
A Language for Feedback Loops in Self-Adaptive
Systems: Executable Runtime Megamodels

7th Intl. Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2012)
Zurich, Switzerland, June 4-5, 2012

Thomas Vogel and Holger Giese

System Analysis and Modeling Group
Hasso Plattner Institute

University of Potsdam, Germany

Engineering Self-Adaptive Software

• Internal vs. external approach
[Salehie and Tahvildari, 2009]

• Feedback Loop (MAPE-K)
[Kephart and Chess, 2003]

• Multiple, flexible feedback loops
• Different concerns

[Vogel et al., 2010a, Vogel and Giese, 2010]
• Hierarchical structures

[Hestermeyer et al., 2004,
Kramer and Magee, 2007]

• Uncertainty [Esfahani and Malek, 2012]

• Models@run.time for K and MAPE

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 2

Adaptation Engine

Adaptable Software

Interplay of Runtime Models?

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 3

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType

t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type
++

++

++
++

++

++

++

++

++

if self.name = ’TShop’
then self.components.size() <= 1
else true
endif

name = InvalidTX

 f1:

name = IWarehousing

i2:Interface

Failure

name = InvalidTX

 f3:

failures

Failure

name = InvalidTX

 f2:failures Failure

failures

name = Shop

c1:Component
name = Warehousing

c2:Component

name = IWarehousing

i1:Interface
name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires
provides

--
--

++
++

provides

++

--

?⇒

Specifying and Executing Feedback Loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops
 Adaptable feedback loops

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Executable Runtime Megamodels

Specifying and Executing Feedback Loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops
 Adaptable feedback loops

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 4

Executable Runtime Megamodels

Megamodels

Definition (Megamodel)
A megamodel is a model that contains models and relations by means
of model operations between those models.

• Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

• “Toward Megamodels at Runtime” [Vogel et al., 2010b]

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 5

An Example: Self-repair

Analyzed

Start Effected

Legend
(concrete syntax) Final state

Initial state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 6

An Example: Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

t1Model
Operation t2Final state

Initial state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 6

An Example: Self-repair

[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax) [condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 6

An Example: Self-repair

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 6

An Example: Self-repair

r

w

r a

r

r
a

r

r

w

r

r

r

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model
usageModel

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 6

Modularity and Composition

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[else]

Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 7

Analysis step
for self-repair

Self-repair

Complex model
operations
Shared runtime
models

Modularity and Composition

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[else]

Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 7

Analysis step
for self-repair

Self-repair

Complex model
operations

Shared runtime
models

Modularity and Composition

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[else]

Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 7

Analysis step
for self-repair

Self-repair

Complex model
operations

Shared runtime
models

Modularity and Composition

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[else]

Analyze

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 7

Analysis step
for self-repair

Self-repair

Complex model
operations

Shared runtime
models

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Analyzed

Self-repair.
Analyze OK Repair

<<Plan>>
repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

Start

Failures

r
a

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

Two example solutions:
1 Linearizing Complete Feedback Loops
2 Linearizing Analysis and Planning Steps of Feedback Loops

by using complex model operations and shared runtime models

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 8

(1) Linearizing Complete Feedback Loops
Self-repair

M

A P

EStart Effected

Analyzed

Self-optimization

M

A P

EStart

Analyzed

Analyze

Effected

M

A P

E M

A P

E

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 9

(1) Linearizing Complete Feedback Loops
Self-repair

M

A P

EStart Effected

Analyzed

Self-optimization

M

A P

EStart

Analyzed

Analyze

Effected

M

A P

E M

A P

E

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 9

(2) Linearizing Analysis and Planning Steps
Shared M+E

M E

Self-repair

A P
Analyzed

AP

Planned

Self-optimization

AP

Planned
A P

Analyzed

A P A P

M E

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Effect
<<Execute>>

done

Effected

r

r

Start

Self-repair.AP
Planned

Self-optimization.AP
Analyzed

Planned

Analyzed[else]

[c since
'Self-repair.AP.Planned'

= 0]

r w

r
w

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 10

(2) Linearizing Analysis and Planning Steps
Shared M+E

M E

Self-repair

A P
Analyzed

AP

Planned

Self-optimization

AP

Planned
A P

Analyzed

A P A P

M E

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

Effect
<<Execute>>

done

Effected

r

r

Start

Self-repair.AP
Planned

Self-optimization.AP
Analyzed

Planned

Analyzed[else]

[c since
'Self-repair.AP.Planned'

= 0]

r w

r
w

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 10

Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Hierarchy of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 11

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Execution Semantics and Interpreter

Focus
• Coordinated execution of operations (adaptation steps)
• Handling input/output models for these operations

Simple approach
• A megamodel as a singleton
• Execution information

• count and time

• Expression language for conditions
• Synchronous, single-threaded execution

Implementation
• EMF, JavaCC

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 12

Met
am

odel

Discussion: Executable Megamodels (I)

• Explicit specification of feedback
loops by megamodels

• Modularity: individual adaptation
steps and feedback loops

• Composing steps to a feedback loop
• Composing multiple feedback loops

• Abstraction level similar to software architectures
• Reusing implementations of adaptation steps
• Coordinated interplay and execution of such steps

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 13

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

A P

M

A P

E M

A P

E

M

A P

E M

A P

E

Discussion: Executable Megamodels (II)

• Executable specifications kept explicit and alive at runtime
→ Runtime megamodels

• Interpreter: flexibility to cope with
megamodel changes at runtime

• Megamodels as reflection models for
feedback loops

• Hierarchical control/structures
• No specific sensors and effectors required

 Supports the design/engineering of self-adaptive systems
 Eases development/implementation efforts

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 14

M

A P

E

M

A P

EM

A P

E

Related Work

Frameworks [Garlan et al., 2004, Schmidt et al., 2008]

