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Abstract Technical enhancements of mobile technologies and the integration of multi-

sensors, like accelerometer and camera, within mobile devices are paving the way to

the definition of high quality and accurate geolocation solutions based on the informa-

tions acquired by multimodal sensors, and data collected and managed by GSM/3G

networks. In this paper, we present a technique that provides geolocation and mobil-

ity prediction of a mobile devices, mixing the location information acquired with the

GSM/3G infrastructure and a landmark matching obtainable thanks to the camera

integrated on the mobile devices. We first present our geolocation approach based on

an advanced Time-Forwarding algorithm and on database correlation technique over

Received Signal Strength Indication (RSSI) data. Then, we integrate it with a land-

mark recognition infrastructure, to enhance our algorithm in those areas with poor

signal and low accurate geolocation. The radio signal-based location is thus improved

integrating the information gettable via landmark recognition infrastructure directly in

the geolocation algorithm. Finally, the performances of the geolocation algorithm are

carefully validated by an extensive experimentation, carried out on real data collected

from the mobile network antennas of a complex urban environment.
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1 Introduction

Wireless and mobile technologies have radically changed the way in which users com-

municate, interact, and stay online. The accuracy and reliability of such technologies,

and the availability of low cost handheld devices enable users to communicate and in-

teract anywhere anytime. As a consequence, information on the location and mobility
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of the users are easily available and just becomes one class of personal information as-

sociated with their identity. This ubiquitous scenario fostered the development of new

and online applications that need location information of the users to offer their ser-

vices. Location-Based Services (LBSs), such as, navigation, instant messaging, friend

finder, and points of interest, have received great attention in the near past and gained

popularity. Although some of the above services only require a rough localization of the

mobile terminal, others have also been deployed for scenarios (e.g., emergency rescue)

where the geolocation precision plays a fundamental role.

Many geolocation algorithms are currently available and exploit different peculiari-

ties of the cellular network. For instance, many algorithms are based on time measure-

ments (e.g., [14, 21]), while others are based on signal strength and electro-magnetic

field prediction (e.g., [1, 13, 27]). An important aspect of the geolocation problem is

that it is usually difficult to provide a general solution that works well regardless of the

considered environment (e.g., urban, suburban, rural). In addition, cellular geolocation

in urban environments is a difficult task since physical phenomena, such as, signal

reflection, diffraction, penetration, scattering, fluctuation, can influence the quality of

geolocation. In this scenario, the consideration of timing and strength of the signal as

the only information available for the mobile geolocation is limiting. Mobile devices in

fact are more than simple mobile phones that join the cellular network; rather they

are multi-sensor devices that include accelerometers, high-quality digital camera, WiFi

cards, GPS receivers. Recently, some solutions have used additional information com-

ing from these sensors to improve geolocation or LBS functionalities. As an example,

in the recent 3G version of the iPhone a GPS chipset was added; the AGPS (Assisted

GPS) [9] has been designed to use WiFi Positioning System (WPS) together with cell

data to speed up the acquisition of the GPS signal. The iPhone on-board accelerome-

ters are also used to improve GPS-based location accuracy at low speeds (walking or

biking). In addition, mTourist [11] is a LBS that uses geolocation and landmarks to

guide the tourists through a city. Using the integrated camera, the devices take some

pictures of sorrouding buildings, which are then matched with a database of buildings

to identify the current position of the users.

Next generation geolocation algorithms and LBSs can take advantages by enhance-

ments in mobile devices and by the availability of new information, so to provide high

quality and accurate services. In this paper, we study the effects of the integration

of a high-accurate geolocation technique based on signal strength with a landmark

recognition infrastructure. In particular, we present how a smart integration can pro-

vide benefits for the location techniques providing accurate geolocation also in those

areas that are not covered by a reliable signal. We take as a reference our geolocation

solution based on Received Signal Strength Indication (RSSI) [1] and on data nor-

mally collected and managed by GSM/3G networks, and the landmark infrastructure

presented in [11]. Our landmark-based geolocation solution allows high-accurate geolo-

cation and mobility prediction also in critical areas, by considering the exact locations

retrieved by means of landmark matching.

The contribution of the paper is as follows. First, we present how the integration

of a landmark recognition infrastructure that supports identification of buildings can

improve our geolocation algorithm based on RSSI and DCM. The geolocation and

tracking technique is improved by supplying it with those positions recognized by

means of a landmark-based identification of the surrounding buildings. In other words,

as soon as the landmark infrastructure system identifies a building using an image

taken by the integrated camera on the device, such a position identifies a possible
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location of the user that can be used to correct the geolocation algorithm. Second, we

provide an extensive experimentation and a comparison between our solution in [1] and

the landmark-based solution in this paper, showing performance improvements.

The remainder of this paper is organized as follows. Section 2 summarizes our

past geolocation proposal. Section 3 presents the landmark recognition infrastructure.

Section 4 describes our landmark-based geolocation algorithm. Section 5 shows our

experimental results. Section 6 presents related work. Finally, Section 7 discusses our

future work and gives our concluding remarks.

