

Assembler3: 3D Reconstruction of Laser-Cut Models

THIJS ROUMEN, YANNIS KOMMANA, INGO APEL, CONRAD LEMPERT, MARKUS BRAND, ERIK BRENDEL,

LAURENZ SEIDEL, LUKAS RAMBOLD, CARL GOEDECKEN, PASCAL CRENZIN, BEN HURDELHEY, MUHAMMAD

ABDULLAH and PATRICK BAUDISCH

Hasso Plattner institute

University of Potsdam, Germany

Firstname.lastname@hpi.de

Figure 1: Assembler3 allows users to modify 2D cutting plans by (b) rearranging them into a 3D model, where (c) users can now apply
parametric manipulations using existing 3D editor kyub [3], before (d) converting back to 2D for cutting. In our study, this workflow

allowed participants to apply parametric modifications 10x faster, more easily (6/7 vs. 2/7), and 26x more reliably, than when
employing the traditional workflow of rewriting the 2D cutting plan directly.

1 ABSTRACT

We present Assembler3 a software tool that allows users to perform 3D parametric manipulations on 2D laser cutting

plans. Assembler3 achieves this by semi-automatically converting 2D laser cutting plans to 3D, where users modify their models

2

using available 3D tools (kyub), before converting them back to 2D. In our user study, this workflow allowed users to modify

models 10x faster than using the traditional approach of editing 2D cutting plans directly. Assembler3 converts models to 3D in 5

steps: (1) plate detection, (2) joint detection, (3) material thickness detection, (4) joint matching based on hashed joint

"signatures", and (5) interactive reconstruction. In our technical evaluation, Assembler3 was able to reconstruct 100 of 105

models. Once 3D-reconstructed, we expect users to store and share their models in 3D, which can simplify collaboration and

thereby empower the laser cutting community to create models of higher complexity.

CCS CONCEPTS • Human-centered computing~Human computer interaction (HCI);

Additional Keywords and Phrases: laser cutting, personal fabrication, reuse, remixing

ACM Reference Format:
Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert, Markus Brand, Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl

Goedecken, Pascal Crenzin, Ben Hurdelhey, Muhammad Abdullah and Patrick Baudisch. 2021. Assembler^3: 3D reconstruction of

laser-cut models. In CHI Conference on Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM,

New York, NY, USA, 18 pages. https://doi.org/10.1145/3411764.3445453

2 INTRODUCTION

While laser cutters are capable of creating complex 3D objects [2], illustrated by the professionally designed model

shown in Figure 2a (ugearsmodels.com). Laser-cut models created by the community, in contrast, do not reflect this

potential: the most often fabricated model on the sharing site thingiverse.com, for example, consists of only 5 parts

(Figure 2b).

Figure 2: (a) This 3D models designed by a closed design teams (here ugearsmodels.com) consists of 538 parts. (b) The most often

fabricated model shared on thingiverse.com (IDs 2440907), in contrast, is of much lower complexity.

We feel that this lack of complexity is not coincidental. Communities are capable of producing complexity

(e.g. the open source code community [14] [23]), but this requires community members to be able to have efficient

access to the shared project. In laser cutting, however, 95% of laser cut 3D models are still shared in the form of 2D

cutting plans—a format that makes 3D modifications all but impossible and thus makes it difficult to build on the

work of others.

To illustrate this point, we use Figure 1 for visual reference. (a) A user wanting to accommodate the 2D cutting

plan of this virtual reality headset for far sightedness might start by (d) extending the top plate of the model, but

would then also have to realize that (e) three additional plates require modifications as well.

3

This sounds straightforward, but in order to figure out which plates to modify, the user would most likely

(b) mentally reconstruct the 3D model, (c) mentally scale the model in 3D, and (e) mentally apply those changes to

the 2D cutting plan. Only now could the user realize that the side plates of this particular model have to be scaled,

but for example not the middle piece. In our user study, it took participants on average 24:45min to complete this

particular task, they rated it as "hard" (6/7), and only 2/13 of the resulting cutting plans assembled into functional

models.

In this paper, we present Assembler3. Assembler3 is an interactive software tool that implements the “mental”

workflow shown in Figure 1 as an actual, software-based workflow. (a) Assembler3 allows users to modify 2D

cutting plans by (b) rearranging them into a 3D model, at which (c) users can now apply parametric manipulations

using existing 3D editors, before (d) converting back to 2D for cutting. In our study, this workflow allowed

participants to apply parametric modifications 10x faster (2:22min on average) than the traditional workflow of

rewriting the 2D cutting plan directly. Participants rated the task easy (2/7) and all exported cutting plans

assembled into functional models. In a technical evaluation, we furthermore demonstrate the utility of this

workflow by reconstructing 100 of 105 models found in online repositories.

3 ASSEMBLER3 WORKFLOW

The main step implemented by Assembler3 is the reconstruction of a 3D model from a 2D cutting plan.

While we present our algorithm in full detail in the section ‘The Algorithm of Assembler3’, Figure 3 provides a

preview. Assembler3 reconstructs a model, such as (a) this plate of the VR headset, by performing the following

steps: (b) plate detection determines what are plates and what is scrap using the nesting order of paths and

assigning plate vs scrap in alternating order. (c) Joint detection identifies joint candidates by detecting patterns of

left/right turns in the paths. (d) Material thickness detection has every joint candidate vote for a material thickness,

the dimension most commonly voted for by the joints determines the material thickness. (e) Joint matching and, for

fast retrieval, storage in a hash. (f) Interactive reconstruction in a 3D environment (kyub).

