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ABSTRACT

This paper presents the design and implementation of a custom-
built event processing engine called BlueBay developed for live
monitoring of soccer games. We experimentally evaluated our sys-
tem using a real workload and report on its performance. Our re-
sults indicate that BlueBay achieves a throughput of up to 790k
events per second, therefore processing the game’s input sensor
stream about 60 times faster than real-time. In addition to our cus-
tom implementation, we also investigated the applicability of off-
the-shelf general-purpose event processing engines to address the
soccer monitoring problem. This effort resulted in two additional
and fully functional implementations based on Esper and Storm.

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General
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1. INTRODUCTION

Complex Event Processing (CEP) systems in today’s connected
world define an exciting new area of research with rich potential
applications and challenges. For the past two years, the ACM Inter-
national Conference on Distributed Event-based Systems (DEBS)
has organized annual Grand Challenge competitions aimed at pro-
moting a common ground and common evaluation criteria for CEP
applications. The DEBS 2013 Grand Challenge [8], which is the
focus of this paper, considers the problem of event monitoring in a
soccer game. This is an application scenario that is reminiscent of a
wide variety of use cases that are made feasible as availability and
accuracy of small wireless sensors increase and the ability of CEP
systems for live processing of sensor data improves. Furthermore,
while our events of interest in a soccer game are domain-specific
and related to detection of various game conditions, they are at the
same time representative of the challenges in the wider spectrum of
application scenarios that involve continuous stream processing.
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In this context, this paper presents multiple approaches to ad-
dress the DEBS 2013 Grand Challenge. Our first solution is an
event processing system called BlueBay that we designed and built
from scratch for monitoring of soccer games. We discuss Blue-
Bay’s modular design that enables easy plugging of new types of
soccer analysis queries and report on its performance in terms of
throughput and delay, as well as the flexibility in tuning the trade-
off between the two. Our results indicate that BlueBay achieves a
throughput of 350k events/sec with a 90-percentile per-event delay
of 0.005 ms. Alternatively, BlueBay can achieve a higher through-
put of 790k events/sec with a 99-percentile delay of 15 ms.

In addition to BlueBay, we also investigated the use of existing
open-source off-the-shelf CEP engines to solve the Grand Chal-
lenge problem. Our efforts in this regard resulted in two additional
fully functional soccer monitoring implementations based upon Es-
per [2] and Storm [6]. We discuss our experience in the process of
developing these solutions in qualitative terms and compare the rel-
ative performance of our implementations in quantitative terms.

Section 2 presents our multi-stage event processing pipeline that
is intended to provide a unified framework under which our CEP
solutions execute. Section 3 elaborates on different approaches that
we considered in order to address the Grand Challenge monitoring
problem. This includes Esper and Storm which resulted in working
implementations, as well as STREAM and StreamlIT that we were
unable to use for the Grand Challenge problem. Section 4 presents
the main contribution of this paper, namely the BlueBay engine and
Section 5 reports on our experimental evaluation results.

2. MULTI-STAGE MONITORING PIPELINE

Figure 1 illustrates our soccer game monitoring pipeline consist-
ing of three stages, namely, (i) the sensor data collection and dis-
patching stage, (ii) the processing stage, and (iii) the visualization
and distribution stage. We briefly discuss each stage.

2.1 Stage 1: Data Collection and Dispatching

The first stage in our monitoring pipeline involves sensor data
collection and dispatching. The input sensor stream originates from
transmitters attached to the ball, the referee’s and players’ feet, as
well as the goal keepers’ feet and arms. A sensor reading contains
the sensor’s unique identifier sid, its x, y and z space coordinate,
its vx, vy and vz velocity vector components, its ax, ay and az
acceleration vector components, velocity vector magnitude |V |,
and acceleration vector magnitude | A |. Each sensor’s stream has
a frequency of 200 events per second for the feet and arm transmit-
ters, and 2000 events per second for the ball transmitter.

As shown in Figure 1, sensor readings collected from the soc-
cer field are fed into our monitoring pipeline either directly or indi-
rectly. A direct feed is suitable for online monitoring of a live game.
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Figure 1: Unified soccer match monitoring pipeline.

