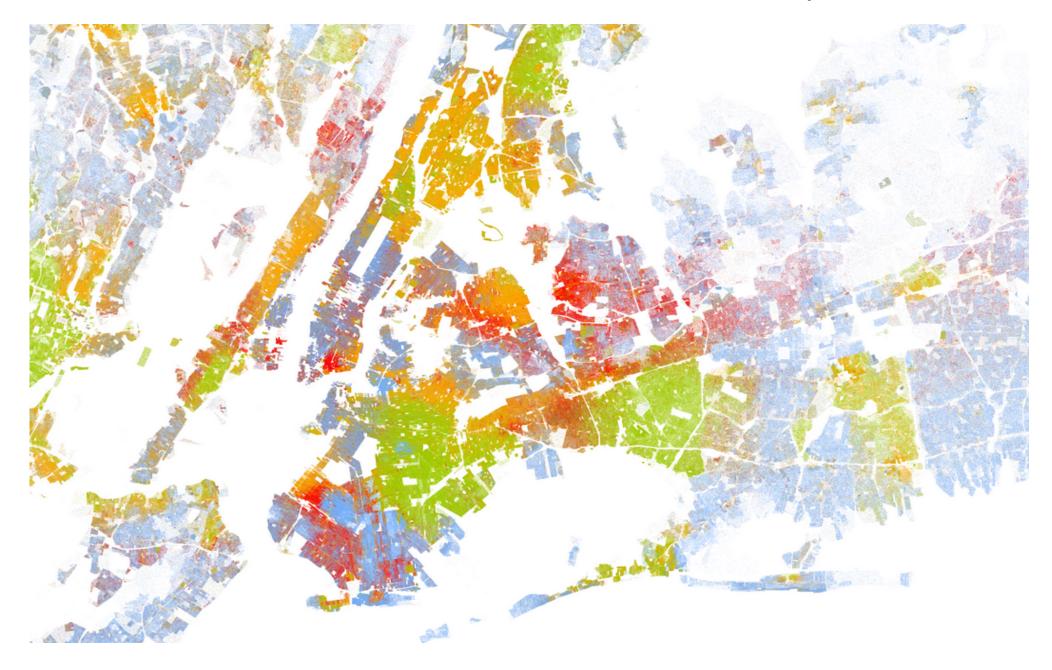
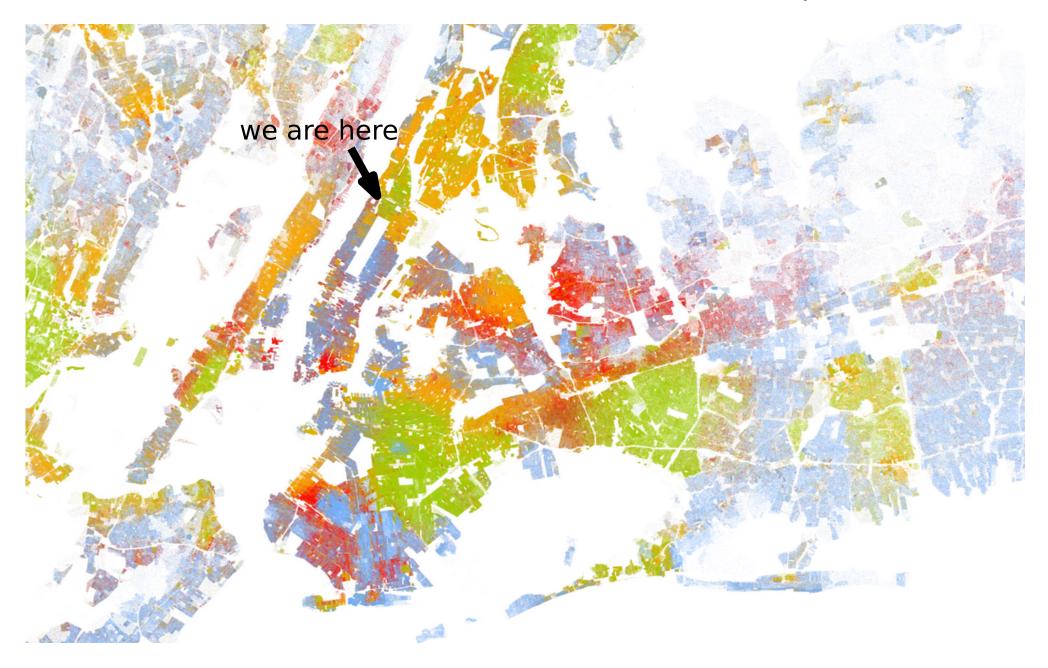


