A Data Generator for Cloud-Scale
Benchmarking

Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch

Chair of Distributed Information Systems
University of Passau,
Germany
{rabl, frank,moussell, kosch}@fim.uni-passau.de
http://www.dimis.fim.uni-passau.de

Abstract. In many fields of research and business data sizes are break-
ing the petabyte barrier. This imposes new problems and research possi-
bilities for the database community. Usually, data of this size is stored in
large clusters or clouds. Although clouds have become very popular in re-
cent years, there is only little work on benchmarking cloud applications.
In this paper we present a data generator for cloud sized applications. Its
architecture makes the data generator easy to extend and to configure.
A key feature is the high degree of parallelism that allows linear scaling
for arbitrary numbers of nodes. We show how distributions, relationships
and dependencies in data can be computed in parallel with linear speed

up.

1 Introduction

Cloud computing has become an active field of research in recent years. The
continuous growth of data sizes, which is already beyond petabyte scale for many
applications, poses new challenges for the research community. Processing large
data sets demands a higher degree of automation and adaptability than smaller
data sets. For clusters of thousand and more nodes hardware failures happen
on a regular basis. Therefore, tolerance of node failures is mandatory. In [19)
we sketched a benchmark for measuring adaptability, in this paper we present a
data generator that is cloud aware, as it is designed with the top goals of cloud
computing, namely scalability and decoupling, i.e. avoidance of any interaction
of nodes [3].

Traditional benchmarks are not sufficient for cloud computing, since they
fall short on testing cloud specific challenges [2]. Currently, there are only a few
benchmarks available specifically for cloud computing. The first one was prob-
ably the TeraSort BenchmarlT] Others followed, such as MalStone and Cloud-
Stone. These benchmarks are dedicated to a single common task in cloud com-
puting. While this kind of benchmarks is essential for scientific research and
evaluation, it fails to give a holistic view of the system under test. We think

! The current version can be found at http://www.sortbenchmark.org/

http://www.dimis.fim.uni-passau.de
http://www.sortbenchmark.org/

2 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

that there is a need for a benchmark suite that covers various aspects of cloud
computing. The database community has traditionally an affection for simple
benchmarks [11} 22]. Although reduction of complexity is a basic principle of
computer science and unnecessary complexity should be avoided by all means,
there seems to be a trend to simplistic evaluations. In order to get meaningful
results benchmarks should have diverse and relevant workloads and data [5].
Often it is best to use real life data. For example, in scientific database research
the Sloan Digital Sky Survey is frequently referenced [24]. Yet for many applica-
tions such as social websites there is no data publicly available. And even though
storage prices are dropping rapidly, they are still considerably high for petabyte
scale systems. A current 2 TB hard drive costs about USD 100, resulting in a GB
price of about USD 0.05. So the price for 1 PB of raw disk space is about USD
50000. Therefore, it is not sensible to store petabytes of data only for testing
purposes. Besides storage, the network necessary to move petabytes of data in
a timely manner is costly. Hence, the data should be created where it is needed.
For a cluster of nodes this means that each node generates the data it will process
later, e.g. load into a data base. In order to generate realistic data, references
have to be considered, which usually requires reading already generated data.
Examples for references are foreign keys. For clusters of computers this results
in a fair amount of communication between nodes.

For example consider a table representing a many-to-many relationship be-
tween two tables. When generating corresponding keys one needs information
about the keys in the two tables participating in the many-to-many relationship.
On a single node system it is usually much faster to read in the two tables to
create the relationship. But if the data for the two tables is scattered across mul-
tiple nodes, it is more eflicient to regenerate it. This way the relationship can
be created completely independently of the base tables. By using distributed
parallel random number generators, such as the leap frog method [I0, Ch.10],
even the generation of single tables can be parallelized. Since the generation is
deterministic, also references can still be computed independently.

