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What is Model-Predictive Control?

Idea of Model-Predictive Control (MPC):
• Make required control decision based 

on predictions for a model of the 
controlled process by solving a 
related optimization problem (e.g., 
maximizing a profit function, 
minimizing a cost function, 
maximizing a production rate) at 
runtime.

• Usually MPC is running on top of 
simpler controllers (e.g., PID) that 
control the subsystems of the process 
according to the control inputs from 
MPC (hierarchical control).

Capabilities:
• Can handle complex MIMO processes
• Can realize different optimization 

goals
• Can handle constraints on the control 

inputs and process outputs/state
• Can compensate loss of actuators 

(determine control structure + check 
for ill-conditioning)

• Can be combined with online 
identification

Remark: also named moving horizon 
control or receding horizon control 
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“Model predictive control has had a major impact on industrial 
practice, with thousands of applications world-wide.” 

[Seborg+2011]
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Advanced MPC in Terms of MAPE-K
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Mapping Advanced MPC to classical MPC
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[Seborg+2011]

Classical linear MPC:

Advanced MPC:
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over time accumulated utility (reward)

Finite Receding Horizons in MPC

• (prediction horizon – control horizon) * sampling time ≈ settling time
(horizons = number of considered steps)

• Sequence decision problem (agents)

H. Giese & T. Vogel  | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 525.04.16

utility of state control

old opt. 
state

new opt. 
state

control horizon

prediction horizon



Example: Self-Repair

• Failures of different types:
– Various exceptions
– Crash of a component
– ...

• Multiple repair strategies
for each failure type:
– Restart the component
– Redeploy the component
– Replace the component
– ...

1. Which strategy should be applied to repair a specific failure?
2. If there are multiple failures, which one should be repaired first?

H. Giese & T. Vogel  | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 625.04.16



Architectural meta model

Example: MAPE-K with EUREMA & MORISIA
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Performance meta model

Failure meta model

EJB meta model

[Vogel+2009, EUREMA]

Adaptation engine
Plan rules

Analysis rules

(Executable Runtime
Megamodels)
mdelab.de/mdelab-projects/software-engineering-
for-self-adaptive-systems/eurema/

(Models at Runtime for Self-
Adaptive Software) 
mdelab.de/mdelab-projects/software-engineering-for-self-adaptive-
systems/morisia/



Example: Analysis & Plan -
Which strategy to apply?
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k: number of 
prediction
steps

• Predicting two steps, Restart appears to be the better strategy
• Predicting seven steps, Redeploy appears to be better (e.g., 

using a different node with more resources)
• Short vs. long term (steady state utility dominates reward)



Example: Analysis & Plan –
Which failure to repair first?
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Explore the strategies for the different failures (f1 and f2):
• Steady state utility is the same but order matters considering 

the reward
• Repair the failure first whose repairing improves most the 

reward (f1)



Utility-Based View of the Solution Space

 Analysis: Check whether the current state is optimal concerning its utility

 Static optimization: Check whether a better optimal solution state exists. 
(side-effect is that we also have one optimal/satisficing goal state)

 Planning: Find a path with optimal  reward leading to the chosen solution

 Dynamic optimization: what is the optimal path to the chosen solution state

 Trivial in case solution space can be easily configured

25.04.16 H. Giese & T. Vogel  | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 10

Valid solutions      .

positive

negative

optimal

control
process

find goal state
(with max. utility)

find path to goal state (with max. reward)



Cases for the Selection of the Horizons

• Solution space is not fragmented (you can compensate “failures” ...)
➔ (small) finite horizon may be sufficient 

• No or unlikely interference with process behavior 
➔ usually 0 settling time ➔ prediction horizon = control horizon

• Multiple control inputs feasible in one control step
➔ receding horizon may be skipped or “reduced”

...
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Beyond Classical and Advanced MPC

• Infinite horizon can lead to better results (if long term 
predictions are accurate), as it considered the steady 
state assuming optimal behavior, but it requires more 
resources.

• Stochastic MPC considers probabilities for process 
behavior and optimizes the expected reward.

Beyond advanced MPC:
• For non-deterministic models (e.g. PTA) the control 

inputs (strategy) requires to be safe (any or too high 
risk is avoided by excluding unsafe control options).

• Agents learning the expected rewards (not via state) 
leads to predict reward rather than process behavior.
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Beyond MPC: Layered Architecture & Adapt

• Adapt MPC (monitor, analysis, plan, execute)? e.g., adapt rules, attention
• Adapt underlying controllers (omitted in the architecture)
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Conclusions & Outlook

• MPC can handle many properties of complex process models typically 
present for software (MIMO, different optimization goals, constraints on 
the control inputs and process outputs/state, loss of actuators)

• Advanced MPC seems suitable as a framework to understand and fine-
tune many approaches based on models and related predictions.

– Can employ for a variety of techniques (simulation, optimization, 
search, synthesis, ...) and models (linear, non-linear, state space, 
probabilistic) ...

• The horizons for control and predictions result in a useful design space in 
many cases (depending on the characteristics of the state space).

– Enlarging the control and prediction horizon can help to engineer 
more accurate solutions (infinite = optimal?)

– Limitation of the control and prediction horizon (and also input 
blocking) can help to engineer better scalable solutions

• But: MPC with bad models of the process don’t work!
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