2 A Map-Based Geolocation Algorithm

Geolocation of mobile devices have been studied in several works in the area of mobile

computing and resulted in several different techniques based on CellID, time measure-

ments [14, 21], and signal strength [13, 27]. In this section, we present our geolocation

strategy [1] that is used as a starting point in this paper.

2.1 DCM with Multiple Candidates

The core of the geolocation and tracking strategy is based on RSSI and Database

Correlation Method (DCM) [1]. The position of a mobile terminal is determined by

comparing the measurements performed by the mobile terminal itself (assuming it

knows the signal strengths of the six bestserving antennas) with all entries in a lookup

table [16].1 The lookup table is a matrix that contains the predicted path loss for a

given area of interest; every row in the matrix represents a single point (x,y), while each

column represents a base station within the coverage area. The path loss predictions

from r base stations to each given point are stored as entries in the matrix. In [1], we

used a sum of squared errors between the measured path loss Mj on terminal and the

path loss Ei,j defined by entry i in the lookup table, for each antenna j. Formally, the

error is calculated as
∑r

j=1

(
Mj − Ei,j

)2
. The point (x,y) of the entry i in the table

that produces the smallest error is taken as the location of the mobile terminal.

An important aspect to consider for the accuracy of approaches based on lookup

table is the quality of the Electro-Magnetic Field (EMF) prediction, which is also

the largest source of error for geolocation techniques relying on DCM over RSSI.

EMF prediction in fact is affected by many physical phenomena, such as reflection,

diffraction, penetration, and scattering. To reduce the amount of error, many predic-

tion models have been provided including deterministic (ray-tracing, IRT [28]), em-

pirical (Hata-Okumura [22], Walfisch-Ikegami [8]), and hybrid (Dominant Path [29])

techniques. In [1], we provided an enhanced version of the statistic prediction model

COST231 Wallfisch-Ikegami [8] that uses GIS information (i.e., buildings’ shapes) and

real antenna’s shapes to make it suitable for real environments. In general, enhanc-

ing COST231 model with antennas’ shapes reduces the loss in the prediction quality

introduced by omnidirectional antennas, thus providing better EMF prediction qual-

ity; however, an important physical phenomenon, i.e., fluctuation, still influences the

EMF prediction. Figure 1 provides a comparison between the real RSSI of a terminal

(red line) and the predicted one using antenna’s shapes and COST231 (black dashed

1 This comparison can be done with many different criteria [34].



4

Fig. 1 Comparison between real RSSI (red line) and the estimated one (black dashed line).

line). Clearly, a solution that uses the prediction in Figure 1 is likely to provide unreli-

able measurements due to continuous signal fluctuations. This problem is particularly

relevant in single point location techniques, as the one described above, where the

difference between predicted and real EMF makes almost impossible to calculate the

correct location. Often, in fact, the set of possible candidates may reside in different ge-

ographical areas and can be selected as positions in consecutive time instants resulting

in low accurate geolocation.

To reduce the impact of EMF fluctuations, our approach produces a variable num-

ber n of position estimates (multiple candidates), depending on a sensibility map anal-

ysis [3]. Multiple candidates provide a considerable improvement in terms of quality,

and make the solution more robust against fluctuations. As expected, the higher the

number of candidates, the higher the probability of obtaining a location that better

approximates the real position, at a price of an increased complexity in the candidate

selection process.

2.2 Candidates selection using a time-forwarding algorithm

The next step is the evaluation of the multiple candidates to select the best one at each

time instant. Our tracking method is based on a time-forwarding algorithm and builds

on a direct acyclic graph, called Time-Forwarding Graph (TFG), to identify a set of

paths that address GIS map and motion constraints. The time-forwarding algorithm

considers a window of m time positions and for each of them n candidates. Every

node in the TFG represents one of the possible positions of the mobile terminal, while

edges, defined by the node pairs they connect (i.e., by source and destination nodes),

represent motion between them. Each edge is associated with a weight, computed based

on destination reachability and map constraints. The weight function W is defined over

each edge e = (pi,t, pj,t+k), where i, j ∈ [1, . . . , n], k ∈ [1, . . . , m], and t is the actual

time, as follows:
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Fig. 2 TFG architecture.

W (e, map) =

{
µ(e, map) if µ(e, map) ≤ Th(∆)

+∞ otherwise
(1)

∆ represents the time difference described by the edge e. As a result, each edge e is

reachable and associated with a weight, if and only if the function µ, which provides the

real distance between two nodes based on the map (i.e., taking into account the presence

of buildings, street curves, and so on), is less than Th(∆), that is, the maximum

acceptable distance between each node based on the mobile terminal velocity. Weights

are then put in a linear relation with distances between nodes, modeling reachability

between nodes, and enforcing all known map and motion constraints.

The TFG is then constructed using a two-step process. First, a weight function with

fixed ∆ = 1 is used, considering only edges between consecutive temporal nodes for

which µ(e, map) ≤ Th(1), and nodes with at least one valid inbound or outbound edge.

Second, we consider edges between non-consecutive temporal nodes. If no reachable

node is found at time t+k, nodes at time t+k+1 are evaluated. If a reachable node is

found, a forwarding edge between non-consecutive temporal nodes is added to the TFG.