In this paper we present an ubiquitous parallel data generation framework
(PDGF) that is suitable for cloud scale data generation. It is highly parallel and
very adaptable. The generator uses XML configuration files for data descrip-
tion and distribution. This simplifies the generation of different distributions of
specified data sets. The implementation is focused on performance and extensi-
bility. Therefore, generators for new domains can be easily derived from PDGF.
The current set of generators is built to be nearly write-only, so they gener-
ate values only according to random numbers and relatively small dictionaries,
but without rereading generated data. This is done to reduce I/O and network
communication to the absolute minimum.

Consider the simplified example in Figure [1}, taken from the eLearning man-
agement system presented in [19]. There are three tables, user, seminar, and
seminar_user. The generation of tables user and seminar are straightforward.
For seminar_user it has to be considered, that only wuser_ids and seminar_ids
are generated, that actually exist in user and seminar. This is only easy if both

A Data Generator for Cloud-Scale Benchmarking 3

user seminar_user seminar
user_id —»1 user_id / seminar_id

degree_program seminar_id
\ degree_program

Fig. 1. Fragment of the schema of an eL.earning management system.

attributes have continuous values, otherwise it has to be assured that the ref-
erenced tuples exist. A second challenge is that degree_program is replicated in
seminar_user, so the combination of user_id and degree_program have to exist in
user. Finally the values of tables like seminar_user have typically non uniform
distributions.

The common solution to generate the table seminar_user is to first generate
the two tables that are referenced and then use a look up or scan to generate the
distribution. If this is done in parallel, either the referenced data has to be repli-
cated, or the data generating process has to communicate with other nodes. This
is feasible for smaller clusters, but for cloud scale configurations the communi-
cation part will be the bottleneck. Therefore, we propose a fully computational
approach. Basically, our data generation is a set of functions that map a virtual
row id to a tuple’s attribute. Using this approach, we can easily recompute every
value. So for the example above we would define a function for each attribute
in the original tables. To generate uncorrelated data, the first computational
step is usually either a permutation or a pseudo random number generation.
For the example above this would only be needed for the degree_program. The
value could either be chosen from a dictionary or be generated. To generate en-
tries of seminar_user, two pseudo random numbers in the range of [1, |user|] and
[1, |seminar|] are computed, with according distribution properties and then the
function to generate degree_program is used, resulting in a valid tuple for semi-
nar_user. This can be computed completely independently of the generation of
user and seminar. Since parallel pseudo random number generators are used,
seminar-user can be generated on any reasonable number of computing nodes
in parallel.

This flexibility opens a broad field of application. Besides traditional rela-
tional, row oriented data, our system can easily generate data in other storage
models, such as the Decomposed Storage Model [9], column wise as in MonetDB
[6] or C-Store [23] or even mixed models [20].

An often discussed problem is that experiments are run on too small data
sets [I5]. This is not because of the negligence of researchers, but because large
sized experiments are very time consuming and many researchers have no access
to unlimited sized storage clusters. Hence, in many situations it seems sensible
to use only a fraction of the data set and simulate a fraction of the system.
Obviously, there are many research fields where such a methodology leads to
realistic results. An example would be sort experiments. Our data generator is
capable of generating statistically sound extracts of data sets as well as it can

4 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

generate large data sets in uncorrelated fractions. So large scale test can either
be scaled down or processed sequentially.

The rest of the paper is organized as follows, Section [2] gives an overview
of previous work on data generation for database benchmarking. After that,
Section [3| describes how the design goals of the data generator are met. Section
[] explains the data generation approach. The architecture of the data generator
is described in Section [} We evaluate the performance of our data generator in
Section [6] and conclude with future work in Section [

2 Related Work

There has been quite some research on data generation for performance bench-
marking purposes. An important milestone was the paper by Gray et al. [I2], the
authors showed how to generate data sets with different distributions and dense
unique sequences in linear time and in parallel. Fast, parallel generation of data
with special distribution characteristics is the foundation of our data generation
approach.

According to their reference generation procedure, data generators can be
roughly divided into three categories: no reference generation, scanning refer-
ences, and computing references. No reference generation means that no rela-
tionships between tables are explicitly considered. So references are either only
simple or based on mathematical probabilities. In this scheme it is for example
not possible to generate foreign keys on a non-continuous unique key. Examples
are data sets that only consists of single tables or data sets (e.g. SetQuery [17],
TeraSort, MalGen [1], YCSB [§]) or unrelated tables (e.g. Wisconsin database
[, BristleconeE[).

