
Model-Based Self-Adaptation of
Service-Oriented Software Systems

GK Workshop 2010
Schloss Dagstuhl, June 2, 2010

Thomas Vogel
Research School on Service-Oriented Systems Engineering
System Analysis and Modeling Group

Motivation

Continuous adaptation of software to keep its value for the
user (Laws of Software Evolution) [Lehman, 1996]

(Increasing) complexity of software systems [Northrop et al., 2006]

Maintenance & administration costs
[Sterritt, 2005, Sommerville, 2007]

Self-Adaptive Software [Cheng et al., 2009]

Systems that are able to adjust their behavior in response to their
perception of the environment and the system itself.

 Autonomic Computing
[Kephart and Chess, 2003]

Thomas Vogel | GK Workshop 2010 | 2 June

2

Motivation

Continuous adaptation of software to keep its value for the
user (Laws of Software Evolution) [Lehman, 1996]

(Increasing) complexity of software systems [Northrop et al., 2006]

Maintenance & administration costs
[Sterritt, 2005, Sommerville, 2007]

Self-Adaptive Software [Cheng et al., 2009]

Systems that are able to adjust their behavior in response to their
perception of the environment and the system itself.

 Autonomic Computing
[Kephart and Chess, 2003]

Thomas Vogel | GK Workshop 2010 | 2 June

2

Self-Adaptive
Software Systems

Autonomic Manager

Effectors

Managed Element

Monitor

Analyze Plan

Execute

Sensors

Knowledge

Figure: Feedback Loop [Kephart and Chess, 2003]

Concepts originating from the control engineering discipline
[Kokar et al., 1999, Diao et al., 2005]

Self-healing/-optimization/-protection/-configuration
[Lin et al., 2005]

Thomas Vogel | GK Workshop 2010 | 2 June

3

Service-Oriented
Software Systems

Service-Oriented Computing. . . [Papazoglou et al., 2007]

. . . promotes the idea of assembling application components into
a network of services that can be loosely coupled to create
flexible, dynamic business processes and agile applications.

Composition of loosely-coupled services→ modularity
Self-containment of services (well-defined interfaces/contracts)
Dynamic binding

→ Basic support for architectural adaptation at runtime
→ Suitable abstraction mechanism for self-adaptation

[Nitto et al., 2008]

Thomas Vogel | GK Workshop 2010 | 2 June

4

Model-Driven
Engineering (MDE)

In our broad vision of MDE, models are not only the primary
artifacts of development, they are also the primary means by
which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.

[France and Rumpe, 2007]

Special issue on
models@run.time

(Oct 2009)

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors

Managed Element

Runtime Model

Knowledge

Thomas Vogel | GK Workshop 2010 | 2 June

5

Causal
connection

Managing EJB-based Services

Thomas Vogel | GK Workshop 2010 | 2 June

6

simplified

Managing EJB-based Services

Thomas Vogel | GK Workshop 2010 | 2 June

6 simplified

Abstract Runtime Models

complex
detailed

platform-specific
solution space

Metamodel for a
Source Model

less complex
abstract

platform-independent
problem space

Metamodel for a
Target Model

Thomas Vogel | GK Workshop 2010 | 2 June

7

vs.

Abstract Runtime Models

complex
detailed

platform-specific
solution space

Metamodel for a
Source Model

less complex
abstract

platform-independent
problem space

Metamodel for a
Target Model

Thomas Vogel | GK Workshop 2010 | 2 June

7

vs.

Abstract Runtime Models

complex
detailed

platform-specific
solution space

Metamodel for a
Source Model

less complex
abstract

platform-independent
problem space

Metamodel for a
Target Model

Thomas Vogel | GK Workshop 2010 | 2 June

7

vs.

MDE for Self-Adaptive Systems

Different runtime models for
monitoring [Vogel et al., 2010]

performance,
exceptions and
architectural constraints,

and for adapting
[Vogel and Giese, 2010]
service implementations.

Plan

Autonomic Manager

ExecuteMonitor

Analyze

architectural element
model
monitoring

defined by
uses

adaptation/challenges Knowledge

Managed System

Sensors Effectors

Model Transformation Engine

Target Model

Source ModelMetamodel

Metamodel

TGG Rules

[Vogel et al., 2009]

Thomas Vogel | GK Workshop 2010 | 2 June

8

Incremental, bidirectional model
synchronization based on Triple Graph
Grammars (TGG).

