Real-Time Rendering of Water Surfaces with Cartography-Oriented Design

9th International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging

Amir Semmo¹ Jan Eric Kyprianidis² Matthias Trapp¹ Jürgen Döllner¹

¹Hasso-Plattner-Institut, Germany ²TU Berlin, Germany

Overview

State-of-the-Art Water Rendering

- > computer-generated illustrations of water surfaces mainly based on photorealistic rendering
- but have neglected the challenges water surfaces exhibit for map design
- how to ease orientation, navigation, and analysis tasks within 3D geovirtual environments?
- challenges: emphasize land-water interface, consider figure-ground relations, express motion

CryEngine 3

Google Earth

Cartographers developed design principles that address these challenges

State-of-the-Art Water Rendering

- > computer-generated illustrations of water surfaces mainly based on photorealistic rendering
- but have neglected the challenges water surfaces exhibit for map design
- how to ease orientation, navigation, and analysis tasks within 3D geovirtual environments?
- challenges: emphasize land-water interface, consider figure-ground relations, express motion

CryEngine 3

Google Earth

Cartographers developed design principles that address these challenges

Cartographic Design

The visualization of geospatial features using a map-like representation that considers its purpose and the target audience.

www.hpi3d.de

DESIGN PRINCIPLES

Danubius flu

Design Principles - Waterlining

- ▶ became popular in the first half of the 20th century for lithographed maps
- ▶ fine solid lines are drawn parallel to shorelines with gradually increasing spaces
- waterlining provides dynamism and communicates distance information

Design Principles - Water Stippling

- small dots aligned to shorelines with non-linear distance
- contrary to traditional artwork, stipples have a varying density and irregularly overlap
- varying density to depict flow velocity or at occluded areas to enhance depth cues

Design Principles - Hatching & Vignetting

- individual strokes placed with high density near shorelines complemented by loose lines
- drawn excessively wavy with increasing irregularity towards middle stream to express motion
- non-feature-aligned cross-hatches for land-water-distinction, coastal vignettes

Design Principles - Thematic Visualization: Annotation / Symbolization

- names depicted with italic (slanted) letters, following principal curvature directions
- ▶ irregular placement of signatures with area-wide coverage to communicate water features
- > placement of glyphs (e.g., arrows) along streamlines to symbolize flow direction of rivers

Model Input & Masking

Quantitative Surface Analysis

Cartography-Oriented Shading & Texture Features

Process Iteration & Texture Mapping

• input: 2D or 3D water surfaces defined as polygons or triangular irregular networks

Input

- ▶ input: 2D or 3D water surfaces defined as polygons or triangular irregular networks
- using orthographic projections, the models' shape are captured in 2D binary masks

Input

- input: 2D or 3D water surfaces defined as polygons or triangular irregular networks
- using orthographic projections, the models' shape are captured in 2D binary masks
- distance transform to obtain minimum Euclidean distance of each pixel to a shoreline

Input

Shoreline Distance

- ▶ input: 2D or 3D water surfaces defined as polygons or triangular irregular networks
- using orthographic projections, the models' shape are captured in 2D binary masks
- distance transform to obtain minimum Euclidean distance of each pixel to a shoreline
- "Parallel Banding Algorithm" [Cao et al., I3D 2010] obtains distance map in real-time [CUDA]

Input

Shoreline Distance

- ▶ input: 2D or 3D water surfaces defined as polygons or triangular irregular networks
- using orthographic projections, the models' shape are captured in 2D binary masks
- distance transform to obtain minimum Euclidean distance of each pixel to a shoreline
- "Parallel Banding Algorithm" [Cao et al., I3D 2010] obtains distance map in real-time [CUDA]

Input

Shoreline Distance

Shoreline Direction

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

Medial Axis Result

- smoothed structure tensor with eigenanalysis to obtain stable estimates of local orientation [Brox et al., 2006]
- used to derive medial axes for aligning design elements (e.g., labels) along middle stream

Thresholding Shoreline Directions

Medial Axis Result

+ Thresholded Shoreline Distance

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- parameterize level-set curves of distance map to obtain distances along its tangential field
- ► level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- > parameterize level-set curves of distance map to obtain distances along its tangential field
- ▶ level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- > parameterize level-set curves of distance map to obtain distances along its tangential field
- ▶ level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- parameterize level-set curves of distance map to obtain distances along its tangential field
- ▶ level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- parameterize level-set curves of distance map to obtain distances along its tangential field
- ▶ level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Contour-Hatching

- requires design elements (e.g., strokes) to be exactly aligned with the shorelines
- requires fine control over their placement per rendering pass (water movements!)