• Focus on reducing development efforts for single feedback loops
• Rather prescribe static solutions for feedback loops

Explicit Feedback Loops
• Abstraction level of controllers, no runtime support [Hebig et al., 2010]

• Formal modeling and analysis of design alternatives for
self-adaptive systems, no runtime support [Weyns et al., 2010]

Multiple, Interacting Feedback Loops
• Implementation framework for distributed self-adaptive systems

[Vromant et al., 2011]

Modeling Languages
• Flowcharts and dataflow diagrams, like UML Activities

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 15

Conclusion and Future Work

Conclusion
• Modeling language for feedback loops based on runtime models

(Adaptation steps, single and multiple feedback loops)

• Executable megamodels kept alive at runtime
• Flexibility to dynamically change megamodels (interpreter)
• Leverages advanced solutions, like layered feedback loops

Future Work
• Elaborate the modeling language

• Formal interface definitions for models and model operations
• Analysis of megamodels

• Discuss restrictions on the execution semantics (concurrency)

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 16

References I
[Barbero et al., 2007] Barbero, M., Fabro, M. D., and Bézivin, J. (2007).

Traceability and Provenance Issues in Global Model Management.
In Proc. of 3rd Workshop on Traceability (ECMDA-TW 2007), pages 47–55.

[Bézivin et al., 2003] Bézivin, J., Gerard, S., Muller, P.-A., and Rioux, L. (2003).
MDA components: Challenges and Opportunities.
In First Intl. Workshop on Metamodelling for MDA, pages 23–41.

[Bézivin et al., 2004] Bézivin, J., Jouault, F., and Valduriez, P. (2004).
On the Need for Megamodels.
In Proc. of the Workshop on Best Practices for Model-Driven Software Development.

[Brun et al., 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H. M., Kienle, H. M., Litoiu, M., Müller, H. A., Pezzè, M., and Shaw, M. (2009).
Engineering Self-Adaptive Systems through Feedback Loops.
In Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages 48–70. Springer.

[Esfahani and Malek, 2012] Esfahani, N. and Malek, S. (2012).
Uncertainty in Self-Adaptive Software Systems.
In Software Engineering for Self-Adaptive Systems 2, LNCS. Springer.
to appear.

[Favre, 2005] Favre, J.-M. (2005).
Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories of The Fidus Papyrus and of The Solarus.
In Language Engineering for Model-Driven Software Development, number 04101 in Dagstuhl Seminar Proc. IBFI.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54.

[Hebig et al., 2010] Hebig, R., Giese, H., and Becker, B. (2010).
Making Control Loops Explicit When Architecting Self-Adaptive Systems.
In Proc. of the 2nd Intl. Workshop on Self-Organizing Architectures (SOAR 2010), pages 21–28. ACM.

[Hestermeyer et al., 2004] Hestermeyer, T., Oberschelp, O., and Giese, H. (2004).
Structured Information Processing For Self-optimizing Mechatronic Systems.
In Proc. of the 1st Intl. Conference on Informatics in Control, Automation and Robotics (ICINCO 2004), pages 230–237. INSTICC Press.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. (2003).
The Vision of Autonomic Computing.
Computer, 36(1):41–50.

[Kramer and Magee, 2007] Kramer, J. and Magee, J. (2007).
Self-Managed Systems: an Architectural Challenge.
In Future of Software Engineering (FOSE 2007), pages 259–268. IEEE.

[Müller et al., 2008] Müller, H. A., Pezzè, M., and Shaw, M. (2008).
Visibility of control in adaptive systems.
In Proc. of the 2nd Intl. Workshop on Ultra-large-scale Software-intensive Systems (ULSSIS 2008), pages 23–26. ACM.

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 17

References II

[OMG Specification, 2011] OMG Specification (2011).
OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009).
Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):1–42.

[Schmidt et al., 2008] Schmidt, D., White, J., and Gokhale, A. (2008).
Simplifying autonomic enterprise Java Bean applications via model-driven engineering and simulation.
Software and Systems Modeling, 7(1):3–23.

[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010).
Adaptation and Abstract Runtime Models.
In Proc. of the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010), pages 39–48. ACM.

[Vogel et al., 2010a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010a).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In MoDELS 2009 Workshops, volume 6002 of LNCS, pages 124–139. Springer.

[Vogel et al., 2010b] Vogel, T., Seibel, A., and Giese, H. (2010b).
Toward Megamodels at Runtime.
In Proc. of the 5th Intl. Workshop on Models@run.time, volume 641 of CEUR Workshop Proceedings, pages 13–24. CEUR-WS.org.
(best paper).

[Vogel et al., 2011] Vogel, T., Seibel, A., and Giese, H. (2011).
The Role of Models and Megamodels at Runtime.
In MoDELS 2010 Workshops, volume 6627 of LNCS, pages 224–238. Springer.

[Vromant et al., 2011] Vromant, P., Weyns, D., Malek, S., and Andersson, J. (2011).
On interacting control loops in self-adaptive systems.
In Proc. of the 6th Intl. Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), pages 202–207. ACM.

[Weyns et al., 2010] Weyns, D., Malek, S., and Andersson, J. (2010).
FORMS: a formal reference model for self-adaptation.
In Proc. of the 7th Intl. Conference on Autonomic Computing (ICAC 2010), pages 205–214. ACM.

T. Vogel, H. Giese | Executable Runtime Megamodels | SEAMS 2012 | June 4-5, 2012 18

	Motivation
	Megamodels
	Single Feedback Loops
	Multiple Feedback Loops
	Hierarchy of Feedback Loops

	Execution Semantics and Interpreter
	Discussion
	Related Work
	Conclusion and Future Work
	References