Alternatively, sensor data streams can be timestamped and logged
into a file (currently in CSV format), and fed into the pipeline at a
later point. To support the offline processing mode, we developed
a network data dispatcher that reads a game’s sensor data log file
and dispatches sensor readings over a socket connection.

2.2 Stage 2: Continuous Query Processing

The DEBS 2013 Grand Challenge outlines four continuous mon-
itoring queries to detect different game conditions (e.g., shots on
goal) and gather various game statistics (e.g., ball possession). The
queries are executed in the second stage of our pipeline using dif-
ferent CEP engines that we developed for this purpose. In what fol-
lows, we give a brief overview of these monitoring queries (a more
elaborate description can be found here [8]). We defer the discus-
sion of different CEP engines to execute these queries to Section 3.

Query 1 (Q1) — Players’ running performance: Q1 concerns
monitoring of the players’ running activity during the game based
on 6 intensity classes (i.e., stop, trot, low, medium, high and sprint).
Players transition between these classes according to the momen-
tary value of their speed. Q1 produces two types of outputs: (i) The
intensity statistics output is produced at a maximum frequency of
50 Hz, and (ii) the aggregate intensity statistics output is produced
based on four different time windows.

Query 2 (Q2) - Ball possession statistics: Q2 computes the
time that the ball is in possession of a player or team. The criteria
that must be satisfied for a player to possess the ball is to hit it such
that his foot is within 1 meter of the ball and as a result of the hit the
ball’s acceleration reaches at least 55 m/s?. Q2 produces outputs
in two forms: (i) The per-player ball possession output reports the
number of ball hits and the length of time each player possessed
the ball, and (ii) the per-team ball possession output reports the
percentage of time that the ball was in possession of each team.

Query 3 (Q3) — Heat map: Q3 produces statistics of the aggre-
gate time that each player spends in different regions of the soc-
cer field (a.k.a., the heat map). For this purpose, four grid struc-
tures with different cell sizes are defined dividing the field from just
about a hundred cells (in the least granular grid) to several thousand
cells (in the most granular one). Q3 outputs the percentage of time
that each player spends in each cell over different time windows.

Query 4 (Q4) — Shots on goal: Q4 detects players’ shots on
goal and produces an output stream that identifies the shooter and
tracks the ball’s motion towards the targeted goal. The necessary

conditions that constitute a shot on goal require that the ball is hit
by a player (similar to Q2), that it remains within the field, and that
the extrapolation of the ball’s trajectory indicates that it would be
located within the goal posts’ coordinates no later than 1.5 seconds
after it was hit by the player, provided that the ball is not diverted.

2.3 Stage 3: Visualization and Distribution

The final stage in the pipeline is to provide the results of the
query processing stage to the end-users. We envision two usage
scenarios for these results. The first scenario involves the use of a
graphical user interface to visualize the movement of the ball and
players in real-time and to display various statistics in sync with the
game play. We developed such a graphical monitoring panel that
can be used by team coaches or TV reporters to analyze a live game
(see Section 2.3.1 for more detail). Alternatively, the CEP engine’s
output can be multicast over the Internet for soccer enthusiasts. We
believe that a content-based pub/sub network [4, 5] is a suitable
choice for this purpose. Next, we discuss these alternatives in turn.

2.3.1 The Graphical Monitoring Panel

We have developed a GUI-based monitoring panel to visualize
the soccer game and the related analysis information. In addition
to a user friendly illustration of the information, this is a necessary
tool for verifying the correctness of the different types of analysis
(i.e., false positives and negatives). In our experience, given the
huge volume of generated events, this verification would not have
been feasible without our visualization tool (Figure 1 illustrates a
screen shot and a sample video is available at [7]). We have de-
signed this tool such that it displays the result of important event
processing steps, a few examples of which include:

e The detected running speed and intensity is shown next to each
player. Besides verifying the speed values, this helped us find
significant fluctuations in the detected intensities in small (20 ms)
intervals, if proper smoothing was not applied on the raw data.