Runtime Model
Synchronization

Thomas Vogel | GK Workshop 2010 | 2 June

9

Adaptation

Monitoring

Current and Future Work

Model-driven development + runtime management
Distributed managed and managing systems
 distributing models and MDE techniques

Thomas Vogel | GK Workshop 2010 | 2 June

10 [Nitto et al., 2008]

Backup

Thomas Vogel | GK Workshop 2010 | 2 June

11

Models at Runtime

model@run.time [Blair et al., 2009]

A model@run.time is a causally connected self-representation of
the associated system that emphasizes the structure, behavior, or
goals of the system from a problem space perspective.

Causal connection reflection [Maes, 1987]

Higher levels of abstraction and problem space perspective vs.
low level models based on the solution space as in reflection
Integrated into an MDE development approach: relation of
runtime models to models from the development phase

Thomas Vogel | GK Workshop 2010 | 2 June

12

Related Work

Architectural model as a runtime
representation:

One-to-one mapping between
implementation classes and model
elements [Oreizy et al., 1998]

Focused on one concern of interest
[Caporuscio et al., 2007,
Dubus and Merle, 2006, Morin et al., 2009]

All concerns of interests
[Garlan et al., 2004]

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors

Managed Element

Runtime Model

Knowledge

Thomas Vogel | GK Workshop 2010 | 2 June

13

Is one runtime model enough?

Pros
Easing the connection between the
model and the running system
Avoiding the maintenance of several
models

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors

Managed Element

Runtime Model

Knowledge

Cons
Complexity of the model (all concerns + low level of abstraction)
Platform- and implementation-specific model (solution space)
Reusability of autonomic managers

Thomas Vogel | GK Workshop 2010 | 2 June

14

Failure Target Metamodel

Abstract and platform-independent model
Architecture + occurred failures: self-healing
Simplified as three associations are hidden

Thomas Vogel | GK Workshop 2010 | 2 June

15

Model Transformation

Source

Metamodel Metamodel

Target

Source Model Target Model

Meta−Metamodel

instance of instance of

instance ofinstance of

Transformation
Rules

useuse

Transformation

Model

Engine

Figure: Generic Model Transformation System

Transformation vs. Synchronization
Unidirectional vs. Bidirectional
Bidirectional synchronization based on Triple Graph
Grammars [Giese and Wagner, 2009, Giese and Hildebrandt, 2008]

Thomas Vogel | GK Workshop 2010 | 2 June

16

Triple Graph Grammar Rule

Thomas Vogel | GK Workshop 2010 | 2 June

17

Declarative rules
Automatic generation of operational rules
Abstraction gap between models: manually written
code “extending” the rules for adaptation

→ MDE simplifies the development of
maintaining several runtime models

Target ModelSource Model

Triple Graph Grammar Rule

Thomas Vogel | GK Workshop 2010 | 2 June

17

Declarative rules
Automatic generation of operational rules
Abstraction gap between models: manually written
code “extending” the rules for adaptation

→ MDE simplifies the development of
maintaining several runtime models

Target ModelSource Model

Future Work

MDE for Self-Adaptive Systems
Connect development phase with the runtime phase
Development (requirements, design,. . .) & runtime models
Elaborating on model-driven managing elements
Operational environment/context

Large-scale, distributed system
Distributed managed and managing elements
Decentralized mgmt tasks [Papazoglou and Georgakopoulos, 2003]

Distributing models and MDE techniques
Local autonomy vs. global consistency/goals
[Kramer and Magee, 2007]

Thomas Vogel | GK Workshop 2010 | 2 June

18

References I
[Blair et al., 2009] Blair, G., Bencomo, N., and France, R. B. (2009).

Models@run.time.
Computer, 42(10):22–27.

[Caporuscio et al., 2007] Caporuscio, M., Marco, A. D., and Inverardi, P. (2007).
Model-based system reconfiguration for dynamic performance management.
Journal of Systems and Software, 80(4):455 – 473.

[Cheng et al., 2009] Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P., Magee, J., and et al. (2009).
Software Engineering for Self-Adaptive Systems: A Research Road Map.
In Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages 1–26. Springer.

[Diao et al., 2005] Diao, Y., Hellerstein, J. L., Parekh, S., Griffith, R., Kaiser, G., and Phung, D. (2005).
Self-Managing Systems: A Control Theory Foundation.
In ECBS ’05: Proceedings of the 12th IEEE International Conference and Workshops on Engineering of Computer-Based Systems, pages 441–448, Washington, DC, USA. IEEE
Computer Society.

[Dubus and Merle, 2006] Dubus, J. and Merle, P. (2006).
Applying OMG D&C Specification and ECA Rules for Autonomous Distributed Component-based Systems.
In Proc. of the 1st Intl. Workshop on Models@run.time.

