
Technische Berichte Nr. 27

des Hasso-Plattner-Instituts für  
Softwaresystemtechnik  
an der Universität Potsdam

Proceedings of the 3rd 

Ph.D. Retreat of the 

HPI Research School 

on Service-oriented 

Systems Engineering
hrsg. von 
Christoph Meinel, Hasso Plattner, Jürgen Döllner, 
Mathias Weske, Andreas Polze, Robert Hirschfeld,  
Felix Naumann, Holger Giese



 



Technische Berichte des Hasso-Plattner-Instituts für 
 Softwaresystemtechnik an der Universität Potsdam 



 



Technische Berichte des Hasso-Plattner-Instituts für  
Softwaresystemtechnik an der Universität Potsdam | 27 

 
 
 
 
 
 
 
 
 

 
 

Proceedings of the 3rd Ph.D. Retreat of the  
HPI Research School on Service-oriented 

Systems Engineering 
 
 

herausgegeben von 
 

Christoph Meinel 
 Hasso Plattner 
Jürgen Döllner 

Mathias Weske 
Andreas Polze 

 Robert Hirschfeld 
Felix Naumann 

 Holger Giese 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Universitätsverlag Potsdam 



Bibliografische Information der Deutschen Nationalbibliothek 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der  
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 
http://dnb.d-nb.de/ abrufbar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universitätsverlag Potsdam 2009 
http://info.ub.uni-potsdam.de/verlag.htm 
 
Am Neuen Palais 10, 14469 Potsdam 
Tel.: +49 (0)331 977 4623 / Fax: 4625 
E-Mail: verlag@uni-potsdam.de 
 
Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für 
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben 
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik 
an der Universität Potsdam.  
 
Das Manuskript ist urheberrechtlich geschützt.  
Druck: docupoint GmbH Magdeburg 
 
ISSN 1613-5652 
ISBN 978-3-940793-81-2 
 
Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam: 
URL http://pub.ub.uni-potsdam.de/volltexte/2009/2914/ 
URN urn:nbn:de:kobv:517-opus-29148 
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29148] 

mailto:verlag@uni-potsdam.de�


Contents 
 

 

 

1. Extending the WPVS Visualization and Interaction 

Capabilities 

Benjamin Hagedorn 

2. Optimizing Virtualization Concepts in (Guest-) 

Operating Systems 

Michael Schöbel 

3. Implementation of a Service Platform to Evaluate 

Virtual Team Communication 

Matthias Uflacker 

4. Modelling Security Configurations for Service-

oriented Architectures 

Michael Menzel 

5. A Flexible Live Inspection Framework 

Alexander Schmidt 

6. Active Information Graphs 

Hagen Overdick 

7. FMC-QE – Hierarchies, Transformations and Rules 

Stephan Kluth 

8. Identity Management for Cross-Organizational SOA 

Ivonne Thomas 

  



 

 

 

9. Taking Trust Management to the next level: Analysis 

and Formalization 

Rehab AlNemr 

10. Automated Service Composition for Minimal Goals 

Harald Meyer 

11. Business Process Model Abstraction and Flexible 

Process Graph 

Artem Polyvyanyy 

12. ContextJ – Context-oriented Programming for Java 

Malte Appeltauer 

13. Modelling and Verification of Self-adaptive Service-

oriented Systems 

Basil Becker 

14. On a Model for a Service Database 

Mohammed AbuJarour 

15. Towards the Automatic Generation of Effective, 

Map-Like Visual Representations from 

Heterogeneous Geodata in a Service-oriented 

Infrastructure 

Dieter Hildebrandt 

 



Extending the WPVS Visualization and
Interaction Capabilities

Benjamin Hagedorn

Benjamin.Hagedorn@hpi.uni-potsdam.de

A Web Perspective View Service (WPVS) provides images of perspective views of 3D
geovirtual environments (3DGeoVE) which can be displayed by the service consumer
without client-based 3D rendering. Such visualizations can be easily accessed by sim-
ple clients such as mobile devices and can be integrated into processes, e.g., for city
planning or ad-hoc threat response applications. So far, the WPVS does not provide
any interaction or navigation capabilities, which restricts its degree of usability. To in-
crease the spectrum of the WPVS functionality and, thus, its usability and applicability,
we present the concept of an extended, smart WPVS. The proposed extensions pro-
vide meta information for generated views and more effective 3D interaction and 3D
navigation for service-based complex 3D geovirtual environments.

1 Introduction

The amount of collected geodata, it’s complexity, and it’s usages are constantly grow-
ing. Geodata comprises spatial, thematic, and temporal information and can be applied
in various domains, applications, and systems. For these systems and for the sustain-
ability of the collected geodata, interoperability is a crucial issue. This includes aspects
such as a common understanding of geoinformation content and quality, geodata de-
scription, and geodata access. The Open Geospatial Consortium represents a jointly
international effort targeting at geoinformation interoperability. In varous initiatives, the
members of the OGC reached consensus on the format of data and several web ser-
vices for accessing, processing, and visualizing geodata.

Geovisualization plays an important role in the chain of geoinformation usage. In
the field of two-dimensional geoinformation, visualization is mainly provided by the Web
Map Service (WMS) [13]. It allows for retrieving map-like views of various geodata. By
the help of Styled Layer Descriptors (SLD) and Symbology Encoding (SE) [14] this
visualization can be styled and adjusted according to the service consumers’ require-
ments. So, from the same data basis, e.g., a road map and a map of trails can be
generated, which contain and emphasize different elements and are specific for differ-
ent user groups and usage scenarios.

The growing importance of three-dimensional geoinformation has been reflected by
the revision of geodata description standards (GML3), but also by the development of
3D portrayal services. The key 3D portrayal services in the OGC’s geoservice family
are the Web 3D Service (W3DS) and the Web Perspective View Service (WPVS) [10,

Fall 2008 Workshop 1-1



Extending the WPVS Visualization and Interaction Capabilities

Figure 1: Web Perspective View service visualizing city planning alternatives in Potsdam.

12]. Both services have not become OGC standards yet. The W3DS has the status
of an OGC discussion paper and the WPVS is still an internal draft. The current OGC
web services initiative (OWS-6) brings these 3D portrayal services back into focus.

We are participating in a 3D portrayal initiative within the OGC which resumes the
work at these services, reviews the existing specification efforts and aims at creating
a 3D portrayal services family. As part of this initiative, we want to extend the WPVS
by visualization and interaction functionality based on state-of-the-art computer graph-
ics architectures. This report describes the conceptual foundations for extending the
WPVS and derives several new functionality from investigating typical application sce-
narios for 3D portrayal.

2 3D Portrayal Services

2.1 Relevance of 3D Portrayal

For 2D portrayal, the WMS represents the ”work horse” for interoperable visualization of
2D maps. The service consumer chooses the information layers to include in the map-

1-2 Fall 2008 Workshop



2 3D PORTRAYAL SERVICES

like visualization and may adjust the visual appearance of the 2D features. Additionally,
the WMS allows for requesting type descriptions of the represented features and for
retrieving additional information of a feature at a specific image position.

Several activities within the OGC aim at the interoperable description of 3D geoin-
formation. Those are, e.g., GML3 (which includes three-dimensional features) and
CityGML (which is a GML3 profile for describing regional landscape models and city
models). For the portrayal of this 3D geoinformation, W3DS and WTS (which will be
replaced by the WPVS) represent primary specifications. Complementing the inter-
operable 2D map generation and access by WMS, 3D portrayal becomes more and
more important. Compared to 2D maps, perspective views can improve the perception
and interpretation of complex spatial information: They show the height of geoobjects,
included facades hint on the usage of buildings, etc. Perspective views become a gen-
erally known and accepted medium for spatial information. Nevertheless, there are no
standard approaches widely used for 3D geovisualization.

2.2 The OGC Portrayal Model

The OGC defines portrayal as information presentation to the human – portrayal ele-
ments may be either images or display elements. Corresponding to this, the OGC de-
fines providing portrayal services and consuming application services as part of their
OWS service framework [11]. Application services may be either application servers,
or application clients. The application of geoservices for geovisualization raises the
question of the separation of rendering concerns between service provider (portrayal
service) and service consumer (application service), i.e., between server and clients.

The OGC portrayal model (Fig. 2) can also be applied to 3D portrayal. Compo-
nents of a 3D portrayal services family are arranged along that pipeline. Major aspects
of these services and specifications aim at the generation of display elements (e.g., a
scene graph), rendering images, and giving the possibility to influence the visual ap-
pearance of features by styling. While generating and serving display elements leads
to client-site rendering, generating images represents fully server-side rendering. The
OGC Portrayal model allows for three segmentations which are described in [2]:

• Thick Client / Thin Server: The client request selects data from the server and
performs the remaining steps of the geovisualization pipeline. This requires ap-
propriate computer graphics capabilities of the client. A possible geoservice par-
ticipating in this scenario is a WFS.

• Medium Client / Medium Server: The service provides computer graphical rep-
resentations (e.g., a VRML scene graph) to the client which has to synthesize
images. Again the client needs computer graphics capabilities for rendering im-
ages. In this scenario the style of the resulting visualization is more in concern of
the server. The W3DS is a possible participant in this scenario.

• Thin Client / Thick Server: All the visualization steps are performed by the server.
The server defines the final visualization and the client must only provide capa-
bilities for displaying the visualization to the end-user.

Fall 2008 Workshop 1-3



Extending the WPVS Visualization and Interaction Capabilities

Figure 2: The OGC portrayal model. [11]

2.3 The Web 3D Service

The W3DS [12] generates computer graphical representations of 3D landscape and
city models, which are streamed to the service consumer in 3D graphics formats (e.g.,
VRML, X3D, COLLADA). This graphics data can include appearance information but
is mostly not capable of transferring thematic information. The computer graphical
representations, which could be arranged in a 3D scene graph, have to be processed
and rendered by a W3DS client using the rendering techniques of its choice. The
W3DS client is a rich client allowing for an interactive 3DGeoVE including real-time
navigation.

A full W3DS and a web-based client have been implemented at the University of
Bonn. [1] It provides exploration capabilities for the city of Heidelberg. The client is
implemented as a Java Webstart application which installs and retrieves the computer
graphical representations from the server. For rendering high detailed and high-quality
visualizations of the presented 3DGeoVE, modern 3D graphics acceleration hardware
and high bandwidth are required.

2.4 The Web Perspective View Service

The WPVS aims generates images of perspective view of a 3D scene and sends this
to the service consumer. With this approach, we can set up a dedicated server with
appropriate 3D hardware, i.e., we don’t have to deal with incompatible, diverse 3D hard-
ware configurations on the client-side. Users get access to arbitrary complex geovirtual
environments with high-quality graphics output and without having to install specialized
3D applications or streaming complex 3D data – only images are transferred. This
a) omits incompatibility problems of 3D renderer systems and hardware, b) reduces
administration and maintenance costs, and c) allows for a simple integration of 3D
geovisualizations into complex workflows. The WPVS defines four operations (see Ta-

1-4 Fall 2008 Workshop



2 3D PORTRAYAL SERVICES

Table 1: WPVS operations (from [10]).

Operation Description

GetCapabilities The mandatory GetCapabilities operation allows clients to retrieve
service metadata from a server. The response to a GetCapabil-
ities request is an XML document containing service metadata
about the server, including metadata about the data available from
that server.

GetView The WPVS GetView operation allows clients to obtain a specified
subset of identified layers from a WPVS server. In addition, the
GetView operation allows the client to select the perspective view
of the retrieved layers and the format.

GetDescription
(optional)

The GetDescription operation allows clients to retrieve the de-
scriptions of one or more identified datasets or styles.

GetLegendGraphic
(optional)

The GetLegendGraphic operation allows a client to retrieve a
graphic containing a map legend for an identified dataset and
style. Implementation of this operation is optional by WPVS
servers.

ble 1); the GetView and GetCapabilities options are mandatory. Fig. 3 contains an
example of a WPVS GetView request.

2.5 Comparison of WPVS and W3DS

Table 2 briefly compares the W3DS and WPVS. From these characteristics different
usages of both services follow. Using the W3DS together with a powerful rendering
client allows for real-time navigation and interaction in the 3D scene. For the provision
of complex scenes by W3DS a high bandwidth is needed.

The WPVS can be used by more simple clients and in situations where available
bandwidth is low. Navigation in a base WPVS is step-by-step and far from real-time
interaction. We believe that this drawback can be attenuated by intelligent loading and
display strategies (e.g., image preloading or cube map generation).

The WPVS encapsulates the hole rendering process and provides simple portrayal
functionality by generating and delivering images; the W3DS provides 3D scene graphs
dedicated for consumer-side rendering. Thus, in a spatial data infrastructure providing

http://myserver.org/wpvs?SERVICE=WPVS&VERSION=1.0&REQUEST=GetView&

CRS=EPSG:26912&POI=424994.4,4513359.9,1550.0&PITCH=30&YAW=30&ROLL=0&

DISTANCE=1000&AOV=60&BOUNDINGBOX=424585.3,4512973.8,425403.5,4513746.0&

ELEVATIONMODEL=Default&WIDTH=640&HEIGHT=480&OUTPUTFORMAT=image/jpeg&

LA YE RS = Ci ty ,R i ve r& ST Y LE S= de f au lt &E X CE PT ION FO RM AT = IN IM AG E

Figure 3: Example of a WPVS v.1.0.0 URL-encoded GetView request.

Fall 2008 Workshop 1-5



Extending the WPVS Visualization and Interaction Capabilities

Table 2: Comparison of the WPVS and W3DS.

WPVS W3DS

Transferred data Imagery General scene graph

Transmission load Depends on type, quality, Depends on the size of
and size of imagery the 3D scene

Server-side complexity High High

Client-side complexity Low High

Resulting visual quality Determined by the service Depends on the service consumer
provider rendering capabilities

3D portrayal, the WPVS could act as a consumer of the W3DS. Acclaiming that, there
should be a large overlapping in the WPVS and W3DS service interfaces.

A major difference between WPVS and W3DS is in the application of optimization
strategies for rendering. The W3DS rendering client can implement strategies such as
culling, caching, and level-of-detail mechanisms and can take advantage of the navi-
gation and interaction state. In contrast, the WPVS is stateless and does not provide
any session management functionality. Thus, the WPVS rendering system can not
make any assumptions about the data to load and render. In worst case, an underlying
(naive) rendering system would have to load and render different data for each single
WPVS GetView request.

3 WPVS Extension Requirements

3.1 Relevant 3D Portrayal Functionalities

The functionalities of a 3D portrayal system (WPVS, W3DS) can be grouped according
to the following functional dimensions:

• Information, which is included within and represented by the generated visual-
ization. An essential part of this information are, e.g., images of the 3DGeoVE.
The WPVS arranges information content by layers, which must be chosen by
the WPVS consumer for being included in the finally rendered image. Beyond
the portrayal of real world geometry, additional spatial and non-spatial (but geo-
referenced) geodata could be included in the visualization. Fig. 1 shows an ex-
ample of a 3DGeoVE including plat information. Even non-visual visualizations
could be integrated, e.g., sounds emphasizing the characteristics of a scene.

• Styling comprises the information aiming at influencing the visual appearance of
the rendered images. On a technical level, it describes the mapping of geoinfor-
mation to computer graphical elements, regarding visual variables such as shape,
size, orientation, color, and texture. For example, the OGC defines the SE styling
specification, which can be applied, e.g., with a WMS request. For 3D portrayal

1-6 Fall 2008 Workshop



3 WPVS EXTENSION REQUIREMENTS

Table 3: WPVS operations grouped by their main type of 3D portrayal functionality.

Type Functionality Scenariosa

Information

Show the surrounding of a site 2.1
Visualize underground geodata 1.6
Generate a video tour passing specific locations 5.4
Create a set of views along a path 6.1
Retrieve additional information for a scene object. 1.1, 1.4
Enrich the scene by further scene objects 4.2, 4.3
Calculate and display the visibility of objects 3.5
Inspect the inside of objects 3.4, 4.3
Measure distances and size 2.3

Styling
Color scene objects according to attribute values 2.2, 3.2
Use a styling tool for defining the scene appearance 5.2

Interaction

Select a scene object by picking 1.1, 1.2, 1.4, 1.5
Annotate scene objects by text or sketch 1.2, 1.5
Use specific interactions for information retrieval 3.3
Use 3D portrayal on mobile devices 4.1
Use 3D portrayal in a web browser 5.1

aNumbering according to the scenarios in appendix A.

no styling specifications exist, yet. Recently, Neubauer and Zipf [9] developed a
3D extension for SLD and introduced this to the OGC specification process.

• Interaction is the user-centered process of operating the information system, e.g.,
changing the general information content, investigating the scene by navigation,
and investing scene objects by retrieving specific information.

A specific portrayal functionality may not only regard a single dimension, but is po-
sitioned in the functional space set up by these dimensions. E.g., retrieving information
about a specific building means to interact with the scene (or it’s image, e.g., by pick-
ing a building and choosing the interesting information) and to visualize the retrieved
information according to a specified styling description.

3D portrayal plays a role in various application domains and within those in various
application scenarios. As a basis for specifying 3D portrayal capabilities within the OGC
standardization process, [8] lists selected scenarios in several application domains,
e.g., in the field of civil service, business development, and tourism. Appendix A lists
these application scenarios in more detail. The list is not complete but gives an idea of
what might be possible by the help of 3D portrayal services.

Table 3 groups the functionalities, which can be derived from these application sce-
narios. The functionalities are often relevant in more than one application domain and
slightly overlap.

Fall 2008 Workshop 1-7



Extending the WPVS Visualization and Interaction Capabilities

3.2 General Requirements for WPVS-Based Portrayal

According to the 3D portrayal model, the separation of concerns is important when
extending the WPVS. The following general requirements for 3D portrayal basing on
server-side rendering could be formulated.

• Support simple clients: The main benefit of server-side rendering is to omit client-
side rendering capabilities, e.g., high-end graphics hardware. The client must be
able to easily request a 3D portrayal service and to use the generated visualiza-
tion.

• Provide high quality visualizations: Even with simple clients, the visualizations
should be of high quality. This could mean to retrieve aesthetic images of appro-
priate resolution from the portrayal service and to interact in a smart and effective
manner for exploring the 3DGeoVE.

• Keep service interface simple: For allowing for the easy use of the portrayal ser-
vice, the service interface should be kept simple. So it should contain a little
number of parameters or, at least, provide default values. This would lead to an
easy integration within applications and systems for supporting workflows.

• Keep transmission load low: For retrieving a specific functionality, the number of
service requests should be small. Additionally, the used bandwidth should be
kept low. E.g., rendered images should be provided in appropriate resolutions
and size.

• Support user assistance: Smart user interfaces allow for easy use of the 3D
portrayal. User interface functionality should be simple, obvious, familiar, safe.
Intelligent clients and smart client-server interaction strategies could reduce the
time needed for achieving a specific goal, and also reduce rendering load and
bandwidth usage.

3.3 Limitations of the WPVS

The interaction capabilities of the WPVS are restricted to the generation of perspective
views. In particular, it does not provide advanced interaction capabilities or information
retrieval beyond RGB images.

Further on, the WPVS does not address efficient and goal-oriented navigation (in-
cluding wayfinding and motion) and supports only a point of interest (POI)-based cam-
era specification: the camera position is described by polar coordinates relative to a
geospatial position, the POI. Consumer-side service proxies (e.g., the WPVS applica-
tion client) are in charge of providing appropriate navigation functionalities and map
those to the camera configuration.

The WPVS GetView request defines a SLD parameter which is intended to ref-
erence or contain a styled layer description. As far as we know, there is no WPVS
implementation which takes advantage of this parameter. Furthermore, the current
SLD/SE specification does not allow for styling three-dimensional features.

