings, and num-
bers of entries stored in the index. In each quadrant, the
measurements of one data distribution and ordering combi-
nation is shown for different numbers of stored index entries.

As a reference, we included the lookup duration of the
Sorted Vector, which is a dynamic array (std::vector) that
stores its values in sorted order. To keep the dynamic array
sorted all the time, new values are inserted into the pro-
per position. To find the position of certain values during a
lookup operation, a binary search is performed.

Delete. Figure 2 shows the cumulative execution time of
deleting various numbers of index entries using the delete
operation. The data characteristics of the entry keys vary in
the four different quadrants.

Bulk Insert. Figure 3 shows the execution time required to
insert various numbers of index entries using the bulk insert



operation. The data characteristics of the entry keys vary in
the four different quadrants.

Simple Vector and Sorted Vector are included as refe-
rence. The bulk insert of the Simple Vector consecutively
inserts the sequence of given entries to a dynamic array
(std::vector). The Sorted Vector additionally sorts the dy-
namic array after finishing the insertion.

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Dense data in ascending order Dense data in random order

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sparse data in ascending order

2 4 6 8 10

Sparse data in random order

0.0 0.2 0.4 0.6 0.8 1.0
Number of index entries in million

0.0

0.2

0.4

0.6

0.8

1.0

Du
ra

tio
n 

in
 se

co
nd

s

Abseil B-Tree
MP Judy
RH Flat Map

RH Node Map
STD Hash Map
Sorted Vector

TLX B+ Tree
TSL Robin Map

TSL Sparse Map
Unsync ART

Figure 1: Cumulative duration of one million equality lookups
for different numbers of stored index entries.

Based on the evaluation measurements, we subjectively
categorized these measurements into the categories low (L),
moderate (M) and high (H) as shown in Table 3. Since the
measurements are execution times and memory consump-
tions, respectively, lower categories are better. We did not
categorize the execution times of range lookups and bulk
loads since the former is supported only by the B-tree im-
plementations and the latter only by the TLX B+ Tree.

Non-Competitive Implementations. Executions of different
benchmark cases showed that the index operations could not
be executed in a reasonable time for the BB-Tree and the
PG Skip List. Therefore, we excluded these implementations
from further evaluation experiments.

Key Findings. As can be seen in Table 3, the RH Flat Map,
TSL Sparse Map, and Unsync ART are the only implemen-
tations that achieved good or moderate performance on all
datasets in the evaluated aspects. Whereas the RH Flat Map
shows overall lower operation execution times compared to
the TSL Sparse Map, the latter has a lower memory foot-
print. The Unsync ART achieves an overall moderate perfor-
mance in the evaluated aspects. Unfortunately, it does not
support bulk inserts and provides a faulty delete operation.
Apart from the high memory consumption of the TSL Ro-
bin Map on all datasets, this hash map achieves overall low
operation execution times. In fact, it mostly requires lower
equality lookup, delete and bulk insert execution times com-
pared to the RH Flat Map and TSL Sparse Map.

0

1

2

3

4

5

6

7

8
Dense data in ascending order Dense data in random order

2 4 6 8 10
0

1

2

3

4

5

6

7

8
Sparse data in ascending order

2 4 6 8 10

Sparse data in random order

0.0 0.2 0.4 0.6 0.8 1.0
Number of index entries in million

0.0

0.2

0.4

0.6

0.8

1.0

Du
ra

tio
n 

in
 se

co
nd

s

Abseil B-Tree
MP Judy

RH Flat Map
RH Node Map

STD Hash Map
TLX B+ Tree

TSL Robin Map
TSL Sparse Map

Figure 2: Cumulative duration of the Delete operation for
different sized sets of index entries.