4

Figure 3: Pipeline of parsing the top plate of the VR headset (in reality it parses the entire SVG).

While we explain each of these steps in detail in the ‘Algorithm’ section, Figure 4 illustrates the last step, i.e.

interactive reconstruction in (a) the 3D environment. (b) The main interaction is the user attaching two plates to

each other using the assemble tool. Here the user has selected a plate, which causes it to highlight in yellow.

Assembler3 responds by highlighting candidate joints that could be paired up with the selected plate. This response

is instantaneous, as all matches were precomputed and stored in an efficient-to-retrieve format (joint hash).

Figure 4: Reconstructing the 3D model of the VR headset. (a) When Assembler
3
 loads the SVG, all plates are displayed in the 3D

modeling environment, here kyub [3]. (b) The user clicked the assemble tool on the front piece. Assembler3 responds by highlighting

this plate (yellow stripes) and by highlighting joint candidates located on the other plates. (c) Clicking one of the suggested candidates
assembles the plate. (d) The user repeats this until the model is assembled. From now on, the user uses standard kyub tools to
interact with the model (e) to see the front plate, the user flips the model. (f) Once reconstructed, the user can apply arbitrary

parametric changes. Here the user accommodates for far-sightedness by stretching the front plate.

5

As shown in Figure 4c the user then clicks on a target plate to assemble the selected plate with, Assembler3

responds by attaching the joint candidate to the target plate. The user repeats this step until all plates are assembled

into the 3D model.

Sometimes, there are multiple ways how a plate can be attached, including rotations around up to three degrees

of freedom. To keep the interaction flowing, Assembler3 picks a default placement. Assembler3 does so considering

the following heuristics: (1) maximizing the probabilities that each of the involved joints actually is a joint, as

determined during SVG parsing, (2) picking results that are free of 3D intersection, (3) maximizing the number of

joints that will be completed by the attachment operation (such as co-aligned joints elsewhere on the plates).

In our technical evaluation, Assembler3 got orientations right at first attempt for 78.6% of cases.

As illustrated by Figure 5, in those cases where Assembler3 gets the default orientation wrong, successive

clicking of the “floating menu” attached to the assembly allows users to cycle through other orientations in order of

descending score, until the correct one has been found (on average 1.7 clicks in our evaluation). This score is

determined using the same heuristics as for the default orientation and it skips orientations that produce the same

outcome because of symmetrical parts.

Figure 5: (a) To override a suggestion, the user uses the floating menu item. Assembler3 presents another orientation of the plate.
(b) In this case Assembler3 flips the plate, which leaves the user satisfied with the result.

Whenever combining two plates Assembler3 replaces the joints originally contained in the 2D cutting plan with

joints in the format of the surrounding 3D editor, so as to allow joints to accommodate the parametric changes

about to happen.

Once the conversion to 3D is complete, Assembler3 allows users to apply any 3D editing tools to the model. In

Figure 1e, the user uses this to accommodate the design for the user’s far-sightedness.

After reconstructing a model once, other users can leverage that effort by now applying any number of additional

modifications, such as the changes shown in Figure 6. Users may also store and share the model in 3D format, which

lowers the bar for others to build on this model, contribute to it, and help it achieve complexity.

6

Figure 6: When users have converted the VR headset model to 3D once, the 3D model allows leveraging existing tools (such as kyub
[3]) to perform any number of modifications efficiently, such as (a) adjusting the inter-ocular distance, (b) making the headset fit a

wider phone by stretching it vertically, (c) or making the headset more comfortable to wear by reducing the weight of the device by
decreasing material thickness and removing unnecessary material.

Note how the 3D reconstruction process seamlessly integrates into the regular 3D editor environment. Initially,

we had expected that 3D reconstruction would have to result in a more wizard/process-funnel like design—a

workflow limiting users to back-and-forth navigation along certain process steps. However, once we had fully

automated the 2D processing steps, such as material thickness reconstruction, we found the opportunity to

implement 3D reconstruction as a set of tools, most prominently assemble tool and the floating menu.

The benefit of this integration is that it invites users to tackle plates in any order, fix mistakes recognized late by

disassembling selectively using the “extract plate” tool, use the editor environment to perform any other modeling

activities along the way, start parametric manipulations before the import is even complete, or even to reconstruct

models only partially for the purpose of remixing rather than full reconstruction.

4 SURVEYING SHARING PRACTICE

In a short survey, we find that there is surprisingly little remixing/customizing of laser-cut models shared on

thingiverse. Flath et al [10] conducted an in-depth survey of thingiverse models in 2017, in which they found 54.7%

of all models to be remixed. We repeated their analysis filtered by the search terms “laser cut”, “lasercut”, and/or

“laser-cut”, and find a mere 17% of models to be based on work of others (open-source script to reproduce our

analysis [21]). We thus conclude that there is a lack of remixing of laser-cut models compared to other practice on

the platform. Flath et al furthermore draw attention to the “thingiverse customizer” (a tool to easily make

parametric modifications to 3D models) as a catalyst for remixing of 3D models. We believe that Assembler3 could

play a similar role in the context of laser-cut models.

We find furthermore anecdotal evidence of a desire to make parametric modifications laser-cut models in the

comments to models that are shared. The most popular modifications are changes in material thickness. A strong

example is thing 24561, which has these two (out of 16) comments:

“Hi, can you please help me scale this dragon into a 3mm thickness template and share with us …”

“Hi, am new here and I would like to cut this dragon on a 3mm acrylic. Please could you help guide me on how

to scale it?? …” (other comments are in the vein of “great model”)

Thing 286 mentions the problem in their own description, and a comment to thing 691869 indicates a failed

attempt at modifying the thickness. Other thingiverse designers share multiple thickness files to circumvent the

problem.