Figure 2 shows an example of the TFG. Edges with solid lines represent motion between

consecutive nodes, and edges with dashed lines model motion between non-consecutive

nodes. The selected position nodes and path are in red, while the possible position

nodes in black. The best candidate position at each time instant is selected applying

a shortest path algorithm on TFG satisfying the weight function µ(e, map) ≤ Th(∆).

A filtering stage may then be applied to the TFG, such as a constrained Kalman filter

(CKF) [26], to further refine and increase the quality of the movement trend obtaining

a robust error and time-deep prevision tracking.

In summary, although the proposed geolocation algorithm produces in general good

results, there still exist areas in which the signal is poor and the geolocation process

suffers of a great error. These areas can be identified by using a sensibility map [3] that

considers the position of the antennas and the predicted EMF to model the quality of

the signal in every part of the area of interest. In the following, we put forward the

idea that an integration of a landmark matching infrastructure within our geolocation

algorithm can greatly enhance the quality of geolocation in those area with poor signal.
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As we will see, the definition of the landmarks and related infrastructure can be tuned

on the basis of the sensibility map.

3 Visual feature-based Filtering

In multiple candidates geolocation, the number of selected candidates positively affects

the accuracy of the algorithm, while it negatively impacts the complexity of the algo-

rith. This conflicting scenario must be reconciled to provide a high-quality geolocation

suitable for real environments. In Section 2, we suggested a reduction of candidates

that uses a map-based filtering technique. This solution however does not reduce the

complexity in evaluating each of the multiple candidates selected in the first phase.

Based on recent studies,2 more than 60% of mobile devices are equipped with multi-

media functionalities, especially with a digital camera; we then put forward the idea

of using a matching framework that compares selected landmarks (e.g., historic build-

ings) with images taken by the mobile device to improve the geolocation algorithm

accuracy, while reducing the number of candidates. The number n of possible candi-

dates for each time instant can be reduced by defining landmarks in strategic areas

of the target environment and by then matching them with visual information (e.g.,

color, shape, texture) of the images taken by the mobile device. In the following of this

section, we concentrate on describing the framework used to compare landmarks with

digital images, and then in Section 4, we present its integration in the context of our

geolocation algorithm.

We consider a Content Based Image Retrieval (CBIR) scenario, where the visual

information is analyzed and matched at the server according to images showing land-

marks in the target environment. In general, the mobile device captures an image of

buildings aroud its position and sends it to the CBIR service responsible for the match-

ing between the image and the defined landmarks. To improve the performances of the

process, a rough location of the device is used to restrict the number of landmarks

to be used for matching (urban areas provide a good GSM/3G coverage that can be

exploited for accessing CBIR services). Usually, a cellID geolocation is adopted, where

all landmarks in a cell are used for matching. The low accuracy of cellID geolocation

result in a huge number of landmarks to be matched, that highly affect the perfor-

mances in terms of quality and precision. As we will show in the next section, we use

our geolocation algorithm to substantially reduce the area to be used in the selection of

the landmarks, thus achieving less landmarks and better performances. Other problems

of CBIR techniques in a mobile domain concern the cost (e.g., roaming fees, high data

transfer, etc.) and the hardware limitations (e.g., battery lifetime, display size, etc.). In

this case, the minimization of the size of data transfers between the mobile device and

the CBIR service is important to reduce the cost as well as some hardware problems.

Instead of sending the whole image to be matched to the CBIR service, the necessary

low level features can be extracted automatically at the mobile device. For ensuring

an interoperable access to the extracted information, the MPEG-7 standard [19] for

metadata representation can be used.

In this context, the introduced approach for reducing the candidate set relies on

the central idea of the MoidEx [10] project. MoidEx provides a location based mobile

tourism (mTourism) system, that supports tourists in receiving information about un-

2 http://www.multimediaintelligence.com/
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Fig. 3 MoidEx workflow

Fig. 4 CLC algorithm: Extraction of straight lines

known objects (e.g., buildings in foreign countries) in a point of interest scenario. For

this purpose, a tourist takes an image with a mobile device, as shown in Figure 3. After

that, several low-level MPEG-7 features [25] are extracted (e.g., the Scalable Color De-

scriptor, Edge Histogram Descriptor, Dominant Color Descriptor). Although the Color

Layout Descriptor and the Edge Histogram Descriptor both contain information on

the spatial distribution of colors and edges, this information is still very coarse and

might not be sufficient to reliably recognize the specific structure of a buiding (e.g. a

church). Especially in crowded places, occlusion by other objects like cars or buses and

different weather conditions might cause additional difficulties. Therefore, to support

the identification of buildings in an image, the MoideEx system makes also use of the

Consistent Line Cluster (CLC) algorithm [17].

The CLC algorithm is based on the fact that the shape of buildings and other

man-made objects typically contains many straight line segments, which come from

the boundaries of windows, doors, or the building itself, as shown in Figure 4. Another

important observation is that if two line segments belong to different objects, the

local colors around them are usually different. In addition, line segments from different

objects most likely belong to different spatial groups. Based on these observations,

the CLC algorithm uses the color, orientation, and spatial features of line segments to

partition them into consistent line clusters, that is, all lines in a cluster have closely

related characteristics regarding those features. The relationships of lines in such a

cluster and those between different clusters can then be used to allow the recognition

of complex objects.