1-8 Fall 2008 Workshop



4 SUGGESTIONS FOR EXTENDING THE WPVS

4 Suggestions for Extending the WPVS

4.1 Enhanced Styling for 3D Portrayal and WPVS

A specific visual appearance of the portrayal output is achieved by styling functional-
ity. As described above, the OGC styling specifications, SLD and SE, do not consider
the styling of three-dimensional features. Neubauer et al. [9] extended the SE for 3D
styling and implemented it for a W3DS. These additions extend the existing SE sym-
bolizers (point, line, polygon), add symbolizers for solids and surfaces, include external
3D objects, support billboards, lines as cylinders, introduce material descriptions and
different local shading models, and support rotations. A W3DS user can edit a styling
description and use this with requesting a scene from the W3DS. This styling infor-
mation is used for generating the scene graph representation which is returned to the
requester (e.g., as VRML or X3D structure). The complex rendering client uses this
information for synthesizing the images.

Beyond these extended SE styling capabilities, it is up to the rendering client to im-
plement and provide additional rendering techniques and effects. Table 4 lists several
rendering techniques, which are relevant for 3DGeoVEs and would have to be imple-
mented and provided by the WPVS. For requesting these appearances, additional and
more abstract styling definitions than those in the planned SE extension are required
(e.g., for describing solar altitude or cloudiness).

4.2 Cartographic Geovisualizations

Cartography deals with the mapping of real world features onto graphical representa-
tions considering specific users, specific purposes, a required map scale, or limited
space of the presentation media. It mainly aims at the production of highly legible and
effective maps.

Generalization represent the main cartographic method for reaching this aim. It
comprises several generalization operations such as selection, simplification, combi-
nation, enhancement. Graphically, these techniques, e.g., influence the shape and
geometric complexity of a geographic feature representation, its position, its size, as

Figure 4: Examples for rendering styles and effects relevant for 3DGeoVE: ambient occlusion
simulating daylight (left) and sun, clouds, atmospheric effects, and water shading (right).

Fall 2008 Workshop 1-9



Extending the WPVS Visualization and Interaction Capabilities

Table 4: Advanced rendering techniques for 3D geovirtual environments.

Rendering Styles &
Techniques

Description

Global illumination Rendering techniques which produce a more natural light-
ing regarding scene objects interferences. Additionally, it
helps to interpret and understand the image.

Water rendering Using environment mapping, water surfaces mirror the sur-
rounding features or sky. Waves on the water can make the
image more authentic.

Sun and cloud rendering Sun and cloud do not only support the authenticity of a gen-
erated image but can also transfer additional relevant infor-
mation such as weather conditions or day time.

Depth of field Before and behind a specific depth range, the scene ob-
jects get blurred. The sharp scene objects get more fo-
cused.

Focus & context lenses Within a virtual lense area (the focus area), specific infor-
mation are displayed, e.g., geo-referenced thematic infor-
mation such as geological data.

NPR rendering Non-photorealistic rendering is the stylization of the ap-
pearance of scene objects within the 3DGeoVE. It can in-
clude, e.g., color quantization and edge enhancement. So,
NPR can provide facade generalization and can support in-
formation communication.

well as it color or texture.
In general, cartographic principles and methods also apply for 3D perspective visu-

alizations. In particular, 3D visualizations mostly contain different scale levels, which is
different from 2D maps: in a perspective view, scene part close to the virtual camera
have a larger scale than those that are far away. Without an appropriate generalization
techniques, these far away scene parts appear as pixel mush and, thus, lack legibility.

Further on, in 3D perspective views, vertical surfaces become visible and provide
essential information, which is not the case in 2D maps. For example, a building facade
could hint on the type, usage, age, or state of the building; windows and doors could
serve as scale defining elements indicating the building size. In 3D virtual environ-
ments, these surface information are often given by textures, recorded, e.g., by aerial
photography. Non-photorealistic rendering could be applied for the generalization of
these textures, as it could reduce the overall texture information, but emphasize the
relevant features of a texture, and improve the legibility. Fig. 5 illustrates the examples
of geometric generalization and texture simplification for 3D city models.

For the WPVS the consideration of cartographic visualization would mean to allow
the service requester to directly specify the visual appearance of the generated image
of the perspective view or to indirectly specify the appearance by describing the re-

1-10 Fall 2008 Workshop



4 SUGGESTIONS FOR EXTENDING THE WPVS

Figure 5: Geometrical generalization (left [4]) and texture generalization (right [3]) for a virtual
3D city model.

quirements of the generated map, which then has to be evaluated by the WPVS for
deriving appropriate scale levels and accessing or generating appropriate generalized
data.

4.3 3D Annotations

The annotation of a 3DGeoVE by text or symbols is an important aspect. It allows, e.g.,
for the integration of meta information or comments. To ensure high legibility, annota-
tions have to be embedded such that they avoid occlusions among themselves and
with geospatial objects of the scene. As described in [7] annotations can be integrated
within the rendering process by providing a so-called depth image by WPVS addition-
ally to the RGB image. Together with the camera information it serves as input for a
processing service producing annotated images by synthesizing an annotation image
and blending this with the WPVS produced RGB image.

4.4 Object Information

The WPVS could also support emphasizing and accessing object information that can
not be directly descried from the common object visualization (in photorealistic or non-
photorealistic style). This additional information could include general information (e.g.,
object categories, identifiers, or names) as well as domain-specific information (e.g.,
building height, floor space ration, or other BIM-related data). The representation of this
information could be either dedicated to the user or could be evaluated and facilitated
by a client application. This functionality corresponds to the GetGeature operation of
the WMS, which allows for retrieving additional object information of features visible in
a 2D map.

4.5 Analysis Functionality

The WPVS could provide simple measuring functionalities, which could be, e.g., mea-
suring an area or measuring distances of a point to camera or between several points
in the image. This requires interaction capabilities of the WPVS, which had to process

Fall 2008 Workshop 1-11



Extending the WPVS Visualization and Interaction Capabilities

north

YAWPITCH

DISTANCE

POI

ROLL

LOOK-FROM

LOOK-TO

(DIR)

UP

Figure 6: WPVS camera definition. Current POI-based description (left) and convenient
camera-centered version (right).

picked points or sketched paths by projecting them into the 3D scene ans use this
as input for analysis functionalities. Information lenses represent an other category of
analysis functionality which permits the integration and combination of different infor-
mation layers; the user would, e.g., move the mouse and retrieve thematic data for a
specified region within the image. Information lenses could be implemented by client-
side blending of different information layers; considering depth information would allow
for perspective lenses.

4.6 Convenient Camera Specifications

Positioning the virtual camera is an essential part of the WPVS GetView operation. A
WPVS implementation has to transform this information into the internally used cam-
era specification and derive orientation and projection matrices for synthesizing the
images. The WPVS supports a POI-based camera definition: a POI defines the cam-
era look-to and the camera position is given relative to the POI by polar coordinates,
distance of the camera, role angle, and angle of view (AOV) centered at the POI –
see Fig. 6 left. The POI is defined in a specific coordinate reference system. This
POI-based camera definition is useful for a POI-based navigation, i.e., to look to some
specific locations.

Several use cases conceptually deal with a camera-based view definition. They
require, e.g., to define the camera position, the gaze direction or look-to position, and
the camera up vector – see Fig. 6 right. Complementing the camera definition by a
camera-oriented variant would make the WPVS usage more convenient for ad hoc
usage and integration: E.g., a user retrieved geocoordinates of two specific addresses
and could use them as input for a WPVS request without additional calculation. On the
one side, this conversion could be encapsulated by the WPVS client, on the other side,
the WPVS itself could provide an additional camera definition method.

4.7 Smart Navigation

The general navigation capabilities of the WPVS allow consumers to explore the 3DGeoVE
and to retrieve the contained information. So far the WPVS does not explicitly address
navigation support. The only way to explore the 3DGeoVE is the modification of the

1-12 Fall 2008 Workshop



REFERENCES

camera parameters. On top of this, a client has to install more high-level navigation
functionalities, e.g., moving forward, backward, up down, etc.

Including smart navigation techniques as described in [6] could be a promising ap-
proach for using the image itself as a navigation interface. Curves and points sketched
on the image are sent to the WPVS, which projects these sketches into the 3D scene
for determining navigation intentions and either generates a video or a set of images
representing the navigation. This navigation technique is user-oriented and is applica-
ble to all touch-sensitive devices, such as PDAs or smartboards. For the integration of
sketch-based navigation, the WPVS would have to be extended by a navigation sub-
system and operations for requesting a sequence of views are required.

4.8 Single Object Inspection

Besides the visualization of regional 3D landscape and city models, a WPVS profile
could facilitate the visualization and inspection of specific features. [5] For example, for
building models a specific WPVS instance could integrate the calculation of appealing
camera views including filtering and styling capabilities for allowing for gaining insight
into the building, e.g., by using techniques such as 3D cut-away-views.

5 Conclusion and Future Work

For enabling interoperable 3D portrayal within 3D spatial data infrastructures, we par-
ticipate in an OGC initiative for specifying a 3D portrayal standards family. One of the
service candidates is the WPVS, which is an OGC draft specification. As a contribu-
tion to the OGC 3D portrayal initiative, we revise and suggest additions to the current
WPVS specification. The WPVS is limited in visualization, interaction, and navigation
capabilities and could be extended in these aspects. This technical report represents
a first step towards an extended WPVS. It describes the functional and non-functional
context for extending the WPVS and suggests a next version WPVS. These sugges-
tions need to be further formalized; the WPVS service interface must be extended.
These extensions could be implemented by introducing new service operations (e.g.,
for retrieving depth images) or by add parameters to the existing operations(e.g., ex-
tending the camera description). Furthermore, for evaluation purposes, a prototypic
implementation of the proposed WPVS extensions is planned.

References

[1] Heidelberg 3D. URL: http://www.heidelberg-3d.de/ (called at 19/10/2008).

[2] Angela Altmaier and Thomas Kolbe. Applications and Solutions for Interoperable
3D Geo-Visualization. In Dieter Fritsch, editor, Proceedings of the Photogrammet-
ric Week, Stuttgart, 2003. Wiechmann Verlag.

Fall 2008 Workshop 1-13



Extending the WPVS Visualization and Interaction Capabilities

[3] Jürgen Döllner, Henrik Buchholz, Marc Nienhaus, and Florian Kirsch. Illustrative
Visualization of 3D City Models. In Proceedings of Visualization and Data Analysis
2005 (Electronic Imaging 2005, SPIE Proceedings), pages 42–51, 2005.

[4] Tassilo Glander and Jürgen Döllner. Techniques for Generalizing Building Geom-
etry of Complex Virtual 3D City Models. In 2nd International Workshop on 3D
Geo-Information: Requirements, Acquisition, Modelling, Analysis, Visualisation,
Delft, Netherlands, December 2007.

[5] Benjamin Hagedorn and Jürgen Döllner. High-Level Web Service for 3D Building
Information Visualization and Analysis. In ACM 15th International Symposium on
Advances in Geographic Information Systems (ACM GIS), Seattle, WA, November
2007.

[6] Benjamin Hagedorn and Jürgen Döllner. Sketch-Based Navigation in 3D Virtual
Environments. In 8th Int. Symposium on Smart Graphics 2008, August 2008.

[7] Benjamin Hagedorn, Stefan Maass, and Jürgen Döllner. Chaining Geoinformation
Services for the Visualization and Annotation of 3D Geovirtual Environments. In
4th International Symposium on LBS and Telecartography, November 2007.

[8] Benjamin Hagedorn, Alexander Zipf, Arne Schilling, and Steffan Neubauer. 3D
Portrayal Services - Use Cases. OGC Discussion Paper, August 2008. Version
0.0.6, OGC 08-140.

[9] Steffen Neubauer and Alexander Zipf. Suggestions for Extending the OGC Styled
Layer Descriptor (SLD) Specification into the third Dimension - An Analysis of pos-
sible Visualization Rules for 3D City Models. In Urban Data Management Sympo-
sium, Stuttgart, Germany, October 2007.

[10] Open Geospatial Consortium. OpenGIS Web Perspective View Service (WPVS)
Implementation Specification, October 2005. Draft Version.

[11] Open Geospatial Consortium Inc. OGC Reference Model, Version 0.1.3, Septem-
ber 2003.

[12] Open Geospatial Consortium Inc. Web 3D Service, Version 0.3.0, February 2005.

[13] Open Geospatial Consortium Inc. OpenGIS Web Map Server Implementation
Specification, Version 1.3.0, March 2006.

[14] Open Geospatial Consortium Inc. Symbology Encoding Implementation Specifi-
cation, Version 1.1.0, July 2006.

1-14 Fall 2008 Workshop



A APPLICATION SCENARIOS FOR 3D PORTRAYAL

A Application Scenarios for 3D Portrayal

Table 5: Scenarios for the application of 3D Portrayal Services (from [8]).

1. Civil Service

1.1 Use a 3D view for processing a building application
A civil service agent can generate a perspective view for a specific address for getting an idea of the current building
situation around that address. By picking buildings in the image further building information are displayed.

1.2 Use perspective views as interface for notifications of claim
A citizen can generate a perspective view for a specific address, can navigate for defining a specific view, can pick a
position in that image, and can leave a notification of claim, e.g., about an out-of-order fire hydrant.

1.3 Show a city planning to the public
For public participation, the municipality of a city can make a city planning available to the public by 3D portrayal services.
Via web portal, citizens can view this planning, select and investigate planning alternatives. Either interesting views are
offered, or the users can navigate freely.

1.4 Access city planning data easily
By picking at interesting parts of the perspective view, citizens can request relevant city planning data, e.g., planned size
of buildings, planned usage, etc.

1.5 Allow for commenting a city planning
Citizens can comment a city planning by annotating a specific perspective view by text or even drawing or by selecting
and annotating a specific position or object in the view.

1.6 Inspect underground infrastructure
Engineers and department heads responsible for the maintenance of telecommunication or power cables, sewers, gas
pipes, or fresh water pipes can inspect the current situation underground. When a new subways line is planned, the
underground infrastructure must be analyzed and checked for conflicts.

2. Business Development

2.1 Present an urban space to an investor
For attracting an investor, a 3D city model can help to investigate interesting urban spaces. It shows the general
surrounding, transportation infrastructure, etc. This reduces the number of on-site inspections and, thus, saves time and
money.

2.2 Color buildings according to their usage
For judging the surrounding of an object of interest, the agent defines to color the buildings in the perspective view
according to their usage type, e.g., living space in green, public buildings in blue, and industrial buildings in red.

2.3 Measure distances and areas
The perspective view can support simple analysis functionality. E.g., distances to nearby building areas or the overall
size of a specific area could be calculated and displayed.

3. Real Estate Business

3.1 Offering interesting buildings to a customer
An estate agent can use the 3D portrayal services for showing buildings to customers. The perspective views show the
appearance of the building, including detailed building structures (doors, windows, balconies, etc.) and real facades.
Furthermore the agent can show, describe, and investigate the urban surrounding of these buildings to the potential
buyer by help of specific navigation techniques supported by the client application.

3.2 Highlight buildings to sell
Within an interesting building area, the estate agent can influence the visual appearance of buildings that can be rent or
bought. He selects some buildings by their address and others by their owner and defines which color to use for their
representation. Furthermore he highlights all nearby public buildings in a different color.

3.3 Access BIM information easily
For all the buildings in the view, the agent can request additional BIM information such as the age of the building, usage,
number of rooms, room sizes, its renovation state, land parcel information, etc. This is done by easily picking the object
of interest in the image.

3.4 Allow for looking inside buildings
Within a city model the agent can select a single building of interest and request a building-specific visualization which
allows, for looking into the building and, e.g., see the structure of the rooms at each floor.

3.5 Calculate and display the visibility of objects

Fall 2008 Workshop 1-15



Extending the WPVS Visualization and Interaction Capabilities

For installing a hotel, an investor looks for a building with a good view, i.e., from where a set of relevant points of interests
(e.g., church, market place, monuments, palace garden, etc.) have a high visibility. The system allows the agent to define
the points of interest and the area in which to search for suitable buildings. Then, the system calculates the visibility of
these POIs for each building, maps this information to the building faades, and generates new perspective views.

4. Security and Safety

4.1 Introduce an operational area to a mobile action force
In preparation for safeguarding a demonstration, action forces need to get an overview of the operation area, includ-
ing size and topology of street, danger spots, etc. The presentation of the city by 3D portrayal can replace on-site
inspections, and thereby reduce cost. If necessary, perspective views can be accessed by mobile devices.

4.2 Generate views containing escape routes
For a mass event, escape routes have to be defined and must be visualized to the security personnel as well as to the
visitors. By help of a styling tool, the safety officer can enrich a perspective view of that area by additional path objects
representing these escape routes. This styling description is then published and used by end users.

4.3 Support Fire Fighters
The fire department requests a detailed indoor building model in case of a fire incident. The 3D indoor model is analyzed
in the command center before the fire fighters reach the site. Possibly the visibility in the building is limited due to the
smoke. Possible access and escape routes are determined to help the fire fighter evacuating the building.

5. Tourism

5.1 Investigate a vacation spot
A tourist can use web-based 3D portrayal for investigating a vacation spot already from home. For example, this could
support the decision for a specific accommodation according to the appearance of the surrounding.

5.2 Generate a specific touristic 3D city map
For a city tour, a tourist needs specific information such as the location of bus stops, railway stations, hotels, museums,
theaters, hotels, bars, restaurants, the tourist information, etc. By an authoring tool, a municipality clerk can create a
specific touristic 3D city map containing this information. A styling tool allows him to define how the integrated information
shall be represented.

5.3 Show the current environmental situation
For making a virtual city model more appealing and more realistic, they can include sun and clouds, which could be in
accordance with the real weather conditions.

5.4 Generate a video tour negotiating selected points of interest
For tourists a virtual city tour can give an impression about important points of interest, shopping facilities, etc. By an
authoring tool a municipality clerk can define such points of interests, which are used as way points for the virtual tour.
The tourist can select some or all of these way points for generating an individual video tour, e.g., a flight or a city walk.

6. Car and Pedestrian Navigation

6.1 Illustrate a track by sequences of perspective views
For illustrating a path description, perspective views along that path can be generated. Even the individual path can be
embedded into the visualization. The path illustrations can be derived automatically from the defined path.

6.2 Guide vehicles and pedestrians on the road.
Mobile users are supported by providing 3D animations or interactive visualizations of the course of the route, which has
been calculated by an OpenLS route Service. 3D Visualizations are especially useful for pedestrians using their PDAs,
since they can get a better idea of where to go if the system contains also landmarks.

1-16 Fall 2008 Workshop



Optimizing Virtualization Concepts in
(Guest-) Operating Systems

Michael Schöbel

michael.schoebel@hpi.uni-potsdam.de

In the past few years, system virtualization technologies received a lot of attention:
virtualization promises to solve data center problems such as server under-utilization
and high energy consumption.

From an operating system point of view, virtualization invalidates some basic as-
sumptions about the execution environment: an address space with fixed size, or CPUs
with the same speed in SMP systems are two basic examples. Different optimization
concepts deal with these invalidated assumptions and try to optimize the execution of
operating systems in virtual machines.

In this paper a short survey on different approaches of optimizing systems which
utilize virtualization is given. Furthermore, some initial thoughts on how monitoring on
different levels of the virtualization stack can help to develop self-optimizing virtualized
system environments are presented.

1 Introduction

In general, virtualization can be defined as a technology which presents a unique view
of an interface to different computation entities. There a five different basic levels of
virtualizable interfaces [9]:

• Instruction set level

• Hardware abstraction layer level

• Operating system level

• Library level

• Application level

Depending on the level, different type of applications can use the virtualized inter-
faces. Hardware support for virtualization is available especially at the instruction set
level and at the hardware abstraction layer level (e.g. Vanderpool technology from Intel
or Pacifica from AMD).

To virtualize at the hardware abstraction layer level a virtual machine monitor (VMM)
is introduced between hardware and operating system level. The VMM provides a
virtualized view of the hardware which is used by operating systems installed in virtual

Fall 2008 Workshop 2-1



Optimizing Virtualization Concepts in (Guest-) Operating Systems

machines (e.g. VMWare ESX or Xen [2]). Another approach provides an emulated
hardware interface on top of a host operating system without a VMM (e.g. VMWare
Workstation or VirtualPC).

Virtualization at operating system level is achieved by providing unique views on the
OS system service call interface and the kernel state in a way that each virtual system
runs in isolation (e.g. Solaris Zones [12], FreeBSD Jails [6]).