7

In current-day sharing, Assembler3 could thus already play an important role as a tool to reduce the hurdle of

varying material (thickness) of models. However, if the boost of the thingiverse customizer is any indicator, a tool

for customizing models can go a long way to structurally change how users make and share models on the platform.

5 CONTRIBUTION, BENEFITS AND LIMITATIONS

In this paper, we make four contributions:

(1) We propose an algorithm, we call Assembler3, that allows users to make parametric modifications to 2D

cutting plans by allowing them to convert their cutting plans to 3D models. (2) To show its relevance and to leverage

existing support to modify and export models, we demonstrate this algorithm by implementing it as an extension

of existing modeling software, kyub. (3) We compare our approach to the 2D editing workflow and find that the 3D

workflow is 10x faster and 26x less error prone. And finally, (4) we reconstruct 100 models found online to 3D

models that can be modified and find that Assembler3 achieves a coverage 95.2% of supported models.

Our current implementation is limited to three limitations: (1) it handles a basic set of laser-cut elements—we

defer living hinges, moving mechanisms, stacked/glued/bolted plates and joints that connect more than one other

joint to future versions. (2) In order to work with kyub, our implementation recreates joints from the SVG in which

some joint design may get lost. (3) Currently, models in which all angles between plates are non-straight (3.7% in

our evaluation) cannot be reconstructed with Assembler3.

6 RELATED WORK

Our work builds on research into reconstruction of 3D models, puzzle solvers, sharing and remixing of models for

3D printing, and collaborating on laser-cut models.

6.1 Reconstruction of 3D models and non-parametric to parametric

In the field of computer vision, one approach to reconstructing 3D models is to reconstruct based on one or more

2D images: 3-Sweep [5] reconstructs a 3D model from a single photograph, and Xu et al. [24] reconstruct 3D

mechanisms from multi-view images and even reconstruct the movement of the mechanisms from a corresponding

video. Agrawal et al. [1] reconstruct 3D models of historical monuments by aggregating massive amounts of

pictures found online.

In a very different context, archaeologists have a tradition of leveraging computing methods to reconstruct

models of excavated artefacts both to find out what it could have looked like (aka “object completion”) [17] and as

a way to figure out how to physically re-assemble the model [13].

Once a 3D model has been created, a next InverseCSG [8] lets users turn a non-parametric 3D model (e.g. STL)

into parametric models, allowing users to modify the models using advanced 3D operations. It reconstructs what

geometric primitives and CSG operations were required to get to an input 3D model. Assembler3 solves this bottom

up, the primitives are given (i.e. the plates) and Assembler3 reconstructs how they come together.

6.2 Solving combinatoric issues, puzzle solvers

When arranging 2D laser-cut plates in 3D Assembler3 requires users to solve a combinatoric problem. Combinatoric

problem solving has a long history in the algorithmic solving of 2D puzzles. Demaine & Demaine [7] show that jigsaw

puzzles are in principle NP-hard. Nevertheless, Sholomon et al. [22] show that large jigsaws can be solved using a

genetic algorithm, given good “compatibility” metrics describing how well pieces fit together.

8

Chen et al. [4] solve puzzles based on a complete joint map between any kind of “objects”. We feel their approach

to 3D reconstruction might also be worth investigating in the context of laser cut models.

6.3 Sharing and remixing benefits from models being in a parametric format

Online sharing repositories, such as thingiverse, GrabCAD, 3DContentCentral etc. contain millions of models. Flath

et al. [10] studied sharing behavior on thingiverse in detail and particularly target the importance of the customizer

(a tool to modify other people’s parametric models) to foster the complexity of models as well as the concept of

remixing across users. Grafter [18] is a software tool targeted to facilitate such forms of online remixing in the

context of mechanisms, and the PARTS framework [12] enables users to specify mechanical parametric models,

which again fosters remixing and modifying other people’s models.

6.4 Sharing and remixing in laser cutting

We see one of the key contributions of Assembler3 in its ability to move the current 2D sharing format to 3D, which

we feel will empower collaboration. Earlier work in laser cutting has dealt to address other hurdles inherent to the

current 2D sharing formats. SpringFit [19] made the case that 2D cutting plans are not inherently reproducible, as

they encode the kerf (material removed) of the laser cutter. SpringFit and KerfCanceler [20] both tackle the problem

of how to enable generic 2D cutting plans to lead to well-defined physical output; their approach is to modify

mechanisms and joints so as to become invariant to kerf.

A major milestone towards collaborating in 3D laser cutting was the introduction of 3D exchange formats. This

took place as a side-effect of the introduction of 3D modeling environments for laser cutting, specifically FlatFab [6].

CutCAD [11] follows a similar approach but uses a combination of 2D input and 3D visualization. Kyub [3] further

increases the level of abstraction by representing laser cut models as volumetric models. We thus decided to

integrate into one of these software systems (kyub) so as to build on the state of the art.

7 THE ALGORITHM OF ASSEMBLER3

In order to allow readers to replicate Assembler3, we now provide a detailed description of its algorithm.

Assembler3 uses a five-step algorithm: (1) normalizing the SVG and detecting plates, (2) detecting joints

(3) detecting material thickness and (4) joint matching and hashing the joints for fast retrieval, and (5) rendering

the plates in a 3D editor (kyub), to allow users to reconstruct the model. Algorithm 1 provides an overview of the

first 4 steps.

