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Engineering Self-Adaptive Software

• Internal vs. external approach
[Salehie and Tahvildari, 2009]

• Feedback Loop (MAPE-K)
[Kephart and Chess, 2003]

• Multiple, flexible feedback loops
• Different concerns

[Vogel et al., 2010a, Vogel and Giese, 2010]
• Hierarchical structures

[Hestermeyer et al., 2004,
Kramer and Magee, 2007]

• Uncertainty [Esfahani and Malek, 2012]

• Models@run.time for K and MAPE
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Interplay of Runtime Models?
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Specifying and Executing Feedback Loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops
 Adaptable feedback loops

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Executable Runtime Megamodels



Specifying and Executing Feedback Loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops
 Adaptable feedback loops

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Executable Runtime Megamodels



Megamodels

Definition (Megamodel)
A megamodel is a model that contains models and relations by means
of model operations between those models.

• Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

• “Toward Megamodels at Runtime” [Vogel et al., 2010b]
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An Example: Self-repair

Analyzed

Start Effected

Legend
(concrete syntax) Final state

Initial state
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An Example: Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

t1Model
Operation t2Final state

Initial state
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An Example: Self-repair

[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax) [condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state
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An Example: Self-repair

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state
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An Example: Self-repair
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Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model
usageModel

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state
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Modularity and Composition

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[c since 
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[else]

Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a
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Failure analysis rules
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r

[c since 
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
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r
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Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules
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<<ExecutionModel>>r

w
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Self-repair.
Analyze OK Repair
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w
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r

r
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r
a
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Modularity and Composition
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Modularity and Composition
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Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

Two example solutions:
1 Linearizing Complete Feedback Loops
2 Linearizing Analysis and Planning Steps of Feedback Loops

by using complex model operations and shared runtime models
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(1) Linearizing Complete Feedback Loops
Self-repair

M

A P

EStart Effected

Analyzed

Self-optimization

M

A P

EStart

Analyzed

Analyze

Effected

M

A P

E M

A P

E

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr
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(2) Linearizing Analysis and Planning Steps
Shared M+E

M E

Self-repair

A P
Analyzed

AP

Planned

Self-optimization

AP

Planned
A P

Analyzed

A P A P

M E

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Effect
<<Execute>>

done

Effected

r

r

Start

Self-repair.AP
Planned

Self-optimization.AP
Analyzed

Planned

Analyzed[else]

[c since 
'Self-repair.AP.Planned'

= 0]

r w

r
w
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Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since 
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System
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Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since 
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System
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Execution Semantics and Interpreter

Focus
• Coordinated execution of operations (adaptation steps)
• Handling input/output models for these operations

Simple approach
• A megamodel as a singleton
• Execution information

• count and time

• Expression language for conditions
• Synchronous, single-threaded execution

Implementation
• EMF, JavaCC
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Discussion: Executable Megamodels (I)

• Explicit specification of feedback
loops by megamodels

• Modularity: individual adaptation
steps and feedback loops

• Composing steps to a feedback loop
• Composing multiple feedback loops

• Abstraction level similar to software architectures
• Reusing implementations of adaptation steps
• Coordinated interplay and execution of such steps
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up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since 
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

A P

M

A P

E M

A P

E

M

A P

E M

A P

E



Discussion: Executable Megamodels (II)

• Executable specifications kept explicit and alive at runtime
→ Runtime megamodels

• Interpreter: flexibility to cope with
megamodel changes at runtime

• Megamodels as reflection models for
feedback loops

• Hierarchical control/structures
• No specific sensors and effectors required

 Supports the design/engineering of self-adaptive systems
 Eases development/implementation efforts
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Related Work

Frameworks [Garlan et al., 2004, Schmidt et al., 2008]

• Focus on reducing development efforts for single feedback loops
• Rather prescribe static solutions for feedback loops

Explicit Feedback Loops
• Abstraction level of controllers, no runtime support [Hebig et al., 2010]

• Formal modeling and analysis of design alternatives for
self-adaptive systems, no runtime support [Weyns et al., 2010]

Multiple, Interacting Feedback Loops
• Implementation framework for distributed self-adaptive systems

[Vromant et al., 2011]

Modeling Languages
• Flowcharts and dataflow diagrams, like UML Activities
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Conclusion and Future Work

Conclusion
• Modeling language for feedback loops based on runtime models

(Adaptation steps, single and multiple feedback loops)

• Executable megamodels kept alive at runtime
• Flexibility to dynamically change megamodels (interpreter)
• Leverages advanced solutions, like layered feedback loops

Future Work
• Elaborate the modeling language

• Formal interface definitions for models and model operations
• Analysis of megamodels

• Discuss restrictions on the execution semantics (concurrency)
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