Convergence and Hardness of Strategic Schelling Segregation WINE Conference 2019

Algorithm Engineering Research Group

H. Echzell, T. Friedrich, P. Lenzner, L. Molitor, M. Pappik, F. Schöne, F. Sommer, D. Stangl

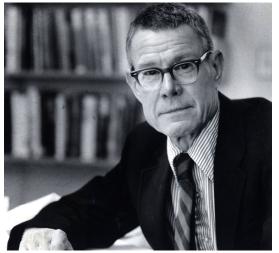




HPI Hasso Plattner Institut

Thomas Schelling (1921-2016)

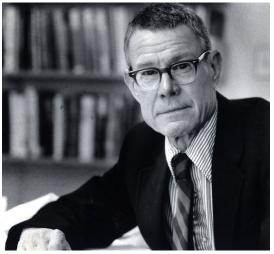
- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)



https://www.bostonglobe.com/

Thomas Schelling (1921-2016)

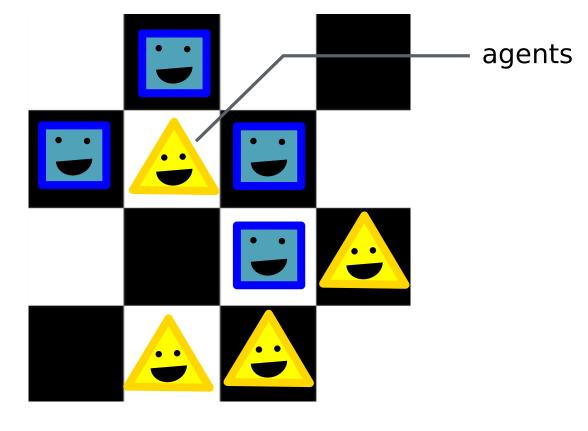
- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)

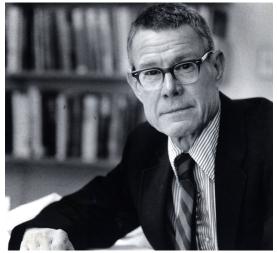


https://www.bostonglobe.com/

Thomas Schelling (1921-2016)

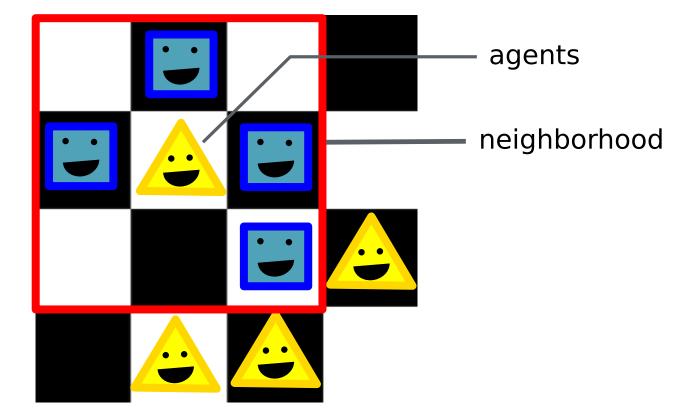
- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)

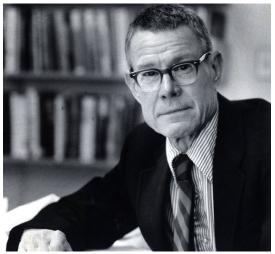




https://www.bostonglobe.com/

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)

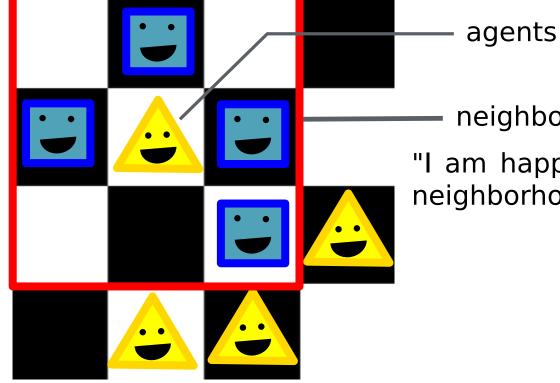


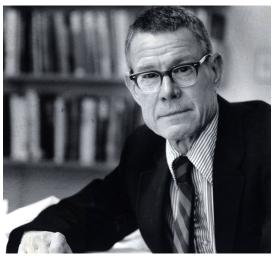


https://www.bostonglobe.com/

Thomas Schelling (1921-2016)

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)





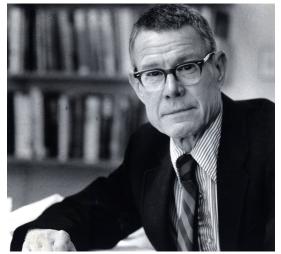
https://www.bostonglobe.com/

neighborhood

"I am happy if at least a fraction τ of my neighborhood is of my type."