9

Algorithm 1: ParseSVG

Input: 2D cutting plan svg,
Output: list of plates plates, hash of joints jointHash, and material thickness thickness
Internal data structures: lines, closedPaths, votes <-- Lists
lines, closedPaths <-- linearize (svg)
sort closedPaths by area, descending
for each path ∈ closedPaths
 path.children = closedPaths after path that are enclosed in path
end
for each path ∈ closedPaths
 if path.nesting MOD 2 = 0 then
 add path with path.children as cutouts to plates
 end
end
for each plate ∈ plates
 add to plate.joints, jointHash <-- detectJoints (plate.path)
 for each joint ∈ plate.joints
 add joints.assumedThickness to votes
 end
end
thickness = max (frequency(votes,interval 0.1))
updateJointProbabilities (thickness)
return plates, jointHash, thickness

7.1 Plate detection

Assembler3 starts by segmenting the 2D cutting plan (commonly in SVG format) into plates and cutouts. Assembler3

achieves this by determining the nesting order of paths and assigns them alternatingly to plate or cutout. The outer

path will produce a plate, if there is another path enclosed within this, it is a cutout etc. To be able to do so,

Assembler3 breaks down all geometry to line segments (any cutting path in an SVG can be a polygon, polyline, path,

and more). Assembler3 then iterates over closed paths to detect if there is any smaller path enclosed within.

In some 2D cutting plans, designers optimize the path the laser cuts by re-using paths between plates. The laser

then cuts in one line, two edges of different plates. Naively, Assembler3 would not be able to determine that both of

them are plates. To detect this issue, Assembler3 checks if there are any points where more than two line segments

come together. If this is the case, Assembler3 traverses the path once with clockwise turns and then with

counterclockwise turns and assigns both to be plates. Similar to constructing a doubly-connected edge list [16].

While pathological cases can be constructed that the algorithm will not properly recognize (specifically cases

where waste material, such as the inner cutout of the ocular pieces, would be used as parts) Assembler3 achieved a

100% success rate in recognizing plates in our technical evaluation.

7.2 Joint detection

Assembler3 now detects joints. To illustrate, Figure 7, shows the joint “candidates” Assembler3 finds in the VR

headset. Note that this initial set of joint candidates contains several incorrect candidates, here shown in red. This

is expected at this stage, as Assembler3 will remove these incorrect candidates after material thickness detection.

10

Figure 7: Joint detection on the VR headset. The red lines are false positives, which will get adjusted later, and the blue lines are joints
that will receive a low probability because of their odd shape.

Assembler3 detects line paths in the 2D cutting plans that may or may not be joints. It does so by looking for paths

that form certain patterns of left and right turns. As illustrated by Figure 8a, finger joints, for example, follow the

pattern left/right/right/left.

Assembler3 then estimates the probability of a given path actually being a joint. One factor it considers, is how

close a joint is to the idealized shape of that joint. As shown in Figure 8 at the example of a finger joint, Assembler3

expects certain characteristic properties. Finger joints, for example, it expects to feature 90-degree angles, top and

edge to be parallel, and widths to be larger than heights. However, since the 2D cutting plan might be hand-drawn,

Assembler3 will also accept imperfect renditions; it will assign these lower “joint probabilities” though. The feature

shown in Figure 8b, for example, follows the “left, right, right, left” pattern of a finger joint, but the width/height

ratio is off and the lines are not parallel, Assembler3 is still willing to consider it a finger joint, but with a low

probability. (c) Furthermore, Assembler3 increases that probability when it detects repetitions of a pattern.

Figure 8: (a) The ideal finger joint has 90-degree angles, a top line parallel to the edge and has a bigger width than height (b) this finger
joint has a much lower probability, it could just as well be some aesthetic feature of the model? (c) repetitions of a pattern increase its

probability.

While, as mentioned, Assembler3‘s joint candidate list contains a lot of false positives at this stage, the algorithm

captures 98% of joints contained in models (see technical evaluation).

7.3 Material thickness detection

Assembler3 derives the material thickness from the collected joints. It achieves this by having all joints “vote”. In

this voting process, each joint votes for a thickness based on its shape; the most frequently mentioned length wins.

Figure 9 shows examples of three types of joints and illustrates which line segment is considered as vote for material

thickness.

Figure 9: Each joint votes for a material thickness labeled “t” in this figure. (a) finger joint, (b) cross joint, and (c) a t-joint.

11

To allow Assembler3 to extract voting information from imprecise (hand-drawn) joints, Assembler3 replaces

joints with an idealized version of that joint, as shown in Figure 10. The idealized joint then votes with reduced

weight.

Figure 10: Assembler3 first idealizes non-ideal joints and then haves them vote for the idealized material thickness but with an
additional penalty to reduce their impact. The red overlay represents the idealized version of the joints above.

Sorting votes in to buckets (buckets using 0.10mm intervals, picked in reference to the precision of common

laser cutters) allows Assembler3 to determine the bucket with the most votes quickly, and thus determine material

thickness.

Note that the joint candidate list still contains an unknown percentage of false positives—these false positives

represent some other design considerations that look at least a bit like joints and are thus allowed to vote. The

reason we still have these design features in at this stage is that material thickness detection and joint detection are

mutually dependent: knowing a joint makes it trivial to tell the material thickness; and knowing the material

thickness makes it all but trivial to tell what is a joint. Assembler3 resolves this mutual dependency by starting with

joint detection, but casting a wide net, and delaying the filtering i.e., only now that material thickness is known,

Assembler3 uses this information to filter, i.e., it reduces the joint candidate set to those candidates the relevant

dimensions of which are the material thickness.