Apps.

Operating 

System

Apps.

OSApps.

OS

Apps.

Hardware

OS

Hardware

Application Software

Hardware

Operating 

System

(a)

“classic“ VM

(b)

whole system VM

(c)

co-designed VM

Figure 1: System Virtual Machines

Both approaches support system virtual machines [14] - they allow instantiating
virtual machines which provide a complete system environment and support multiple
processes. This paper focuses on the kind of system virtual machines on which the
virtualized interfaces are at the hardware or the operating system level as depicted in
figure 1.

A “classic” virtual machine allows the parallel execution of multiple operating sys-
tems on the same hardware platform. A VMM (or hypervisor ) is executed and provides
each VM with a unique view on the hardware. Whole system VMs use the operat-
ing system services of a host system to build the hardware abstraction for the guest
operating system.

Both approaches are used in current systems. There are different implementations
available for such virtualization scenarios.

Different implementations can be compared by considering the operating system
which can be executed in the virtual machines: Some virtualization technologies re-
quire paravirtualized guest operating systems. Paravirtualization makes a guest op-
erating system aware of the fact that it is executed in a virtual machine. In the past,
some virtualization approaches could only execute paravirtualized guest operating sys-
tems [2]. Today, paravirtualization is used primarily for performance reasons: optimized
device driver enable guest operating systems to access specific hardware components
in an efficient way.

In this paper, some approaches for optimizing virtualized system environments by
paravirtualization are described. Furthermore, optimizations of the underlying hyper-
visor are surveyed as well. Finally, optimization criteria and control possibilities which
can be used to build self-optimizing virtualized systems are identified.

2-2 Fall 2008 Workshop



2 OPTIMIZING VIRTUALIZED SYSTEMS

2 Optimizing virtualized systems

To support system virtual machines, the virtualization technology must provide a view
of a specific hardware platform to the virtual machines. The guest operating system
utilizes this virtual hardware interface.

In [11] formal requirements for a virtualizable hardware architecture were defined.
Two classes of machine instructions were distinguished: (1) privileged instructions are
instructions which “trap” into a specific trap handler if executed in (unprivileged) user
mode, (2) control sensitive instructions which either change the memory configuration
or the CPU mode, and (3) behavior sensitive instructions whose behavior depends on
either the current memory configuration or the CPU mode.

It was proven that a virtual machine monitor can be constructed if the set of sensitive
instructions (either control sensitive or behavior sensitive) is a subset of the set of
privileged instructions. On such architectures, the VMM can intercept all instructions
executed by a virtual machine which could destroy the illusion of the unique view on
the hardware.

If these requirements are not fulfilled completely (e.g. the IA-32/x86 architecture is
not virtualizable in this sense), the required behavior can be enforced by techniques
such as binary rewriting (i.e. replacing sensitive instructions by privileged instructions;
after the trap, the original sensitive instructions are emulated in an adequate way).

By considering the formal requirements for virtualization, the area of interaction be-
tween the guest operating system inside the virtual machine and the virtual machine
monitor can be identified: the execution of privileged instructions is intercepted by the
hypervisor. Privileged instructions are used to manage the (1) virtual memory subsys-
tem, (2) IO related activities, (3) interrupt handling in general, and (4) CPU specific
features such as the performance counters. Furthermore, the virtualized hardware
platform may show a different timing behavior than real hardware.

All of these issues lead to the observation that the operating system is no longer
the main resource manager in a virtualized environment. The hypervisor between the
virtual machine and the hardware takes this role. The guest operating system still
thinks that it is the only resource manager, but it is managing a virtual platform with
completely different features than real hardware.

Design decisions made during the development of the operating systems assume
certain properties of the target hardware platform. Possibly, these assumptions are not
longer true if the operating system is used in virtual environments.

For an optimized virtual system, the hypervisor and the virtual machines have to
coordinate their activities. This coordination can be achieved by different approaches:
(1) the hypervisor may adapt the behavior of the virtual hardware to the assumptions
of the executed operating system, (2) the operating system may adapt its behavior to
the new environment (paravirtualization), or (3) hybrid approaches may use concepts
from both areas.

Recent research has shown that virtualized systems suffer from the mismatch be-
tween virtual hardware and operating system assumptions. Different approaches can
lead to improved performance of such systems. In the remaining part of the chapter
such approaches will be described in more detail.

Fall 2008 Workshop 2-3



Optimizing Virtualization Concepts in (Guest-) Operating Systems

2.1 Memory management

From the perspective of the virtual machine monitor the (physical) available main mem-
ory must be assigned to concurrently executed virtual machines. This assignment
problem has similarities to the assignment of physical memory to concurrent processes
in traditional operating systems.

In general, a (hardware) memory management unit (MMU) translates virtual ad-
dresses into physical addresses with the help of page tables and translation look-aside
buffers (TLB). If the size of the actual available physical memory is smaller than the
size of assigned virtual memory, paging concepts have to be established. Virtual mem-
ory pages are written to secondary storage (page-out) if the physical memory page is
required from another process. They are loaded back to physical memory when they
are required again.

The performance of virtual memory management systems depends on the page re-
placement algorithm (decides which pages are written to disk if more space is required)
and on different optimization heuristics. Such heuristics are e.g. marking pages as
copy-on-write or to detect “hot” pages which are used frequently and to prevent that
such pages are written to disk.

To summarize, a traditional operating system makes the following assumptions
about the physical memory: (1) the size of the available memory can be determined
and is fix, (2) the physical address space is zero-based and contiguous, (3) process
isolation is realized by switching between different address spaces, and (4) paging has
to be used if more virtual memory is allocated than physical memory is available.

From the perspective of the hypervisor, these assumptions must be ensured for
each guest operating system: (1) the operating system must be able to determine
a fixed main memory size, (2) this “physical” memory must be addressable in a zero-
based manner, (3) the hypervisor must emulate address space switches in the required
way, and (4) the hypervisor must consider that the guest operating system implements
its own paging algorithm.

Each of these four points can lead to virtualization overhead, i.e. to calculation
or memory consumption on the hypervisor level which are not necessary if the guest
operating system is executed directly on the hardware.

(1) If each virtual machine gets a fixed portion of the physical main memory, memory
over-provisioning is hard to achieve. Memory over-provisioning allows to execute virtual
machines with memory requirements whose sum is higher than the actual available
memory. Such an over-provisioning makes sense in server consolidation scenarios.

(2) The requirement of the “physical” address space seen by a virtual machine to be
zero-based and contiguous leads to another level of indirection for address translation:
the hypervisor can distinguish between virtual addresses (used by the applications run-
ning in a virtual machine), virtual physical addresses (the pseudo physical addresses
used by the guest operating system in a virtual machine), and real physical addresses.
The mapping from virtual physical addresses to real physical addresses must be man-
aged by the hypervisor.

(3) In general, an operating system switches address spaces by enabling a new
set of page tables and by flushing the translation look-aside buffer. The TLB optimizes

2-4 Fall 2008 Workshop



2 OPTIMIZING VIRTUALIZED SYSTEMS

the address translation between virtual addresses and real physical addresses. These
operations require privileged instructions. Therefore, the hypervisor has to emulate
such address space switches.

(4) If memory over-provisioning is used in a specific virtualized system, the hy-
pervisor has to implement some kind of paging mechanism. This can lead to subtle
performance problems, such as double-paging1. Furthermore, the hypervisor requires
its own page file which consumes additional resources from the host machine.

To sum up, a virtual machine monitor leads to some space and computational over-
head during virtual memory management. Some of these drawbacks were addressed
by recent research work.

The memory management unit in VMware ESX server [16] is capable of supporting
virtual machines with overcommitted memory. If memory is scarce (for one virtual
machine), the hypervisor adapts the assigned memory for all virtual machines. To
implement this approach, two problems have to be solved: (1) How can the hypervisor
reclaim memory pages from a virtual machine? (2) How can the hypervisor optimize
the memory assignment?

In VMware ESX server, reclaiming is implemented with paravirtualization: a “bal-
loon” driver is installed in the guest operating system. This balloon can be “inflated”
(memory is allocated by the driver) or “deflated” (memory is freed). The balloon driver
marks this allocated memory as unused and the hypervisor can rearrange the memory
assignment. This indirect approach for memory reclaiming has one important advan-
tage: if memory is scarce and the balloon driver allocates memory, the guest operating
system may decide which memory pages can be removed from physical memory. This
decision can not be done by the hypervisor in an informed way: the guest operating
system employs some kind of page replacement heuristics for the executed applica-
tions.

A second technique used for memory page reclaiming is transparent page sharing:
VMware ESX server detects memory pages with identical content across different vir-
tual machines. The page tables are adapted in a way that such pages are only stored
once in physical memory. The implementation is based on page content hashing.

For optimally assigning memory to concurrently executed virtual machines, the hy-
pervisor has to consider the goal memory shares, which were configured by the admin-
istrator. In these limits, VMware ESX server optimizes the memory allocation based on
a heuristic called “idle memory tax”: the hypervisor tries to determine the number of
active memory pages which are really required by the guest operating system. A sam-
pling approach is used: (1) a randomly selected set of memory pages is marked, (2) a
page access marks the specific page as “active”, (3) after the sampling period, the frac-
tion of active pages is calculated, and finally (4) the memory share for a specific virtual
machine is adapted to reflect its actual required memory size. The basic idea behind
this heuristic is that the memory transfer from a machine with fewer active pages to a
machine with more active pages leads to fewer page faults.

In [5] an approach for improving virtual memory management in virtual machines

1If the hypervisor writes a page to its page file and a guest operating system also wants to replace
this page, then a page fault occurs, because the guest OS has to read the page. But the virtual machine
does not really need the memory page and only writes it back to disk.

Fall 2008 Workshop 2-5



Optimizing Virtualization Concepts in (Guest-) Operating Systems

is described which exploits knowledge about the content of specific memory pages:
most IO operations use DMA and assigned memory pages as buffers. Each memory
page is marked with an associated disk location (ADL) by intercepting IO operations.
In this way the hypervisor can monitor memory operations (allocation and eviction) of
memory pages used as buffer. The ADL information is used to (1) estimate the working
set size (by simulating the cache behavior for the case in which more memory would
be available), and (2) implement a secondary (hypervisor level) cache for evicted buffer
pages from guest operating system memory. An important property of this approach
is that the hypervisor infers the required information passively, i.e. no paravirtualized
operating system is required.

In [8] the authors argue that it is important to predict the page miss rate for a spe-
cific virtual machine for different memory sizes. With this information, the hypervisor
can calculate the optimal memory assignment which leads to a (global) minimum of
page faults. To achieve reliable predictions, the assigned physical memory of a virtual
machine is subdivided into a regular (guest operating system managed) area and in a
(hypervisor exclusive) cache area. This subdivision is achieved by using ballooning as
described above. Now, every eviction of a memory page from the memory of the virtual
machine is inserted into the cache and page faults are (if possible) satisfied with pages
from the cache. If the cache is full, pages are written to the page device as usual. By
observing the caching activities over a certain time span, the hypervisor can derive the
effects of more (or less) memory to the observed virtual machine.

2.2 IO / device management

To access hardware components, device specific drivers are necessary. These drivers
are developed for a specific operating system platform. Therefore, a virtual machine
monitor has two possibilities for granting device access to its virtual machines: (1) let
the guest operating system use its own device drivers, or (2) provide hypervisor specific
virtual devices in each virtual machine.

The first option is hard to realize because the concurrent access of virtual machines
to the same device requires synchronization between guest operation systems. There-
fore, this option can only be used if such devices are exclusively used by a single
virtual machine or the specific device is capable of doing the synchronization on its
own without hypervisor support.

The second approach has another problem: How can the hypervisor communicate
with the physical device? Or: Who implements the hypervisor version of the device
driver? The frontend driver can be implemented in a straight-forward manner. A guest
operating system specific virtual device driver delivers IO requests to the virtual ma-
chine monitor. The synchronization is done on the hypervisor level, the actual device
request is handled by a backend driver and can be made by (1) a device driver which
is integrated into the hypervisor, or (2) by forwarding the request to a privileged virtual
machine which accesses all devices exclusively.

Integrating device drivers into the hypervisor leads to more complex hypervisors.
Furthermore, additional development effort is necessary to implement the device driver
for a specific hypervisor. This can be alleviated if the hypervisor implementation is

2-6 Fall 2008 Workshop



2 OPTIMIZING VIRTUALIZED SYSTEMS

based on a standard operation system such as Linux.
A privileged virtual machine for handling device access leads to another type of

problem: the privileged virtual machine competes with all other virtual machines for
resources, especially for CPU time. This leads to accounting problems (how can CPU
time, used by the privileged machine, be assigned to the original IO requesting ma-
chine) and can lead to priority inversion problems (e.g. if a low priority machine sends
IO requests which block more important requests).

Besides the outlined implementation problems, the described IO model again leads
to virtualization overhead compared to native execution of the guest operating system
and its application: there are “more steps” necessary for IO processing. Some of these
issues were addressed in recent research work.

One approach to improve the overall performance of the IO system was presented
in [4]: the IO system and the scheduling algorithm work together to schedule such
virtual machines that are likely to issue a IO system “near” the current position of an IO
device (e.g. a harddisk). They use an implementation of anticipatory scheduling which
is available in Linux. To work correctly, such an IO scheduler needs information about
the currently active concurrent processes which initiate IO operations. Therefore, in
a virtualized environment a technique is required to detect which process is running
in a specific virtual machine. This problem was solved by observing address space
changes for virtual machines on the hypervisor level and by associating these address
spaces with the executed processes.

Some InfiniBand devices support concurrent access of multiple applications. In vir-
tualized environments, this advantage is lost. In [7] an approach is presented which
allows using such hardware in virtual machines: (1) the hypervisor must allow specific
privileged operations for the initialization and configuration of such devices, and (2)
paravirtualized device drivers must be loaded in the guest operating systems. This ap-
proach shows near native performance for InfiniBand devices in virtual environments.

An important class of IO operations in virtualized environments is network IO. If
network IO is not implemented in an efficient way, server consolidation can lead to
performance degradation of critical applications. Therefore, especially network IO be-
havior of virtual machines were investigated.

In [10] the Xen system was investigated: different types of workload (processor-
intensive, bandwidth-intensive, latency-sensitive applications) were executed on differ-
ent configurations of the hypervisor scheduler. In this way, the impact of virtual ma-
chine scheduling on IO performance should be determined. Their main results are (1)
preempting the driver domain2 can have adverse effects on IO performance, and (2)
mixing latency-sensitive workload with processor-intensive workload leads to bad re-
sponse behavior of the latency-sensitive application. These effects are caused by the
hypervisor scheduler which tries to balance CPU usage but can not react fast enough
to IO events.

An implementation of a hypervisor scheduler which is able to react “fast enough”
to network IO events was proposed in [3]. To achieve this goal, short periods of unfair
CPU assignments are used to decrease scheduling-induced delay while processing
network IO. The scheduler prefers virtual machines which are likely to receive or send

2Driver domain is a Xen term for “privileged virtual machine which accesses devices”

Fall 2008 Workshop 2-7



Optimizing Virtualization Concepts in (Guest-) Operating Systems

a network packet. The probabilities are determined by monitoring IO activities of virtual
machines at the driver domain.

2.3 CPU time management

The virtual machine monitor schedules virtual machines. The applied algorithms are
similar to classic algorithms used in traditional operating systems for process or thread
scheduling. The main focus is on fairness: each virtual machine should get a fair share
of the available computing power. In many cases, the VMM allows configuring the CPU
share for each VM.

In the single CPU case, the main cause of overhead in the area of CPU manage-
ment is interrupt delivery: if a hardware interrupt occurs, the currently running virtual
machine is preempted and the hypervisor gets active. Now the target VM for the par-
ticular interrupt is determined, the interrupt is queued, and gets delivered to the guest
operating system if the VM is scheduled the next time. Therefore, the time between in-
terrupt occurrence and interrupt handling can vary depending on the behavior of other
VMs and the actual scheduling algorithm.

If the host hardware contains multiple CPUs or CPUs with multiple cores, the hy-
pervisor could provide each virtual machine with multiple virtual CPUs. In this setup,
another class of overhead can be caused by the virtualization: assumptions made by
operating systems for SMP systems are invalidated if the CPUs are virtual. These as-
sumptions are: (1) all CPUs in an SMP system are equally fast (without considering any
power management techniques, such as frequency scaling), (2) efficient interprocessor
synchronization can be achieved via spin locks.

The first assumption does not hold if a virtual CPU has to handle multiple virtual
machines. In this case, the “speed” detectable by the guest operating system depends
on the workload of concurrently executed VMs.

Generally, virtual CPUs for a specific VM must not run at the same time on the real
hardware. This can lead to problems when using spin locks: If a particular spin lock
can not be acquired by a CPU, this CPU spins until the CPU which actually holds the
spin lock does a release operation. The underlying assumption is that all CPUs are
running at the same time and that spin locks are held only for very short time periods.
In a virtualized setting, the virtual CPU which holds the spin lock may be preempted
(lock holder preemption problem). All virtual CPUs that are waiting for this lock will
waste CPU time by just waiting in a busy wait loop.

Paravirtualization or optimizations on the hypervisor level can be used to solve these
problems.

As already described in section 2.2, the hypervisor can use information about the
executed workload for improving scheduling behavior. In [4] the hypervisor tries to
infer information about the current process executed in a virtual machine and in [3] a
communication-aware scheduler was introduced.

In [15] the problem of multiprocessor virtual machines was investigated. Lock holder
preemption can be eliminated in two ways: detect lock contention and prevent virtual
machines from spinning, or avoid lock holder preemption altogether. The first approach
can be implemented non-intrusively on the hypervisor layer by observing the virtual

2-8 Fall 2008 Workshop



3 TOWARDS SELF-OPTIMIZING VIRTUALIZED SYSTEMS

machine. Virtual machines are only preempted in “safe” states, which can be detected
by considering elements such as the current interrupt request level or the (virtual) CPU
state. The second approach (lock holder preemption avoidance) can be implemented
with paravirtualization: the guest operating system gives hints to the hypervisor how
long a lock is held and the hypervisor does not preempt this virtual machine for the
specified time.

Another proposed concept is time ballooning. The time balloon is used to ensure
that the scheduler assumption “all processors have the same processing speed” is
valid. To achieve this, a balloon driver creates virtual workload which actually does
no “work” but yields the virtual CPU to the hypervisor. The hypervisor calculates the
time of virtual load for each virtual CPU. The load generation depends on the guest
operating systems scheduling algorithm and load balancing strategy.

3 Towards self-optimizing virtualized systems

On a high level, the last section can be summarized as follows: for improving the run-
time behavior of virtualized environments, (1) guest operating systems have to use
information provided by the hypervisor, (2) the hypervisor has to use information pro-
vided by the guest operating systems, or (3) a combination of both approaches has to
be used.

Different approaches from these categories were described in the last section. But
most of the described solutions concentrate on one single aspect of virtualized sys-
tems, e.g. improving the memory management. The lack of a combined approach
can be explained by the diversity of guest operating systems, optimization criteria, and
workload characteristics that are executed in a virtual machine.

Another problem is the level of optimization. On the guest operating system level,
optimizations can be introduced by paravirtualization. It is relatively easy to exchange
information with the hypervisor, because the paravirtualizing application “knows” the
virtualization platform and how to call the hypervisor. The disadvantage is that par-
avirtualization depends on the underlying virtualization platform and can not be imple-
mented in a platform independent way. Therefore, a different approach is, to place the
optimization on the hypervisor level. This non-intrusive approach leads to more com-
plex information gathering processes: the hypervisor gets no information directly from
the guest operating system kernel and must infer useful state information by observing
the virtual machines.

In short, both approaches have different drawbacks and not all imaginable optimiza-
tions can be implemented in both ways because of different available information of the
execution state.

An optimization controller for virtualized systems can be defined as an application
which tries to maximize/minimize a specific control value for the host system. Such
a controller could for example try to maximize the (weighted) throughput of all virtual
machines, or try to minimize the global page fault rate.