Following the workflow presented in Figure 3, the mobile device creates a valid

MPEG-7 instance document which contains all extracted information of the image

(low level features and the CLC). Afterwards, this metadata description is sent to the
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Fig. 5 K-NN retrieval within MPEG-7 MMDB

image retrieval library, which is build on top of the MPEG-7 Multimedia Database

(MPEG-7 MMDB) [12]. In our scenario, the MPEG-7 MMDB data model features a

geolocation database containing images showing landmarks, a description of their exact

geographic position and the corresponding low level metadata as MPEG-7 descriptors.

In general, the performed similarity search relies on nearest neighbor (NN) retrieval

for the extracted features. Relying on the integrated multimedia indexing framework

(MIF) several access methods (R-tree, SS-tree) for realizing CBIR functionality are

used. In series, the retrieval process proceeds as follows (see Figure 5). Based on the

given reference sample description a k-NN-Search is initiated. The k-NN-Search is

combined with a location based filtering which restricts the search space to only those

buildings that are in the range of the mobile device’s location.

The resulting k-NNs are merged together sorted by their occurrences in the re-

spective result sets. For instance, an image has very similar color and edge features in

comparison to the reference description then the same image will probably occur in

both result sets (color and edge). During the merge process this image will be ranked

higher than others that occur only once in the four resulting sets. Then, the candidates

in question are thinned out by evaluating whether the position of the resulting near-

est neighbor images (only the top most elements are considered) occur in their path.

Consequently, paths that cannot be associated with an image position are discarded.
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4 Landmark-assisted Geolocation

We present our hybrid geolocation algorithm that integrates landmark definition and

matching with DCM. In the following, we first discuss a solution based on a sensibility

map to define and select landmarks, and its impact on the geolocation approach. We

then describe the hybridization of the landmark solution within our time forwarding

algorithm.

4.1 Landmark definition based on a sensibility map

As described in Section 2, our geolocation algorithm based on signal strength and

DCM suffers of imprecision due to the inaccuracy of EMF prediction that does not

account for fluctuations. To partially counteract this imprecision, we put forward the

idea of using a sensibility map to tune the number of candidates based on the signal

quality achieved in the area under consideration [3]. The sensibility map we used in [3]

exploited map information, antenna positions, number of candidate estimates, to model

the error sensitivity of our DCM-based geolocation in simulated environments.

Here, we consider a real environment, which is completely different from a simu-

lated one. As a consequence, we conduct some sensibility oriented campaigns in real

environments to evaluate the sensitivity of localization in the areas of interest. More

in details, the sensibility of one point (latitude, longitude) in the area of interest is

calculated as follows:

Sensibility(lat, long) = argmin∀i,Ploc,i∈cand(dist([lat, long], Ploc,i)/DMax (2)

where Ploc,i gives the i-th location candidate [latx, longy], cand is the set of can-

didates, dist([lat, long], Ploc,i) gives the distance between the real position [lat, long]

and the i-th candidate, and DMax is the maximum error used as a normalizing factor.

In other words the location sensibility on a real position in the map is the normalized

smallest distance between this real position and each candidate. The sensibility value

is high when the location error is high, while it is low in the case of good location. One

simple strategy to improve the precision of location in high sensibility areas is then to

increase the number of candidates to achieve a better probability of good estimation

after the candidate selection. Although this process may seem reasonable in simulated

environments, it is difficult to apply in real scenarios because of the increasing com-

plexity in the candidate selection process.

In this paper, we try to overcome this complexity problem to provide a geolocation

algorithm suitable for real environments. To this aim, we introduce a landmark-based

geolocation approach, where landmarks are considered as fiducial points, meaning that

the detection of a landmark is equal to the detection of a high-accurate location. The

adoption of landmark matching reduces the complexity of the geolocation process,

because there is no need to select an increased number of candidates in areas with high

sensibility.

Our solution to the integration of landmark matching still relies on the sensibility

map. The sensibility map is constructed a priori and can be used to identify areas where

ad-hoc landmarks (location-oriented landmarks) can be defined to reduce the location

error, still maintaining low complexity. Practically speaking, some landmarks are placed

in those areas with high sensibility map, where the probability of poor localization is
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high. Of course also the landmark-based location suffers of uncertainty problem but,

as we will discuss in the experimental section, it substantially reduces the uncertainty

introduced by signal-strength geolocationm especially in high sensibility areas.

Location-oriented landmarks are then landmarks explicitly defined to improve the

geolocation algorithm. Traditionally, however, landmarks are used and placed in the

maps just for service-oriented purposes. Landmarks in fact are often integrated in

LBSs (e.g., [11]) to enhance their functionalities and precision. Our solution can also

take advantages from service-oriented landmarks with the only difference that their

trustworthiness is considered equal to the trustworthiness of the multiple candidates

identified by the geolocation algorithm. As a consequence, the position returned by

evaluating service-oriented landmarks cannot be considered as a fiducial point, but

rather it becomes an additional candidate to be considered in our algorithm and added

to our TFG.