- > parameterize level-set curves of distance map to obtain distances along its tangential field
- ▶ level sets correspond to integral part of shoreline distances for non-normalized distance map
- similar to vector propagation, distances are iteratively propaged in parallel [CUDA]

Texture Coordinates

are directly derived by combining shoreline and feature-aligned distances

Texture-based Shading

that is capable of feature-aligned hatching at real-time frame rates

Artistic Control

with dynamic parameterization at run-time to express water movements

- contrary to energy minimization, our approach does not provide continuity across level sets
- individual texture features are aligned with level-set curves \rightarrow no such constraint is required
- piecewise-linear approximation of shoreline / feature-aligned distances by bilinear sampling
- choose distance map resolution that balances rendering quality and performance

Bilinear Sampling

Discrete Input + Distance Lines

Continuous Output

Method - Waterlining

- waterlines correspond to shaded areas with equal shoreline distance
- non-linear step function to compute target distance values with non-equidistant interspaces
- waterlines are padded by fade-in and fade-out intervals for antialiasing and parameterized by the view distance for a continuous level-of-abstraction

Method - Waterlining

- waterlines correspond to shaded areas with equal shoreline distance
- non-linear step function to compute target distance values with non-equidistant interspaces
- waterlines are padded by fade-in and fade-out intervals for antialiasing and parameterized by the view distance for a continuous level-of-abstraction

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

Selection

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

Selection

Displacement

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

 ... using tonal art maps to locally vary stipple density and tone, layered / iterative approach to regularize / vary stipple density [GLSL]

Filtering

Selection Displacement

Texture Bombing

 ... from Glanville [2004] enhanced to place water stipples with feature-aligned distribution and irregular density

Stipples aligned with shorelines

 ... by stipple selection, stipple displacement, and stipple filtering

Texture-based parameterization

 ... using tonal art maps to locally vary stipple density and tone, layered / iterative approach to regularize / vary stipple density [GLSL]

Filtering

- parameterize shoreline / feature-aligned distances to irregularly place stroke maps [GLSL]
- control over stroke length, thickness, spacing, randomness according to shoreline distance
- enables time-varying parameterization for water movements and frame-to-frame coherence

- parameterize shoreline / feature-aligned distances to irregularly place stroke maps [GLSL]
- control over stroke length, thickness, spacing, randomness according to shoreline distance
- enables time-varying parameterization for water movements and frame-to-frame coherence

- parameterize shoreline / feature-aligned distances to irregularly place stroke maps [GLSL]
- control over stroke length, thickness, spacing, randomness according to shoreline distance
- enables time-varying parameterization for water movements and frame-to-frame coherence

- parameterize shoreline / feature-aligned distances to irregularly place stroke maps [GLSL]
- control over stroke length, thickness, spacing, randomness according to shoreline distance
- enables time-varying parameterization for water movements and frame-to-frame coherence

Method - Cross-Hatching & Labeling

[Webb et al., 2002]

Our approach

- downsample medial axes and use tangent information of structure tensor for arc-length parameterization of piecewise cubic Bezier curves
- OpenGL extension NV_path_rendering to render / transform instance-based text in a single pass

- cross-hatching at shorelines by a tonal art map with varying stroke sizes / densities [Praun et al., 2001]
- our approach does not affect shading of landmass, i.e., terrain can be stylized separately

Method - View-Dependent Level-of-Abstraction

Cross-Hatching

Waterlining

3D mapping within the environment of Mount St. Helens / waterlining applied to a globe

Results - Flooding Simulation

- waterlining expresses uncertainty, conveys motion, and enhances the depiction of land cover
- Flooding simulation: assess distances to nearest safety zones for evacuation planning
- a plane is used as clipping mask and temporally shifted upwards to represent the change of the mean sea level, uses ortographic projection to obtain flooded areas

Flooding simulation for the city of Boston

400 FLWVÚW8 Rhenus

Results - Urban Planning & Landscaping

Contour-hatching and water stippling to express uncertainty

Conclusions

design principles from cartography can be used to improve figure-ground perception, which requires further validation

shoreline and feature-aligned distance maps are suitable for texture-based waterlining, water stippling, contour-hatching

context-aware parameterization of shading effects remains an important issue for view-dependent level-of-abstraction

Questions and Contact Information

Thank You For Your Attention!

Amir Semmo

amir.semmo@hpi.uni-potsdam.de

Computer Graphics Systems Group
Prof. Dr. Jürgen Döllner

hpi3d.de youtube.com/hpicgs @hpi3d

Bundesministerium für Bildung und Forschung

Performance Analysis

Performance evaluation (in ms): distance / feature-aligned distance transform (D/T), orientation and medial axis computation.

Image Resolution	$\ D$		Orient.	M. Axes	Total
128×128	1.6	26.6	0.1	0.7	29.0
256 imes 256	2.2	96.3	0.2	0.8	99.5
512×512	4.5	371.6	0.6	0.9	377.6

Performance evaluation for rendering techniques using different screen resolutions (in frames-per-second).

Screen Resolution	waterlining	stippling	contour-hatching
800 imes 600	534	162	159
1280 imes 720	523	88	84
1600 imes 900	521	59	55
1920 imes 1080	514	42	41