e Every time a ball hit by a player is detected, the ball turns red
and gradually goes back to its original color (white). This helped
reveal false positive and false negative detection of ball hits.

e The tool highlights the player identified as the ball possessor. A
timer tracks the reported ball possession time for each team (for
the 1-minute window). This feature has contributed a lot to the
high accuracy of our ball possession analyzer.



e Heat maps at different grid resolutions are displayed for a se-
lected player (for the 1-minute window). Highlighted areas of
the map track the player in the field, while his older positions
gradually fade away as they fall outside the 1-minute window.

e Every time a shot-on-goal is detected, the ball’s predicted tra-
jectory and time to reach the goal is displayed and continuously
updated until we leave the shot-on-goal state. Moreover, for ev-
ery ball hit that is identified as a shot-on-goal, we visualize the
ball’s estimated next-1-second trajectory. This feature has helped
us to tune and verify the accuracy of our shot-on-goal detector.

e A table of statistics displays for each player the time and distance
spent in each running intensity level, ball possession time, and
the number of ball hits. The table is continuously updated with
recently changed values highlighted for easy tracking.

2.3.2  Pub/Sub-Based Dissemination Network

For the dissemination of query results, we envision the use of a
distributed content-based pub/sub system [4, 5]. Soccer fans use
the content-based filtering capabilities of these systems to tune into
the statistics related to specific players or track various game condi-
tions. For example, subscription=[player: ‘Ronaldo’,
condition: ‘ball-hits’ ] encodes a user’s interest to track
Ronaldo’s ball hits. As illustrated in Figure 1, the output of the
query execution stage is fed into the pub/sub network during the
game. This stream is matched against subscriptions at a broker and
flows towards the users based on their subscription interests.

3. USE OF EXISTING CEP ENGINES

We now discuss the results of our investigation in the application
of different off-the-shelf CEP engines to solve the Grand Challenge
monitoring problems (see Section 2.2). We found that while some
engines were sufficiently capable to address our query processing
needs, others were not suitable for our purposes.

3.1 Esper

We used Esper open-source edition [2] (version 4.9.0) and suc-
cessfully implemented all four challenge queries. The Esper distri-
bution comes with a CEP engine and an event processing language
(EPL) which provides a powerful interface into the vast capabilities
of the CEP engine. The approach we took in our implementation is
based on a logical decomposition of each of the challenge queries.
At a high-level, this involves three phases: We first pre-process
the raw sensor stream in order to augment it with game metadata
information such as sensor type (i.e., ball, referee, foot or hand sen-
sor), player id, and team association (metadata is supplied as part
of the challenge [8]). Next, in the processing phase, we formulate
the challenge queries as smaller sub-queries that are continuously
evaluated on the augmented stream and incrementally compute the
final outcome (Figure 2 illustrates formulation of Q2 in EPL). Fi-
nally, the reporting phase uses time-triggered sub-queries to pro-
duce a sampled output of query results at designated frequencies.

We observed that Esper EPL features elaborate constructs (e.g.,
windows, contextual partitioning, aggregation, expressions) that
are directly applicable towards our stream processing needs. The
Esper framework also supports seamless integration with the Java
language at two key levels. First, it facilitates interfacing with the
CEP engine for the input and output of events to and from the en-
gine. Second, it allows incorporation of Java code snippets and
functions as part of the evaluation of an EPL query. We used the
former capability to inject raw sensor readings from our network
data dispatcher and collect the computed output results using a Java

insert into preprocessed_stream
select x,
msrg. GameSetting . getld (s_id) as id,
msrg. GameSetting . getType(s_id) as t_id,
msrg. GameSetting . getSubtype (s_id) as subt_id
from msrg.EsperSensorEvent

insert into b_position_stream
select * from preprocessed_stream where t_id = 2

insert into b_relative_pos

select
b.s_id as b_s_id, b.ts as b_ts, b.id as b_id,
b.t_id as b_t_id, b.subt_id as b_subt_id,
b.x as b_x, b.y as b_y, b.ax as b_ax, b.ay as b_ay,
b.v as b_v, b.a as b_a, p.ts as p_ts, p.s_id as s_id,
p.id as p_id, p.t_id as p_t_id, p.subt_id as p_subt_id ,
p.X as p_X, p.y as p_y. p.z as p_z,
java.lang.Math.sqrt ((p.x—b.x)*(p.x—b.x)+