The algorithm works despite the mutual dependency because actual joints all point to material thickness, while

design features tend to point to random line segment lengths. This causes joints to outweigh the design features in

almost all cases, allowing Assembler3 to achieve a 99% success rate in detecting material thickness. For details, see

“technical evaluation”.

2D cutting plans tend to contain ornamental features next to the functional joints. Now the joints are known,

Assembler3 discriminates between lines that are part of joints and lines that serve ornamental purposes. In SVG

files, this is typically denoted using color as the laser cutter uses that information to decide what will be cut and

what will be engraved (e.g. burn on the material without cutting for aesthetic purposes). Joints will have to be cut,

otherwise the model cannot be assembled, so colors without any functional joints are likely ornamental. Assembler3

uses that information to disambiguate the colors in the cutting plan. Assembler3 assigns the color(s) used for joints

as ‘cutting’. It assumes other colors to be engraved and will import these as decorative ornaments on the plates as

shown in Figure 11.

12

Figure 11: Assembler3 imports engravings as ornaments on the plates.

7.4 Joint matching and storing matches in a hash

Assembler3 is now just one step away from showing plates and joints to the user who will then try to reconstruct

the 3D model. Users will click a plate and Assembler3 will respond by highlighting possible matches. This requires

Assembler3 to know which joints can be matched with which other joints.

In this section we present how Assembler3 precomputes matches and stores them in an efficient data structure,

i.e., a hash that allows it to look up matches quickly. This hash is key to allow Assembler3 to perform reconstruction

at interactive rates.

The general objective of joint matching is to identify all other joints that can be fit into the joint at hand: finger

joints map to finger joints or t-joints, cross joints map to themselves. As shown in Figure 12, Assember3 determines

whether two joints fit by checking that joint types match (finger, cross, t-joint) and then comparing their respective

shapes (signature) to determine which joints interlock.

Figure 12: Joint types (a) cross joints, (b) t-joints and (c) finger joints

To make the hash robust to variations in the amount of material the laser removes (aka kerf), for finger joints

and t-joints, Assembler3 defines the signature by the sum of a cavity and a protrusion of each joint. As shown in

Figure 13, the centers of the features have to align (independent of kerf) otherwise the joints do not fit. This

furthermore guarantees that the joint with opposite finger/cavity signature ends up in the same cell of the hash. In

the case of cross-joints, the signature is made up from the depth of the joint and the material behind that.

13

Figure 13: (a) Two plates of the VR headset that assemble together. (b) On closer inspection, the fingers of the one joint do not match
the cutouts of the other because of the material removed by the laser(aka kerf). However, the centers of joints have to align, so

Assembler3 hashes the sum of the width of a cutout and a finger as the signature for a finger joint.

For a given joint, Assembler3 now uses the hash to look up that joint. It will find the joint itself and all other joints

that share the same signature (aka collisions), i.e. ones it could possibly match with. If there is only one matching

joint, Assembler3 returns it in O(1). If there are more collisions, Assembler3 retrieves an ordered list of joints from

the hash. In the case of finger and t-joints, the list is ordered by the number of repetitions of their pattern. A binary

search lets Assembler3 get to the right candidate. In the case of cross-joints the list is ordered by their joint

probability.

7.5 Supporting users in assembling the model

Finally, Assembler3 presents the parsed SVG data to the user in the 3D editor. It renders each plate recognized in

the plate detection step and gives it the thickness determined in the material thickness detection step. While not

shown to the user yet, each plate knows which joints it contains and each joint knows what other joints it wants to

match with.

Assembler3 now supports users in assembling the model interactively. It does so by highlighting which joints

match to joints on user-selected plates, as already presented in section ‘Assembler3 workflow’. This is the only step

in the algorithm that depends on kyub functionality, up to this point all data structures and implementation apply

to any 3D modeling environment for laser-cutting (assuming it has a notion of plates and joints). Kyub as of the

moment of publication is the only 3D editor that could handle and make advanced modifications to the models

found on thingiverse.

8 TECHNICAL EVALUATION

To validate the technical aspects of our algorithm, we ran Assembler3 on 105 models found online and assessed the

results. We drilled down and evaluated the success rate of the steps and performance of our algorithm.

8.1 Coverage: Assembler3 allows assembling 95.2% of supported models

To determine what percentage of 2D cutting plans on the Internet can be reconstructed using Assembler3, we found

models online and attempted to reconstruct these. We selected the models by (1) searching things for “lasercut”

“laser-cut” and “laser cut” on thingiverse and grabCAD, to ensure the models fabricate, we filtered models that have

“makes”. (2) We then excluded models that were single-part, or that contained features not yet supported by

Assembler3: living hinges, moving mechanisms, stacked/glued/bolted plates and joints that connect more than one

other joint. This left us with about 40% of models. (3) We randomly selected 105 models of this collection.

14

Result: Assembler3 managed to reconstruct 100/105 models (95.2% coverage) they are presented in Figure 14.

Models varied in thickness from 1mm to 12mm and used a wide variety of construction techniques, e.g. skeletons,

grids of cross joints, outside finger joints and more.

Figure 14: Models used for technical evaluation.

Out of the five models that failed, four failed because their finger joints came in at odd angles. See the model

shown in Figure 15b: all vertical plates of this lighthouse are tilted inwards by 10 degrees, Assembler3 could handle

that if they did not also connect sideways at a 45 degree angle (see Figure 15c). We plan to extend Assembler3 with

a more advanced constraint solver to also handle such cases.

Figure 15a shows the last model that could not be assembled, it consisted of cross joints that assembled into t-

joints. They come in sideways and then lock in place. Assembler3 does not check for this combination. Based on

these observations, we are planning on extending our joint matching logic in future versions of Assembler3.