Scanned references are generated reading the referenced tuple, this is either
done simultaneously to the generation of the referenced tuple or by scanning the
referenced table. This approach is very flexible, since it allows a broad range of
dependencies between tables. However, the generation of dependent tables al-
ways requires the scanning or calculation of the referenced table. When the ref-
erenced table is read, additional I/Os are generated, which in many applications
will limit the maximum data generation speed. Generating tables simultaneously
does not constitute a problem. However, it requires generating all referenced ta-
bles. This is very inefficient, if the referenced tables are very large and don’t
need to be generated, e.g. for an materialized view with aggregation. Most sys-
tems that generate references use scanned references. An example is dbgerEI, the
data generator provided by the TPC for the TPC-H benchmark[I§]. Another ap-
proach was presented by Bruno and Chaudhuri [7], it largely relies on scanning
a given database to generate various distributions and interdependencies. In [14]
Houkjeer et al. describe a graph based generation tool, that models dependen-
cies in a graph and uses a depth-first traversal to generate dependent tables. A

2 Available at http://www.continuent .com/community/lab-projects/bristlecone
3 dbgen can be downloaded from http://www.tpc.org/tpch/

http://www.continuent.com/community/lab-projects/bristlecone
http://www.tpc.org/tpch/

A Data Generator for Cloud-Scale Benchmarking 5

similar approach was presented by Lin et al. [I6]. Two further tools that offer
quite similar capabilities are MUDD [2I] and PSDG [I3]. Both feature descrip-
tion languages for the definition of the data layout and advanced distributions.
Furthermore, both tools allow parallel generation. However, as described above
the independent generation of dependent data sets is not possible.

A computed reference is recalculated using the fact, that the referenced data
is deterministically generated. This results in a very flexible approach that also
makes it possible to generate data with cyclic dependencies. The downside is the
computational cost for regenerating the keys. However, as our test shows (see
Section @ current hardware is most often limited by I/O speed. To the best of
our knowledge our tool is the only one that relies on this technique for parallel
data generation.

3 Design Goals

PDGF’s architecture was designed with the following goals: platform indepen-
dence, extensibility, configurability, scalability and high performance. The fol-
lowing sections explain how each goal is met.

3.1 Platform Independence

To achieve a high degree of platform independence, PDGF was written in Java.
It has been tested under Windows and different Linux distributions. Using Java
has no degrading effect on the performance of the generator. In fact, startup
and initialization times can be neglected compared to the time taken to gen-
erate terabytes of data for the cloud. This characteristic gives the just-in-time
compilation technology enough time to compile and optimize the code, so that
a similar generation speed as with pre-compiled binaries can be achieved.

3.2 Extensibility

PDGEF is a framework that follows a black box plug-in approach. PDGF com-
ponents can be extended and exchanged easily. Custom plug-ins can be imple-
mented without consideration of programming aspects like parallelism or internal
details. Furthermore, some minor built-in components are also exchangeable via
the plug-in approach. These components include the file caching strategies and
the scheduling strategy which are responsible for work splitting among threads
and nodes. To make the system aware of new plug-ins it is sufficient to place
them in the classpath and to reference them in database scheme description file.

3.3 Configurability

PDGF can be configured by two XML-based configuration files. One file config-
ures the runtime environment, while the other configures the data schema and
generation routines.

6 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

Runtime Configuration File The runtime configuration file determines which
part of the data is generated on a node and how many threads are used. This
is used for splitting the work between participating nodes. The file is optional,
since these settings can also be specified via command line or within the built-in
mini shell. Listing [I] shows a sample runtime configuration file. This example is
for Node 5 out of 10 nodes. Two worker threads are used.

<?xml version="1.0" encoding="UTF-8"7>
<nodeConfig>
<nodeNumber>5</nodeNumber>
<nodeCount>10</nodeCount>
<workers>2</workers>

</nodeConfig>

Listing 1. ”Runtime configuration file”

Data Schema Configuration File The data schema configuration file is used to
specify how the data is generated. It follows a hierarchical structure as illustrated
below. As mentioned above, all major components (e.g. the random number
generator, data generators, etc.) can be exchanged by plug-ins. To use a plug-
in, its qualified class name has to be specified in the name attribute of the
corresponding element (see listing [2)).