(p.y=b.y, 2)x(p.y—b.y, 2)) as dist

from preprocessed_stream as p unidirectional ,
b_position_stream.std :unique(s_id) as b

where (p.t_id = 3 or p.t_id = 4) and (b.t_id = 2)

create expression minDist
{(select min(dist) from b_relative_pos.std:unique(p_id))}

insert into b_possession
select *,

msrg. GameSetting . getBallOwner (p_t_id ,b_v.,b_x.,b_y) as owner
from b_relative_pos
where msrg. GameSetting . ballTn (b_x, b_y) = 1 and b_a > 0.5

and minDist() = dist and dist <= 1000

insert into b_possession_percent
select *,
sum(b_ts — prev(b_ts, 1)) as time_total,

sum((b_ts — prev(b_ts, 1))
* msrg.GameSetting . equalStr (owner, prev(owner,1), teamA "))
as time_teamA ,
sum((b_ts — prev(b_ts, 1))
* msrg.GameSetting . equalStr (owner, prev (owner,1), teamB "))
as time_teamB
from b_possession.win:time(10 seconds)
select *,
b_ts, owner, time_total ,
time_teamA/time_total as teamA_ownership_percent,
time_teamB/time_total as teamB_ownership_percent
from pattern [every timer:interval(l second)] unidirectional ,
b_possession_percent.std:unique (owner)

Figure 2: Query 2 implementation in Esper.

callback method. We used the latter capability to encode the game-
specific domain knowledge as stateless static Java functions, e.g.,
to compute the ball trajectory (Figure 3 lists other Java functions).

Finally, we would like to reflect on our experience in working
with Esper. We found that Esper’s high-level language gives great
flexibility and is suitable for fast development and ease of change.
In fact, after a steep learning curve to become familiar with its ca-
pabilities, we were able to formulate all queries in a matter of a
few days time. We therefore believe that in a use case with chang-
ing requirements an Esper-based solution is of great value. Also,
as an added advantage of Esper’s support of the Java language our
solution can be incorporated easily into other programs.

3.2 Storm

Storm is a distributed stream processing system built for real-
time Web scale stream processing [6]. A Storm topology is a di-
rected acyclic graph that consist of data sources (spout) as roots
and data processing nodes (bolts) as inner nodes and leaves. Spouts
emit tuples that are consumed and processed by bolts. Spouts and

getId(s_id) Returns unique id for players, referee & ball

wearing sensor s_id.

Returns type of entity (i.e., team of players, ref-
eree & ball) wearing sensor s_id.

getType (s_id)

Returns id for showing where sensor s_id is
worn (i.e., left/right leg/arm).

getSubtype (s_1id)

equalStr(a, b, c) |Returns 1 if a=b=c and 0 otherwise.

ballln(x, vy) Returns 1 if x, y is a coordinate within field
boundaries.

getBallOwner (t_id, [Returns ‘ballout’ if (x, y) is within
v, X, V) field or *stopped’ if v!=0. Otherwise, re-
turns ‘teamA’ or ‘teamB’ based on t_id.

Figure 3: Java functions from msrg.GameSett ing used in Figure 2.
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Figure 4: Storm topology excerpt for Query 3

bolts can have multiple instances that run in parallel. The way data
is streamed to these instances is specified by stream groupings.

The most basic stream grouping is a shuffle grouping that ran-
domly distributes data to bolt instances. A more advanced grouping
is the field grouping that sends tuples with equal values in a given
field to the same bolt. A Storm topology can be specified in various
programming languages.

Although spouts and bolts must be individually implemented,
Storm takes care of the distribution of tasks (spout or bolt instances)
and the reliable transmission of tuples between the two. A Storm
system consists of a master node that distributes tasks, code and
worker nodes that execute subsets of a topology. A Storm cluster is
backed by a Zookeeper cluster [3], which keeps all state informa-
tion and makes the cluster reliable and failure resilient.