Thomas Schelling (1921-2016)

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)



https://www.bostonglobe.com/

neighborhood

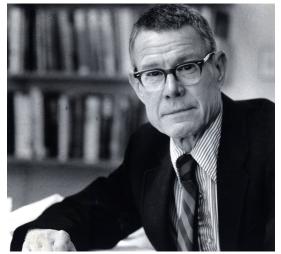
agents

"I am happy if at least a fraction τ of my neighborhood is of my type."

e.g.
$$\tau = \frac{1}{4}$$

Thomas Schelling (1921-2016)

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)



https://www.bostonglobe.com/

neighborhood

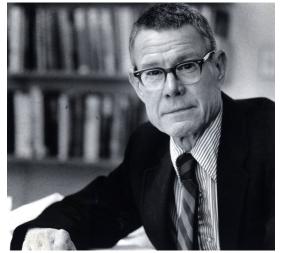
agents

"I am happy if at least a fraction τ of my neighborhood is of my type."

e.g.
$$\tau = \frac{1}{4}$$

Thomas Schelling (1921-2016)

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)



https://www.bostonglobe.com/

neighborhood

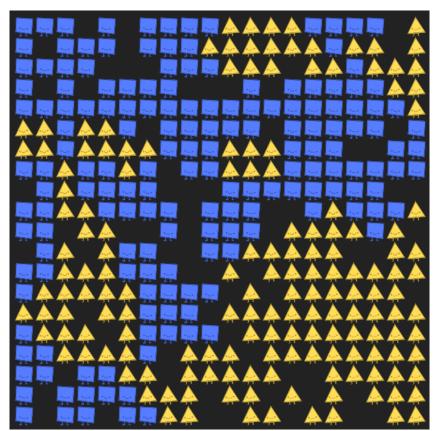
agents

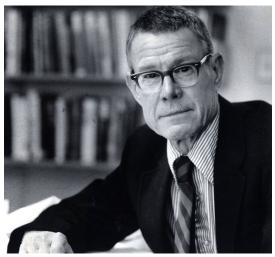
"I am happy if at least a fraction τ of my neighborhood is of my type."

e.g.
$$\tau = \frac{1}{4}$$

Thomas Schelling (1921-2016)

- "economics Nobel prize" winner
- Micromotives and Macrobehavior (1978)





https://www.bostonglobe.com/

Stochastic Models

- Young et al. (2001)
- Brandt et al. (STOC 2012)
- Bhakta et al. (SODA 2014)

- Barmpalias et al. (FOCS 2014)
- Immorlica et al. (SODA 2017)
- Omidvar et al. (PODC 2017)

many more ...

Stochastic Models

- Young et al. (2001)
- Brandt et al. (STOC 2012)
- Bhakta et al. (SODA 2014)

Game Theoretic Models

- Chauhan et al. (SAGT 2018)
- Elkind et al. (IJCAI 2019)
- Brederek et al. (AAMAS 2019)
- Agarwal et al. (AAAI 2020)

Convergence and Hardness of Strategic Schelling Segregation

- Barmpalias et al. (FOCS 2014)
- Immorlica et al. (SODA 2017)
- Omidvar et al. (PODC 2017)

many more ...

Stochastic Models

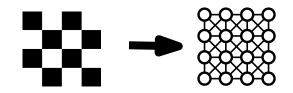
- Young et al. (2001)
- Brandt et al. (STOC 2012)
- Bhakta et al. (SODA 2014)

- Barmpalias et al. (FOCS 2014)
- Immorlica et al. (SODA 2017)
- Omidvar et al. (PODC 2017)

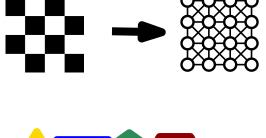
many more ...