In summary, the set of landmarks in the area of interest can include both location-

oriented and service-oriented landmarks. The service-oriented landmark are in general

related to a particular point of interest for being useful at the service level (e.g. turism

[11]), while location-oriented landmarks are used for localization. Our system uses both

of them to improve the precision of location as presented in the following of this section.

4.2 Integrating landmarks with DCM

A location algorithm based on landmarks, as described in Section 3, produces a sin-

gle location information. The same happens with the DCM approach, in Section 2,

that produces one location estimation from a set of multiple candidates based on a

time forwarding algorithm. Our enhanced geolocation algorithm aims at combining

the two solutions. Two possible approaches have been explored. The first searches for

a landmark-based candidate at each time instant t: if available, it is considered as

a fiducial point, and used in place of the location obtained via DCM with multiple

candidates at time t; otherwise the position retrieved by DCM with multiple can-

didates is used. This approach consists of a simple composition and makes the two

algorithms completely independent. A second approach, used in this paper, consists

of a full hybridization of the two solutions. Full hybridization means that landmark

infrastructure is integrated inside our time forwarding algorithm in such a way that

the entire time forwarding approach takes advantages from the presence of location

information of different natures. The main idea of our hybrid approach is to extend

the Time Forwarding Graph (TFG) to include the location information produced by

the landmark algorithm, while considering the difference between location-oriented and

service-oriented landmarks.

As already discussed the TFG is a direct acyclic graph, where every node pi rep-

resents one of the possible positions i of the mobile terminal identified by means of

a lookup table, while edges represent motion between pairs of nodes. Each edge is

associated with a weight, and computed based on destination reachability and map

constraints. After identifying the candidate nodes, the TFG is constructed using a

two-step algorithm. In the first step, edges between consecutive temporal nodes (i.e.,

∆ = 1) are selected based on their reachability, modeled by the weight function in

Equation (4). Then, edges between non-consecutive temporal nodes are considered.

Let St+k be the set of candidate positions at time t + k. Recalling that, the distance

from a node pi,t to a node pj,t+k is the same as the weight W among them, a distance
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M can also be defined between a node pi,t and a set of candidate positions St+k at

time t + k, according to the map, as follows:

M(pi,t, St+k, map) = minj∈[1···n](µ(pi,t, pj,t+k, map)) (3)

For each node pi,t of the TFG, if no reachable node is found at time t + k, that is,

M(pi,t, St+k, map) = +∞, nodes at time t + k + 1, with (k + 1) ≤ m, are evaluated.

If M(pi,t, St+k+1, map) 6= +∞, an edge between non-consecutive temporal nodes is

added to the TFG.

Here, the TFG is extended to consider also nodes coming from the landmark lo-

cation. An approach different from the one discussed in Section 3, where the location

information on the serving cell id is used to identify the set of available landmarks, is

taken to improve performances. In particular, we use the set of n candidates calculated

based on DCM, as the means to identify the set of landmarks L to be compared with

the image acquired by the mobile device. A solution that uses DCM-based multiple

location candidates for identifying landmarks is more accurate and less complex than a

solution using the rough serving cell id. Traditionally, urban cells have a minimum ra-

dius of ≈300 meters (in our experimental environment in the city of Milan the average

cell radius is 500 meters), and, therefore, the location information about the serving

cell can be assimilated to the knowledge of a circular area around the serving cell of

≈ 290000m2. This area is taken as a reference to identify the available landmarks to

be used for matching, that is, all the landmarks included in the circular area. In our

approach, instead, we consider a set of 20 candidates with an average error r of 50m

each (see experiments in [1]), and then we produce n circular areas of radius 50m with

each candidate used as the center of the circle.3 The total area generated in the worst

case (i.e., no overlapping between the n circles) is of ≈ 160000m2 with a reduction of

the searching areas of ≈ 45%. This reduction implies a benefit in terms of computa-

tional performances (less landmark candidates after location filtering) and quality of

landmark matching due to the reduced number of wrong candidates (see Section 5 for

more details). Figure 6 shows a graphical comparison of the two approaches to land-

mark selection. Circles with single lines represent all the areas identified by the set of

candidates and used for landmark matching; the big circle with dashed line represents

the area of the cell that is traditionally used for the matching. It is clear that, the

number of candidates used for matching is likely to be smaller in the first approach, or

at least equal in the worst case.

Let us then define I(St, r) → l, with l ⊆ L, as the function that takes in input a

set St of n location candidates and an average error r, and produces in output a set

of filtered landmark candidates l, that is, those landmarks included in at least one of

the circular areas identified by St and r. By further applying a landmark matching

function N over the landmark candidates l (i.e., N(l)), we potentially obtain a match

with either a location-based or a service based landmark, and identify a position pLand

to be added to our TFG. More in details, the TFG may include three different types

of nodes that are treated differently: i) DCM candidates {p1, . . . , pn}; ii) location-

oriented landmarks pLandloc, and iii) service-oriented landmarks pLandserv. We can

then redefine St for each time instant t as following.

3 We represent each location as planar circular area since it approximates well the actual
shape resulting from many location techniques.
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Fig. 6 Landmark Selection

Fig. 7 An example of TFG with the integration of a location-oriented landmark.