<project name="simpleE-learning">
<scaleFactor>1</scaleFactor>
<seed>1234567890</seed>
<rng name="DefaultRandomGenerator" />
<output name="CSVRowOutput">
<outputDir>/tmp</outputDir>
</output>
<tables>
<table name="user">
<size>13480</size>
<fields>
<field name="user_id">
<type>java.sql.Types.INTEGER</type>
<primary>true</primary> <unique>true</unique>
<generator name="IdGenerator" />
</field>
<field name="degree_program'">
<type>java.sql.Types.VARCHAR</type>
<size>20</size>
<generator name="DictList">
<file>dicts/degree.dict</file>
</generator>
</field>
</fields>
</table>
<table name="seminar"> [..] </table>

A Data Generator for Cloud-Scale Benchmarking 7

<table name="user_seminare">
<size>201754</size>
<fields>
<field name="user_id">
<type>java.sql.Types.INTEGER</type>
<reference>
<referencedField>user_id</referencedField>
<referencedTable>user</referencedTable>
</reference>
<generator name="DefaultReferenceGenerator">
<distribution name="LogNormal">
<mu>7.60021</mu> <sigma>1.40058</sigma>
</distribution>
</generator>
</field>
<field name="degree_program"> [..] </field>
<field name="seminar_id"> [..] </field>
</fields>
</table>
</tables>
</project>

Listing 2. ”Config file example for userSeminar references.”

3.4 Scalability

To work in cloud scale environments a data generator must have a deterministic
output regardless the number of participating nodes. Moreover, it is necessary
to achieve a nearly linear performance scaling with an increasing number of
participating nodes.

To fulfill these requirements, we followed an approach that avoids the usage
of a master node or inter-node and inter-process communication. Every node is
able to act independently and process its share of workload without consider-
ing the data generated by other nodes. To achieve this kind of independence, a
combination of multiple instances of random number generators with inexpen-
sive skip-ahead functionality was applied. Allowing each node to determine its
workload is done as follows: Each node starts a process and initializes it with
the total number of participating nodes in addition to the node number. The
workload is divided into work units. Each work unit contains the current table
to be processed, the start row number and the end row number. For example, as-
suming that we have a table T1 with 1000 rows and 10 nodes (nodel to nodel0),
then the workload is divided as follows:

nodel work unit 1..100
node2 work unit 101..200

nodel0 work unit 901..1000

8 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

The same approach is applied for every table of the database schema. Of
course PDGF also utilizes modern multi-core CPUs by spawning a worker thread
per (virtual) core. The number of worker threads is automatically determined or
can be set manually in the configuration. After the workload has been distributed
on the nodes, the work unit of a table is further divided and distributed on the
worker threads of each node using the same approach. However, the start value
of the work unit of the node should be added to the start and the end of each
worker workload. For instance, assume that Node 2 has four worker threads. The
work unit will be split among the worker threads.

node2 work unit 101..200
workerl work unit 101..125
worker2 work unit 126..150
worker3 work unit 151..175
worker4 work unit 176..200

3.5 High Performance

PDGF achieves high performance by applying a set of strategies that allow
efficient computation by minimizing the amount of I/O operations. To avoid
synchronization overhead, custom per thread buffering and caching is used. Fur-
thermore, the overhead caused by object creation was reduced by applying eager
object initialization and the strict usage of shared reusable data transfer objects
on a per thread basis.

Recalculating the value for a field on demand is usually less expensive than
reading the data back into memory, as can be seen in the evaluation below. The
static scheduler also generates no network traffic during the data generation.
Avoiding read operations on the generated data limits I/O reads to the initial-
ization stage. Only data generators that require large source files (i.e. dictionar-
ies for text generation) produce I/O read operations. Therefore, an abstraction
layer between the framework and the files was added to provide direct line access
through an interface. This layer can easily be extended to use new file caching
strategies. In the current implementation all files, independent of their size, are
completely cached in the memory during the startup phase. With current hard-
ware this is no problem for files up to hundreds of megabytes. There are many
other aspects that directly or indirectly aid the performance, e.g. the efficient
seeding strategy or the fast random number generator.