Game Theoretic Models

- Chauhan et al. (SAGT 2018)
- Elkind et al. (IJCAI 2019)
- Brederek et al. (AAMAS 2019)
- Agarwal et al. (AAAI 2020)

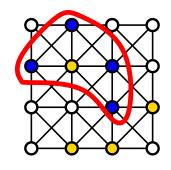


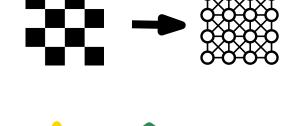
set of agents A with partitioning P(A)



set of agents A with partitioning P(A)

placement $p_G : A \rightarrow V$ (injective) neighborhood $N_{p_G}(a) :=$ adjacent agents

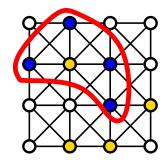


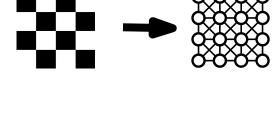


set of agents A with partitioning P(A)

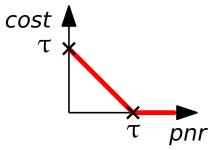
placement $p_G : A \rightarrow V$ (injective) neighborhood $N_{p_G}(a) :=$ adjacent agents

intolerance threshold $\tau \in [0,1]$

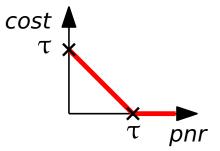




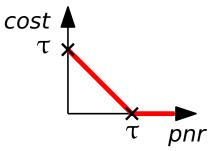
$$\begin{split} N_{p_{G}}^{+}(a), N_{p_{G}}^{-}(a) &\subseteq N_{p_{G}}(a) \\ cost_{p_{G}}(a) \begin{cases} \max(0, \tau - \frac{|N_{p_{G}}^{+}(a)|}{|N_{p_{G}}^{+}(a)| + |N_{p_{G}}^{-}(a)|}) \text{ if } N_{p_{G}}(a) \neq \emptyset \\ \tau \text{ else} \end{cases} \end{split}$$



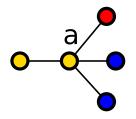
$$\begin{split} N_{p_{G}}^{+}(a), N_{p_{G}}^{-}(a) &\subseteq N_{p_{G}}(a) \\ cost_{p_{G}}(a) \begin{cases} \max(0, \tau - \frac{|N_{p_{G}}^{+}(a)|}{|N_{p_{G}}^{+}(a)| + |N_{p_{G}}^{-}(a)|}) \text{ if } N_{p_{G}}(a) \neq \emptyset \\ \tau \text{ else} \end{cases} \end{split}$$

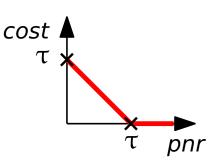


$$\begin{split} N_{p_G}^+(a), N_{p_G}^-(a) &\subseteq N_{p_G}(a) \\ cost_{p_G}(a) \begin{cases} \max(0, \tau - \frac{|N_{p_G}^+(a)|}{|N_{p_G}^+(a)| + |N_{p_G}^-(a)|}) \text{ if } N_{p_G}(a) \neq \emptyset \\ \tau \text{ else} \end{cases} \end{split}$$

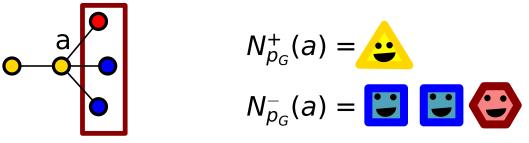


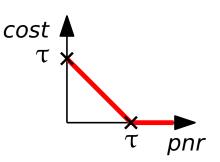
1 vs. all Schelling Game (1-k-SG)



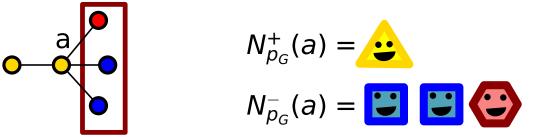


1 vs. all Schelling Game (1-k-SG)

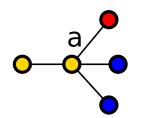




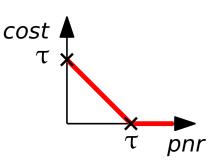
1 vs. all Schelling Game (1-k-SG)



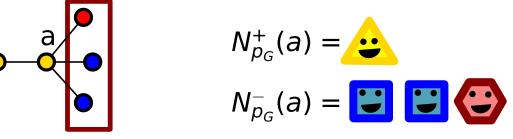
1 vs. 1 Schelling Game (1-1-SG)