We implemented all four queries in Storm using Java. Figure 4
shows part of the topology that computes Q3 (heat maps). Since all
data comes from the sensor stream, there is only a single spout. As
a first step, the sensor readings have to be matched with the players.
This can be done with an arbitrary degree of parallelism using a
shuffle grouping. Next, the sensor readings from the two feet of
each player have to be joined to a single position. This is done with
a field grouping and a maximum degree of parallelism in terms of
the number of players. From the stream of each player’s position,
the individual heat maps are computed and sent to the output bolt
which sends the results to the GUI or to standard output.

3.3 StreamIT

StreamIT [9] provides a high-level language with stream manip-
ulation primitives. We unsuccessfully attempted to implement the
challenge queries using StreamIT. We now list the limitations of
StreamIT which prevented us from completing the queries:

Limited /O support: StreamlIT has restricted I/O capabilities.

Lack of powerful stateful operators: Communication between
blocks in a StreamlIT pipeline is regulated through different queues.
Therefore, each block is essentially stateless and accesses addi-
tional data by peeking at various queues. This queue-based ap-
proach is not suitable to formulate the finite-state machine model
required for our monitoring queries (such as Q2 and Q4).

Lack of library support: We believe that it would have been more
beneficial if StreamIT was provided as a library, where the code
produced by StreamIT could be modified in its lower level form.

34 STREAM

STREAM is a data stream management system to evaluate con-
tinuous queries developed by Stanford [1]. The main features of
STREAM are to support a declarative continuous query language
(CQL) that unifies access to an incoming (structured) data stream
and traditional stored data (in form of tables).

CQL is formulated over either streams (an unbounded bag of
events) or relations (a finite time-varying bag of events). CQL is
also extended with a sliding time- and count-based window seman-
tics, essentially, the sliding window is a snapshot of an observed
finite portion of the event stream. There are three classes of opera-
tors in CQL. These classes of operators are distinguished based on
their input/output semantics: (1) Relation-to-relation, which takes
relations as input and produces a relation as output; (2) stream-
to-relation, which takes streams as input and produces a relation
as output; and (3) relation-to-stream, which takes relations as in-
put and produces a stream as output. Another notable feature of
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Figure 5: High level diagram of the BlueBay engine.

CQL is the partitioning operator that partitions a stream into a set of
sub-streams based on the values of selected attributes in the event
stream. Despite the novel features of STREAM, the lack of di-
rect support for user-defined functions (needed to implement com-
plex finite-state machine behavior required by the DEBS Challenge
queries) prevent us from including STREAM in our evaluation.

4. THE BLUEBAY ENGINE

BlueBay is the event processing engine that we have developed
for analyzing a soccer game’s sensor data. This engine is designed
in a modular fashion to serve as a general framework for adding
any type of soccer analysis query fairly easily (some discussed be-
low), while it is also optimized for speed: With an efficient C++
implementation, it achieves a throughput of up to 790k events per
second, handling the sensor events of a whole minute in only one
second, i.e., 60 times faster than real time.

BlueBay Components. The internal components of the Blue-
Bay engine are illustrated in Figure 5 and briefly described in the
following. The Active-Ball Tracker tracks which of the ball sen-
sors is the one that we should be monitoring; only one of the balls
is the one being played with. There are periods of a few seconds
where there are temporarily more than one ball in the field, during
which the Active-Ball Tracker should not be misguided until the
extra ball is removed. Once the relevant ball sensor is identified, a
Ball Tracker tracks the state of the ball—position, speed and accel-
eration, denoised with proper filters (exponential-weighted moving
average). The Ball Tracker also monitors the acceleration of the
ball and detects potential ball hits. We found that the acceleration
is greatly impacted when the ball hits the ground, thus we take only
the XY component of the acceleration into account (based on a
threshold of 75 m/s?). BlueBay also includes a Player Tracker for
individual players which tracks the position and speed of the foot
sensors. The speed is denoised with a sliding window moving aver-
age filter to cut out considerable fluctuations in the speed value as
the players’ feet takes every step. A value of {running speed, du-
ration} is output every time the speed value is steady enough, with
an output frequency of no more than 50 Hz and no less than 5 Hz.
Upon every potential ball hit, the hitting player is identified based
on the position of the foot sensors. Then, the Trajectory Estimator
predicts the trajectory of the ball in the next few seconds. The Tra-
jectory Estimator takes into account the current (denoised) position
and speed of the ball as well as gravity and air resistance.

