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Motivation

Continuous adaptation of software to keep its value for the
user (Laws of Software Evolution) [Lehman, 1996]

(Increasing) complexity of software systems [Northrop et al., 2006]

Maintenance & administration costs
[Sterritt, 2005, Sommerville, 2007]

Self-Adaptive Software [Cheng et al., 2009]

Systems that are able to adjust their behavior in response to their
perception of the environment and the system itself.

 Autonomic Computing
[Kephart and Chess, 2003]
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Self-Adaptive
Software Systems

Autonomic Manager

Effectors

Managed Element

Monitor

Analyze Plan

Execute

Sensors

Knowledge

Figure: Feedback Loop [Kephart and Chess, 2003]

Concepts originating from the control engineering discipline
[Kokar et al., 1999, Diao et al., 2005]

Self-healing/-optimization/-protection/-configuration
[Lin et al., 2005]
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Service-Oriented
Software Systems

Service-Oriented Computing. . . [Papazoglou et al., 2007]

. . . promotes the idea of assembling application components into
a network of services that can be loosely coupled to create
flexible, dynamic business processes and agile applications.

Composition of loosely-coupled services→ modularity
Self-containment of services (well-defined interfaces/contracts)
Dynamic binding

→ Basic support for architectural adaptation at runtime
→ Suitable abstraction mechanism for self-adaptation

[Nitto et al., 2008]
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Model-Driven
Engineering (MDE)

In our broad vision of MDE, models are not only the primary
artifacts of development, they are also the primary means by
which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.

[France and Rumpe, 2007]

Special issue on
models@run.time

(Oct 2009)

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors
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Runtime Model
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Managing EJB-based Services
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Abstract Runtime Models

complex
detailed

platform-specific
solution space

Metamodel for a
Source Model

less complex
abstract

platform-independent
problem space

Metamodel for a
Target Model
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MDE for Self-Adaptive Systems

Different runtime models for
monitoring [Vogel et al., 2010]

performance,
exceptions and
architectural constraints,

and for adapting
[Vogel and Giese, 2010]
service implementations.

Plan

Autonomic Manager

ExecuteMonitor

Analyze

architectural element
model
monitoring

defined by
uses

adaptation/challenges Knowledge

Managed System

Sensors Effectors

Model Transformation Engine

Target Model

Source ModelMetamodel

Metamodel

TGG Rules

[Vogel et al., 2009]
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Incremental, bidirectional model
synchronization based on Triple Graph
Grammars (TGG).



Runtime Model
Synchronization
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Monitoring



Current and Future Work

Model-driven development + runtime management
Distributed managed and managing systems
 distributing models and MDE techniques
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Backup
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Models at Runtime

model@run.time [Blair et al., 2009]

A model@run.time is a causally connected self-representation of
the associated system that emphasizes the structure, behavior, or
goals of the system from a problem space perspective.

Causal connection reflection [Maes, 1987]

Higher levels of abstraction and problem space perspective vs.
low level models based on the solution space as in reflection
Integrated into an MDE development approach: relation of
runtime models to models from the development phase
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Related Work

Architectural model as a runtime
representation:

One-to-one mapping between
implementation classes and model
elements [Oreizy et al., 1998]

Focused on one concern of interest
[Caporuscio et al., 2007,
Dubus and Merle, 2006, Morin et al., 2009]

All concerns of interests
[Garlan et al., 2004]

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors

Managed Element

Runtime Model

Knowledge
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Is one runtime model enough?

Pros
Easing the connection between the
model and the running system
Avoiding the maintenance of several
models

Monitor

Analyze Plan

Execute

Autonomic Manager

Sensors Effectors

Managed Element

Runtime Model

Knowledge

Cons
Complexity of the model (all concerns + low level of abstraction)
Platform- and implementation-specific model (solution space)
Reusability of autonomic managers
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Failure Target Metamodel

Abstract and platform-independent model
Architecture + occurred failures: self-healing
Simplified as three associations are hidden
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Model Transformation

Source

Metamodel Metamodel

Target

Source Model Target Model

Meta−Metamodel

instance of instance of

instance ofinstance of

Transformation
Rules

useuse

Transformation

Model

Engine

Figure: Generic Model Transformation System

Transformation vs. Synchronization
Unidirectional vs. Bidirectional
Bidirectional synchronization based on Triple Graph
Grammars [Giese and Wagner, 2009, Giese and Hildebrandt, 2008]
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Triple Graph Grammar Rule
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Declarative rules
Automatic generation of operational rules
Abstraction gap between models: manually written
code “extending” the rules for adaptation

→ MDE simplifies the development of
maintaining several runtime models

Target ModelSource Model
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Future Work

MDE for Self-Adaptive Systems
Connect development phase with the runtime phase
Development (requirements, design,. . . ) & runtime models
Elaborating on model-driven managing elements
Operational environment/context

Large-scale, distributed system
Distributed managed and managing elements
Decentralized mgmt tasks [Papazoglou and Georgakopoulos, 2003]

Distributing models and MDE techniques
Local autonomy vs. global consistency/goals
[Kramer and Magee, 2007]
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