The input values for the controller can be derived at different levels of the virtualiza-
tion stack and with different granularity. On a coarse-grained level, the controller may

Fall 2008 Workshop 2-9



Optimizing Virtualization Concepts in (Guest-) Operating Systems

use metrics such as CPU consumption of the virtual machines, or the current network
interface throughput. On a very fine-grained level, the controller may use information
about the currently accessed memory pages, or the currently issued IO operations.

The control points in virtualized systems can also be identified at different levels.
The configured CPU or memory shares are high-level variables that can be adapted by
a controller. At the low-level, the guest operating system may adapt its page replace-
ment algorithm.

In every case, the current system state must be observed. At the guest operating
system level different tools and monitoring frameworks are available. Generally, the
hypervisor implementations provide similar tools. The main question is, how to combine
the gathered information.

One approach for sharing information about the internal state of an operating sys-
tem kernel was proposed in [1]: the kernel provides an generic interface to different
internal data structure. E.g. applications can query the kernel for information about
the state of the memory management system. The kernel returns a list of the avail-
able memory pages in the order of their (potential) replacement. Now, the application
may adapt its behavior to this information. This approach for information sharing be-
tween the operating system kernel and external entities may be useful in the context of
virtualized system environments.

In an abstract way an optimization controller have to consider three layers of a vir-
tualized system. Each of these layer provide different observation points to gather in-
formation about the current execution state. Furthermore, each layer provides different
control points for adaptation.

• Application layer. Observable metrics and events at this layer are e.g. the amount
of required CPU time, the number of created threads, or the name and location
of accessed files. Furthermore, application specific metrics such as throughput,
response time, or latency can be measured.

• Virtual machine layer / Guest operating system layer. At this layer, e.g. page
faults, context switches and locking behavior can be monitored. Generally, the
workload characteristics of the executed applications can be determined, i.e.
whether a compute-bound or IO-bound workload is running.

• Hypervisor layer. By observing the hypervisor scheduler and monitoring ac-
cesses to the physical hardware, metrics such as the required main memory,
or the CPU utilization can be measured. The compliance of the provided virtual
platform with certain fairness guarantees or QoS-constraints in general can be
monitored.

The development of a model for such systems and the implementation of an opti-
mization controller for virtualized environments is ongoing work.

2-10 Fall 2008 Workshop



REFERENCES

4 Summary and conclusion

Virtualized system environments promise to solve problems in today’s data centers
such as server-underutilization or high energy costs (by using server consolidation).
But placing different applications onto the same physical hardware leads to new prob-
lems: many assumptions made by operating systems are no longer valid if the hard-
ware platform is virtual. To address this mismatch between assumptions and reality,
different approaches can be used: paravirtualization makes the guest operating sys-
tem aware of the virtual hardware, or hypervisor level optimizations try to consider the
special needs of the virtualized applications.

Both approaches require different information for the optimization algorithm, such
as the currently executed process inside the virtual machine, which virtual CPU holds a
specific lock at the moment, or which memory pages can be released. This information
can be gathered at different levels of the virtualization stack.

A combined approach using information provided by the guest operating systems
and information measured at the hypervisor level, seems a promising general approach
for optimizing virtualized system environments.

Concepts implemented in the Windows Monitoring Kernel [13] can be used as a
platform for gathering information at the guest operating system level. How to aggre-
gate and transfer this information to the hypervisor level, and how to implement the
optimization controller is ongoing work.

References

[1] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Tim-
othy E. Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A. Nugent, and
Florentina I. Popovici. Transforming policies into mechanisms with infokernel.
SIGOPS Oper. Syst. Rev., 37(5):90–105, 2003.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM Press.

[3] Sriram Govindan, Arjun R. Nath, Amitayu Das, Bhuvan Urgaonkar, and Anand
Sivasubramaniam. Xen and co.: communication-aware cpu scheduling for con-
solidated xen-based hosting platforms. In VEE ’07: Proceedings of the 3rd in-
ternational conference on Virtual execution environments, pages 126–136, New
York, NY, USA, 2007. ACM.

[4] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Antfarm: tracking processes in a virtual machine environment. In ATEC ’06: Pro-
ceedings of the annual conference on USENIX ’06 Annual Technical Conference,
pages 1–1, Berkeley, CA, USA, 2006. USENIX Association.

Fall 2008 Workshop 2-11



Optimizing Virtualization Concepts in (Guest-) Operating Systems

[5] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine environment. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pages 14–24, New York, NY,
USA, 2006. ACM.

[6] Poul-Henning Kamp and Robert Watson. Jails: Confining the omnipotent root. In
Second International System Administration and Networking Conference (SANE
2000), May 2000.

[7] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High perfor-
mance vmm-bypass i/o in virtual machines. In ATEC ’06: Proceedings of the an-
nual conference on USENIX ’06 Annual Technical Conference, pages 3–3, Berke-
ley, CA, USA, 2006. USENIX Association.

[8] Pin Lu and Kai Shen. Virtual machine memory access tracing with hypervisor
exclusive cache. In ATC’07: 2007 USENIX Annual Technical Conference on Pro-
ceedings of the USENIX Annual Technical Conference, pages 1–15, Berkeley, CA,
USA, 2007. USENIX Association.

[9] Susanta Nanda and Tzi cker Chiueh. A survey on virtualization technologies.
Technical report, Department of Computer Science, SUNY at Stony Brook, Febru-
ary 2005.

[10] Diego Ongaro, Alan L. Cox, and Scott Rixner. Scheduling i/o in virtual machine
monitors. In VEE ’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, pages 1–10, New York, NY,
USA, 2008. ACM.

[11] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412–421, 1974.

[12] Daniel Price and Andrew Tucker. Solaris zones: Operating system support for
consolidating commercial workloads. In LISA ’04: Eighteenth Systems Adminis-
tration Conference, pages 241–254. USENIX Association, November 2004.

[13] Michael Schöbel. The Windows Monitoring Kernel. In Proceedings of the 2nd
Ph.D. retreat of the HPI Research School on Service-Oriented Systems Engineer-
ing, 2008.

[14] J. E. Smith and Ravi Nair. Virtual Machines. Elsevier Science Inc., 2005.

[15] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. To-
wards scalable multiprocessor virtual machines. In VM’04: Proceedings of the
3rd conference on Virtual Machine Research And Technology Symposium, pages
4–4, Berkeley, CA, USA, 2004. USENIX Association.

[16] Carl A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

2-12 Fall 2008 Workshop



Implementation of a Service Platform to
Evaluate Virtual Team Communication

Matthias Uflacker

matthias.uflacker@hpi.uni-potsdam.de

This report summarizes the design and implementation of a software platform to
capture and analyze the information space of informal, collaborative team processes
such as global engineering design. By processing the digital traces of ad-hoc commu-
nication and information transfer of distributed teams, the platform formalizes relation-
ships between shared information and involved participants in form of semantic, RDF-
based team communication networks. A resource-oriented platform interface allows
the collaborative editing, exploration, and utilization of these networks. Basic concepts
of this work have been introduced in previous reports, but have been partially revised
and elaborated during the implementation process to fulfill the requirements of ongo-
ing research activities. In this context, the software is now utilized for storing, inferring,
and analyzing the communication characteristics of eleven global engineering teams.
Architectural properties of the platform as well as early results from its application are
presented in order to demonstrate the role of this tool in the continued investigation of
information sharing activities in virtual collaboration groups.

1 Introduction

Interpersonal communication, i.e. the informal sharing and distribution of information
represents a pivotal and continuous activity in collaboration groups such as design and
engineering teams [12,15]. The ability to trace the proliferation of this information and to
assess communication characteristics of distributed collaboration processes presents
a growing need for global teams and their management. Having a detailed insight into
the who, what and when of a team information space early in the process can expose
detrimental group characteristics and facilitate the evaluation and improvement of col-
laborative activities [1]. However, measuring and appraising the communication char-
acteristics of social communities is a challenging task. Sharing information in a team
is an intrinsic ad-hoc procedure, utilizing heterogeneous communication channels for
synchronous and asynchronous information transfer between two or more participants.
Exploring these communication structures usually requires active third-party involve-
ment, long-term observations, or intruding research methods that impair the work of
individuals and the team as a whole.

With the digital footprint of shared information steadily growing, computer-supported
observation and analysis of team collaboration becomes increasingly feasible. The In-

Fall 2008 Workshop 3-1



Implementation of a Service Platform to Evaluate Virtual Team Communication

ternet, and with it the success of the World Wide Web continues to shape the way
collaborating groups communicate and exchange information, especially in geograph-
ically distributed teams. Email has become the de-facto standard for informal, digi-
tal exchange of messages and documents. Wikis, blogs, community platforms, and
online collaboration tools are combining social networking services with functionality
that until recently was reserved for stand-alone desktop applications. A new gener-
ation of software applications is entering global organizations and communities that
set out to alleviate distances, support creative collaboration processes, and connect
distributed people and information. Naturally, more and more team-generated knowl-
edge is captured and communicated via online services, resulting in project-relevant
information that is just a mouse-click away. However, the growing number of services
provided on the Web today is creating highly distributed and decentralized fragments
of project-relevant information. Required knowledge about the existence and location
of information objects is likely to diminish quickly in large and long-running projects.
Consequently, information often gets disconnected from other related objects and its
context.

While we only have started to understand the long-term implications of virtual col-
laboration processes (cf., e.g., [7, 8, 11]), the decentralized and heterogeneous nature
of digital team information spaces has immediate impact on the way distributed team
processes can be observed, assessed, and evaluated. Here, information sharing ac-
tivities are dispersed across multiple communication channels, systems, and formats,
resulting in a nontransparent and hard to trace network of actors and data.

To address this issue and to increase the comprehensibility of team collaboration
and information sharing practice, this work suggests a method to leverage the digital
communication footprint of distributed virtual engineering teams to compute formal,
semantic networks of people and information. To model the emerging relationships of
involved actors and entities, the concept of a team communication network (TCN) is
defined and introduced. With the help of this structure, a project-centric view on digital
information spaces of virtual teams can be created, which provides a foundation for the
graph-based analyses and formal, semantic comprehension of global collaboration.

Several attributes of team communication networks render this approach distinct
from previous works and create new opportunities for the computationally supported
assessment of virtual collaboration. First, a single network may cover and consolidate
information and relationships from multiple communication channels such as emails
and Wiki-based collaboration. This allows for a holistic view on cross-channel con-
cerns and the interplay of heterogeneous information sources in a group. Secondly,
team communication networks are time-aware, meaning that the evolution of a net-
work is tracked and recorded over the course of a project, providing the opportunity to
jump back in time and inspect previous states of the information space. Thirdly, this
research is following a highly automated approach to create team communication net-
works by processing incidental traces of digital information sharing activities such as
document archives and server log files. Building only on data that is readily made avail-
able through the communication process itself creates a non-intruding and unobtrusive
alternative to real-time team observation.

To validate this approach, d.store, a resource-oriented service platform for team

3-2 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

communication networks has been designed and implemented to support the collabo-
rative editing and analysis of semantic relationships on the Web. It is used actively in a
number of global research activities to explore the characteristics of engineering design
processes and to identify communication signatures that are conducive or detrimental
for the performance of global teams.

This report presents the underlying concepts and the architectural design of the
d.store platform. It is structured into the following sections: Section 2 introduces team
communication networks and the ontologies used to define the concepts and rela-
tionships of the communication channels under analysis. Section 3 continues with
an overview of the platform implementation. Some early results and the application
environment of the platform used for the generation of realistic team communication
networks are detailed in section 4. Section 5 discusses related research before the
work concludes.

2 Resource-oriented Team Communication Networks

This section introduces resource-oriented team communication networks as a computer-
processable semantic representation of relationships between information resources
generated in a collaboration process. In the context of this work, the focus is set
on digital, text-based information that is shared asynchronously within global, virtual
teams, i.e. a group of geographically distributed people who collaboratively pursue
a common goal and who interact and alleviate distance with the help of information
technology [9]. The information networks that are spawned implicitly through virtual,
inter-personal communication comprise heterogeneous representations of information
entities (documents) and participants in the collaboration process. These objects are
mutually connected through relationships of various types, e.g. the author-relationship
between a document and a person. Many other types of relationships are relevant in
the context of team collaboration: relations between two information entities, such as
revisions or references, relations between information and people, as for the sender
and receivers of an email, as well as inter-personal relations like organizational rela-
tionships and hierarchies.

For this graph structure of nodes and edges, the range and semantic of its entities is
provided by a set of domain-specific ontologies, describing concepts and relationships
for particular information sharing practices. With these ontologies, a formal concep-
tual model for the existence and constraints of the network building blocks is created,
which allows to infer additional relationships out of asserted network values. With such
a structured semantic representation of information objects and their identified inter-
dependencies, we can contemplate the role of individual information and persons in
a contextual manner and delve into the communication characteristics of collaboration
groups.

The graph structure that describes a team communication network represents meta-
information about existing objects. In other words, a node of a team communication
network represents enriched contextual information about distributed team resources
such as the type of information, relationships, or additional descriptive data. The idea

Fall 2008 Workshop 3-3



Implementation of a Service Platform to Evaluate Virtual Team Communication

of centralizing context information for heterogeneous and distributed information re-
sources creates several requirements for team communication network system. First
and foremost, it has to to provide the functionality to assign meta-information to arbi-
trary, uniquely identifiable resources and make this meta-information again accessible
as a resource. The system must be able to provide concurrent access to the graph
structures to remote actors, allowing reading and updating the state of a network in-
dependently. At the same time, the communication with such a system should be
regulated by an interface that is built on open standards, with a well-defined syntax
and semantic in order to ensure a low entry barrier and widespread reusability in a het-
erogeneous environment. From this point of view, the principles of resource-oriented
architectures [6, 14] provide a set of architectural constraints for distributed software
applications that are capable to address these requirements and establish the basis
for a scalable platform for team communication networks. Hence, resource orientation
constitutes the underlying design philosophy for the introduced team communication
network system d.store.

The remainder of this chapter amplifies the theoretical concepts of resource-oriented
team communication networks. First, a formal definition of a team communication net-
work is provided. Then, the structure of underlying ontologies that are applied in this
work to define the concepts and associations in distributed information sharing pro-
cesses are presented. A number of inference rules are defined on top of the ontolog-
ical concepts, that illustrate the computational derivation of node relationships in the
networks. Abstracting away from implementation specifics, the chapter completes with
mapping core principles of resource orientation to the concept of team communication
networks.

2.1 Network Foundations

Team communication networks are defined by a set of typed nodes that are connected
via directed, typed relationships. They are used to capture relations between people
and information, expressing heterogeneous associations between individuals in a team
and/or information resources that occur in the collaboration process, such as emails,
Web resources, or shared documents.

Definition. A team communication network TCN is a directed graph GTCN :=
(V, E,A, CV , CE, CA), where

• V is a set of typed network nodes. A node v ∈ V is a 4-tuple 〈cls, attr, ts, te〉 with
cls being a list of assigned node types c ∈ CV , attr as a set of appending attribute
instances with types in CA, and two timestamps ts ∈ N and te ∈ N∪∞ with te > ts
to mark the beginning and the expiration of a node’s validity period.

• E is a set of typed edges, representing the relationships between nodes. An edge
e ∈ E is defined as a 6-tuple 〈s, p, o, attr, ts, te〉 where s ∈ V is the source node,
p ∈ CE is the relation type, and o ∈ V is the target node. attr represents a list of
edge attributes. ts and te are again two timestamps to define the time period of
its existence in a network.

3-4 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

• A is a set of typed attributes. An attribute is a 5-tuple 〈s, p, val, ts, te〉. s is one of
v ∈ V and e ∈ E, the node or edge to which the attribute is assigned to. p ∈ VA

is an attribute type and val is a literal or numerical data value of the attribute
instance. ts and te are defined as before.

• CV is a collection of node types to characterize the entities (information, people)
that are represented by network nodes.

• CE represents a set of relationship types, which denote the semantic classes of
individual network edges. Relationships are directed and can exist between any
two nodes vi, vj ∈ V . Every edge is of exactly one relation type p ∈ CE.

• CA is a set of attribute types that can be instantiated to assign literal or numerical
data values to the nodes and edges of a network.

The individual node types of a team communication network are hierarchically or-
dered through subclass / superclass relationships. The root node type, and hence
superordinate of all other types is the Resource type, which is implicit element of CV .
Every node v ∈ V is at least of type Resource, meaning that Resource ∈ cls for a
v ∈ V, v = 〈cls, attr, ts, te〉. In addition, every node can have an arbitrary number of
subordinate types. The type set of a node characterizes the semantic of the informa-
tion it represents in the collaboration process (e.g. {email, meeting}).

Figure 1 shows a simplistic representation of a team communication network with
V := {a, b}, CV := {cls1, cls2}, CE := {rel1}, and CA := {attr1, attr2}. The network
features a relationship of node a to node b of type rel1 ∈ CE. Node a and b have different
attributes assigned to them, as the figure demonstrates. The temporal properties ts and
te of nodes, relations, and attributes are not represented in this figure.

a
attr1: example

b

attr1: abc
attr2: 1000 

rel1

Vcls2Vcls1

Figure 1: Schematic representation of a team communication network

With the introduction of two timestamps ts and te for the annotation of primary net-
work entities, the point of time at which each individual instance (a node, relation, or
attribute) became part of or has been removed from a network is explicitly stored in
the model. The value of ts indicates the point of time at which an entity was created
in the network. te is set to infinity as long as the entity is present in the network. After
removal, te is set to the date of its deletion, preserving all the information about an
entity, but excluding it from subsequent representation. This way, the model cares for
the traceability of a communication network’s evolution over the course of a project and
enables the exploration of previous states of an information space. Having knowledge
about when a piece of information has been added to the information space of a team

Fall 2008 Workshop 3-5



Implementation of a Service Platform to Evaluate Virtual Team Communication

can very likely influence the interpretation of this event. Likewise, being able to re-
produce the evolution of relationships between nodes over time can provide additional
insights into the communication behavior in collaborating groups.

Figure 2 gives an example for a more realistic network instance. Within the set of
node instances V := {a, b, c, d} nodes a and c represent two persons, b depicts an email
that has been sent by person a, and d presents a wiki page that has been created by
person c and is referenced by email b.

a
address: john@example.com

b

from_address: john@example.com
to_address: paul@example.com 

sent

c

wikiname: paul
address: paul@example.com receive

d

d
create_account: paul

author

Vperson Vwiki

Vemail

linked_from

Figure 2: Example of a team communication network, showing instances of different types of nodes,
relations, and attributes

The set of node types, attributes and relationships that can be assigned to network
entities has been defined specifically for the use case of this work. The next section
will introduce the ontologies that are used to describe this common set of concepts and
relations in the context of virtual team collaboration.

2.2 Network Ontologies

A set of ontologies provide the formal understanding of the concepts, constraints and
relationships, which is necessary to describe the state of team communication net-
works in a computer-processable format. While the ontologies define the conceptual
model of a team communication network, the concrete instantiations of ontological con-
cepts represent the different, individual network occurrences on instance level. A team
communication network system features a set of ontology definitions and network in-
stances which are defined and encoded in a standardized format.

The Resource Description Framework (RDF) [2,3] and the Web Ontology Language
extension OWL [4] provide a suitable framework to encode the ontological elements re-
quired for this work. Both standards are used for the specification of ontologies and for
the representation of concept and instance models in the platform implementation. The
RDF/OWL framework supports a logical separation of concepts and instances through
namespaces and the integration of multiple concept models through the import of other

3-6 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

namespaces. This way, a decoupling of concept models and instance models across
multiple team communication networks can be achieved, which allows independent
customization and adaptation of models on individual network level without affecting the
models of other networks. The organization of system- and network-specific RDF/OWL
graph models for a team communication network system of team communication net-
works is visualized in figure 3.

Domain-specific
TCN Ontology

Domain-specific
TCN Ontology

TCN System
Concept Model

TCN System
Instance Model

Team Communic.
Ontologies

TCN1
Instance Model

TCN1-specific 
ontologies

TCN1
Concept Model

TCNn
Concept Model

TCNn
Instance Model

TCNn-specific 
ontologies

.