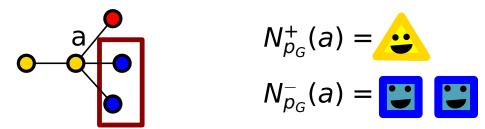
$$egin{aligned} &N_{p_G}^+(a),N_{p_G}^-(a)\subseteq N_{p_G}(a)\ &cost_{p_G}(a) \left\{ egin{aligned} &\max(0, au-rac{|N_{p_G}^+(a)|}{|N_{p_G}^+(a)|+|N_{p_G}^-(a)|}) ext{ if } N_{p_G}(a)
ot=\emptyset\ & au ext{ else } \end{aligned}
ight.$$



1 vs. all Schelling Game (1-k-SG)



1 vs. 1 Schelling Game (1-1-SG)



Strategic Schelling Segregation

$$egin{aligned} &N_{p_G}^+(a), N_{p_G}^-(a) \subseteq N_{p_G}(a) \ &cost_{p_G}(a) \left\{ egin{aligned} &\max(0, au - rac{|N_{p_G}^+(a)|}{|N_{p_G}^+(a)| + |N_{p_G}^-(a)|}) ext{ if } N_{p_G}(a)
eq \emptyset \ & au ext{ else } \end{aligned}
ight.$$

cost τ τ τ τ pnr

 $cost_{p_{G}}(a) = \frac{1}{12}$

always: $N_{p_G}^+(a) :=$ neighbors with same type as a

1 vs. all Schelling Game (1-k-SG) $\tau = \frac{1}{3}$

 $N_{p_G}^+(a) = :$ $N_{p_G}^-(a) = :$

1 vs. 1 Schelling Game (1-1-SG)

$$N^{+}_{p_{G}}(a) = \underbrace{:}_{cost_{p_{G}}}(a) = 0$$
$$N^{-}_{p_{G}}(a) = \underbrace{:}_{cost_{p_{G}}}(a) = 0$$

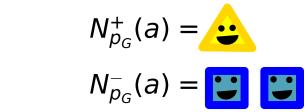
Strategic Schelling Segregation

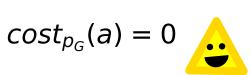
$$egin{aligned} &N_{p_G}^+(a), N_{p_G}^-(a) \subseteq N_{p_G}(a) \ &cost_{p_G}(a) \left\{ egin{aligned} &\max(0, au - rac{|N_{p_G}^+(a)|}{|N_{p_G}^+(a)| + |N_{p_G}^-(a)|}) ext{ if } N_{p_G}(a)
eq \emptyset
ight. \ & au ext{ else } \end{aligned}$$

always: $N_{p_G}^+(a) :=$ neighbors with same type as a

1 vs. all Schelling Game (1-k-SG) $\tau = \frac{1}{3}$

 $N^+_{p_G}(a) = :$ $N^-_{p_G}(a) = :$



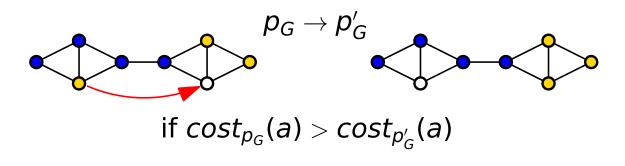


 $cost_{p_G}(a) = \frac{1}{12}$

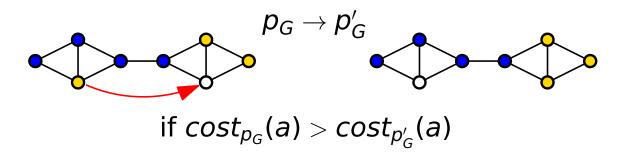
cost

pnr

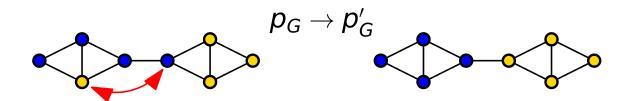
Jump Schelling Game (JSG): "jump to empty node to decrease costs"



Jump Schelling Game (JSG): "jump to empty node to decrease costs"



Swap Schelling Game (SSG): "swap position to decrease costs"