St =

 {p1, . . . , pn, pLand} if pLand ∈ pLandserv

{pLand} if pLand ∈ pLandloc

{p1, . . . , pn} if pLand is not detect

(4)

As presented in System of Equations (4), when a match on a service-oriented

landmark is found, St has cardinality n + 1 and contains all DCM-based candidates

{p1, . . . , pn} plus the identified landmark pLand ∈ pLandserv; when a match on a

location-oriented landmark is found and a fiducial point is retrieved, St has cardinality

1 and contains pLand ∈ pLandloc only; when a match is not found, St has cardinality

n and contains {p1, . . . , pn}. Each St in the forwarding window of the TFG may then
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Fig. 8 Landmark-assisted geolocation architecture

contain a variable number of candidates with no fixed cardinality. Figure 7 shows an

example of TFG when a location-oriented landmarks is found. The location-oriented

landmark at time t is depicted with a red square.

The integration of landmark-based nodes produces also a redefinition of forwarding

edges, as follows.

– a forwarding edge e between two non-consecutive temporal nodes pi,t and pj,t+k is

included in the TFG, iff ∀i ∈ [1, . . . , k − 1]
∑

i |St+i| ≥ (k − 1)n:

1. minh=1···k−1(M(pi,t, St+h, map)) = +∞ and

2. M(pi,t, St+k, map) 6= +∞.

By definition, forwarding edges are forbidden in the TFG if they introduce a jump

that skips a location-oriented landmark. On the other hand, a forwarding edge that

terminates in St={pLand}, with pLand∈pLandloc, is permitted. The location-oriented

landmark node becomes a “mandatory crossing” node, because it is considered as a

trusted point. In the case of service-oriented landmark at time t, the TFG proceeds as

usual. Service-oriented landmark nodes are then equivalent to TFG nodes, and can be

chosen or not depending on the different paths evaluated by the TFG.

To conclude, Figure 8 shows the architecture of our landmark-assisted geolocation

algorithm. First, the time forwarding geolocation algorithm collects measurements on

signal strength and EMF prediction to fill in the lookup table. Then, after receiving the

measurements performed by the terminal itself, it produces n position candidates for

each time instant t. These candidates are sent to the landmark matching infrastructure

that: i) generates n circular areas around them with radius r, ii) selects the set of

landmarks l contained in those areas, and iii) uses the matching algorithm to compare

selected landmarks with the image captured by the camera on the user’s device. The

result of the matching is returned to the time forwarding geolocation algorithm and

can be either the position of a location-based landmark, the position of a service-based

landmark, or null. The result is integrated in the TFG and the process repeated for

m− 1 time instants, thus identifying the location and movement of the mobile user.

5 Experimental Results

We set up an experimental environment in the city of Milan, the second largest

metropolitan area in Italy with a complex urban environment including parks and

skyscrapers. We first performed five trips by car over a month of experimentation with

a duration varying from 5 to 20 minutes. Information related to serving and neighbor-

ing cells coupled with GPS latitude and longitude have been collected using cellular

phones every 0.48 seconds. We then defined 30 location-oriented landmarks in a target

area of 2, 5km x 3km, based on the sensibility map.
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Fig. 9 Cumulative error distribution for experiment (a). A comparison between cumulative
error without landmark and with landmark (ad hoc or random chosen)is presented.

Table 1 Comparison of location results (errors-mean square root (in meters)) using: i) Signal
strength geolocation algorithm in Section 2, ii) Hybrid Landmark-assisted geolocation.

Signal strength-based Landmark assisted
Approach Approach

Exp. Dur. mean σ mean σ Landmarks
a 500s 39.39 32.78 23.92 22.49 15/15
b 300s 73 57.93 34.60 40.90 16/16
c 800s 63.62 52.96 25.37 34.66 25/25
d 600s 55.18 48.13 28.35 36.78 15/16
e 300s 45.5 33.67 24.56 30.45 11/11

Mean 55.34 45.09 27.36 33.05

We extensively test the performance of our landmark-assisted geolocation, in the

above environment, by: i) analyzing the overall geolocation quality, and then comparing

the landmark-assisted geolocation in this paper with the geolocation in Section 2 with

no landmark definition; ii) providing a comparison between the performance of our

algorithm when landmarks are defined in an ad-hoc way using the sensibility map and

when they are selected randomly; iii) providing, for every test, the rate of landmarks

included in our candidate-based searching areas over the total number of landmarks

in the serving cell areas, together with the rate of correct landmarks in our searching

area.

Figure 9 shows the cumulative error distribution for the first of our five experi-

ments (i.e., experiment (a)). It also shows the comparisons between the geolocation

algorithm in Section 2 with no landmark definition, the landmark-assisted geolocation

with location-oriented landmarks chosen randomly, and the landmark-assisted geolo-

cation with location-oriented landmarks chosen based on a sensibility map. The perfor-

mance of geolocation with landmarks selected using the sensibility map overcomes the

algorithm using random landmarks; this is expected since, in the first case, landmarks

are defined focusing on those areas where geolocation has low precision.