Stream Window. A common data structure used in the dif-
ferent components of BlueBay is a sliding window which keeps
timestamped data values—entries of the form {timestamp, value,



duration }—such as a 1-minute window on how much time a player
has spent in a grid cell or the time a player has run at an intensity
level. The key feature of this window, to which we refer as Stream
Window, is its efficiency: It performs all insertion and retrieval op-
erations in constant time and, more importantly, consumes only
constant memory. This is achieved by bucketizing the timestamps
at some granularity, and maintaining a list (in practice a circular
buffer) of fixed length, irrespective of the input rate. For example,
to track the distance run by a player at the “sprint” intensity level
in the past 5 minutes, we need to keep track of the (timestamped)
distance values computed on each Player Tracker report (at 5 to
50 Hz). Instead of maintaining a sliding list of all values having
a timestamp of no older than 5 minutes, we aggregate all values
having a timestamp between 7' ms and 7+999 ms in one bucket,
and only maintain their sum and count, i.e., 300 buckets. Com-
pared to maintaining a full list of individual values, we do not lose
any noticeable precision by such bucketization; in the worst case
when we are pushing some outdated events out of the window, they
may be leaving up to 1 second late. More formally, by maintain-
ing the events of a sliding window of length 7" seconds in a Stream
Window with N buckets, we may return the desired value (sum,
max, count for the window) for the past 7" to 7'(1 4+ 1/N) seconds,
rather than exactly 7. We use small buckets throughout BlueBay
(e.g., N > 100), except for the substantial number of heat map
Stream Windows where we use N = 20; we report the heat map of
the past 60 to 63 seconds for the 1 minute window.

Query analyzers. Given the above components, we conduct dif-
ferent types of analysis fairly easily. As illustrated in Figure 5, Q1
of the challenge can be readily handled by pushing the output of the
aforementioned Player Tracker into Stream Windows—a Stream
Window for each defined running intensity level. Similarly for Q2,
we receive every ball hit along with the hitting player id from the
Ball Tracker, and we can track the per-player and per-team posses-
sion time with a simple counter and a Stream Window (for each
given window length), respectively. The heat map analyzer (Q3) is
nothing but a collection of Stream Windows tracking data received
from the Player Trackers. These windows, of different lengths and
for the different grid resolutions, a total of 34,000 windows, easily
fit into a few hundred MB of memory and perform all operations in
constant time. Finally, the shot-on-goal analyzer (Q4) only needs
to wait for ball hits from the Ball Tracker, and compare the trajec-
tory given by the Ball Tracker with the position of the goals. This
analyzer consists of a finite-state machine. Every time the ball is
hit, we enter a waiting state for up to a maximum distance (50 cm)
or a maximum time (1 second) since the hit. At that point, we have
a reasonable estimate of the ball’s trajectory and the time to hit the
goal. Accordingly, we either enter the shot-on-goal state or go back
to the no-shot state. In the former case, the trajectory is monitored
upon every ball sensor event until the ball changes direction, be-
comes too slow, or leaves the field.

Other types of analysis. The components introduced above en-
able various new types of soccer analysis, such as the following.

e Ball passes and their success rate for each player and each team
can be counted. We are signaled when a new player receives the
ball (upon his first hit), and we know who has hit the ball last. We
have already implemented this additional analysis in BlueBay.

e A player’s running statistics with and without the ball, and at
the time of attack and defense can be analyzed using a coun-
ter/Stream Window on the Player Tracker’s output.

e Offsides can be detected by waiting for ball hits from the Ball
Tracker, and forming a black list of players who are not allowed
to receive that pass based on their positions at the time of hit.