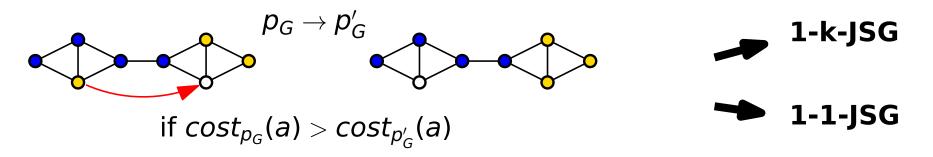


if $cost_{p_G}(a) > cost_{p'_G}(a)$ and $cost_{p_G}(b) > cost_{p'_G}(b)$

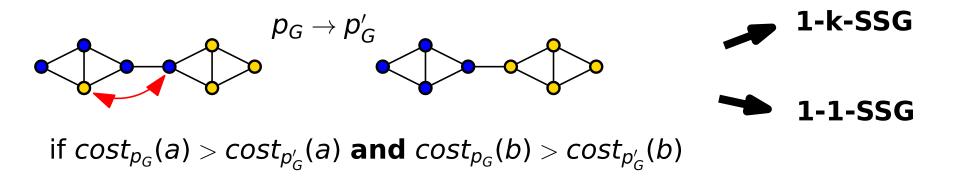
Convergence and Hardness of Strategic Schelling Segregation

Hasso

Jump Schelling Game (JSG): "jump to empty node to decrease costs"



Swap Schelling Game (SSG): "swap position to decrease costs"



Convergence and Hardness of Strategic Schelling Segregation

Hasso

swap-/jump-stable:

 p_G such that no other placement p'_G can be reached via swap/jump

swap-/jump-stable:

 p_G such that no other placement p'_G can be reached via swap/jump

improving response cycle (IRC):

- sequence of placements $p_G^1, ..., p_G^k$
- such that p_G^i can be reached via swap/jump from p_G^{i-1}
- $p_G^k = p_G^1$ (upto type similarity)

swap-/jump-stable:

 p_G such that no other placement p'_G can be reached via swap/jump

improving response cycle (IRC):

- sequence of placements $p_G^1, ..., p_G^k$
- such that p_G^i can be reached via swap/jump from p_G^{i-1}
- $p_G^k = p_G^1$ (upto type similarity)

not weakly acyclic:

there is an unstable placement p_G from which no stable placement p'_G can be reached

Previous results by Chauhan et al (SAGT 2018):

	1-k-SSG	1 - 1 - SSG	1-k-JSG	1 - 1 - JSG
Δ –regular	$\sqrt{ P(A) } = 2$		$\sqrt{ P(A) } = 2, \Delta = 2$	
arbitrary	$\checkmark P(A) =$	$\tau 2$, $ au \leq rac{1}{2}$		

√ guaranteed convergence

Our results:

	1-k-SSG	1 - 1 - SSG	1 – <i>k</i> –JSG	1 - 1 - JSG	
Δ –regular	$\sqrt{ P(A) } = 2$		$\sqrt{ P(A) } = 2, \Delta = 2$		
	\checkmark	${\color{red} \checkmark au \leq rac{1}{\Delta}}$	${\color{red} {\mathbf{v}}} au \leq rac{2}{\Delta}$	${igstar} au \leq {1 \over \Delta}$	
		O $ au > rac{6}{\Delta}$	O $ au > rac{2}{\Delta}$	O $ au > rac{2}{\Delta}$	
arbitrary	$\sqrt{ P(A) }=2$, $ au\leqrac{1}{2}$				
	\times else	\times else	×	×	

✓ guaranteed convergence o improving response cycle × not weakly acyclic

Our results:

	1- <i>k</i> -SSG	1 - 1 - SSG	1-k-JSG	1 - 1 - JSG		
$\Delta-$ regular	$\sqrt{ P(A) } = 2$		$\sqrt{ P(A) } = 2, \Delta = 2$			
	\checkmark	${\color{red} \checkmark au \leq rac{1}{\Delta}}$	$\sqrt{ au} \leq rac{2}{\Delta}$	${igstar} au \leq rac{1}{\Delta}$		
		O $ au > rac{6}{\Delta}$	O $ au > rac{2}{\Delta}$	O $ au > rac{2}{\Delta}$		
arbitrary	$\sqrt{ P(A) }=2$, $ au\leqrac{1}{2}$					
	\times else	\times else	×	×		

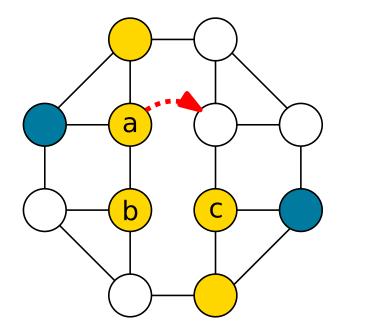
✓ guaranteed convergence o improving response cycle × not weakly acyclic

Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

Theorem

Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

IRC for $\Delta = 3, \tau > \frac{2}{3}$ (e.g. $\tau = \frac{5}{6}$):