4 Data Generation Approach

To generate field values independently and to avoid costly disk reads, a random
number generator (RNG) and a corresponding seed are assigned to each field.
The used RNGs are organized hierarchically so that a deterministic seed for
each field can be calculated, see Figure [2] To calculate a value for a field in a

A Data Generator for Cloud-Scale Benchmarking 9

(5 O Project RNG) |Project
Seminar |
(seed Table RNG)} | foposers:
PIL | user lldl degree| name
.|] SR
(seed Column RNG) 22 % user_id| sem_id| degree
8
(seed>Row/Generator RNGJ.... :3.;
Y H
field value [+ | R N

Fig. 2. Seeding strategy of PDGF

specific row the field’s RNG only has to be re-seeded with the corresponding
deterministic seed.

The RNG of the project element is considered as the root RNG and its seed
is considered as the root seed. Each seed is used to derive the value of the seeds
of the RNGs at the next lower level of the hierarchy. For example, the project
seed is used to calculate the seed of the RNG of the tables and that of a table
is used to generate seeds for columns and so on. Since there is only one project
seed, all other seeds can be derived from that seed. As table and field (column)
count are static, their seeds are cached after the first generation. Usually PDGF
does not need to run through the complete seeding hierarchy to determine the
seed for the generator RNG. It is sufficient to re-seed the field RNG with its pre-
calculated seed, skip forward to the row needed and get the next value. For the
default RNG used in PDGF this is a very inexpensive operation. After seeding,
the RNG is passed to the corresponding field generator to generate the actual
value.

5 Architecture

Figure [3] shows the architecture of the PDGF data generator. It consists of 5
basic components:

— The controller
— the view
— the generators, which contain
— field generators
— distribution functions
— the random number generator
— The output module for generated data
— The scheduler

10 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

o] o (o
/PDGF u z] OutputJ A

Plugins

:> Controller :> Generator

Schedul

(& %

Fig. 3. Architecture of PDGF

5@

Controller/View The controller takes user input such as the configuration files
from the command line or a built in interactive mini-shell. This input is used to
configure an instance of PDGF and to control the data generation process. By
default PDGF is a stand alone command line tool but other views can be easily
attached to the controller e.g. a GUIL. The controller allows the use of PDGF
as a library. Distributed startup is currently realized by an external shell script,
to allow the use with queuing systems. As PDGF can be used as a library, it is
possible to use more complex startup algorithms.

Field Generators The field generators are the most important part as they de-
termine how the values for a field are generated. PDGF comes with a set of
generators for general purpose: data, default reference, dictionary, double val-
ues, ids, int values, pseudo text grammar and static values. Since some data sets
require a special structure, e.g. the TPC-H benchmark data set, PDGF provides
a simple interface enabling easy implementation of generator plug-ins without
problems with parallelization or concurrency.

Distribution Functions The distribution functions allow generators to easily
adapt and exchange how the values will be distributed. The distribution function
uses the uniform random values from the RNG provided to each generator to
calculate the non-uniformly distributed values. As for the field generators PDGF
comes with some basic distribution functions: beta, binomial, exponential, log-
normal, normal, Poisson, and Student’s-t.

Random Number Generator A parallel random number generator is the key to
make the seeding algorithm efficient and fast. The used RNG generates random

A Data Generator for Cloud-Scale Benchmarking 11

numbers by hashing successive counter values where the seed is the initial value
for the counter. This approach makes skipping ahead very inexpensive. The
default RNG can also be exchanged and in addition it is even possible to specify
a custom RNG per Generator. As for all other plug-ins, there is an interface that
allows the usage of other RNGs.

Output Module The output module determines how to save the generated data.
An output module receives the values of an entire row for a table along with
some meta information. By default the generated data is written to a comma
separated value file, one per table and instance. Another possibility is to convert
the generated values into SQL insert statements. These can either be written
to a file or sent directly to a DBMS. In contrast to the other plug-in types an
output plug-in is a serialization point of PDGF as all workers write concurrently
to it.