Aspect Data Index implementation

D
is

tr
ib

u
ti

o
n

O
rd

er
in

g

A
b
se

il
B

-T
re

e

M
P

J
u
d
y

R
H

F
la

t
M

a
p

R
H

N
o
d
e

M
a
p

S
T

D
H

a
sh

M
a
p

T
L

X
B

+
T

re
e

T
S
L

R
o
b
in

M
a
p

T
S
L

S
p
a
rs

e
M

a
p

U
n
sy

n
c

A
R

T

Equality
Lookup
duration

dense ascending H M L M M H L L M
dense random H M L M M H L L M
sparse ascending M M L M M H L L M
sparse random M M L M M H L L M

Insert
duration

dense ascending L M M H L M M L M
dense random H M L M M H M M L
sparse ascending L L M M H M M M M
sparse random H M L M H H M M M

Delete
duration

dense ascending L H L M L M L L -
dense random H M L M M H L M -
sparse ascending L H L M H M L M -
sparse random H H L M H H L M -

Bulk
Insert

duration

dense ascending L - M H L M L L -
dense random H - L M L H L M -
sparse ascending L - M H H M M M -
sparse random H - L M M H L L -

Memory
foot-
print

dense ascending L L M M M M H L L
dense random L L M M M M H L L
sparse ascending L M M M M M H L M
sparse random L M M M M M H L M

Table 3: Categorization of the measured values into low (L),
moderate (M) and high (H) (lower is better).

Furthermore, the B-trees, which are the only implemen-
tations supporting range queries, generally perform better
on sorted data as shown in Table 3. The Abseil B-Tree per-
forms generally better than the TLX B+ Tree. However,
even on sorted data, both implementations achieved the hig-
hest equality lookup execution time.



0

1

2

3

4

5

6

7
Dense data in ascending order Dense data in random order

2 4 6 8 10
0

1

2

3

4

5

6

7
Sparse data in ascending order

2 4 6 8 10

Sparse data in random order

0.0 0.2 0.4 0.6 0.8 1.0
Number of index entries in million

0.0

0.2

0.4

0.6

0.8

1.0
Du

ra
tio

n 
in

 se
co

nd
s

Abseil B-Tree
RH Flat Map
RH Node Map

STD Hash Map
Simple Vector

Sorted Vector
TLX B+ Tree

TSL Robin Map
TSL Sparse Map

Figure 3: Duration of the Bulk Insert operation for different
sized sets of index entries.

5. RELATED WORK
Partial Indexes. Stonebraker presented the first concept of

partial indexes and how they can be used in a DBMS [31].
According to his specification, a single partial index is crea-
ted for a subset of a table’s data depending on a given qua-
lification condition. Index entries are only created for those
tuples that satisfy the given condition.

Seshadri and Swami extended Stonebraker’s idea and pro-
posed a generalized partial indexing concept, which includes
six different strategies that can be used to create partial in-
dexes [29]. These strategies use various statistical informa-
tion such as the distribution of column accesses by queries,
query predicate values, and data values to decide which in-
dexes to be created.

Database Cracking [19] is an adaptive indexing technique
that partially indexes columns. Using this technique, indexes
are created “adaptively and incrementally as a side-product
of query processing” [28]. The core cracking algorithm crea-
tes a copy of a column – a so-called cracker column – and
incrementally sorts it during the execution of range que-
ries [19]. The incremental sorting is realized by splitting the
cracker column into multiple partitions – so-called column
slices – with certain value ranges. During the execution of a
range query, the cracker column or already existing column
slices, respectively, are split based on the range predicate’s
boundaries. The partially sorted cracker column is utilized
by database operations to speed up the execution time.

Olma et al. recently proposed an online adaptive parti-
tioning and indexing algorithm for in situ query processing
engines [26], which they integrated into their query proces-
sing system Slalom. Their approach reduces data access costs
by partitioning a raw dataset into partitions and applying
indexing strategies for each partition individually. Based on
continuously collected statistics, their algorithm performs
the partitioning and indexing in a gradual manner as a side

effect of query processing. Thus, a priori workload knowledge
is not required. Based on access frequencies, the algorithm
decides individually for each partition whether and which
in-memory partition index is to be created. Thus, instead of
indexing the entire dataset, indexes exist only for subset of
frequently accessed partitions.