e The success of a player for man-marking his assigned opponent
player can be analyzed through a Stream Window to which we
periodically push the distance of the two players.

e The defense-to-attack time for a team can be tracked by monitor-
ing the Ball and Player Trackers, and maintaining a single time
counter representing when, which team last acquired the ball.
Efficiency. Since almost all operations in this challenge can be

done in O(1) time, it is a matter of efficient implementation tech-
niques that enables a throughput boost in query processing. A few
of these techniques employed by BlueBay are as follows. First,
for different components we avoid using hash maps to track per-
sensor data (even though lookups are O(1)). Instead, we assign
an index € [0, Num Entities — 1] to each entity, such as a sensor
or a player. The index for each sensor/player is looked up only
once per event in an id-to-index hash map. Then, all the remaining
entity lookups, such as updating the position of a player, is done
using array-based maps. Moreover, we note that the main body
of the analysis consists of a substantial amount of mathematical
operations. We avoid the unnecessary use of floating point opera-
tions where int64 precision would suffice, while carefully handling
cases where there is a risk of overflow (e.g., multiplying two values
of picoseconds since epoch). We use efficient, array-based circular
buffers instead of linked lists or elastic vectors wherever the data
size is fixed, which is often the case—Stream Windows. Finally,
the data dispatcher (see Section 2.1) that executes as a separate pro-
cess and loads the entire data in advance eliminates the impact of
disk I/0O in the critical path of event processing.

Parallelization. BlueBay can run in single and multi-threaded
modes. For the latter, we note that the events emitted to different
output streams, per query and sometimes per sub-query, should not
contain reordered timestamps. Thus, we do not run an arbitrary-
size thread pool to handle the events. Rather, we run one thread
per query, with the ball possession and shot-on-goal analyzer com-
bined in one since they include common steps. Our code profiling
analysis has shown that the most time consuming event processing
step in BlueBay is the emission of heat map statistics—over half
a million Stream Windows that should emit data. Even just iter-
ating over all the windows for all players takes up to a few dozen
milliseconds. We therefore designate a number of sub-threads in
the thread handling the heat map query, which are responsible for
the different grid resolutions. Reordering of output events across
different grid resolutions is fine since they belong to different out-
put streams. Once the emission timer fires, the heat map thread
launches these sub-threads and blocks until they are all done, be-
fore handling any new heat map input event. We also note that in
all query analyzers, we disable emission to stdout or file by de-
fault, since it involves significant I/O that will not let us analyze
the actual performance of the event processing engine. Note that,
however, we do perform all the string formatting and preparation of
the final output; we just do not print it (i.e., sprint f to memory
buffers rather than print £ to stdout).

S. EVALUATION

We experimentally evaluated the performance of the BlueBay
system in terms of throughput and per-event delay—the time it
takes from when an event is received from the data dispatcher to
when processing is finished and a possible output event is emit-
ted. Our evaluations are conducted on a PC workstation with Intel
Xeon 3.20 GHz 4-core CPU with 6 GB of memory. We measure
the throughput as the number of events processed per seconds (e/s),
and as a speedup. A speedup of s indicates that s seconds worth
of sensor data are processed in 1 second worth of actual processing
time (i.e., events processed s times faster than real-time).



[ Implementation | Q1 | Q2 | Q3 [ Q4 |

BlueBay 141x | 165x | 30x | 187x
Esper 7.5x | 24x | 6.3x | 2.3x
Storm 9.7x | 8.6x | 9.8x | 8.6x

Table 1: Event processing speedup using different approaches.

BlueBay running all four challenge queries in non-threaded mode
achieves an average throughput of 364k e/s, and an average speedup
of 27.6x. Table 1 compares the per-query speedup of different im-
plementations and Figure 6 plots the instantaneous throughput for
BlueBay. By enabling the multi-threaded mode in BlueBay, the
performance is on one hand increased and on the other hand im-
pacted by some noticeable overheads (discussed below). The over-
all throughput can be increased to 790k e/s (2+ times higher).