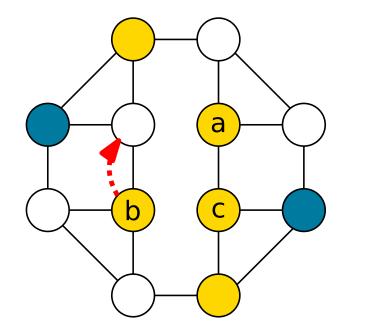
$$cost_{p_G}(a) = \frac{5}{6} - \frac{2}{3} = \frac{1}{6}$$

 $cost_{p'_G}(a) = 0$

Theorem

Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

IRC for $\Delta = 3, \tau > \frac{2}{3}$ (e.g. $\tau = \frac{5}{6}$):



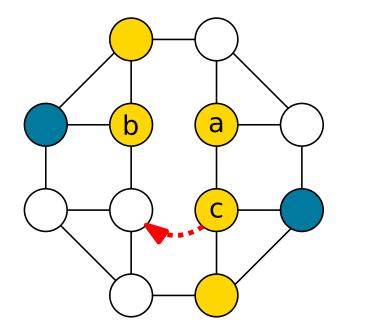
$$cost_{p_G}(b) = \frac{5}{6}$$

$$cost_{p'_{G}}(b) = \frac{5}{6} - \frac{1}{2} = \frac{1}{3}$$

Theorem

Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

IRC for $\Delta = 3, \tau > \frac{2}{3}$ (e.g. $\tau = \frac{5}{6}$):



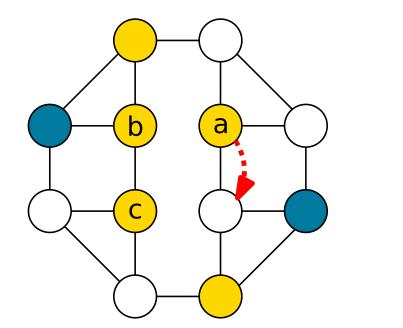
$$cost_{p_G}(c) = \frac{5}{6} - \frac{2}{3} = \frac{1}{6}$$

 $cost_{p'_G}(c) = 0$

Theorem

Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

IRC for $\Delta = 3, \tau > \frac{2}{3}$ (e.g. $\tau = \frac{5}{6}$):



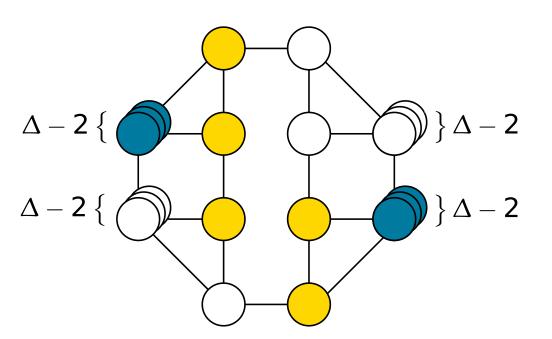
$$cost_{\rho_G}(a) = \frac{5}{6}$$

$$cost_{p'_{G}}(a) = rac{5}{6} - rac{1}{2} = rac{1}{3}$$

Theorem

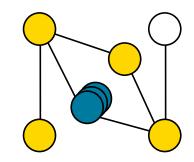
Neither 1 - k–JSG nor 1 - 1–JSG are guaranteed to converge for any $\tau > \frac{2}{\Delta}$ on Δ -regular graphs.

IRC for $\tau > \frac{2}{\Delta}$:



almost for free:

not weakly acyclic on arbitrary graphs



The 1 - k-JSG is guaranteed to converge in O(|E|) for any $\tau \leq \frac{2}{\Delta}$ on every Δ -regular graph.

The 1 - k-JSG is guaranteed to converge in O(|E|) for any $\tau \leq \frac{2}{\Delta}$ on every Δ -regular graph.

Proof (sketch): again search a potential function Φ

$$\Phi(p_G) = \sum_{(u,v)\in E} w_{p_G}(u,v) \quad w_{p_G}(u,v) = \begin{cases} 1 \text{ if } & \bullet & \bullet \\ c \text{ if } & \bullet & \bullet \\ 0 \text{ ow. } & \bullet \\ 0$$

The 1 - k-JSG is guaranteed to converge in O(|E|) for any $\tau \leq \frac{2}{\Delta}$ on every Δ -regular graph.