.

.

owl:imports

Concept Models Instance Models

.

.

.

.

.

.

System-
specfic
Models

Isolated
TCN Models

Figure 3: Import hierarchy of RDF/OWL graphs in a TCN system

A global instance model organizes the collection of network instances. The ba-
sic concepts that are needed to describe team communication networks are defined
in a system-wide concept model, which represents the core ontology of the system.
It is presented in section 2.2.2. For every communication channel that the system
considers for the analysis of team collaboration, the system model imports a domain-
specific ontology model that describes the relevant information and relationship types
for that channel. The ontologies that are currently utilized for this work are described
in sections 2.2.3 (Web- and Wiki-based information sharing) and 2.2.4 (email commu-
nication). Finally, for each network instance in the system, two RDF/OWL models for
network-specific concepts and instances specify the individual configuration of a net-
work. The concept models of the network instances import the global type definitions
and hence the ontology definitions for team communication provided by the system.
Optionally, additional ontologies are imported for reuse into the conceptual model of a
network without affecting the state and knowledge base of other networks.

2.2.1 Graphical Representation of RDF/OWL Ontologies

Lacking standards for the graphical notation of RDF/OWL-based ontology models, this
report uses a custom presentation language to describe the elements of the platform
ontologies. The notation is borrowing concepts from DLG21, a graphical presentation

1Directed Labeled Graph Two: http://www.charlestoncore.org/dlg2/

Fall 2008 Workshop 3-7



Implementation of a Service Platform to Evaluate Virtual Team Communication

language for RDF and OWL, but has been tailored and extended to address the re-
quirements in the context of this work. To give a short introduction to the notation,
figure 4 shows a simple ontology model.

http://hpi-web.de/ns/dstore/example/

@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix ext: http://www.example.com/namespace#

Domain

ext:ParentClass

Range
owl:ObjectProperty

relation

xsd:int
owl:DatatypeProperty

attribute ParentClass

Figure 4: A graphical notation for RDF/OWL-based ontologies.

In this notation, the ontology namespace along with a number of prefix definitions
for reused ontologies is stated on top of the graphical representation. Class defini-
tions are represented as boxes and property types are represented as flat, acuminated
shapes. Associated superordinates for classes and properties are listed above the par-
ticular definition, while additional type allocations are appended below. The example
ontology presented in figure 4 features a class Domain, which is a subclass of a class
ParentClass defined in the ext namespace. Note that internal superclass/subclass re-
lationships within a namespace can also be expressed by a connecting arrow as shown
for the classes ParentClass and Range in the ontology namespace. The ontology also
defines two properties, a data property attribute and an object property relation. The
latter defines a relationship type between two resource classes. The domain and range
types of a property are indicated by inbound and outbound connections to the associ-
ated resources. In this example, the ontology specifies that all instances are of type
Domain if they are subject of a property relation. Likewise, the range of relation as-
serts that targeted node instances of that relationship are of type Range (and hence of
type ParentClass). In the case of data-valued properties, the type of the value range
is stated on the outbound side of the property (e.g., xsd:int for property attribute).

With these graphical primitives, an adequate overview of the ontology specifica-
tions that form the foundation of team communication networks can be provided. The
following section introduces these ontologies and explains their elements.

2.2.2 System-specific Concept Model

This section gives an overview of the basic semantic elements for a system of team
communication networks. An excerpt of the ontology, its basic concepts and property
definitions is shown in figure 5.

The most fundamental concept of resource-oriented team communication networks
is the Resource type. On the most abstract level, a resource represents a node in a net-
work, i.e. an entity of information or individuals for which contextual meta-information
is provided. Following the definition of team communication networks in section 2.1,

3-8 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

http://hpi-web.de/ns/dstore/0.1/

@prefix owl: http://www.w3.org/2002/07/owl#
@prefix xsd: http://www.w3.org/2001/XMLSchema#

owl:ObjectProperty
ontology

xsd:int
owl:DatatypeProperty

instance_id

owl:Ontology

owl:ObjectProperty
graph

Resource

owl:Class

OntologyResource GraphResource UserResource

OntologyRelation

owl:ObjectProperty

GraphRelation

owl:ObjectProperty

UserRelation

owl:ObjectProperty

OntologyAttribute

owl:DatatypeProperty

GraphAttribute

owl:DatatypeProperty

UserAttribute

owl:DatatypeProperty

Graph

owl:ObjectProperty
instancesPerson

dstore:OntologyResource

inverse

Figure 5: The central d.store ontology defining global concepts and relations of team communication
networks.

all network nodes are of type Resource. To further concretize the kind of informa-
tion represented by a node, the ontology defines three subordinate classes of node
types. Differentiating between these three classes allows to distinguish between con-
crete types that are defined in domain-specific ontologies for team communication
(OntologyResource), in ontologies imported on network-level (GraphResource), or in
network-specific concept models that provide space for custom, user-defined resource
types (UserResource).

The second first-class entity of team communication networks are edges, which
represent directed relationships between network nodes. To define the type of an
edge, and with it the semantic characterization of a relationship, the ontology speci-
fies again three classes that serve as superordinates for concrete relation types. As for
the node types, the class of a concrete relation type denotes its origin within the model:
OntologyRelation for system-defined relationship types, GraphRelation for graph-specific
relations, and UserRelation for custom relation types that are defined ad-hoc. Rela-
tion classes are subtypes of the ObjectProperty class of OWL, constraining relation
instances to express a relationship between two resources only.

Similar to relation types, the available attribute types of a team communication net-
work are subclasses of one of the abstract concepts OntologyAttribute, GraphAttribute,

Fall 2008 Workshop 3-9



Implementation of a Service Platform to Evaluate Virtual Team Communication

and UserAttribute. These are a specialization of the DatatypeProperty of OWL, re-
stricting the value of an attribute instance to a literal domain.

The concept of a team communication network itself is represented in the ontol-
ogy by the Graph type. The dedicated concept and instance models of a network are
appointed by the ontology and instances properties, respectively. Finally, the ontology
defines a first concrete node type Person, representing individual actors in the collab-
oration process.

The following two sections present ontologies of node, relation, and attribute types
that are applied in the creation of team communication networks in order to formalize
the contents and associations of digital, asynchronous team information sharing.

2.2.3 Web and Wiki Resources

The Web of today has become a collaboration platform to support team interaction
and information sharing activities. Even if no central Web application is used to coor-
dinate the teamwork or the communication between members of a team, the Web is
still regularly used for research, benchmarking and support. Information that is gath-
ered in arbitrary resources is shared and distributed among process participants in
order to disseminate insights and knowledge. This can be done in many different ways,
e.g., verbally or by sending emails with hyperlinks or attachments. Obviously, Web
resources do not only reference other hyperlinked Web resources, but are also linked
from other resources, which are not necessarily Web resources. This link dependen-
cies between Web resources and the more general concept of a resource presented
before is captured by the ontology depicted in figure 6. By defining the two relationship
types hyperlink and linked from as inverse properties, a back reference from and to
hyperlinked resources can be inferred.

http://hpi-web.de/ns/dstore/web/0.1/

@prefix dstore: http://hpi-web.de/ns/dstore/0.1

dstore:OntologyRelation
linked_from

WebResource

dstore:OntologyResource

inverse
dstore:Resource

dstore:OntologyRelation
hyperlink

Figure 6: An ontology for hyperlink relations between heterogeneous types of resources.

One of the enablers for the trend towards social Web-based information exchange
in virtual communities was the emergence of Wiki applications that allow distributed
and collaborative editing of Web pages. Wikis are now widely adopted in professional
scenarios and project-based collaboration to support in information management and
organizational tasks. The content is generally contributed, accessed, and incrementally
revised by an interacting community of registered users, which makes this medium ap-
plicable to the analysis of collaboration practices [10]. Wiki applications that are keep-
ing logs of page revisions and changes allow the examination of relationships between

3-10 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

created content and contributers. Authors having created or edited a Wiki page can
be identified by inspecting account names assigned to the revisions. Additionally, by
inspecting the delta of two revisions, the individual contribution of an user becomes
evident.

Figure 7 shows the basic association types in conjunction with Wiki-based collabo-
ration. As a specialization of a Web resource, a Wiki page naturally is also domain and
range of hyperlink relations. The ontology defines two attribute types create account
and edit account for the resource type WikiPage. These attributes are used to appoint
the Wiki account name of the creator or of one of potentially many editors of a Wiki
page. The ontology further defines an attribute type that is used to assign Wiki names
to a person.

http://hpi-web.de/ns/dstore/wiki/0.1/

@prefix dstore: http://hpi-web.de/ns/dstore/0.1/
@prefix web: http://hpi-web.de/ns/dstore/web/0.1
@prefix xsd: http://www.w3.org/2001/XMLSchema#

dstore:OntologyRelation
authorWikiPage

web:WebResource

dstore:Person

xsd:string
dstore:OntologyAttribute

create_account

xsd:string
dstore:OntologyAttribute

edit_account

xsd:string
dstore:OntologyAttribute

account

Figure 7: An ontology for wiki-related information sharing concepts.

2.2.4 Email

Email messaging is one of the most prominent technologies used today to digitally
exchange everything from simple, text-based information to rich media in an asyn-
chronous and reliable manner. Studies reveal that global, virtual teams largely rely on
daily email communication [9]. Several advantages have let to a strong pervasiveness
of email usage in virtual collaboration. Today, access to email systems is available al-
most anytime and anywhere, allowing asynchronous, ad-hoc transmission and retrieval
of messages without needing to organize and participate in synchronous interactions.
Switching between online and offline scenarios makes email messaging a convenient
tool for composing or receiving information on-demand or at a convenient point in time.
The personal mailbox simultaneously serves as a message archive and information
repository. Email distribution lists provide a convenient way to share information with a
larger group of recipients quickly and at once.

These benefits turn email communication into an important carrier of team infor-
mation, which supports this work’s approach of computer-supported diagnosis of team

Fall 2008 Workshop 3-11



Implementation of a Service Platform to Evaluate Virtual Team Communication

http://hpi-web.de/ns/dstore/email/0.1/

@prefix dstore: http://hpi-web.de/ns/dstore/0.1
@prefix xsd: http://www.w3.org/2001/XMLSchema#

dstore:OntologyRelation
reply_to

Email

dstore:OntologyResource

inverse

inverse

dstore:OntologyRelation
reply

xsd:string
dstore:OntologyAttribute

from_address

xsd:string
dstore:OntologyAttribute

to_address

xsd:string
dstore:OntologyAttribute

cc_address

xsd:string
dstore:OntologyAttribute

message_id

xsd:string
dstore:OntologyAttribute

reply_to_id

dstore:OntologyRelation
sender

dstore:OntologyRelation
receiver

dstore:Person
dstore:OntologyRelation

sent

dstore:OntologyRelation
received

Attachment

dstore:OntologyResource

dstore:OntologyRelation
attachment

inverse

xsd:string
dstore:OntologyAttribute
subscriber_addressEmailList

dstore:OntologyResource
xsd:string

dstore:OntologyAttribute
address

Figure 8: The d.store ontology for email communication.

relationships. Figure 8 shows the ontology that defines the node types, relationships,
and attributes used to describe email-related communication activities in team com-
munication networks. The Email class is the central node type for transmitted email
documents. Instances of this type have a number of lexical attributes such as mailbox
addresses listed in the to and cc fields of an email, a unique message ID, or the ID of a
previous message to which an email replies to. This dependency between two emails is
expressed through the reply/reply to relationship types. Email addresses are assigned
to persons via the address attribute. Bi-directional relations between an email and
sending or receiving persons are expressed via the sender/sent and receiver/received
relationship types. Additionally, the concept of an EmailList is introduced, which is
characterized by having a number of email recipients signed up to the distribution list
via the subscriber address attribute.

As the different ontologies presented above indicate, multiple types of relationships
between one and the same person and different types of information objects can exist.
These relations are, however, first of all grounded on interpretation and lexical iden-
tifiers associated with information objects and persons, such as email addresses or
account names. Only if a mapping between those aliases and concrete persons is pro-

3-12 Fall 2008 Workshop



2 RESOURCE-ORIENTED TEAM COMMUNICATION NETWORKS

vided, many of the defined relation types can be instantiated correctly. Such a mapping
is defined through the assignment of address and wikiname attributes to person nodes.
With this annotation, inference rules can be applied to directly spawn relations between
information objects and the actual persons being involved. The following section speci-
fies the rules that provide this formalization to automatically derive relationships in team
communication networks based on matching attributes values.

2.3 Rule-based Inference of Node Relationships

If associations are to be identified in different sources of transmitted information, a
mapping between channel-specific literal identities of an actor and an actual person
node in a network must be accomplished. To give an example, it can only be in-
ferred through our knowledge or assumptions that an email with the sender address
’john@example.com’ has actually been sent by a person named John. This can only
be true if that person exists and if that address is assigned to that person (eventually
with several other addresses). Likewise, the authoring of a Wiki resource through an
account named ’john’ can only be related to the same person if one has the knowledge
that this account name is also associated with him. In order to correctly reflect the com-
munication activities of individuals in a team, the different addresses, aliases, etc., of a
person must be attributed to a single person node to which the resulting relationships
shall be assigned to.

With a set of node attributes and the help of inference rules, relations between infor-
mation objects and persons can be derived computationally and instantaneously. This
automatic inference of relationships decreases the number of relations that need to be
explicitly stated in the graph, leading to increased flexibility and less overhead in the
manipulation of networks, nodes and attribute values. By applying these rules with ev-
ery change of a network’s state, a consistent view on the attribute-based relationships
is assured.

Based on the ontologies presented above, a number of inference rules have been
specified for a team communication network system to dynamically derive relationships
between network nodes. These rules are defined as pairs of preconditions and implied
postconditions, presented here in the form antecedent ⇒ consequent. If the left-hand
precondition of a rule is met for any combination of nodes in a network, then the right-
hand postcondition is inferred to also hold true. Using the ontological concepts defined
for email communication, an inference rule to establish sender relationships between
emails and people can be specified in the following form:

from address(x, y) ∧ address(z, y)⇒ sender(x, z)

This rule states that for any node x with an attribute from address of value y and any
node z with an address attribute of the same value y, a sender relationship between x
and z is inferred. Note that, due to the inverse specification of the sender relationship,
z instantly has an inferred sent relation to node x whenever this rule is applied in a
network. Analogical rules can be constructed to spawn direct relations from an email
message to its recipients:

Fall 2008 Workshop 3-13



Implementation of a Service Platform to Evaluate Virtual Team Communication

to address(x, y) ∧ address(z, y)⇒ recipient(x, z)
cc address(x, y) ∧ address(z, y)⇒ recipient(x, z)

Accordingly, associations can be inferred that are relating person nodes to wiki re-
sources, which have been edited or created by this person:

create account(x, y) ∧ wikiname(z, y)⇒ author(x, z)
edit account(x, y) ∧ wikiname(z, y)⇒ author(x, z)

In this case, the two rules infer an authorship relation between a node that has been
created or edited by a certain account name and a node that has this name assigned
as a Wiki name.

Inference rules are also used to instantiate relationships between two information
objects that feature logical interdependencies. One example is the reply to relationship
between an email and a preceding message to which the sender of the email replies.
On message data level, this interdependency is encoded in the email header via unique
message IDs and the value of a reply-to field that features the ID of a foregoing mes-
sage. The following rule triggers the inference of reply to relationships (and the inverse
reply relations) with the occurrence of two email nodes and matching ID attributes:

reply to id(x, y) ∧message id(z, y)⇒ reply to(x, z)

More complex dependencies between nodes can be expressed by adding additional
prerequisites to the antecedent of a rule. The following example stipulates that all
emails, which have been sent to an EmailList have been received by the persons who
are subscribed to that list:

received(w, x) ∧ subscriber address(w, y) ∧ address(z, y)⇒ received(z, x)

This rule defines that any email x that has been received by an email list w has also
been received by a node z, if w and z have matching subscriber address and address
attributes.

Referring back now to the network representation in figure 2, it becomes apparent
that only the attributes and the hyperlink relationship need to be modeled explicitly in
the graph. All other relationships and node types can be inferred by a team communi-
cation network system with the help of the presented rules and the attribute values that
are assigned to the four nodes.

2.4 Resource Orientation

Representational State Transfer (REST) [6] defines a set of architectural principles to
build highly distributed, highly scalable hypermedia applications on the Internet. One
or more uniquely identifiable resources that share a uniform interface provide the state
and functionality of a RESTful application. A stateless application protocol regulates
the transfer and manipulation of the application state between clients and server. Fol-
lowing the REST principles, a resource-oriented application constitutes addressable

3-14 Fall 2008 Workshop



3 PLATFORM IMPLEMENTATION

resources that represent meaningful concepts (nouns) for the description of the appli-
cation’s state. In the context of this work, every network instance and every individ-
ual node in a network become a uniquely identifiable resource that is provided by the
service platform. Additional resources manage the collections of entities, such as the
collection of nodes in a network, and the attributes or relationships for a particular node
instance. The unified interface of the resources allows independent and distributed re-
trieval and manipulation of the application state, such as reading a node or creating a
new resource in a collection.

Every resource can be represented in different formats, allowing different clients
with different capabilities and intents to make use of the functionality provided by the
system. Therefore, REST defines a process for negotiating the content type between
requesting clients and the server. The resource-oriented platform for team communi-
cation networks is utilizing this methodology to provide different representations for one
and the same resource, such as a network or one of its nodes.

3 Platform Implementation

To validate the feasibility of our approach, we have implemented d.store, a resource-
oriented platform for the construction of social information networks. The platform pro-
vides a REST-based [6] service interface for accumulating derived information struc-
tures from arbitrary collaboration technologies such as email messaging and Wiki ap-
plications. Using the ontologies introduced above, a number of pre-defined concepts
and relations are readily provided, that form the basis for representing semantic team
communication networks in form of OWL/RDF triple statements [2–4].

ResearcherTeam

Feeder
Applications

d.store  REST API

Analysis Tools, 
Visualization

HTML

RDF
JSON
GraphMLJSON

Resource Controllers

Jena RDF Framework

SWRL
Rules

Concept
Models

Instance
Models

Inference Engine

Persistent 
Time-

annotated 
Triple 
Store

Figure 9: d.store architecture outline

To organize the concept and instance models, the platform is built on top of the

Fall 2008 Workshop 3-15



Implementation of a Service Platform to Evaluate Virtual Team Communication

Jena semantic web framework2. The framework provides the functionality to store and
query RDF/OWL triples, import ontologies, and applying algorithms for the inference
of triples out of the set of asserted statements in a model. The application of the
inference rules presented in section 2.3 is based on the Pellet3 reasoner library, a rule
engine that interprets rule statements that have been encoded using the Semantic Web
Rule Language format SWRL4. The following XML representation of SWRL specifies
the rule to infer sender relationships between two nodes (cf. section 2.3):

<swrl:Variable rdf:about="#x" />
<swrl:Variable rdf:about="#y" />
<swrl:Variable rdf:about="#z" />

<swrl:Imp rdf:about="&email;SenderRule">
<swrl:head rdf:parseType="Collection">

<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="&email;sender" />
<swrl:argument1 rdf:resource="#x" />
<swrl:argument2 rdf:resource="#z" />

</swrl:IndividualPropertyAtom>
</swrl:head>
<swrl:body rdf:parseType="Collection">

<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="&email;from_address" />
<swrl:argument1 rdf:resource="#x" />
<swrl:argument2 rdf:resource="#y" />

</swrl:DatavaluedPropertyAtom>
<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="&email;address" />
<swrl:argument1 rdf:resource="#z" />
<swrl:argument2 rdf:resource="#y" />

</swrl:DatavaluedPropertyAtom>
</swrl:body>

</swrl:Imp>

Team communication networks are gradually generated through posting identified
objects and associations to the resource-oriented service interface provided by the
platform. The internal RDF representations for the networks are decomposed into
triple statements, which are processed in main memory for performance reasons. A
persistent and consistent copy of the asserted statements is stored in relational tables.
Adopting the Jena semantic framework to our needs, the notion of an RDF triple has
been extended by two additional timestamps which mark the beginning and the end of
a statement’s validity period. These additional two values are used to implement times-
tamps ts and te, which are defined for the elements of team communication networks,
and which allow the reproduction of the chronological evolution of the network. The

2http://jena.sourceforge.net/
3http://pellet.owldl.com/
4http://www.w3.org/Submission/SWRL/

3-16 Fall 2008 Workshop



4 APPLICATION

resulting time-annotated RDF graph provides the basis for reasoning on and analysis
of the constructed networks.