Figure 15: (a) This model has cross joints that assemble into a t-joint, Assembler3 fails to pair these up. (b) when all plates are at a non-
straight angle with each other, Assembler3 cannot reconstruct the model. (c) luckily, most of the models with plates with non-straight

angles still provide sufficient constraints to be reconstructed.

15

8.2 Success rate of the individual steps of our algorithm

To validate the accuracy of each of steps in the algorithm, we compared the outcome of each step to their “ground

truth” using 10 selected models shown in Figure 16. We hand-annotated all features in these models and compared

it to the data collected in each of the steps of the algorithm of Assembler3.

Figure 16: Models used to validate the accuracy of the steps of the algorithm.

Table 1 shows the accuracies the different steps achieve. The overall success rate of 97% of the manual assembly

is the key result, this is the percentage of detected features which are required to reconstruct 3D models.

Table 1: Success rate of algorithm steps.

Step False positives Success rate
Step 1: plate detection 0 100%
Step 2: joint detection 61 98% (352/356)
Step 3: material detection - 99%
Overall success rate = product of above 97%

Step 1, plate detection worked flawless for the tested models.

Step 2, joint detection achieved 98% of true positives. It still detected 61 false positives, which results in a bigger

search space than needed, but models still assemble. The 2% of false negative joints would never show up as

suggestions and thus have potential to result in models that cannot be assembled. Both models, #3 and #8, which

suffered from this actually did assemble nonetheless, because of constraints imposed by other joints.

Step 3, Assembler3 was 98.99% accurate in detecting the material thickness. The two erroneous models were

off by 0.1mm, which was caused by rounding errors. The reconstructed models still worked properly (we exported

and fabricated both models).

To verify the accuracy of the default placements of plates, we assembled each of the models and counted how

often we needed to override initial placements with the floating menu item. Assembler3 got the first placement right

in 78.6% of the clicks. When the initial orientation was wrong, it took on average 1.7 clicks to get to the correct

orientation.

8.3 Performance of the algorithm

To measure the performance of Assembler3, we used the same 10 models as used to verify the accuracy. We profiled

each step in the algorithm to measure the performance of (1) parsing the SVG and generating the hash, (2) suggest

16

matching plates when the user clicks a joint (3) and assembling plates after the user selected a target plate. We ran

the performance test on an Intel Core i5-8400 CPU @ 2.80 GHz (6-core) 16GB RAM. We repeated each test 1000

times to account for typical variations in performance.

Table 2: Average performance of Assembler3 when assembling each model 1000 times. Times are in ms (stndev in parentheses)

Model #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
of plates 8 29 8 16 5 6 8 6 12 13
of joints 18 55 35 66 10 24 35 20 20 52
parse SVG 12.54

(12.05)
525.96
(101.34
)

34.22
(72.25)

65.30
(13.60)

174.77
(223.5)

49.33
(11.62)

27.49
(47.78)

12.83
(6.96)

87.65
(187.92)

77.51
(9.45)

match 1.72
(3.00)

6.65
(10.54)

5.13
(16.66)

5.59
(11.90)

6.59
(23.98)

2.05
(4.42)

4.60
(10.07)

2.47
(2.39)

11.59
(7.78)

11.41
(27.37
)

assemble 3.12
(1.69)

3.43
(2.79)

4.88
(8.26)

4.21
(5.91)

10.50
(50.88)

3.50
(3.36)

3.99
(5.44)

3.19
(2.97)

9.50
(9.42)

6.09
(16.22
)

The steps where the user interacts with the model are all efficient (average of 12 ms for every model), the parsing

of the SVG initially takes 107ms on average, this only occurs when importing the model initially. Model #2

(dinosaur) took longer (526ms) to parse. The reason is the linearization breaks down curved lines of the dinosaur

into a large amount of small line segments.

9 USER STUDY: ASSEMBLER3 IS 10X FASTER THAN THE TRADITIONAL WORKFLOW

To verify the claim that Assembler3 is easier and faster than the traditional mental reconstruction workflow, we ran

a user study in which participants manually reconstructed the virtual reality headset from Figure 1 and stretched

the model to accommodate for far-sightedness.

9.1 Task

Participants’ task was to modify the VR headset as shown in Figure 1, i.e. stretch the distance between the lenses

and the screen in order to accommodate a lens with a bigger focal range. To illustrate the objective, we provided

participants with a picture of the before and after configuration of the headset (Figure 1). Participants were allowed

to have a look at these pictures any time during the experiment.

9.2 Interface conditions

Participants completed the task in two interface (within subjects) conditions in counter-balanced order.

In the 2D condition, participants modified the 2D cutting plan using a 2D editing software (gravit.io, runs in a web

browser). For training, participants were shown a 4min demo video that demonstrated the relevant editing

functionality at the example of extending a box.

In the Assembler3 condition, participants modified the 2D cutting plan by converting the headset’s 2D cutting plan

to 3D using Assembler3, modifying the model in kyub, and exporting it back to a new 2D cutting plan. For training,

participants were shown a 1 min demo video showing the process of assembling a box and stretching it using

Assembler3, Figure 17 shows a shot of these videos.

In both conditions, participants were allowed to review the demo video until they felt they got the workflow.

They were also allowed to revisit the video during the actual task.

17

Figure 17: (a) In the baseline condition, users were shown how to modify a boxel in gravit.io, (b) they were shown a video of the same
workflow using Assembler3

9.3 Participants

We recruited 13 participants (2f/11m, average age of 21 years) from our institution.