Olma et al.’s algorithm shares similarities with our partial
index approach: Both approaches refine the set of existing
indexes automatically and dynamically based on data access
frequencies. In addition, both approaches choose the set of
data to be indexed on partition granularity. However, while
their algorithm creates indexes partition-wise, our approach
creates indexes table-wise across selected partitions. Addi-
tionally, whereas Olma et al.’s work refers to in situ query
processing systems, our approach is designed for in-memory
DBMS. Thus, their indexes are created for partitions of raw
data files whereas our indexes are to be created for table
data stored in main memory.

Index Evaluations and Benchmarks. Xie et al. conducted
an experimental performance evaluation of five modern in-
memory database indexes [32]. Their aspects of investigation
were the throughput, latency, scalability, memory consump-
tion and cache miss rate. They executed equality lookups,
inserts and updates with varying experiment configurations
in different dimensions. These dimensions are the size of the
dataset, the number of execution threads, the ratios of equa-
lity lookup, insert, and update operations, and the skewness
in the workload and dataset.

Alvarez and his fellow researchers presented an experimen-
tal performance evaluation between the ART and the Judy
Array and different hash table variants [12]. Their evaluati-
on aspects are the insertion and equality lookup throughput
and the memory footprint.

Kipf, Marcus and their co-authors developed an open-
source index benchmark framework called Search On Sorted
Data Benchmark (SOSD) [8] that allows researchers to com-
pare in-memory search algorithms, including (learned) inde-
xes, on equality lookup performance over sorted data [20].
According to the SOSD authors, their framework contains
diverse synthetic and real-world datasets, optimized baseli-
ne implementations, and the “first performant and publicly
available implementation of the [learned] Recursive Model
Index (RMI)” [20], which is proposed by Kraska et al. [21].
Marcus, Kipf et al. extended their initial work about the
SOSD in a follow-up work [25]. In this work, they presented
their framework in more detail and conducted a performance
analysis of three recent learned index structures.

6. CONCLUSION AND FUTURE WORK
In this work, we presented the idea of a partial index that

is created table-wise but only indexes data of frequently ac-
cessed partitions. Using our index benchmark framework, we
evaluated the lookup speed, maintenance cost and memory
consumption of various index implementations to identify a
suitable implementation for partial indexes.

Since our partial indexes are designed to execute mainte-
nance operations on a partition level, the efficiency of bulk
operations is particularly relevant. Regarding the equality
lookup, delete and bulk insert performance, the TSL Robin
Map achieved the best overall results.

As a next step, we plan to implement the proposed partial
index in our research database Hyrise so that we can perform
end-to-end DBMS performance evaluations afterward.



7. ACKNOWLEDGMENTS
I sincerely thank my supervisors Jan Kossmann and Mar-

kus Dreseler, who supported me intensively and always ga-
ve me constructive impulses and detailed, critical feedback.
Furthermore, I would like to thank the anonymous reviewers
for their valuable feedback.

8. REFERENCES
[1] ARTSynchronized.

https://github.com/flode/ARTSynchronized,
Accessed: 2021-03-01.

[2] BB-Tree.
https://github.com/flippingbits/bb-tree,
Accessed: 2021-03-01.

[3] Index Benchmark Evaluation Results.
https://github.com/mweisgut/IMIB/tree/gvdb21/

evaluation_results, Accessed: 2021-03-02.

[4] Judy Template.
https://github.com/mpictor/judy-template,
Accessed: 2021-03-01.

[5] Robin Hood Map.
https://github.com/martinus/robin-hood-hashing,
Accessed: 2021-03-01.

[6] Robin Map. https://github.com/Tessil/robin-map,
Accessed: 2021-03-01.

[7] Skip List.
https://github.com/petegoodliffe/skip_list,
Accessed: 2021-03-01.

[8] SOSD. https://github.com/learnedsystems/SOSD,
Accessed: 2021-03-01.

[9] Sparse Map.
https://github.com/Tessil/sparse-mapp,
Accessed: 2021-03-01.

[10] std::unordered map. https://en.cppreference.com/
w/cpp/container/unordered_map,
Accessed: 2021-03-01.

[11] TLX. https://github.com/tlx/tlx,
Accessed: 2021-03-01.

[12] V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A
comparison of adaptive radix trees and hash tables. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 1227–1238, 2015.