Proof (sketch): again search a potential function Φ

$$\Phi(p_G) = \sum_{(u,v)\in E} w_{p_G}(u,v) \quad w_{p_G}(u,v) = \begin{cases} 1 & \text{if } \bullet \bullet \bullet \bullet \\ c & \text{if } \bullet \bullet \bullet \bullet \\ 0 & \text{ow.} \bullet \bullet \bullet \\ 0 & \text{ow.} \bullet \bullet \bullet \bullet \\ \end{cases} \quad \frac{1}{2} - \frac{1}{2\Delta} < C < \frac{1}{2} \end{cases}$$

let $p_G \rightarrow p'_G$ by jump of $a \in A$ **jump:** $cost_{p_G}(a) > cost_{p'_G}(a)$

The 1 - k-JSG is guaranteed to converge in O(|E|) for any $\tau \leq \frac{2}{\Delta}$ on every Δ -regular graph.

Proof (sketch): again search a potential function Φ

$$\Phi(p_G) = \sum_{(u,v)\in E} w_{p_G}(u,v) \quad w_{p_G}(u,v) = \begin{cases} 1 \text{ if } & \bullet & \bullet \\ c \text{ if } & \bullet & \bullet \\ 0 \text{ ow. } & \bullet \\ 0 \text{ ow. } & \bullet & \bullet \\ 0 \text{ ow. } & \bullet & \bullet \\ 0 \text{ ow. } & \bullet \\ 0 \text{ ow. }$$

let $p_G \rightarrow p'_G$ by jump of $a \in A$ **jump:** $cost_{p_G}(a) > cost_{p'_G}(a)$ **observation:** $|N^+_{p_G}(a)| \ge 2$ or $|N^+_{p'_G}(a)| = 0$ never happen

The 1 - k-JSG is guaranteed to converge in O(|E|) for any $\tau \leq \frac{2}{\Delta}$ on every Δ -regular graph.

Proof (sketch): again search a potential function Φ

let $p_G \rightarrow p'_G$ by jump of $a \in A$ jump: $cost_{p_G}(a) > cost_{p'_G}(a)$ observation: $|N^+_{p_G}(a)| \ge 2$ or $|N^+_{p'_G}(a)| = 0$ never happen 2 cases: $|N^+_{p_G}(a)| < |N^+_{p'_G}(a)|$ and $|N^+_{p_G}(a)| = |N^+_{p'_G}(a)| = 1$ using regularity

Is there a pacement with at least *k* content agents?

Is there a pacement with at least *k* content agents?

Surprise: NP-complete in general (reductions for $\tau = \frac{1}{2}$ and $\tau \approx 1$)

Is there a pacement with at least k content agents?

Surprise: NP-complete in general (reductions for $\tau = \frac{1}{2}$ and $\tau \approx 1$)

Theorem There is an $O(|V|^2)$ time algorithm for optimal placements in 1-k-SSG and 1-1-SSG on 2-regular graphs for |P(A)| = 2 and $\tau > \frac{1}{2}$.

Proof (sketch): transform it to unary encoded SUBSET SUM

Is there a pacement with at least k content agents?

Surprise: NP-complete in general (reductions for $\tau = \frac{1}{2}$ and $\tau \approx 1$)

Theorem There is an $O(|V|^2)$ time algorithm for optimal placements in 1-k-SSG and 1-1-SSG on 2-regular graphs for |P(A)| = 2 and $\tau > \frac{1}{2}$.

Proof (sketch): transform it to unary encoded SUBSET SUM

Theorem

It is NP-complete to decide the optimal placement problem for 1 - k-SSG and 1 - 1-SSG on 2-regular graphs for $\tau > \frac{1}{2}$ and an arbitrary number of types.

Proof (sketch): reduction from 3-PARTITION

Convergence highly depends on cost model, number of types, swap or jump, ...

Hardness of optimal placements, even on simple graphs for an arbitrary number of types

Convergence highly depends on cost model, number of types, swap or jump, ...

Hardness of optimal placements, even on simple graphs for an arbitrary number of types

Future work

- more precisely characterize convergence
- existence of stable placements (Elkind et al. IJCAI 2019)
- if it converges, how segregated is the stable placement?

Convergence highly depends on cost model, number of types, swap or jump, ...

Hardness of optimal placements, even on simple graphs for an arbitrary number of types

Future work

- more precisely characterize convergence
- existence of stable placements (Elkind et al. IJCAI 2019)
- if it converges, how segregated is the stable placement?

Thank you very much and let's be happy polygons.

https://ncase.me/polygons/