A number of helper applications to feed information and relationships identified in
email archives or wiki logs have been implemented to automate the data import. Read
and write access to the networks is provided via the unified interface of the HTTP/1.1
protocol [5]. d.store supports a number of representation formats for the provided
resources of a network, including RDF/XML, the JavaScript object notation JSON,
GraphML5, and HTML. Clients can use the Accept header field of HTTP to negotiate
the representation type that is returned from the server upon request.

4 Application

Starting to employ the platform in the analysis of multi-modal communication behavior
of virtual teams, we used data collected from eleven global engineering projects, which
were running for a period of nine month. The projects were placed in a joint academic
partnership between Stanford University and six global institutions, with each project
team distributed and composed out of two groups of global and local students. Teams
were set up in a multi-disciplinary way, involving students with backgrounds in mechan-
ical engineering, software engineering, economics, as well as product and industrial
design. The project teams were working independently on prevailing engineering de-
sign tasks that were accompanied by global enterprises and corporate liaisons under
realistic project conditions, budget and time constraints. The design process involved
early need finding activities, user observations, iterative prototyping and evaluation,
and finished with a fully functional and documented prototype, which was handed over
to the company. The internal organization of individual team processes with regard to
decision making, meetings, presentations to users and customers, and the definition of
work packages was fully left to the responsibility of the student teams. However, in ad-
dition to the similar team structures and budget constraints, all projects were synchro-
nized in terms of start and end dates, major milestones and deadlines, which supports
and simplifies the comparison the information sharing activities across different teams.

The teams have been provided with the required IT infrastructure to support syn-
chronous communication (audio/video conferencing, multi-user desktop systems) and
asynchronous communication (email lists, project wikis, shared document spaces) with
their peer team members off-site. The email archives, Wiki and server log files that
have been generated during the nine month of intense collaboration constitute now
the data basis for current research into asynchronous information sharing activities via
email, project wikis, and document shares. All of these technologies turned out to be
highly-adopted tools in the observed projects.

We started with the generation of team communication networks out of approx.
8700 project-related emails (containing more than 2900 hyperlinks and 1700 file at-
tachments), 1200 wiki resources and shared documents in public online folders. The
average ratio between emails being sent and the number of direct relationships to other
information resources submitted in the form of attachments and hyperlinks was approx.

5http://graphml.graphdrawing.org/

Fall 2008 Workshop 3-17



Implementation of a Service Platform to Evaluate Virtual Team Communication

1 to 0.6. Obviously, email messaging was commonly used as a tool to share project
information that is not only encoded in the message itself, but is provided in files or
in external information resources on the Web, supporting this approach of creating a
multi-modal, contextual view on networked team communication and information shar-
ing processes.

With the import of data from multiple projects, we have created semantically rich
social information networks with each one connecting nodes in the range of 1,000
resources or more. The average amount of asserted, time-annotated RDF triple state-
ments per resource was above seven statements. This number does not include in-
ferred statements, which increases the effective number of associations for a resource
considerably. Taking the statements derived by the presented inference rules into ac-
count, the total number of RDF statements grew up to more than 20.000 statements per
project and team communication network, created only out of the traces of digital com-
munication. First results show that the performance of the platform, and especially the
inference engine has proven to fully scale up to the analysis needs. Current activities
comprise the visualization and combined analysis of the generated network structures
and the content of the information resources in order to reveal hidden characteristics
of team communication signatures in global virtual teams.

5 Related Work

The assessment and analysis of communication signatures in collaborating teams has
been the topic of several preceding works. This section briefly discusses some of the
related research conducted in this area.

Yen [20] has created an information retrieval system to capture, index, and distribute
design information. Here, the focus is on direct design conversations that involve face-
to-face communication and sketch activities.

Reiner [13] proposes a modeling framework to support collaboration and distributed
knowledge management for design teams. His work demonstrates the use of design
history as a source of insight into team design processes. It identifies multiple corre-
lations between historic design data and team performance in the domain of software
engineering.

Both works implement a software prototype that is used to record design informa-
tion during a (mostly local) collaboration process. Both tools require direct interaction
with the designers, which presents a different, more penetrating approach to design
observation than the one followed in this work.

Müller [10] presents a graph-based approach to analyze the evolution of Wiki net-
works. While using only server log files to create separate networks for the analysis of
social relationships and link relationships, the goal of this research work is to support
self-organized knowledge management in Wiki communities. Unlike team communica-
tion networks, which provide a broader view on team information spaces, the work is
dealing with Wiki-related information only.

With the development of a team communication network platform and its application
for the analysis of multi-modal communication signatures of global virtual teams, this

3-18 Fall 2008 Workshop



REFERENCES

research relates to and builds on results of these works, aiming to contribute new
knowledge to the design research community.

6 Conclusion & Next Steps

This report elaborated on the design and implementation of a resource-oriented plat-
form for team communication networks. A software system that provides team com-
munication network services for the analysis of information sharing practices in col-
laboration groups has been motivated with the analytical potential it introduces to the
field of design research and of global, virtual teams in general. The theoretical princi-
ples of team communication networks have been presented and mapped to the REST
architectural style for resource-oriented distributed systems. With that design deci-
sion, an appropriate basis for the implementation of utilizable and reusable services
for team communication networks has been established. Building on a data model
that is grounded on a formal framework of ontological concepts, the approach aims for
the flexibility and expressiveness needed to specify, interpret and infer the informative
value of team communication networks.

A reference implementation, d.store, has been developed and is currently applied
to demonstrate the feasibility of this approach and to start with the analysis of global,
virtual teams. Continuing with the investigative exploration into the digital communica-
tion archives of distributed design teams, a number of projects have started to use and
extend the services provided by the d.store platform. This involves the visualization
and more profound analysis of the network models, as well as the combined analy-
sis of information content and network structures to locate significant objects in team
communication.

This novel approach to the analysis of global virtual design teams has been pub-
lished and presented to the research community at international conferences, work-
shops and events [16–19]. The next steps in this research work comprise a deeper
investigation into multi-modal communication signatures and their impact on team per-
formance. The results of this analysis are expected to be published in early 2009.

References

[1] Liam Bannon and Susanne Bodker. Constructing common information spaces.
In ECSCW’97: Proceedings of the fifth conference on European Conference on
Computer-Supported Cooperative Work, pages 81–96, Norwell, MA, USA, 1997.
Kluwer Academic Publishers.

[2] Dave Beckett. RDF/XML syntax specification (revised). W3C recommendation,
W3C, February 2004.

[3] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation, W3C, February 2004.

Fall 2008 Workshop 3-19



Implementation of a Service Platform to Evaluate Virtual Team Communication

[4] Mike Dean and Guus Schreiber. OWL web ontology language reference. W3C
recommendation, W3C, February 2004.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC, The Internet Engineering Task
Force, 1999. http://www.ietf.org/rfc/rfc2616.

[6] Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

[7] E. Hustad. Knowledge networking in global organizations: The transfer of knowl-
edge. In SIGMIS CPR ’04: Proceedings of the 2004 SIGMIS Conference on
Computer Personnel Research, pages 55–64, New York, NY, USA, 2004. ACM
Press.

[8] Andreas Larsson. Making sense of collaboration: the challenge of thinking to-
gether in global design teams. In GROUP ’03: Proceedings of the 2003 interna-
tional ACM SIGGROUP conference on Supporting group work, pages 153–160,
New York, NY, USA, 2003. ACM Press.

[9] J.S. Lurey and M.S. Raisinghani. An empirical study of best practices in virtual
teams. Information & Management, 38(8):523–544, 2001.

[10] Claudia Mueller. Graphentheoretische Analyse der Evolution von Wiki-basierten
Netzwerken für selbstorganisiertes Wissensmanagement. Gito, April 2008.

[11] MJ Perry, R. Fruchter, and D. Rosenberg. Co-ordinating distributed knowledge: A
study into the use of an organisational memory. Cognition, Technology & Work,
1(3):142–152, 1999.

[12] Steven Poltrock, Jonathan Grudin, Susan Dumais, Raya Fidel, Harry Bruce, and
Annelise Mark Pejtersen. Information seeking and sharing in design teams. In
GROUP ’03: Proceedings of the 2003 international ACM SIGGROUP conference
on Supporting group work, pages 239–247, New York, NY, 2003. ACM.

[13] Kurt A. Reiner. A Framework for Knowledge Capture and a Study of Develop-
ment Metrics in Collaborative Engineering Design. PhD thesis, Stanford Univer-
sity, Stanford, CA, USA, 2006.

[14] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, Inc.,
May 2007.

[15] Diane H. Sonnenwald and Leah A. Lievrouw. Collaboration during the design
process: a case study of communication, information behavior, and project per-
formance. In ISIC ’96: Proceedings of an international conference on Information
seeking in context, pages 179–204, London, UK, UK, 1997. Taylor Graham Pub-
lishing.

3-20 Fall 2008 Workshop



REFERENCES

[16] Matthias Uflacker. Resource-oriented knowledge sharing in user-centered design
communities. In Proceedings of the 10th IFAC/IFIP/IFORS/IEA Symposium on
Analysis, Design, and Evaluation of Human-Machine Systems, September 2007.

[17] Matthias Uflacker. A resource-oriented information network platform for global
design processes. Proceedings of the 2. Ph.D. retreat of the HPI Research
School on Service-oriented Systems Engineering 23, Hasso-Plattner-Institut für
Softwaresystemtechnik, 2008.

[18] Matthias Uflacker and Alexander Zeier. d.store: Capturing team information
spaces with resource-based information networks. In IADIS International Con-
ference WWW/Internet 2008, Freiburg, Germany, October 2008.

[19] Matthias Uflacker and Alexander Zeier. A graph-based approach to assessing
multi-modal team communication in global organizations. In IEEE Symposium
on Advanced Management of Information for Globalized Enterprises, September
2008.

[20] Samuel J. Yen. Capturing Multimodal Design Activities in Support of Information
Retrieval and Process Analysis. PhD thesis, Stanford University, Stanford, CA,
USA, 2000.

Fall 2008 Workshop 3-21



 



Modelling Security Configurations for
Service-oriented Architectures

Michael Menzel

Hasso-Plattner-Institute

michael.menzel@hpi.uni-potsdam.de

In this report I will summarize my research work of the past six month that has
been focused on the model-driven generation of security policies based on security
annotations in business process notations.

Business process modelling represents a cornerstone of process-aware information
systems and provides an abstract view on organisational workflows. The specification
of such processes is heavily tool-supported and facilitates a mapping to service-based
systems that provide a suitable foundation to execute business processes. Service-
oriented Architectures emerged as a concept to deliver a flexible infrastructure to allow
independently developed software components to communicate in a seamless man-
ner. Along with an increased connectivity, the corresponding security risks escalate
exponentially. However, security requirements are usually defined on a technical level,
rather than on an organisational level that would provide a comprehensive view on the
participants, the assets and their relationships regarding security.

To facilitate a high-level specification of security requirements, I proposed Secure-
BPMN as an extension for the Business Process Modelling Notation (BPMN). Secure-
BPMN enhances BPMN by security elements which allow to evaluate the trustworthi-
ness of participants based on an rating of enterprise assets and to express security
intentions such as confidentiality or integrity on an abstract level. Based on a clas-
sification for enterprise security, I will describe properties and artefacts that enhance
BPMN with regard to security in this report.

My aim is facilitate the generation of security configurations in any policy language.
For this purpose, I foster a model-driven approach: Information at the modelling layer
are gathered and translated to a domain-independent security model. Concrete proto-
cols and security mechanisms are resolved based on a security pattern system that is
introduced in the course of this report.

1 Introduction

Business Process Modelling gain more and more attention, as it is the foundation to de-
scribe, standardize and optimize organizational workflows to enhance the enterprise’s
competitiveness. A business process model is defined as a set of activities and exe-
cution constraints between these activities [29] and can be used to describe complex
interactions between business partners and related business requirements on an ab-

Fall 2008 Workshop 4-1



Modelling Security Configurations for Service-oriented Architectures

stract level.
At the same time, IT-infrastructures evolved into distributed and loosely coupled

enterprise system landscapes such as Service-oriented Architectures, which expose a
companys assets and resources as business services. The SOA paradigm provides
a vast amount of flexibility in the way complex software systems are implemented.
The independent nature of the services, with respect to operating systems and system
architectures, facilitate a composition of different services. Various business services
are orchestrated by business domain experts and modelled as business processes
having their own business logic in order to adopt faster to market changes and business
demands.

The cooperation with business partners demands the utilization of services across
organizational boundaries. In fact, the involvement of independent trust domains con-
stitutes the key aspect regarding security in service-oriented architectures, since the
seamless and straightforward integration of cross-organisational services conflicts with
the need to secure and control access. A broad range of security protocols and mecha-
nisms has been specified to address this insufficiency in the scope of SOA, emphasis-
ing the fact security is considered on an technological level. However, protecting single
endpoints on a technological level not sufficient to enforce and guarantee security in an
SOA. A comprehensive understanding and evaluation of threats and associated risks
is needed, especially with regard to regulations such as Basel II.

Business process modelling offers an appropriate layer to describe security require-
ments and to evaluate risks, since it identifies participants and assets in an information
processing system and its relations on an abstract level. I described an approach to
integrate security goals and constraints in business process modelling in [30]. Simi-
lar approaches exist, for example defined by Rodrı́guez [18], that provide extensions
for BPMN to express security requirements as well. However, current approaches en-
hance BPMN to model basic security intentions, but are not feasible to enable a com-
prehensive verification of security properties. For instance, it is not sufficient to model a
lock at the process layer as an intention to ensure confidentiality for a single connection,
since it would not consider the flow of information in the process. Information may be
passed through multiple intermediaries until it is stored or processed by a service and,
therefore, multiple parameters must be assessed such as the information’s value, the
trustworthiness of participants and the dependencies between modelled entities. I be-
lieve that the modelling should not just integrate abstract security intentions – it should
include additional security meta information to rate entities facilitating a comprehensive
view on security to model, evaluate and verify security requirements.

Based on modelled and verified security intentions, I want to facilitate the generation
of concrete security configurations for process-aware information systems. However, in
the face of current implementations and the variety of security specifications regarding
SOA realized with Web Services, these solutions come along with incompatibilities and
multiple dependencies. Current model-driven approaches enhancing business process
models with security intentions do not describe the consistent selection of appropriate
security concepts.

Therefore, I foster a model-driven approach in which security intentions and rat-
ings are annotated in business processes that can be translated to consistent security

4-2 Fall 2008 Workshop



2 ENTERPRISE SECURITY

polices. My research work has been focused on

• a security extension for business processes that provides properties and annota-
tions to integrate the revealed organisational security concepts.

• an model-driven based approach to generate policies. I introduce a security
model to gather security information modelled at the process layer and describe
the usage of security pattern to resolve appropriate security protocols.

This report is structured as follows. Section 2 provides an overview about enter-
prise security concepts and based on this I introduce my approach to enhance BPMN
with security properties and annotations in the next Section. Section 4 introduces my
domain-independent security model to gather security information from the modelling
layer and introduces security patterns to resolve appropriate protocols and security
mechanisms to enforce modelled security intentions. As a proof of concept, I present
a mapping to the Axis2 security configuration in Section 5. In Section 6 I discuss and
conclude my approach and outline some suggestions of future work, such as the inte-
gration of cross-organisational services.

2 Enterprise Security

The central aspect of security engineering is the management of risks that result from
potential threats referring to business assets (e.g. information, tasks, etc.). To evaluate
the impact of threats, assets must be evaluated to determine its overall importance in an
enterprise. Based on the evaluation of enterprises assets, appropriate measures can
be identified that reduce the threats and minimize the risks. Threats and countermea-
sures can be classified according to the related security goal [16]. Therefore, threats
can be related to the usage of identity information and enforcement of associated rights
(authentication, authorisation, trust), transferred, processed or stored information (data
confidentiality and data integrity), functioning of a service (system integrity and avail-
ability ), and the repudiation of malicious behaviour (auditing).

2.1 Authentication, Authorisation, Trust

Authentication ensures the credibility of identity information by verifying that a claimed
identity is authentic, while authorisation is the process of granting rights to partici-
pants to perform a task, for instance to access a service. These goals presume a
secure management and trustworthy provision of identity information. With regard to
a Service-oriented Architecture, the underlying trust relationships must be considered,
since the usage and provision of services might not be limited to one trust domain.
Services from different organisations might be integrated or services might be exposed
to different business partners having their own security requirements and procedures.
To evaluate the trustworthiness of the authentication and authorisation process, it is
important to analyse the underlying trust relationships that can be classified in Organi-
sational Trust and Identity Trust as described by Ivonne Thomas [27].

Fall 2008 Workshop 4-3



Modelling Security Configurations for Service-oriented Architectures

Organisational Trust – Organisational trust rates the trust relationship between or-
ganisations and, on a technical level, represents the trust between identity provider.
The level of Organisational Trust is based on various parameters such as the repu-
tation of business or the enterprise’s minimal requirements for user registration and
authentication.

Identity Trust – The identity of a subject is important to hold us service user liable in
case anything bad happens. Therefore, the provision trust-related identity information
is required to build up trust in the identity of the user and its behaviour. This trust, which
is called identity trust, is the concept behind all access control models.

A broad range of access control models have been developed in the last decades,
defining access control constraints based on particular security information such as the
user’s role (RBAC [22]) or the user’s team affiliation (TBAC [28]). Since all these pieces
of information can be considered as attributes of involved objects, the attribute-based
access control model (ABAC) can be seen as the most comprehensive access control
model, as described in [5].

2.2 Data Confidentiality and Data Integrity

Confidentiality provides protection against the unauthorised notice of transferred, pro-
cessed, or stored information, while Data Integrity ensures the properness (intactness,
correctness, and completeness) of information. Transferred, processed, or stored data
must not be modified with proper rights and - in economic terms - modifications must
correspond to business values and expectations. Since the enforcement of these secu-
rity goals might involve the application of complex security mechanisms, there is always
the trade-off between the desired level of security and performance. The required se-
curity level depend on the information’s value that influence the implementation (type
of protocols, algorithms, etc.) of these goals. Moreover, these goals can refer to trans-
ferred, processed, or stored data. Data should be secured if it is transferred over
unsecured connections or if it is processed or stored by untrustworthy participants.
Compliance requirements might be an additional reason that require the application of
data confidentiality, e.g. incoming orders must be signed and stored for compliance
reasons in a log-file.

2.3 System Integrity and Availability

System Integrity ensures the correct functioning of a system to guarantee that a system
acts in an expected and proper way at each point in time. Availability that ensures that
data, resources and services, which are needed for the proper functioning of a system,
are available at each point in time regarding the requested quality of service. Availability
depend on system integrity since availability can not be guaranteed if system integrity
is compromised. However, the quality of service requirements for availability might
require additional technical solutions, e.g. mechanisms for load balancing, to ensure
availability.

To ensure the correct functioning of a system, services must be protected from
various threats and attacks that can be classified in two categories [1,12], as follows:

4-4 Fall 2008 Workshop



3 SECUREBPMN – MODELLING SECURITY IN BPMN

1. malicious content based attacks – The purpose of this class of attacks (e.g. data
with viruses, injection attacks, recursive/oversized XML Documents) is to exploit
the service by sending data or messages with malicious content. Countermea-
sures can be used applying filters for content inspection to transferred data.

2. protocol misuse – Attacks based on the misuse of protocols (e.g. WSDL Scan-
ning, WSDL parameter tampering/ error interface probing, replay attacks) intend
to gain information or to bypass authorisations. Intrusion detection systems can
help to recognize this class of attacks.