Scheduler The scheduler is the most complex plug-in. It influences the framework
behavior to a large degree. The scheduler is responsible for dividing the work
among physical nodes and the worker threads on the nodes. PDGF’s default
strategy is to statically divide the work between nodes and workers in junks of
equal size. This is efficient if the data is generated in a homogeneous cluster or
similar environment. In a heterogeneous environment the static approach leads
to varying elapsed times among the participating nodes.

6 Performance Evaluation

We use the TPC-H and the SetQuery databases to evaluate our data generator
[18] [I7]. All tests are conducted on a high performance cluster with 16 nodes.
Each node has two Intel Xeon QuadCore processors with 2 GHz clock rate,
16 gigabyte RAM and two 74 GB SATA hard disks configured with RAID 0.
Additionally, a master node is used, which has the same configuration, but an
additional hard disk array with a capacity of 2 TBytes. For both benchmarks two
test series are conducted. The first series tests the data generator’s scalability
in terms of data size on one node. The second series demonstrates the data
generator’s scalability in terms of the number of nodes with fixed data size.
Each test was repeated at least five times. All results are averages of these test
runs.

SetQuery The SetQuery data set consists of a single table BENCH with 21
columns. 13 of the columns are integers with varying cardinalities from 2 to
1,000,000 of which 12 are generated randomly. 8 additional columns contain
strings, one with 8 characters and the others with 20 characters. The table size
is scaled linearly according to a scaling factor SF', where SF = 1 results in about
220 MB. First we generated a 100 GB data set on 1 to 16 nodes (i.e. scaling
factor 460). As can be seen in Figure 4] the average speed up per node is linear to
the number of nodes. One node was able to generate about 105 MB per second.

12 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

The super linear speed up for a higher number of nodes results from caching
effects, which can be seen more clearly in the second test.

16 - —+— PDGF
[- linear

Speed Up

2 4 6 8 10 12 14 16
Nodes

|
|
|
|

Fig. 4. Scaleup results for 1 to 16 nodes for a 100 GB SetQuery data set

For the second test, different data sizes are generated on a single node. We use
scale factor 1 to 460. The resulting elapsed times for data generation are shown
in Figure [5| It can be seen that the data generation scales well with the amount
of data. However, the generation is not constant. This is due to caching effects
and initialization. For smaller data sizes the initialization overhead decreases the
overall generation speed. Then at scaling factor 10 (i.e. about 2 GB) there is a
peak that results from hard disk and disk array caches. For larger data sizes the
hard disks write speed is the bottleneck and limits the generation speed to about
100 MB/s.

TPC-H To test a more complex scenario and compare the generation speed with
other data generation tools, we used our data generator to generate TPC-H data.
TPC-H defines 8 tables with different sizes and different number of columns. The
schema defines foreign key relations and the following data types: integer; char;
varchar; decimal and date. The amount of data is scaled linearly with the scale
factor SF, where SF' = 1 will result in 1 GB of data. Again, we tested the data
generator’s scalability in terms of the amount of data and the number of nodes.
Figure [6] shows the data generation elapsed times for scale factor 1, 10 and 100
for a single node. Additionally, we generated the same data sizes with dbgen.
Both axes of the figure are in logarithmic scale. To obtain fair results, dbgen
was started with 8 processes, thus fully exploiting the 8 core system. Generation
times for both tools were CPU bound. Since we had notable variations in the
runtime of dbgen, we only report the best of 5 runs for each scaling factor. As
can be seen in the figure, our configurable and extensible Java implemented tool
can compete with a specialized C implementation.