As described earlier, in the threaded mode, we allow a query of
type X to be processed while a query of type Y is taking some time.
We can enforce the different query threads to run at more or less the
same pace by limiting the input queue size of the threads. A queue
size of 1 enforces that no thread can start working on a new event
(it is not given one) until another thread finishes the previous event.
A queue size of oo makes the threads completely independent. The
queue size also governs a trade-off between throughput and per-
event delay: A limited queue size ensures that when a thread is
falling behind (typically the event triggering heat map emissions),
the other threads are paused after some point, giving the full CPU
to the busy thread (sub-threads handling heat map emissions; see
Section 4). Figure 6 illustrates BlueBay’s performance in multi-
threaded mode with different queue sizes (q).

Note that unlike I/O-involved jobs where threading immediately
boosts the performance by avoiding wasting CPU cycles, here, all
threads carry out CPU-heavy jobs, so for small queue sizes the
overhead of threading is more significant than the obtained through-
put increase in Figure 6. A major part of this overhead is that of the
safe enqueuing/dequeuing of events for the threads which takes a
non-negligible time compared to the only-a-few-microsecond pro-
cessing time for most events. Another, less significant factor is
the slight performance drop by turning on additional monitoring
features such as collecting delay information and tracking the 99-
percentile delay; turning on these features in the non-threaded mode
drops the aforementioned throughput of 364k to 346k e/s. Finally,
unlike I/O-involved jobs, here, the overhead of the many context
switches between the CPU-intensive threads is non-negligible.

The trade-off between throughput and delay is illustrated in Fig-
ure 7. We can observe in this figure that the throughput can be in-
creased only up to some point, after which some threads (the heat
map thread) have a hard time catching up; hence, the jump in the
delay value. In particular, the average/99-percentile processing de-
lay for the last three queue sizes, 4k, 16k and 64k is 2.9/15 ms,
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Figure 6: BlueBay’s throughput (best viewed in color): x-axis is
processing time and higher throughput executions end earlier
(drops in graphs correspond to moments of missing ball data).
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Figure 7: Trade-off between throughput and per-event delay.
Points from left to right represent experiments with thread
queue sizes of 1, 4, 16, 256, 1k, 4k, 16k and 64Kk, respectively.

13/61 ms and 56/253 ms, respectively. The average throughput for
these cases is 747k, 789k and 790k e/s. This pattern which can be
seen in Figure 7 shows the maximum throughput. For non-threaded
executions (not shown in the figure), the average/90-percentile de-
lay and throughput are 0.004/0.005 ms and 346k e/s, respectively.

It is noteworthy that the rather complex relationship between
throughput, delay and queue size is mainly due to: (i) the substan-
tial unevenness between the work taken for the different events—in
particular the emission of heat maps (even only preparing the out-
put without the final push to stdout/file), and to a lesser extent, the
running statistics—and (ii) the enforcement of one thread per query
(and one per sub-query for heat maps) to avoid reordering of times-
tamps in the output streams, described in Section 4.

Summary. Among the scenarios described, we recommend to
use BlueBay in non-threaded mode for monitoring of live soccer
games. In this mode, BlueBay processes sensor events 27+ times
faster than real-time with less than a few microseconds of delay
for 99% of events (maximum delay is 75 ms for heat map emis-
sion). For offline monitoring of pre-recorded games, however, a
slightly higher delay is not an issue and the multi-threaded mode
with a queue size of 4k (or 16k) is recommended. This provides a
throughput of 747k e/s (/789k e/s), a speedup of 57x (/60x) and a
99-percentile delay of 15 ms (/61 ms).

6. CONCLUSION

We presented the design of the BlueBay event processing engine
that serves as a framework for conducting various types of analy-
sis over the sensor data stream of a soccer game. BlueBay provides
the flexibility to trade off between processing throughput in favor of
per-event processing latency (and vice versa). Our measurements
carried out using a commodity PC demonstrate that it can achieve a
throughput of up to 790k events/sec. Moreover, we investigated the
applicability of several existing CEP engines to address the Grand
Challenge problem. This effort resulted in two additional imple-
mentations based upon Esper [2] and Storm [6]. Finally, we re-
ported on our experience in the development process.
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