Again, there is a trade-off between the desired security level and performance. The
necessity to scan transferred data in a system depend on the trustworthiness of the
involved participants in a communication process and the importance of involved tasks
and services. In general, scanning mechanisms are necessary if borders of security
domains are passed, or if the sender of a message is less trustworthy. This enables
the single verification of data for all group of tasks.

2.4 Auditing

Traceability and Auditing provide verifiability regarding all performed actions in an infor-
mation processing system. This can be related to simple logging mechanisms, but also
to monitoring as real-time auditing. Auditing events can refer to all layers in the under-
lying architecture and might refer to the communication infrastructure, the messaging
layer, the enforcement of security goals or business rules.

3 SecureBPMN – Modelling Security in BPMN

The previous Section provided an overview about organisational security concepts that
address various security threats in SOA. I outlined that the required level of security in
an business-aware information system depend on metrics that determine the value of
enterprise assets and assign trust level to each participant. These values determine
the risk that are associated with each asset. Appropriate security measures can be
applied for each asset to reduce risks. An process-aware information system can be
considered as secure, if the asset’s risk comply with its business value. To facilitate a
verification of security requirements and risks at the business process layer, I defined
SecureBPMN as an enhancement to BPMN. In this Section I will describe my approach
to enhance BPMN to describe the revealed aspects.

3.1 Evaluating Assets

Enterprise assets in the scope of BPMN are represented by performed tasks or data
that is passed between tasks and participants. To rate these assets I added a property
called AssetRating to task and data that is assigned a rating as listed in Table 1. This
classification is based on an generic approach for asset valuation described by Markus

Fall 2008 Workshop 4-5



Modelling Security Configurations for Service-oriented Architectures

Table 1: overall asset value scale
Rating Description

Extreme Endangering human life or threatening enterprise existence
Very High Servere financial or security consequences

High Impact on customer services and reputation
Medium Affect the enterprises mission

Low Minor financial damage and little business impact
Negligible No security relevance

Schumacher et al. [24]. They determine the asset’s overall rating based on three par-
tial values: The security value represents the importance the organisation places on
guaranteeing the assets value, the financial value quantifies the monetary value for the
enterprise and the business value determines the impact on the business. Each partial
value is based on a rating with six categories that are defined with a clear semantical
meaning.

3.2 Modelling Trust

In the previous Section I identified organisational trust and identity trust as the basic
concepts to enable a trustworthy interaction of participants. Organisational trust con-
stitute a prerequisite for interactions by predefining a trust relationship between two
participants. To express organisational trust in BPMN, I defined an artifact called Or-
ganisational Trust that can be connected to two or more pools to express this trust
relationship. The organisational trust level quantifying the relationship between two
participants is determined by parameters that are added as properties to the artifact.
Although various parameters can affect the orgnaisational trust value, I decided to con-
sider three basic parameters for modelling:

The InitialTrust parameter represents an initial trust value based on how a trust rela-
tionship between organisations has been established. Table 1 list four categories that
is based on an overview about business security patterns provided by IBM [9]. Two
participants can belong to the same organisation (operational) with unlimited trust, the
trust relationship can be established by contract (e.g. identity federation), an organisa-
tion might be trusted without contract (e.g. an other acquainted organisation serving
as OpenId-Provider).

The MinAuthenticationTrust and the MinRegistrationTrust value represent the trust
that at least can be put in the process of user registration and authentication. For in-
stance, if an organisation acts as an OpenId identity provider that can be used by users
with an valid email-address and that authenticates users based on an user-definable
password, then the corresponding trust values will be quite low. An approach to mea-
sure these values has been described in the previous section.

In contrast to organisational trust, identity trust is established dynamically during
service access. The required level of identity trust needed to access a service is deter-
mined implicitly by the requirements for access control. I will describe the integration
of authorisation requirements and constraints alter on. Factors for identity trust that

4-6 Fall 2008 Workshop



3 SECUREBPMN – MODELLING SECURITY IN BPMN

Table 2: initial trust rating
Type Trust Known by

Operational absolute same organisation
B2B high contract
B2C low reputation

WebPresence none unknown

are usually not described in access control policies – such as the required level of
authentication trust – can be derived from the asset’s value.

3.3 Expressing Security Intentions

The security intentions introduced in the previous section, such as confidentiality, iden-
tify measures that should be applied to reduce certain risks. These risk are not solely
related to a single entity such as an connection, they usually result from complex de-
pendencies and interactions. Therefore, my approach is to specify security goals and
associated requirements within the broader scope of a group of activities or a pools
instead of assigning intentions to single modelling elements. I added the new artifact
Security Group to BPMN containing the properties Confidentiality, DataIntegrity and
SystemIntegrity representing security intentions. The value of these properties deter-
mines a security level. An security intention has to be enforced for an asset, if the
security level of the containing group exceed an asset’s value. A security group differs
from a Group in the type of entities that can be combined. While a Group is limited to
a set of activities, a Security Group can additionally contain pools.

SecureBPMN is designed to capture security intentions and ratings providing a
foundation to determine which measures have to be applied. The implication of these
requirements – e.g. at which location in the process and to which degree will data be
filtered to comply to the system integrity requirement – might be visualized by a special
security view. However, this is not in the scope of my work yet.

Table 3: SecureBPMN Elements
Element new Property
Task Asset Rating
Data Object Asset Rating
Organisational Trust InitialTrust,

MinAuthenticationTrust,
MinRegistrationTrust

Security Group Confidentiality,
DataIntegrity,
SystemIntegrity

Event Auditing

Fall 2008 Workshop 4-7



Modelling Security Configurations for Service-oriented Architectures

3.4 Expressing Auditing Requirements

In Section 2 I described four architectural layers relevant for auditing. I consider re-
quirements for auditing regarding messaging and security, while auditing concerning
business rules might be modelled in the process itself. To express requirements for
auditing messaging events, I propose to add the property Auditing to BPMN events
that provide an expression to specify monitoring constraints. Regarding the auditing of
security events these requirements are implicitly bound to the usage of security inten-
tions.

4 Translating Security /Security Pattern

Security
GoalConfidentiality

Integrity

Authentication

Availability

Audit

Authorisation

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Security
PatternGuarantees

1..* 1..*
Fullfills

1..*
1

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

2..*
1..*

Bound 
to

Relates to

Is a

Information

Security 
Module

1..* 1
Configures

1..*

1S
up

po
rts

0..*

1..*Participate 
in

0..*

0..*

Contain
0..*

0..*

Security Domain

Security
GoalConfidentiality

Integrity

Authentication

Availability

Audit

Authorisation

Policy

1..*1

ObjectAttribute

Constraint

D
ef

in
es

Interaction

Security
PatternGuarantees

1..*1..*

Fullfills

1..*

1

1..* 1..*
0..*

0..*

1..*

0..*

0..*

0..*

2..* 1..*

Bound to

Relates to

Is a

Information

Model 
Element

1..*

1

Configures

1..*
1

S
up

po
rts

0..*

1..*
Participate 

in
0..*0..* Contain

0..*

0..*

Process Domain

Process 
Model

Security 
Annotation

Sequence 
Flow

Message 
FlowTask

Data
Implementation

1..*

1

1..*

1

1..*

1..*

1..*

1..*

Object

1

1..*

Figure 1: Security Policy Model

As discussed in the previous section, SecureBPMN should enable business pro-
cess experts and security experts to express security intention on an abstract model.
It should facilitate a verification of high level security requirements and trust relation-
ships at the business process layer to detect risks. In addition, this model should
enable a generation of security configurations according to the model-driven paradigm.
Therefore, I defined an platform-independent security model abstracting from concrete
implementation platforms and their provided security features. This model is used to
collect and refine security requirements from the business process model and serves
as a common model to generate platform specific security configurations in different
languages.

4.1 Domain-independent Security Model

To express, compare and verify security requirements in a technically and policy lan-
guage independent way, an abstract security layer has been introduced in previous
work [31]. The conception of this layer is close to the OASIS reference model for
SOA [13] and enables a straight mapping to the business process layer. The security

4-8 Fall 2008 Workshop



4 TRANSLATING SECURITY /SECURITY PATTERN

layer is designed to reveal all security aspects in an SOA landscape and the relation-
ship among affected entities. Therefore, my model describes basic security goals and
outlines the relationship to specific security attributes and mechanisms. The relations
among security goals and affected entities are described by Constraints that are com-
posed in a security Policy as indicated by Figure 1.

These policy constraints always refer to a set of objects (e.g. a service or a partici-
pant), which is the basic entity in my security model. I define an object as an entity that
is capable of participating in an Interaction with other objects. This interaction may in-
volve a set of Information that is exchanged. Each object is related to a set of attributes
describing its meta information that are derived from the modelling layer, such as the
service name, adress, etc.

Furthermore, security constraints are related to a security level that describes the
strength of this requirement. This value is assigned during the transformation to the
domain-independent security model based on asset evaluation and the context of an
security intention at the business layer.

As shown in Figure 1, policies are interpreted and enforced by a Security Module
that support specific Security Patterns to guarantee the defined constraints.

4.2 Security Pattern

The aforementioned security model represents a set of basic information based on the
modelled intentions at the process layer. However, these information are not sufficient
to generate concrete security configurations since further knowledge is still needed.
Expertise knowledge is required to determine an appropriate strategy to secure a ser-
vice orchestration, since multiple solutions might exists to satisfy a security goal. For
example, confidentiality can be implemented by securing a channel using SSL or by
securing parts of transferred messages using WS-Security. Which strategy is suitable
to satisfy a modelled security intention best, depends on information mapped to my
security model (e.g. secure channel is applicable when information in transit must be
secured and information is not passed through untrustworthy intermediaries).

To describe these strategies and their preconditions in a standardized way, I foster
the usage of security patterns. Security patterns have been introduced by Yoder and
Barcalow [32] in 1997 and are based on the idea of design pattern as described by
Christopher Alexander ’A pattern describes a problem which occurs over and over
again in my environment, and then describes the core of the solution to that pattern’
[2]. In general, security pattern are defined in an informal way, usually in the natural
language, to enable programmer and system designer to adapt the solution described
by the pattern to their own specific problem in a particular implementation context.

However, my intention is to enable an automated selection of appropriate pattern
to gather information for the generation of security configurations. Therefore, a formal
pattern specification is needed as described by Markus Schumacher [23] to enable a
reasoning on a set of security patterns. Figure 2 illustrates the structure of a pattern
and its relationship to my security model. A pattern is composed of

• problem – the problems that are addressed in the context of security are threats.
As described in Section 2 a group of threats can be related to a security goal.

Fall 2008 Workshop 4-9



Modelling Security Configurations for Service-oriented Architectures

Pattern System Security Model

Security Pattern

Context

Problem

Solution

Forces

relates 
to

Enterprise 
Layer

Security 
Objectives

Constraints

Imlementations/
Specifications

Pattern System Security Model

Security Pattern

Context

Problem

Solution

Forces

relates 
to

Enterprise 
Layer

Security 
Objectives

Constraints

Imlementations/
Specifications

Security Pattern

Security Requirements
Confidentiality Integrity

SecurePipe

Data
Confidentiality

Data 
Integrity

...

...

Specifications
WS-SecuritySSL ...

Security Pattern

Security Requirements
Confidentiality Integrity

SecurePipe

Data
Confidentiality

Data 
Integrity

...

...

Specifications
WS-SecuritySSL ...

Figure 2: Security Pattern

Since this level of abstraction is adequate for my model-driven approach, the
problem refers a security goal.

• context – the context describes the hierarchical layer or life-cycle phase a pat-
tern is referring to. Buschmann et al. provided a classification of patterns and
identified three main categories: Architectural Pattern, Design Pattern and Id-
ioms [6]. Since I am referring to design patterns solely in this report, this field is
less important.

• forces – Forces describe the conditions under which a pattern can be applied.
These preconditions have to be matched with information provided by my security
model to determine appropriate patterns.

• solution – A Pattern describes a strategy to solve a problem that is adapted by
concrete security mechanisms or security protocols. In my approach, a pattern
solution identifies these protocols.

Various pattern might exist that specify different solutions for the same security goal.
Moreover, dependencies between patterns might exist. As described by Zimmer [34]
there are three basic dependencies that might occur between security pattern: Usage,
Refinement or Conflict.

Based on previous work in the field of security pattern [33], I defined a pattern
system that describes pattern for each security goal and their relationship. Figure 3
shows an example for the security goals integrity and confidentiality. Two patterns are
illustrated: SecurePipe to secure data exchanged over an insecure channel, and Mes-
sageConfidentiality and MessageIntegrity to secure data exchanged with messaging.
Each pattern refer to particular security goals and identifies appropriate security proto-
cols.

5 Modell-driven Generation of Security Policies

In the previous sections I presented a model to aggregate security requirements in
a domain-independent security model. Security pattern has been introduced as an
possibility to resolve an appropriate security protocols and mechanisms. Therefore, it

4-10 Fall 2008 Workshop



5 MODELL-DRIVEN GENERATION OF SECURITY POLICIES

Pattern System Security Model

Security Pattern

Context

Problem

Solution

Forces

relates 
to

Enterprise 
Layer

Security 
Objectives

Constraints

Imlementations/
Specifications

Pattern System Security Model

Security Pattern

Context

Problem

Solution

Forces

relates 
to

Enterprise 
Layer

Security 
Objectives

Constraints

Imlementations/
Specifications

Security Pattern

Security Requirements
Confidentiality Integrity

SecurePipe

Data
Confidentiality

Data 
Integrity

...

...

Specifications
WS-SecuritySSL ...

Security Pattern

Security Requirements
Confidentiality Integrity

SecurePipe

Data
Confidentiality

Data 
Integrity

...

...

Specifications
WS-SecuritySSL ...

Security Pattern

Security Requirements
Confidentiality Integrity

SecurePipe
Data

Confidentiality

Data 
Integrity

...

...

Specifications
WS-SecuritySSL ...

Figure 3: Confidentiality Pattern

is necessary to define a mapping for each defined security pattern to a specific security
policy. In this section I will describe the generation of security policy based on the
resolved information and present an example to generate polices for a service realized
with the Apache Axis 2 Web Service Stack [15].

The Apache Rampart Module [7] is used to apply security to the ingoing and outgo-
ing messages of web service calls. Rampart is configured by the Rampart configuration
parameters [7] or the WS-Policy [3] language. The native Rampart configuration uses
a flat list of constraints stated in XML with implementation specific information, while
WS-Policy provides a grammar to express and group policy assertions describing a
broad range of requirements on an more abstract level. Since WS-Policy is not specific
to a problem domain, security assertions are defined in the WS-SecurityPolicy speci-
fication providing an implementation independent approach to express constraints for
WS-Security, WS-Trust and WS-Secure Conversation [20].

Figure 4: Mapping to the Apache Rampart Security Configuration

In the scope of the native Rampart configuration, a policy is represented by the
element parameter with the attribute name=’OutflowSecuity’ | ’InflowSecuity’. The at-
tribute controls whether the security settings are applied to ingoing or outgoing mes-

Fall 2008 Workshop 4-11



Modelling Security Configurations for Service-oriented Architectures

sages. The policy element parameter contains the element action that encapsulates
several elements to configure Rampart. Figure 4 shows the mapping to the Rampart
configuration for outgoing messages regarding the security goal confidentiality. Since
Rampart operates on the exchanged Web Service messages, this transformation as
well as the generated policy are associated with the security pattern message confi-
dentiality.

� �
1 <! -- Body Encryption for calling service DebitOrder -->

2 <parameter name= ” I n f l o w S e c u r i t y ” >
3 <action >

4 <items >Encrypt </items >

5 <user>Customer </user>

6 <encryptionUser >OnlineStore.DebitOrder </encryptionUser >

7 <encryptionPropFile >OnlineStore.DebitOrder.properties </encryptionPropFile >

8 <encryptionParts >{}{} Body</encryptionParts >

9 <encryptionSymAlgorithm >

10 http: //www.w3.org /2001/04/ xmlenc#tripledes -cbc

11 </encryptionSymAlgorithm >

12 <encryptionKeyTransportAlgorithm >

13 http: //www.w3.org /2001/04/ xmlenc#rsa -1_5

14 </encryptionKeyTransportAlgorithm >

15 </action >

16 </parameter >


 	
Listing 1: Rampart Inflow Encryption

6 Related Work

The domain of model-driven security in the context of business processes is an emerg-
ing research area. The need to support the application scenario and hypothesise
the related security policies for the affected services on an abstract level is discussed
in [26]. I extended this suggestion by defining security configuration requirements in
the context of application scenarios captured on the business process layer.

Recent work done by Nagaratnam et al. [14] discusses an approach to overcome
this shortage by expressing security requirements in the context of business processes
and how to monitor and manage them on the different enterprise architecture levels.
This intention, while similar to my concepts regarding the benefits of a modelling ap-
proach, does not provide a detailed analysis of security goals, their conceptual models,
and their relationship to the business process related entities.

This has been addressed by Rodrguez et al. [17, 19] by defining a meta-model
that links security requirement stereotypes to activity elements of a business process
and proposed graphical annotation elements to visually enrich the process model with
related security requirements. Although they support several security intentions, they
do not provide a comprehensive security model based on the evaluation of assets

4-12 Fall 2008 Workshop



7 CONCLUSION

considering authentication and trust.
Our security model could be complemented by modelling concepts for compliance

rules for business processes [21] as described by Sadiq et al.. They propose model an-
notations with control tags that are mappable to the Formal Contract Language (FCL)
focusing on the intended behaviour of the process model in the context of organisa-
tional compliance regulations. Their control tags cover order of event, data, and autho-
risation aspects, but they do not address how to actually derive enforceable compliance
rules at runtime.

Enforcing authorisation constraint in workflows is addressed in [11]. SecureFlow
implements a Workflow Authorisation Model (WAM). Authorisations can be defined
and enforced at runtime for users, roles, and workflow tasks. In contrast to my gen-
eral security modelling approach they focus on authorisation constraints in centralised
workflow management system, without considering other security requirements, such
as confidentiality or integrity that are important in a service-oriented environment as
well. These authorisation concepts are refined in [8] by a semantic policy-based se-
curity framework for business processes identifying two levels of security for business
processes. On the task or activity level, security concerns, such as non-repudiation,
confidentiality, and data integrity are considered. On the process level, general compli-
ance rules, such as required by Sarbanes-Oxley are defined, but a model connecting
security and process aspects is not given.

Model-driven security and the automated generation of security enhanced software
artefacts and security configurations has been a topic of interest in recent years. For
instance SecureUML [4] is a model-driven security approach for process-oriented sys-
tems focusing on access control. Similar to SecureUML, Jrjens presented the UMLSec
extension for UML [10] in order to express security relevant information within a system
specification diagram. One focus of UMLSec lies on the modelling of communication-
based security goals, such as confidentiality, for software artefacts, while SecureUML
describes desired state transitions and access control configurations for server-based
applications, both do not leap for establishing the link between business processes and
model-driven generation of related security requirements.

7 Conclusion

Business process modelling represents a cornerstone of process-aware information
systems. Service-oriented Architectures supports the execution of processes by facil-
itating the mapping between task and services. While business processes provides
an abstract view on organisational aspects and related requirements, security require-
ments are usually specified on a technological level rather at the business level as
stated in [26].

Process modelling notations provide a suitable abstract perspective to specific se-
curity goals on a more accessible level, as I have shown in [31]. However, previous
approaches are limited regarding the description and evaluation of security require-
ments and do not describe a transformation of these requirements to security configu-
rations. To enable an overall evaluation of security requirements based on the value of

Fall 2008 Workshop 4-13



Modelling Security Configurations for Service-oriented Architectures

enterprise assets and the trustworthiness of participants, I provided a compilation of or-
ganisational security aspects and outlined their relationships. Based on this overview, I
introduced SecureBPMN as an modelling extension for BPMN to enable business pro-
cess designer and security experts to define and discuss security requirements on an
abstract level.