A Data Generator for Cloud-Scale Benchmarking 13

1000 F 200
|l —+— Generation Time
_ | ---x--- Generation Speed v
(&)
$ 100 & 7 190 %
2 I ®
= L [0
T w0f A e * q 100 &
S 5
= L il
: g
(‘a; 1k 45 &
O
01 I 1 1 1 1 1 0

1 10 46 100 460
Scaling Factor

Fig. 5. Generation time and speed for different scaling factors of the SetQuery data
set

1000 |
o F
[0]
2,
o I
= 100 3
[
9o
s I
g 10F
8 3

1 ! : :
1 10 100
Scaling Factor

Fig. 6. Comparison of the generation speed of dbgen and PDGF

Figure [7] shows the data generation elapsed times for different cluster sizes.
For all cluster sizes the data generation elapsed time scales linearly with the
data size. Furthermore, the generation time for certain scale factors decreases
linearly with the number of nodes it is generated on. However, for scale factor
1 on 10 and 16 nodes the generation speed is significantly slower than for the
other configurations. This is due to the large initialization overhead compared
to the short generation time.

E-Learning To measure data generation speed for more complicated distributed
values we executed our simple example with the configuration file shown in
Even in this example with log normal distributed values and reference calcula-

14 T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

r X
| —+— 1Node %
1000 E -->--- 10 Nodes P
= F ---x-- 16 Nodes
2 C
9, X
g 100k P
= :
c
ie]
©)
a;:') 10 ,/’/x*
S E
O] e
x
¥
1 1 1 1 1
1 10 100 1000

Scaling Factor

Fig. 7. Generation times of TPC-H data sets on different cluster sizes

tion, the generation speed is only limited by the hard disk speed. The values are
therefore similar to the SetQuery results.

7 Conclusion

In this paper we presented a framework for parallel data generation for bench-
marking purposes. It uses XML files for the data definition and the configura-
tion file. Like other advanced data generators (e.g. [21 [7, [I3| [I4]) it features
dependencies between relations and advanced distributions. However, it uses a
new computational model, which is based on the fact that pseudo random num-
bers can be recomputed deterministically. Using parallel pseudo random number
generators, dependencies in data can be efficiently solved by recomputing refer-
enced data values. Our experiments show, that this model allows our generic,
Java implemented data generator to compete with C implemented, specialized
data generators.

For future work we are intending to further expand our set of generators and
distributions. Furthermore, we will implement a GUI to allow a more convenient
configuration. We also want to include other features, as for example schema
and distribution retrieval from existing databases. To further increase the per-
formance, we will include new schedulers that reduce wait times for slower nodes,
as well as caching strategies to reduce re-computation of repeatedly used values.

To complete our benchmarking suite, we will use the data generator to im-
plement a query generator. For this we will introduce time series generators.
This will enable the generation of varying query streams as we presented in [19].
Furthermore, it will enable realistic time related data generation.

A Data Generator for Cloud-Scale Benchmarking 15

8 Acknowledgement

The authors would like to acknowledge Meikel Poess for his helpful comments
and feedback on earlier versions of the paper.

References

1.

2.

10.

11.

12.

13.

C. Bennett, R. Grossman, and J. Seidman. Malstone: A benchmark for data
intensive computing. Technical report, Open Cloud Consortium, 2009.

C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather tomorrow?:
Towards a benchmark for the cloud. In DBTest ’09: Proceedings of the Second
International Workshop on Testing Database Systems, pages 1-6, New York, NY,
USA, 2009. ACM.

K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing research
agenda. SIGACT News, 40(2):68-80, 20009.

D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking database systems: A
systematic approach. In VLDB ’83: Proceedings of the 9th International Conference
on Very Large Data Bases, pages 8-19, San Francisco, CA, USA, November 1983.
ACM, Morgan Kaufmann Publishers Inc.

S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. Van-
Drunen, D. von Dincklage, and B. Wiedermann. Wake up and smell the cof-
fee: evaluation methodology for the 21st century. Communications of the ACM,
51(8):83-89, 2008.

P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture evolution:
Mammals flourished long before dinosaurs became extinct. In VLDB ’09: Pro-
ceedings of the 35th International Conference on Very Large Data Bases, pages
1648-1653. VLDB Endowment, 2009.