15

Table 1 presents the results in terms of mean error and variance for the five trips

using only location-oriented landmarks. The first experiment (for path (a)) is charac-

terized by a good location estimation even without landmark definition. This is due to

the fact that the path resides for ≈ 65% on a low sensibility area with good geolocation

quality. Adding few ad-hoc landmarks (e.g., 15), the final precision is really impres-

sive reaching an average error of 23.92 meters with an improvement of ≈ 40%. This

result supports our intuition that landmark integration is useful also in environments

with low sensibility. Much in line with experiment (a), experiments (c) and (e) provide

good results. Experiment (b), instead, considers the shortest timeframe (300 seconds)

and covers an area with high sensibility (≈ 75% of the path). In this case, with 15

landmarks, we obtain a less accurate result with an average error of 34.60 meters.

To improve the final quality of geolocation and achieve an error similar to the one of

experiment (a), we added 4 service-oriented landmarks on the path, thus obtaining a

mean error of 25.08 meters with standard deviation of 38.33 meters.

Finally, in experiment (d), where 15 landmarks are still defined in the area of

interest, one landmark is not detected. This scenario may happen in areas with high

sensibility where the precision of our geolocation is poor. In this case, in fact, it is

possible that no landmarks are within the areas with radius of 50 meters identified

by the selected candidates. This is an effect of our approach to landmark selection in

Section ?? that reduces of ≈ 45% the searching area. Although, this solution greatly

improves the performance of the landmark matching engine, it relies on the assumption

that at least a candidate is near (50 meter) to the landmark position. As an example,

whereas with the cellID approach the average number of landmark is 12, with our

approach we have an average of 5 landmarks for each path in the searching areas,4 with

a minimum value of 3 landmarks for path (a) and a maximum value of 8 landmarks

for path (e). In the same way of experiment (b), it is possible to improve the quality

of experiments (d) by adding some service-oriented landmarks. One interesting result,

when service-oriented landmarks are added, is that also the landmark not selected in

the previous experiment (let call it “unused landmark”) is now used. This is the effect

of the hybridization of landmark matching and signal-based geolocation in the same

algorithm. When a new service-oriented landmark is selected, this choice influences the

forwarding path chosen by the forwarding algorithm. If the selected service-oriented

landmark is spatially near to the “unused landmark”, it is likely that the “unused

landmark” is selected and then becomes part of the path.

To conclude, an interesting aspect to discuss is what happen for the same set of

experiments when a non-hybrid technique is used. A non-hybrid technique must follow

this simple rule: “if a landmark is localized, then use the landmark; otherwise use the

signal geolocation”, meaning that landmark selection does not influence the geolocation

algorithm. The results achieved by our experiments are summarized in Table 2

It is clear that the hybrid approach outperforms the non-hybrid approach in our

experimental set, because of the positive influence of landmark-based candidates on

the choice of the forwarding path. More in details the mean error in the case of Hybrid

approach is reduced by ≈ 35% while the standard deviation is reduced by ≈ 20%.

4 Note that, this strongly depends on the density of landmark in the area
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Table 2 Location error using a non Hybrid approach.

Non Hybrid approach
Exp. Dur. mean σ

a 500s 32.69 29.38
b 300s 52.44 49.82
c 800s 43.32 54.13
d 600s 47.65 42.32
e 300s 33.35 32.67

Mean 41.89 41.66

6 Related work

Geolocation of mobile devices is an important topic in the area of mobile computing,

and has been exploited for several different purposes ranging from the support of crucial

tasks for network management (e.g., handoff management, efficient code division in 3G

networks) to the support for high quality location-based services (LBSs).

A fundamental requirement for every solution providing geolocation and mobility

prediction is the provisioning of high reliable and accurate approaches that work well

regardless of the considered environment. First location techniques were based on time

measurements, such as, Time of Arrival (ToA), Time Difference of Arrival (TDoA),

Enhanced-Observed Time Difference (E-OTD) [14, 21]. These techniques suffer in ur-

ban environments, where scenarios with no line-of-sight between the mobile terminals

and the base stations are common, and the accuracy of the estimated position heavily

depends on the number of measurements and on the placement of the antennas sup-

porting triangulation. Subsequent location techniques, based on RSSI which measures

signal attenuation, have been provided with the strong assumptions of having free space

propagation of the signal and omnidirectional antennas. RSSI-based mobile terminal

location can be reduced to the problem of triangulation and is influenced by physical

phenomena that affect radio propagation and location precision (e.g., reflection, diffrac-

tion). As a consequence, RSSI location estimation does not fit well to urban areas, and

results in imprecise geolocation. To improve the geolocation results, several solutions

to model and predict electro-magnetic signal propagation have been provided, such as,

advanced deterministic models (ray-tracing, IRT [28]), empirical (Hata-Okumura [22],

Walfisch-Ikegami [8]), and hybrid techniques (Dominant Path [29]). Although predic-

tion models improve the accuracy of geolocation, many problems still influence the

geolocation process. Among them, EMF fluctuation is the most important that has

been already considered in past research and also discussed in this paper. An inter-

esting approach to deal with EMF fluctuations used vector regression [30]. Regression

techniques model the location problem as a checkpoint location, which can be solved

as a machine learning problem. However, real data sampling are not always available

and the need for a training phase affects the applicability of many machine learn-

ing techniques in practical scenarios. Some techniques exploited databases containing

