
Toward Self-Adaptive Software
Employing Model Predictive Control

NII Shonan Meeting on Controlled Adaptation of
Self-Adaptive Systems (CASaS)

Shonan, Japan, April 24-28, 2016

Holger Giese, Thomas Vogel, and Sona Ghahremani
Hasso Plattner Institute

University of Potsdam, Germany
holger.giese@hpi.de , thomas.vogel@hpi.de

http://hpi.de/giese/

What is Model-Predictive Control?

Idea of Model-Predictive Control (MPC):
• Make required control decision based

on predictions for a model of the
controlled process by solving a
related optimization problem (e.g.,
maximizing a profit function,
minimizing a cost function,
maximizing a production rate) at
runtime.

• Usually MPC is running on top of
simpler controllers (e.g., PID) that
control the subsystems of the process
according to the control inputs from
MPC (hierarchical control).

Capabilities:
• Can handle complex MIMO processes
• Can realize different optimization

goals
• Can handle constraints on the control

inputs and process outputs/state
• Can compensate loss of actuators

(determine control structure + check
for ill-conditioning)

• Can be combined with online
identification

Remark: also named moving horizon
control or receding horizon control

225.04.16

“Model predictive control has had a major impact on industrial
practice, with thousands of applications world-wide.”

[Seborg+2011]

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016

Advanced MPC in Terms of MAPE-K

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 325.04.16

online

identification

beh.

model

Runtime model Activity

state

identification

current

state

static

optimization

optimal

state
dynamic

optimization

optimization

function

Seq. of

control
actions

execute first

control action

analyze plan

monitor

execute

knowledge

Mapping Advanced MPC to classical MPC

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 4

[Seborg+2011]

Classical linear MPC:

Advanced MPC:

25.04.16

online

identification

beh.

model

state

identification

current

state

static

optimization

optimal

state
dynamic

optimization

optimization

function

Seq. of

control
actions

execute first

control action

analyze plan

monitor

execute
knowledge

over time accumulated utility (reward)

Finite Receding Horizons in MPC

• (prediction horizon – control horizon) * sampling time ≈ settling time
(horizons = number of considered steps)

• Sequence decision problem (agents)

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 525.04.16

utility of state control

old opt.
state

new opt.
state

control horizon

prediction horizon

Example: Self-Repair

• Failures of different types:
– Various exceptions
– Crash of a component
– ...

• Multiple repair strategies
for each failure type:
– Restart the component
– Redeploy the component
– Replace the component
– ...

1. Which strategy should be applied to repair a specific failure?
2. If there are multiple failures, which one should be repaired first?

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 625.04.16

Architectural meta model

Example: MAPE-K with EUREMA & MORISIA

25.04.16 7H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016

Performance meta model

Failure meta model

EJB meta model

[Vogel+2009, EUREMA]

Adaptation engine
Plan rules

Analysis rules

(Executable Runtime
Megamodels)
mdelab.de/mdelab-projects/software-engineering-
for-self-adaptive-systems/eurema/

(Models at Runtime for Self-
Adaptive Software)
mdelab.de/mdelab-projects/software-engineering-for-self-adaptive-
systems/morisia/

Example: Analysis & Plan -
Which strategy to apply?

25.04.16 H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 8

k: number of
prediction
steps

• Predicting two steps, Restart appears to be the better strategy
• Predicting seven steps, Redeploy appears to be better (e.g.,

using a different node with more resources)
• Short vs. long term (steady state utility dominates reward)

Example: Analysis & Plan –
Which failure to repair first?

25.04.16 H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 9

Explore the strategies for the different failures (f1 and f2):
• Steady state utility is the same but order matters considering

the reward
• Repair the failure first whose repairing improves most the

reward (f1)

Utility-Based View of the Solution Space

 Analysis: Check whether the current state is optimal concerning its utility

 Static optimization: Check whether a better optimal solution state exists.
(side-effect is that we also have one optimal/satisficing goal state)

 Planning: Find a path with optimal reward leading to the chosen solution

 Dynamic optimization: what is the optimal path to the chosen solution state

 Trivial in case solution space can be easily configured

25.04.16 H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 10

Valid solutions .

positive

negative

optimal

control
process

find goal state
(with max. utility)

find path to goal state (with max. reward)

Cases for the Selection of the Horizons

• Solution space is not fragmented (you can compensate “failures” ...)
➔ (small) finite horizon may be sufficient

• No or unlikely interference with process behavior
➔ usually 0 settling time ➔ prediction horizon = control horizon

• Multiple control inputs feasible in one control step
➔ receding horizon may be skipped or “reduced”

...

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 1125.04.16

over time accumulated utility (reward)

utility of state control

old opt.
state

new opt.
state

control horizon

prediction horizon

Beyond Classical and Advanced MPC

• Infinite horizon can lead to better results (if long term
predictions are accurate), as it considered the steady
state assuming optimal behavior, but it requires more
resources.

• Stochastic MPC considers probabilities for process
behavior and optimizes the expected reward.

Beyond advanced MPC:
• For non-deterministic models (e.g. PTA) the control

inputs (strategy) requires to be safe (any or too high
risk is avoided by excluding unsafe control options).

• Agents learning the expected rewards (not via state)
leads to predict reward rather than process behavior.

25.04.16 H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 12

Beyond MPC: Layered Architecture & Adapt

• Adapt MPC (monitor, analysis, plan, execute)? e.g., adapt rules, attention
• Adapt underlying controllers (omitted in the architecture)

25.04.16 H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 13

Conclusions & Outlook

• MPC can handle many properties of complex process models typically
present for software (MIMO, different optimization goals, constraints on
the control inputs and process outputs/state, loss of actuators)

• Advanced MPC seems suitable as a framework to understand and fine-
tune many approaches based on models and related predictions.

– Can employ for a variety of techniques (simulation, optimization,
search, synthesis, ...) and models (linear, non-linear, state space,
probabilistic) ...

• The horizons for control and predictions result in a useful design space in
many cases (depending on the characteristics of the state space).

– Enlarging the control and prediction horizon can help to engineer
more accurate solutions (infinite = optimal?)

– Limitation of the control and prediction horizon (and also input
blocking) can help to engineer better scalable solutions

• But: MPC with bad models of the process don’t work!

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 1425.04.16

References

[Calinescu+2011] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela
Mirandola and Giordano Tamburrelli. Dynamic QoS Management
and Optimization in Service-Based Systems. In IEEE Transactions on
Software Engineering, Vol. 37(3):387-409, IEEE Computer Society,
Los Alamitos, CA, USA, 2011.

[Seborg+2011] Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J.
Doyle III: Process Dynamics and Control (Third Edition), Wiley, 2011.

[Vogel+2009] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese
and Basil Becker. Model-Driven Architectural Monitoring and
Adaptation for Autonomic Systems. In Proceedings of the 6th
IEEE/ACM International Conference on Autonomic Computing and
Communications (ICAC 2009), Barcelona, Spain, ACM, June 2009.

[EUREMA] Thomas Vogel and Holger Giese: Model-Driven Engineering of Self-
Adaptive Software with EUREMA, ACM Trans. Auton. Adapt. Syst.,
vol. 8, no. 4, pp. 18:1-18:33, 2014.

H. Giese & T. Vogel | Toward Self-Adaptive Software Employing Model Predictive Control | CASaS 2016 1525.04.16