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007).
Model-driven Development of Complex Software: A Research Roadmap.
In FOSE ’07: 2007 Future of Software Engineering, pages 37–54, Washington, DC, USA. IEEE Computer Society.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54.

[Giese and Hildebrandt, 2008] Giese, H. and Hildebrandt, S. (2008).
Incremental Model Synchronization for Multiple Updates.
In Proc. of the 3rd Intl. Workshop on Graph and Model Transformation. ACM.

[Giese and Wagner, 2009] Giese, H. and Wagner, R. (2009).
From Model Transformation to Incremental Bidirectional Model Synchronization.
Software and Systems Modeling, 8(1).

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003).
The Vision of Autonomic Computing.
IEEE Computer, 36(1):41–50.

Thomas Vogel | GK Workshop 2010 | 2 June

19

References II

[Kokar et al., 1999] Kokar, M. M., Baclawski, K., and Eracar, Y. A. (1999).
Control Theory-Based Foundations of Self-Controlling Software.
Intelligent Systems and their Applications, IEEE, 14(3):37–45.

[Kramer and Magee, 2007] Kramer, J. and Magee, J. (2007).
Self-Managed Systems: an Architectural Challenge.
In Proc. of the ICSE Workshop on Future of Software Engineering, pages 259–268. IEEE.

[Lehman, 1996] Lehman, M. M. (1996).
Laws of Software Evolution Revisited.
In Montangero, C., editor, Software Process Technology, 5th European Workshop, EWSPT’96, Nancy, France, October 9-11, 1996, Proceedings, volume 1149 of Lecture Notes in
Computer Science, pages 108–124. Springer.

[Lin et al., 2005] Lin, P., MacArthur, A., and Leaney, J. (2005).
Defining Autonomic Computing: A Software Engineering Perspective.
In ASWEC ’05: Proceedings of the 2005 Australian conference on Software Engineering, pages 88–97, Washington, DC, USA. IEEE Computer Society.

[Maes, 1987] Maes, P. (1987).
Concepts and experiments in computational reflection.
SIGPLAN Not., 22(12):147–155.

[Morin et al., 2009] Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., and Solberg, A. (2009).
Models@Run.time to Support Dynamic Adaptation.
Computer, 42(10):44–51.

[Nitto et al., 2008] Nitto, E. D., Ghezzi, C., Metzger, A., Papazoglou, M., and Pohl, K. (2008).
A journey to highly dynamic, self-adaptive service-based applications.
Automated Software Engineering, 15(3-4):313–341.

[Northrop et al., 2006] Northrop, L., Feiler, P. H., Gabriel, R. P., Linger, R., Longstaff, T., Kazman, R., Klein, M., and Schmidt, D. (2006).
Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Oreizy et al., 1998] Oreizy, P., Medvidovic, N., and Taylor, R. N. (1998).
Architecture-based Runtime Software Evolution.
In Proc. of the 20th Intl. Conference on Software Engineering, pages 177–186. IEEE.

[Papazoglou and Georgakopoulos, 2003] Papazoglou, M. P. and Georgakopoulos, D. (October 2003).
Service-oriented computing.
Commun. ACM, 46(10).

Thomas Vogel | GK Workshop 2010 | 2 June

20

References III

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007).
Service-Oriented Computing: State of the Art and Research Challenges.
Computer, 40(11):38–45.

[Sommerville, 2007] Sommerville, I. (2007).
Software Engineering.
Addison Wesley, 8 edition.

[Sterritt, 2005] Sterritt, R. (2005).
Autonomic computing.
Innovations in Systems and Software Engineering, 1(1):79–88.

[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010).
Adaptation and abstract runtime models.
In Proceedings of the 5th Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010) at the 32nd IEEE/ACM International Conference on
Software Engineering (ICSE 2010), Cape Town, South Africa, pages 39–48. ACM.

[Vogel et al., 2009] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009).
Model-Driven Architectural Monitoring and Adaptation for Autonomic Systems.
In Proc. of the 6th Intl. Conference on Autonomic Computing and Communications, pages 67–68. ACM.

[Vogel et al., 2010] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In Ghosh, S., editor, Models in Software Engineering, Workshops and Symposia at MODELS 2009, Reports and Revised Selected Papers, volume 6002 of LNCS, pages
124–139. Springer.

Thomas Vogel | GK Workshop 2010 | 2 June

21

	Motivation
	Self-Adaptive Software Systems
	Service-Oriented Software Systems
	Model-Driven Engineering (MDE)
	MDE for Self-Adaptive Software Systems
	Current and Future Work
	Backup
	References