RSSI predictions or measurements (i.e., database correlation). Database correlation

is affected by an intrinsic measurement error of RSSI that many recent works try to

overcome applying filtering techniques with mobile motion model. Anisetti et al. [1]

used a lookup table for multiple candidate selection (much in line with RADAR system

developed by Microsoft research [4] for wireless networks) and identified the number of

candidates based on geographical region and GIS information. In addition, to improve
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the quality of geolocation and tracking, a filtering stage on the identified movement

trend is applied using a Constrained Kalman Filter (CKF) [26]. Zaidi and Mark [32]

presented two algorithms for real-time tracking, location, and dynamic motion of a

mobile station in a cellular network. The proposed solution is based on pre-filtering

and two Kalman filters, one to estimate the discrete command process and the other

to estimate the mobility state. Yang and Wang [31] proposed a Monte Carlo algorithm

for cell hand-off decision based on mobility tracking in cellular networks. The location

and speed of a mobile terminal are exploited to predict the signal strength in future

time instants, and forecast the hand-off time. Zhang et al. [33] studied the performance

of target tracking in the presence of nonlinear road constraints using a constrained Ex-

tended Kalman Filter (EKF). Finally, Mihaylova et al. [20] presented a solution based

on RSSI and map information that exploits particle filtering and is tested with data

coming from a real network.

Recently, some works have focused on exploiting the availability of mobile devices

that integrate several different sensors to improve the accuracy of location techniques.

Similarly to the work in this paper that integrates a location technique based on DCM

and RSSI with images captured by the device camera and landmark matching, other

solutions have been provided that integrate GSM/GPS geolocation with data from

camera, accelerometers, and the like. For instance, in the 3G version of the iPhone

a GPS chipset is used, and WiFi positiong and cell data exploited to make the GPS

initialization faster. Also, accelerometers are used for tracking users moving in low

speed areas.

Some approaches hybridize different algorithms but using the same type of signals

like [5] that uses time delay information for Hybrid AOA/TDOA Geolocation, oth-

ers uses different type of signals but in some sense coming from the same source (the

wireless network), like [24] that uses Signal strength and Time of Arrival. These hy-

bridization uses signals that are in some sense correlated (e.g. a infrastructure problem

on network impacts on both). In our case the hybridization is with signal of totally

different nature and not correlated. Other approach like [23] uses signal of different

nature (Radio Frequency Identification (RFID) and GPS) for positioning of pedestri-

ans in areas where no GNSS position determination is possible due to obstruction of

the satellite signals. They proposed a strong hybridization with GNSS using enhanced

MRERA. One interesting approach that like us takes advantages of video sensor is [15]

that combines a GPS and an inertial sensor with a camera to provide accurate local-

ization, but just for improving Augmented Reality in outdoor environment and not for

geolocation purposes.

Focusing on LBS, some applications already supported object recognition and/or

location based services. The George Square2 project aimed at enabling collaboration as

a port of leisure [6]. The goal is to enable two users sharing their traveling experiences

with another. Mobile users carry a tablet PC, which is connected to the Internet

and is equipped with a GPS receiver, a camera, and a headset used for voice-over-IP

communication. A special software keeps track of the user’s location and the user’s

activities. One way to provide information on points of interest, besides the use of

the location, is the support of object recognition with mobile phones. For instance,

mobileor5 used cell phones with integrated cameras to identify certain objects. It used

the SIFT (Scale-Invariant Feature Transform) algorithm [18], which can be classified as

an appearance-based object recognition approach. Another system supporting object

recognition is PhoneGuide [7]. It is a museum guidance system running on cellular

phones. The goal is to provide museum visitors with additional multimedia information
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on the exhibit they are currently watching, without interfering with the exhibition

itself. To reliably identify the current exhibit, PhoneGuide employs object recognition

as well as location information. A location-based touristic guide called mTourist [11]

uses geolocation and landmarks to guide the tourists through a city. The position of

the user is calculated through CellID. Based on the cell, a set of landmarks is identified

and used to release the touristic service and refine the user position.

7 Conclusions and Future Work

We presented a landmark-assisted geolocation algorithm that integrates and hybridizes

a geolocation solution based on RSSI and DCM with a landmark matching framework.

The proposed solution builds on the definition of location-oriented landmarks in those

areas with high sensibility map, to reduce the complexity introduced by the need of

multiple candidates for accurate geolocation. Also, the solution takes advantages by

existing service-oriented landmarks used for the provisioning of location-based services.

Our experiments show the improvements in terms of quality of geolocation with respect

to geolocation that does not exploit landmarks, also in those contexts where landmarks

are randomly distributed.

Beside benefits in terms of location accuracy and complexity, our hybrid solu-

tion can provide advantages also for those applications that rely on geolocation and

landmarks to provide LBSs. Important aspects to consider in the deployment of such

applications for cellular networks are the costs needed for the communication, the ac-

curacy, and availability of the positioning process, and the requirements in terms of

performances and hardware of the devices. In this context, a common drawback shared

by existing techniques is that they usually rely on inaccurate location techniques (e.g.,

CellID) resulting in solution with low performance, low accuracy, and high overhead. A

lightweight and accurate positioning system like the one in this paper can be integrated

with applications that are based on landmark matching providing high performance

and success rate.
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