[13] T. Bingmann. STX B+ Tree C++ Template Classes,
2013. https://panthema.net/2007/stx-btree/,
Accessed: 2021-03-01.

[14] T. Bingmann. TLX: Collection of sophisticated C++
data structures, algorithms, and miscellaneous helpers,
2018. https://panthema.net/tlx, Accessed
2021-03-01.

[15] C. Chasseur and J. M. Patel. Design and Evaluation
of Storage Organizations for Read-Optimized Main
Memory Databases. Proceedings of the International
Conference on Very Large Databases (VLDB),
6(13):1474–1485, 2013.

[16] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck,
M. Uflacker, and H. Plattner. Hyrise Re-engineered:
An Extensible Database System for Research in
Relational In-Memory Data Management. In
Proceedings of the International Conference on
Extending Database Technology (EDBT), pages
313–324, 2019.

[17] Google Inc. Abseil. https://abseil.io,
Accessed: 2021-03-01.

[18] Google Inc. Abseil - C++ Common Libraries.
https://github.com/abseil/abseil-cpp,
Accessed: 2021-03-01.

[19] S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), pages
68–78, 2007.

[20] A. Kipf, R. Marcus, A. van Renen, M. Stoian,
A. Kemper, T. Kraska, and T. Neumann. SOSD: A
Benchmark for Learned Indexes. NeurIPS Workshop
on Machine Learning for Systems, 2019.

[21] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The Case for Learned Index Structures.
In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 489–504,
2018.

[22] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: ARTful indexing for main-memory
databases. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
38–49, 2013.

[23] V. Leis, F. Scheibner, A. Kemper, and T. Neumann.
The ART of practical synchronization. In Proceedings
of the International Workshop on Data Management
on New Hardware (DaMoN), 2016.

[24] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo,
and G. J. Gordon. Query-based Workload Forecasting
for Self-Driving Database Management Systems. In
Proceedings of the International Conference on
Management of Data (SIGMOD), 2018.

[25] R. Marcus, A. Kipf, A. van Renen, M. Stoian,
S. Misra, A. Kemper, T. Neumann, and T. Kraska.
Benchmarking Learned Indexes. PVLDB, 2021.

[26] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, and A. Ailamaki. Adaptive
partitioning and indexing for in situ query processing.
The VLDB Journal, 29(1):569–591, 2020.

[27] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Commun. ACM, 33(6):668–676, 1990.

[28] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The
Uncracked Pieces in Database Cracking. Proceedings
of the International Conference on Very Large
Databases (VLDB), 7(2):97–108, 2013.

[29] P. Seshadri and A. N. Swami. Generalized partial
indexes. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 420–427, 1995.

[30] S. Sprenger, P. Schäfer, and U. Leser. Bb-tree: A
practical and efficient main-memory index structure
for multidimensional workloads. In Proceedings of the
International Conference on Extending Database
Technology (EDBT), pages 169–180, 2019.

[31] M. Stonebraker. The Case for Partial Indexes.
SIGMOD Record, 18(4):4–11, 1989.

[32] Z. Xie, Q. Cai, G. Chen, R. Mao, and M. Zhang. A
Comprehensive Performance Evaluation of Modern
In-Memory Indices. In Proceedings of the International
Conference on Data Engineering (ICDE), 2018.

https://github.com/flode/ARTSynchronized
https://github.com/flippingbits/bb-tree
https://github.com/mweisgut/IMIB/tree/gvdb21/evaluation_results
https://github.com/mweisgut/IMIB/tree/gvdb21/evaluation_results
https://github.com/mpictor/judy-template
https://github.com/martinus/robin-hood-hashing
https://github.com/Tessil/robin-map
https://github.com/petegoodliffe/skip_list
https://github.com/learnedsystems/SOSD
https://github.com/Tessil/sparse-mapp
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/tlx/tlx
https://panthema.net/2007/stx-btree/
https://panthema.net/tlx
https://abseil.io
https://github.com/abseil/abseil-cpp

	Introduction
	Partial Indexes
	Index Benchmark
	Index Implementations
	Index Operations
	Benchmark Cases
	Datasets

	Evaluation
	Results

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