9.4 Procedure

We presented both interface conditions to participants in counter-balanced order. In each condition, participants

were given up to 30 minutes to complete the task. If they felt they could not complete the task, they were allowed

to abort earlier by notifying the experimenter.

9.5 Results

Figure 18 summarizes the task times and error rates of the 13 individual participants.

Figure 18: results of the experiment.

Participants performed 10.0x faster when modifying the model using Assembler3 (on average 2:22 min vs 24:45

min in 2D condition). This confirms our main hypothesis.

As shown in the diagram, the majority of the time in the Assembler3 went into moving and scaling the model,

51s on average was used to reconstruct the model. In the 2D condition, users spent on average 4:51 minutes to lay

out the model before editing any plate. P5, P12 and P13 did not manage to complete the 2D condition in the given

30 minutes. 11/13 of participants had errors in the model they modified in 2D (on average 2 errors per participant),

which would cause the model to not fabricate (typical errors were joints not fitting, cutouts that were moved or

stretched t-joints). In the Assembler3 condition one participant had an error (the nose piece was flipped, which the

participant didn’t notice—the model would still assemble and fabricate though).

Participants rated the Assembler3 condition as easy (a median of 2/7 on “assembling and modifying the model

was easy/hard”) while they rated a median of 6/7 for the 2D condition. One participant, P10, considered the 2D

18

workflow easier than the workflow with Assembler3, mostly because it took P10 a while to figure out how to use

the stretch tool after completing the assembly.

In the 2D condition, 7/13 participants re-layouted paths (see Figure 19) so as to better reflect the 3D nature of

the assembly, as shown in Figure 18; they spent on average 7:08 minutes to do so. Those who spent time laying out

the model made 1.5 errors on average, vs 2.5 for those who didn’t change the layout.

Figure 19: 2D layouts as used by our participants. Green lines indicate plates that are laid out so that their matching joints line up, an
indicator that they leverage the space in the 2D editor to help them reconstruct the model in their heads. P5 also spent time laying out

paths but grouped by similarity in shape instead of matching joints.

We asked participants about their experience using both tools. P7 commented that “the 3D editor essentially

builds the model itself and is easy to change”. P8 said “it was a huge relief to do this in 3D” after having struggled

for a long time in 2D. P4 mentioned that “the 2D software itself was great but that it’s really hard to find out how to

connect the plates”. On an interesting side-note, P10, who was extremely fast in 2D mentioned “I prefer to edit in

2D because it helps me learn about the model”. This is both a weakness and a strength of Assembler3 as it takes the

burden of learning about the model away from the user.

9.6 Discussion

We conclude that (1) Assembler3 enabled 11/13 participants to make modifications to the model who were not

able to do this without and (2) Assembler3 achieves a speed-up of 10x and (3) the workflow with Assembler3 results

in 26x less errors.

10 CONCLUSION

In this paper, we presented Assembler3 a software tool which allows users to perform parametric manipulations

on 2D cutting plans of 3D models in 3D. Assember3 achieves this by allowing users to convert 2D laser cutting plans

to 3D models, modifying their models using available 3D tools (kyub), before converting them back to 2D. This

makes users 10x faster and results in 26x less errors than the traditional approach of editing 2D cutting plans

directly.

Once a laser cut model has been 3D reconstructed using Assembler3 this model will most likely continue its life

in this 3D format, making the model easier to process, share, and remix from this point onward. We think that this

will help the laser cutting community leave the sharing of 2D cutting plans behind and to transition to a more

sharing-friendly and collaboration-friendly format—which must be a 3D format. We anticipate that this will foster

collaboration around models und thus ultimately increase the level of model complexity the laser cutting

community will be able to achieve.

REFERENCES

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, and Richard Szeliski. 2011. Building Rome in a
day. Commun. ACM 54, 10 (October 2011), 105–112. DOI: https://doi.org/10.1145/2001269.2001293

19

[2] Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication, Foundations and Trends in Human–Computer Interaction: Vol. 10: No. 3–
4, pp 165-293. DOI: http://dx.doi.org/10.1561/1100000055

[3] Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner, Ludwig Wall, Kevin Reuss, Lukas Heilman, Robert Kovacs, Daniel Rechlitz,
and Thijs Roumen. 2019. Kyub: a 3D Editor for Modeling Sturdy Laser-Cut Objects. In 2019 CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland, UK. ACM, New York, NY, USA. DOI:
https://doi.org/10.1145/3290605.3300796

[4] Yuxin Chen, , Leonidas J. Guibas, and Qi-Xing Huang. "Near-optimal joint object matching via convex relaxation." arXiv preprint
arXiv:1402.1473 (2014).

[5] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 2013. 3-Sweep: extracting editable objects from a single photo. ACM Trans.
Graph. 32, 6, Article 195 (November 2013), 10 pages. DOI: https://doi.org/10.1145/2508363.2508378

[6] James McCrae, Nobuyuki Umetani, and Karan Singh. 2014. FlatFitFab: interactive modeling with planar sections. In Proceedings of the 27th
annual ACM symposium on User interface software and technology (UIST '14). ACM, New York, NY, USA, 13-22. DOI:
https://doi.org/10.1145/2642918.2647388

[7] Erik D. Demaine, and Martin L. Demaine. "Jigsaw puzzles, edge matching, and polyomino packing: Connections and complexity." Graphs and
Combinatorics 23, no. 1 (2007): 195-208.