N. Bruno and S. Chaudhuri. Flexible database generators. In VLDB ’05: Proceed-
ings of the 31st international conference on Very large data bases, pages 1097—1107.
VLDB Endowment, 2005.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with ycsb. In SoCC ’10: Proceedings of the 1st ACM
symposium on Cloud computing, pages 143—154, New York, NY, USA, 2010. ACM.
G. P. Copeland and S. Khoshafian. A decomposition storage model. In SIGMOD
’85: Proceedings of the 1985 ACM SIGMOD International Conference on Manage-
ment of Data, pages 268-279, New York, NY, USA, 1985. ACM.

I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Addison Wesley, 1995.

J. Gray. Database and transaction processing performance handbook. In J. Gray,
editor, The Benchmark Handbook for Database and Transaction Systems (2nd Edi-
tion). Morgan Kaufmann Publishers, 1993.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
generating billion-record synthetic databases. In SIGMOD ’9/: Proceedings of the
1994 ACM SIGMOD international conference on Management of data, pages 243—
252, New York, NY, USA, 1994. ACM.

J. E. Hoag and C. W. Thompson. A parallel general-purpose synthetic data gen-
erator. SIGMOD Record, 36(1):19-24, 2007.

16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

T. Rabl, M. Frank, H. Mousselly Sergieh, and H. Kosch

K. Houkjeer, K. Torp, and R. Wind. Simple and realistic data generation. In
VLDB ’06: Proceedings of the 32nd international conference on Very large data
bases, pages 1243-1246. VLDB Endowment, 2006.

H. F. Korth, P. A. Bernstein, M. F. Fernandez, L.. Gruenwald, P. G. Kolaitis, K. S.
McKinley, and M. T. Ozsu. Paper and proposal reviews: is the process flawed?
SIGMOD Record, 37(3):36-39, 2008.

P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C. Rendén, D. Holt,
and R. Xiao. Development of a synthetic data set generator for building and
testing information discovery systems. In ITNG ’06: Proceedings of the Third
International Conference on Information Technology: New Generations, pages 707—
712, Washington, DC, USA, 2006. IEEE Computer Society.

P. E. O'Neil. The set query benchmark. In J. Gray, editor, The Benchmark
Handbook for Database and Transaction Systems (2nd Edition). Morgan Kaufmann
Publishers, 1993.

M. Poess and C. Floyd. New tpc benchmarks for decision support and web com-
merce. SIGMOD Record, 29(2000):64-71, 2000.

T. Rabl, A. Lang, T. Hackl, B. Sick, and H. Kosch. Generating shifting workloads
to benchmark adaptability in relational database systems. In R. O. Nambiar and
M. Poess, editors, TPCTC ’09: First TPC Technology Conference on Performance
Evaluation and Benchmarking, volume 5895 of Lecture Notes in Computer Science,
pages 116—131. Springer, 2009.

R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured mirrors. In VLDB
’02: Proceedings of the 28th international conference on Very Large Data Bases,
pages 430—441. VLDB Endowment, 2002.

J. M. Stephens and M. Poess. Mudd: a multi-dimensional data generator. In WOSP
’04: Proceedings of the 4th international workshop on Software and performance,
pages 104-109, New York, NY, USA, 2004. ACM.

M. Stonebraker. A new direction for tpc? In R. O. Nambiar and M. Poess, editors,
TPCTC ’09: First TPC Technology Conference on Performance Evaluation and
Benchmarking, volume 5895 of Lecture Notes in Computer Science, pages 11-17.
Springer, 2009.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O'Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-store: A column-oriented dbms. In VLDB ’05: Proceedings of the
81st International Conference on Very Large Data Bases, pages 553-564. VLDB
Endowment, 2005.

A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik, J. Raddick, C. Stoughton,
and J. vandenBerg. The sdss skyserver: Public access to the sloan digital sky server
data. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pages 570-581, New York, NY, USA, 2002.
ACM.

	Lecture Notes in Business Information Processing
	T. Rabl, M. Frank, H. Mousselly Sergieh, H. Kosch
	Introduction
	Related Work
	Design Goals
	Platform Independence
	Extensibility
	Configurability
	Scalability
	High Performance

	Data Generation Approach
	Architecture
	Performance Evaluation
	Conclusion
	Acknowledgement
	References