[8] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018.
InverseCSG: automatic conversion of 3D models to CSG trees. ACM Trans. Graph. 37, 6, Article 213 (November 2018), 16 pages. DOI:
https://doi.org/10.1145/3272127.3275006

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. "Density-based spatial clustering of applications with noise." In Int. Conf.
Knowledge Discovery and Data Mining, vol. 240, p. 6. 1996.

[10] Christoph M. Flath, Sascha Friesike, Marco Wirth, & Frederic Thiesse, Copy, transform, combine: exploring the remix as a form of innovation.
Journal of Information Technology, 1-20. DOI: https://doi.org/10.1057/s41265-017-0043-9

[11] Florian Heller, Jan Thar, Dennis Lewandowski, Mirko Hartmann, Pierre Schoonbrood, Sophy Stönner, Simon Voelker, and Jan Borchers. 2018.
CutCAD - An Open-source Tool to Design 3D Objects in 2D. In Proceedings of the 2018 Designing Interactive Systems Conference (DIS '18). ACM,
New York, NY, USA, 1135-1139. DOI: https://doi.org/10.1145/3196709.3196800

[12] Megan Hofmann, Gabriella Hann, Scott E. Hudson, and Jennifer Mankoff. 2018. Greater than the Sum of its PARTs: Expressing and Reusing
Design Intent in 3D Models. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY,
USA, Paper 301, 12 pages. DOI: https://doi.org/10.1145/3173574.3173875

[13] Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann. 2006. Reassembling fractured objects by geometr ic
matching. ACM Trans. Graph. 25, 3 (July 2006), 569-578. DOI: https://doi.org/10.1145/1141911.1141925

[14] Karim Lakhani, and Eric Von Hippel. "How open source software works:“free” user-to-user assistance." In Produktentwicklung mit virtuellen
Communities, pp. 303-339. Gabler Verlag, 2004.

[15] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25,
3 (July 2006), 560–568. DOI: https://doi.org/10.1145/1141911.1141924

[16] David E. Muller, and Franco P. Preparata. "Finding the intersection of two convex polyhedra." Theoretical Computer Science 7, no. 2 (1978):
217-236.

[17] Georgios Papaioannou, Tobias Schreck, Anthousis Andreadis, Pavlos Mavridis, Robert Gregor, Ivan Sipiran, and Konstantinos Var dis. 2017.
From Reassembly to Object Completion: A Complete Systems Pipeline. J. In Comput. Cult. Herit. 10, 2, Article 8 (March 2017), 22 pages. DOI:
https://doi.org/10.1145/3009905

[18] Thijs Roumen, Willi Müller, and Patrick Baudisch. 2018. Grafter: Remixing 3D-Printed Machines. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 63, 12 pages. DOI: https://doi.org/10.1145/3173574.3173637

[19] Thijs Roumen, Jotaro Shigeyama, Julius Cosmo Romeo Rudolph, Felix Grzelka, and Patrick Baudisch. SpringFit Joints and Mounts that Fabricate
on Any Laser Cutter. In Proceedings of the 32th annual ACM symposium on User interface software and technology (UIST '19). ACM, New York,
NY, USA, DOI: https://doi.org/10.1145/3332165.3347930

[20] Thijs Roumen, Ingo Apel, Jotaro Shigeyama, Abdullah Muhammad, and Patrick Baudisch. “Kerf-Canceling Mechanisms: Making Laser-Cut
Mechanisms Operate Across Different Laser Cutters”. In proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (UIST’20). ACM. New York, NY, USA, DOI: https://doi.org/10.1145/3379337.3415895

[21] Thijs Roumen, Thingiverse Analysis Script, last accessed August 2020 https://github.com/ThijsRoumen/thingiverse-browser

[22] Dror Sholomon, Omid David, and Nathan S. Netanyahu. "A genetic algorithm-based solver for very large jigsaw puzzles." In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1767-1774. 2013.

[23] Molly McLure Wasko, and Samer Faraj. "Why should I share? Examining social capital and knowledge contribution in electronic n etworks of
practice." MIS quarterly (2005): 35-57. DOI: https://doi.org/10.2307/25148667

[24] Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin Yang, and Kun Zhou. 2016. Interactive mechanism modeling from multi-view images.
ACM Trans. Graph. 35, 6, Article 236 (November 2016), 13 pages. DOI: https://doi.org/10.1145/2980179.2982425

https://doi.org/10.1145/2642918.2647388
https://doi.org/10.1057/s41265-017-0043-9
https://doi.org/10.1145/3196709.3196800
https://doi.org/10.1145/1141911.1141925
https://doi.org/10.1145/3332165.3347930
https://doi.org/10.1145/3379337.3415895

	1 Abstract
	2 Introduction
	3 Assembler3 workflow
	4 Surveying sharing practice
	5 Contribution, Benefits and limitations
	6 related work
	6.1 Reconstruction of 3D models and non-parametric to parametric
	6.2 Solving combinatoric issues, puzzle solvers
	6.3 Sharing and remixing benefits from models being in a parametric format
	6.4 Sharing and remixing in laser cutting

	7 the algorithm of Assembler3
	7.1 Plate detection
	7.2 Joint detection
	7.3 Material thickness detection
	7.4 Joint matching and storing matches in a hash
	7.5 Supporting users in assembling the model

	8 technical evaluation
	8.1 Coverage: Assembler3 allows assembling 95.2% of supported models
	8.2 Success rate of the individual steps of our algorithm
	8.3 Performance of the algorithm

	9 user study: Assembler3 is 10x faster than the traditional workflow
	9.1 Task
	9.2 Interface conditions
	9.3 Participants
	9.4 Procedure
	9.5 Results
	9.6 Discussion

	10 conclusion