I presented a model-driven approach addressing the difficulty to generate security
configurations for a process-aware information system. The foundation constitutes my
generic security model that specifies security goals, policies, and constraints based
on a set of basic entities, such as Objects, Attributes, and Interactions. The strength
of my model lies in its general description of security goals, and the abstraction from
technical details. Security intentions and related requirements defined at the process
layer can be mapped to this model. To resolve concrete security protocols and mecha-
nisms, a security pattern system has been described that resolves appropriate security
protocols with regard to specific preconditions.

The gathered information can be mapped to an arbitrary application or technical
specification. As an example I introduced a mapping to the configuration of the Axis2
Rampart module. As a result, these security configurations would be consistent with
the affected business processes and result in a decreased error-proneness.

7.1 Future Work

I stated that my proposed security extension for BPMN is a promising approach to de-
scribe, verify and translate security requirements at an abstract level. While I described
a model-driven approach to translate security intentions to concrete security configura-
tion, I outlined the possibility to perform the verification. In the next step I will address
the process of verification in detail to prove that the verification will guarantee the con-
sistency of modelled security goals. Some concepts have been recently discussed [25]
and I will investigate their applicability to my concepts.

Moreover, I will have to continue implementing the described model-driven ap-
proach based on the domain-independent security model. A security ontology has to
be designed to gather the security information from the modelling layer. Aditionally, a
security pattern registry is needed to resolve further information. To visualize revealed
risk and verification results, I will integrate a security view into the ORYX business pro-
cess modelling tool. This view should visualise risk information, trust relationships and
additional security information.

Another important aspect is the consumption and provision of services and ser-
vice compositions across trust domains [Menz08]. To enable a model-driven approach
regarding cross-organisational service compositions, it must be considered that feder-
ation partners state their own security requirements that must be considered as well
as compatibility issues. In addition, it is important to reveal dependencies and con-
tradictions between requirements from different service providers that would prevent a
secure or compatible service provisioning. This information can also be used to provide
feedback at the modelling layer.

4-14 Fall 2008 Workshop



REFERENCES

References

[1] Eege project. grid and web service security vulnerabilties and threads analysis
and model. (See: https://edms.cern.ch/documents/632020/), 2005.

[2] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobsen, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Lanuage: Towns - Buildings - Con-
struction. Oxford University Press, 1977.

[3] Siddharth Bajaj, Don Box, and et. al. Web services policy 1.2 - framework (ws-
policy). Public Draft Specification, April 2005.

[4] David Basin, Juergen Doser, and Torsten Lodderstedt. Model Driven Security
for Process-Oriented Systems. In SACMAT ’03: Proceedings of the 8th ACM
symposium on Access control models and technologies, pages 100–109, 2003.

[5] Hai bo Shen and Fan Hong. Modelling security goals in business processes. In
Modellierung 2008, LNI. GI, 2008.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Pattern. John
Wiley & Sons, Ltd, 1996.

[7] Saminda Abeyruwan et. al. Apache rampart : Ws-security module for axis2, 2008.

[8] Dong Huang. Semantic policy-based security framework for business processes.
In Proc. of the Semantic Web and Policy Workshop, 2005.

[9] IBM. Introduction to business security pattern. 2004.

[10] Jan Juerjens. UMLsec: Extending UML for Secure Systems Development. In UML
’02: Proceedings of the 5th International Conference on The Unified Modeling
Language, pages 412–425, 2002.

[11] Wei kuang Huang and Vijayalakshmi Atluri. Secureflow: A secure web-enabled
workflow management system. In ACM Workshop on Role-Based Access Control,
pages 83–94, 1999.

[12] P. Lindstrom. Attacking and defending web services, a spire research report. (See:
http://forumsystems.com/papers/Attacking and Defending WS.pdf), 2004.

[13] Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter Brown, and Rebekah
Metz. Reference model for service oriented architecture 1.0. OASIS Committee
Specification, February 2006.

[14] N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and P. Austel. Business-
driven application security: From Modeling to Managing Secure Applications. IBM
Systems Journal, Vol 44, No 4, 2005.

Fall 2008 Workshop 4-15



Modelling Security Configurations for Service-oriented Architectures

[15] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka, Ajith Ran-
abahu, Deepal Jayasinghe, Sanjiva Weerawarana, and Glen Daniels. Axis2, mid-
dleware for next generation web services. In ICWS, pages 833–840. IEEE Com-
puter Society, 2006.

[16] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Computing. Prentice
Hall Professional Technical Reference, 2002.

[17] Alfonso Rodrı́guez, Eduardo Fernández-Medina, and Mario Piattini. Towards a
uml 2.0 extension for the modeling of security requirements in business processes.
In TrustBus, pages 51–61, 2006.

[18] Alfonso Rodrı́guez, Eduardo Fernández-Medina, and Mario Piattini. A bpmn ex-
tension for the modeling of security requirements in business processes. IEICE
Transactions, 90-D(4):745–752, 2007.

[19] Alfonso Rodrı́guez, Eduardo Fernández-Medina, and Mario Piattini. Towards cim
to pim transformation: From secure business processes defined in bpmn to use-
cases. In BPM, pages 408–415, 2007.

[20] Jothy Rosenberg and David Remy. Securing Web Services with WS-Security: De-
mystifying WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption.
Pearson Higher Education, 2004.

[21] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control
objectives for business process compliance. In BPM, pages 149–164, 2007.

[22] Ravi S. Sandhu and Edward J. Coyne. Role-based access control models. IEEE
Computer, 29:38–47, 1996.

[23] Markus Schumacher. Security Engineering with Patterns - Origins,Theoretical
Model, and New Applications. Number ISBN 3-540-40731-6. Springer, Berlin,
2003.

[24] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. Security Patterns - Integrating Security and
System Engineering. John Wiley & Sons, Ltd, 2006.

[25] Kaijun Tan, Jason Crampton, and Carl A. Gunter. The consistency of task-based
authorization constraints in workflow systems. In CSFW, pages 155–, 2004.

[26] Michiaki Tatsubori, Takeshi Imamura, and Yuhichi Nakamura. Best-practice pat-
terns and tool support for configuring secure web services messaging. In ICWS,
pages 244–251, 2004.

[27] Ivonne Thomas. Identity management for cross-organizational soa. Technical
report, Hasso-Plattner-Institute, Fall 2008.

4-16 Fall 2008 Workshop



REFERENCES

[28] Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls (tbac):
A family of models for active and enterprise-oriented autorization management. In
DBSec, pages 166–181, 1997.

[29] Mathias Weske. Business Process Management. Springer, 2007.

[30] Christian Wolter, Michael Menzel, and Christoph Meinel. Modelling security goals
in business processes. In Proc. GI Modellierung 2008, number ISBN 978-3-
88579-221-5. GI LNI, Berlin, Germany, 1008.

[31] Christian Wolter, Michael Menzel, and Christoph Meinel. Modelling security goals
in business processes. In Proc. GI Modellierung 2008, number ISBN 978-3-
88579-221-5. GI LNI, Berlin, Germany, 1008.

[32] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling application
security. In PLoP, 1997.

[33] Nobukazu Yoshioka, Hironori Washizaki, and Katsuhisa Maruyama. A survey on
security patterns. Progress in Informatics, 5:35–47, 2008.

[34] Walter Zimmer. Relationships between design patterns. pages 345–364, 1995.

Fall 2008 Workshop 4-17



 



A Flexible Live Inspection Framework

Alexander Schmidt

alexander.schmidt@hpi.uni-potsdam.de

In this paper I will give an update of my research efforts during the past half year. I
will first present a brief review of the KStruct project, a flexible monitoring infrastructure
focused on operating system kernel data structures. The KStruct system has been
used for teaching operating system courses here at HPI. It turned out that the infras-
tructure indeed is flexible enough to be used in other contexts as well, which will be
the second part of this paper. I spent most of the time with an internship at Microsoft,
which although not directly related to my research, was beneficial for presenting the
KStruct approach within the company. My experiences and work at Microsoft will be
covered in the third part of the report.

1 The KStruct Framework

Service-oriented architectures recently received quite significant attention in both the
industry and research. Being building blocks of higher level business processes, fail-
ing services may have significant impact on its providers [12]. Thus, services have to
be highly available and should provide high performance to meet the business needs.
Service-oriented architectures also offer a new kind of business model with open stan-
dards allowing for seamlessly exchanging services of different service providers. While
several solutions exist that address the issue of how to deal with service service fail-
ures at the consumer site [3, 9, 13], they do not address solutions on how to support
the service providers.

For example, consider a data center consisting of thousands of nodes and hosting
hundreds of individual services. To better utilize single nodes within the data center,
nowadays the physical machine, the host, is shared among several virtual machines.
Each individual service is hosted exclusively in a virtual machine. Which virtual ma-
chine has (exclusive) access to what resource is usually controlled by a meta operating
system called the hypervisor, or virtual machine monitor. However, each virtual ma-
chine and its hosted service may eventually encounter its peak load. If several virtual
machines of the same node encounter the peak load at the same time, it may be ben-
eficial to migrate a virtual machine to another node with less load. This node may be
in the same data center or in another data center. Otherwise, as resources get short,
the service level agreement of some service on that node is in danger to be violated.
Also, in case of a crash failure [5] of a service or its virtual machine, the service may
be redeployed on another node within the cluster. Monitoring and inspecting (arbitrary)
indicators of these events is thus crucial to enable the described scenario.

The KStruct framework is an approach to selectively inspect certain information

Fall 2008 Workshop 5-1



A Flexible Live Inspection Framework

within the OS kernel. The inspection may be enabled during the runtime of the OS
and does not require rebooting the system, which is essential for productive comput-
ing environments. Although different technologies exist to gather performance related
data [4, 8, 22] exist, KStruct focuses in particular on data structures of the OS kernel.
However, the approach is flexible enough to extend the inspection to data structures
that are related to applications running on top of that operating system. The modu-
lar design of the KStruct framework can support different kinds of front-ends, such as
WMI [22] or HP’s System Insight Manager (SIM) [2].

To inspect data structures the following problems have to be solved: (1) The kernel
address space has to be made accessible. (2) Data structures need to be described in
a way suitable for automation, i.e., without any human intervention, neither by adapting
code nor by halting the system or relaunching the application. The latter is especially
in production environments where most of the services hosted are inherently long run-
ning. (3) Data structures must be addressed in a way to easily locate them on the
heap while allowing runtime verification. (4) the inspection shall prevent from any data
races regarding the data structure of interest to guarantee liveness properties of the
inspected system. That is, a failure, if any, perceived by the user must not be caused
by the inspection framework.

The KStruct framework solves (1) by using a driver that inherently has access to the
kernel address space. In order to achieve flexibility and extensibility, we introduce the
KStruct Access domain-specific language (DSL). To ensure (4), KStruct Access pro-
vides means to express locking hierarchies among data structures. The lock granularity
depends on the OS and may range from very fine grained locks for each data struc-
ture instance to coarse-grained global kernel locks. Expressing locking hierarchies is a
non-trivial task and an approach on how to derive dependencies automatically is part
of ongoing research. For solving (3), we introduce object paths.

Based on this approach, we implemented a prototype. At the HPI, this prototype
has been used for two generations of undergraduate students, including hands-on labs
and assignments. The setting for these labs is however different. For the OS classes
we provide a pre-configured and fixed KStruct environment based on the Windows
Research Kernel (WRK) [11]. Results have been presented at the USENIX Annual
Technical Conference [19].

1.1 KStruct Architecture

The KStruct consists of two major components: the KStruct Framework and the KStruct
Generator. Both components are shown in Fig. 1. The KStruct Generator is our tool
for generating the source code for both the device driver and the rendering library.
To configure the amount of data structures supported by the KStruct Framework, it is
necessary to supply a KStruct specification file. Usually, this file is created by a domain
expert, e.g., an engineer familiar with kernel details or an operating systems teacher.
To ensure type safe access to kernel data structures, the KStruct Generator relies on
symbol information files (PDB files) generated by the Microsoft C compiler cl. Our
generator is capable of coalescing symbol information of several OS kernels starting
with Windows XP. However, we concentrate here only on symbol information of the

5-2 Fall 2008 Workshop



1 THE KSTRUCT FRAMEWORK

KStruct GeneratorKStruct System

Framework
Buffer

Object Path KStruct Object

Rendering Library

Driver

Kernel-
Mode

User-
Mode

Kernel ObjectKernel ObjectKernel Object

KStruct HTTP 
Server

User

Browser

KStruct
Generator

WAN/LAN

PDB
Files

Expert

KStruct
Spec.

Figure 1: Architecture of the KStruct runtime system.

Windows Research Kernel.
While the KStruct Generator is used for generating the device driver and and the

rendering engine, the KStruct Framework is necessary for running those components
on a target system. The Framework loads both the rendering library and the device
driver and provides an interface for the HTTP server in order to process queries.

A major goal of the KStruct system is to guarantee type safety of displayed objects,
i.e., it is not possible to accidentally cast a data structure to another one. Debuggers
lack this facility: a user may cast a kernel address in what ever type he/she likes. Also,
we wanted to use an addressing scheme that is equally intuitive and comprehensive,
i.e., the addressing scheme should reflect the dependencies and the complexity of the
kernel’s objects.

To solve the problem, we introduce the concept of an object path. An object path
uniquely determines an object in the heap of the kernel. However, there may be several
paths leading to the same object. The following is an example of an object path:

/<root>/<member1>/<member2>/.../<membern >

The first object in this path, root, determines a global or static data structure of the
kernel. For convenience, we introduced aliases to these root objects. For example,
Processes is an alias for PsActiveProcessHead. Due to space limitations we will not
further discuss aliases here. Each root object may be followed by zero or more member
names, delimited by slashes (“/”), where each member name identifies a field within the
preceding data structure. If the preceding data structure is actually a list or an array,
the member name forms an identifier that uniquely identifies a data structure within the
list or array, respectively. The following example identifies the UniqueProcessId field of
an instance of the EPROCESS data structure: /Processes/81234567/UniqueProcessId.
When a query is issued, the framework will issue the object path to the driver, which

Fall 2008 Workshop 5-3



A Flexible Live Inspection Framework

struct EPROCESS{

KPROCESS Pcb;

[lock] EX_PUSH_LOCK ProcessLock;

LARGE_INTEGER CreateTime;

HANDLE UniqueProcessId;

[lhead(ETHREAD::ThreadListEntry)]

LIST_ENTRY ThreadListHead;

[mlock(VadRoot)] KGUARDED_MUTEX

AddressCreationLock;

MM_AVL_TABLE VadRoot;

};

Kernel Process Block

Time of Creation

Process ID

Thread List

ETHREAD

Address Space Information

...

...

Figure 2: The KStruct definition for the EPROCESS data structure [10,15]. On the right is
a block diagram of the specified data structure. Due to space limitations, some fields
are omitted here.

will check whether the given object path is valid within the current system. If the object
path is valid, a copy of that object is sent to the rendering library, which is responsi-
ble for rendering the data structure in a human readable format. Within our current
KStruct configuration, the output format is HTML as we provide access over the In-
ternet. However, other formats are reasonable, for instance, a Windows Management
Instrumentation (WMI) [22] provider.

1.2 KStruct Access

The architecture of the KStruct framework reflects the different kinds of users and
phases necessary to run the KStruct system: the specification phase and the experi-
ment phase. The experiment phase is designed for novice users, which experimentally
want to extend their knowledge of an operating system. The specification phase on the
other side is designed for domain experts that have thorough knowledge on the mat-
ter. Domain experts may include kernel architects and developers or operating system
teachers that want to use KStruct for their classes.

In order to specify data structures of interest, we designed KStruct Access, our
domain-specific language (DSL). The goal of this language is to allow specification of
kernel data structures in order to automatically generate both a kernel-mode device
driver and of a user-mode helper library out of this specification. As most data struc-
tures in the WRK are defined using the C language, KStruct Access is an extension to
the subset of C which allows the definition of structs and enumerations (enum). Fig. 2
illustrates the usage of our DSL. The whole language is centered around programming
idioms we identified by reviewing the WRK. These idioms usually help programmers
to keep the source code maintainable. To capture those idioms in the Windows ker-
nel, a number of extensions, compared to C, are necessary. Collecting these idioms is
still work-in-progress. The annotations added to type and field declarations have often
been inspired by DCE IDL [1].

Due to the lack of space, we focus here on expressing locking semantics. However,
the KStruct Access DSL is capable of expressing the following concepts. A more de-

5-4 Fall 2008 Workshop



2 KSTRUCT – THE BIGGER PICTURE

tailed overview of the KStruct principals and the language itself can be found here [16].

• Lists

• Variable-sized arrays

• Arrays with varying element sizes

• Polymorphic pointers

• Variant data types

• Meta-data for rendering purposes

1.3 Synchronization

Operating system kernels are massively parallel, highly efficient systems. Expressing
locking semantics on data structures was therefore one of the major concerns when
designing the DSL. In Fig. 2 these semantics are declared by either the lock or mlock
keyword, respectively. While the lock keyword causes the KStruct driver to acquire
the specified lock before accessing the data structure that contains the lock, the mlock
keyword causes KStruct to acquire a lock only if the specified field is accessed. That
is, the KStruct driver will acquire the AddressCreationLock lock if and only if VadRoot
is to be accessed.

Each field of a data structure may itself be a nested data structure or may point to
another data structure and so on. A lock is released only, if all objects on an object
path have been accessed. This may raise the issue of deadlocks as we may introduce
lock dependencies that were not considered when designing the Windows kernel. In
order to not halt or crash the system, the KStruct framework will always try to acquire a
lock at first place. If the lock can be acquired, KStruct will proceed in parsing the object
path. Otherwise, all previously acquired locks will be released. The KStruct driver will
eventually attempt to acquire all the locks again.

2 KStruct – The Bigger Picture

KStruct is a system for consistently inspecting kernel data structures, while the kernel
is running. It was originally designed for classroom use only. However the key func-
tionality of KStruct, picking arbitrary data structures within the kernel heap, may be
beneficial in data center environments too. Which data structures are to be inspected
is defined by the users facilitating the KStruct Access DSL. Some data structures may
be even indicators for resource shortages or even failures. The following list is by no
means exhaustive. However, it shall provider the reader an impression of what these
indicators may look like.

Fall 2008 Workshop 5-5



A Flexible Live Inspection Framework

Available page frames If the number of available page frames on a node drops below
a certain threshold it may be an indicator that the system in its current setting
is running out of memory. In a virtualized environment, as described in the in-
troduction of this report, this might be an indicator that too many guest operating
systems are actively using their resources and thus exhaust the host’s resources.

User/kernel time stalls If the amount of time a services spent running in user or ker-
nel mode does not change for a certain period of time, it may be an indicator that
the service hangs. However, just considering that value might not be sufficient.
A service may also wait for another request! To make sure the service really
crashed, KStruct may inspect the objects any thread of that service is waiting on.
If there are no such object, we may have an even stronger evidence for a service
crash.

Application specific indicators KStruct may even access application or service spe-
cific indicators even without any modification. Services may export these indi-
cators by means of the OS, e.g., Performance Counter or the /proc file sys-
tem [6, 8], or their service containers [20]. However, these indicators may not
be useful under all circumstances and some indicators may be even missing. In
such situations, KStruct offers a simple and flexible solution to support even those
indicators.

For those reasons, we focus on integrating the KStruct framework into the reliable
service computing platform presented in the last Research School report and continue
to investigate the applicability of KStruct in data center scenarios. For the sake of
completeness, we would like to give a short review on my architecture proposal for
fault-tolerant service computing [18]. While different levels in the software stack may
be considerable for achieving fault-tolerance, we focus on the operating system level,
as we think this allows for the most transparent and service independent approach.

Although services, like Web services, inherently are stateless, most of those Web
service implementations rely on a session state that is maintained for each instance of
a consumer-provider interaction [21]. For instance, such a session state may be the
content of the shopping cart for an on-line shop. Also, Web services rely on persis-
tent storage that manifests the state of the whole business model behind the service.
Other approaches for fault-tolerant SOAs do not address this important issue of where
to store this data. Typically, this data is stored in databases which in turn need infras-
tructure and maintenance. From the service provider’s point of view, a more holistic
approach may be beneficial.

Several middleware approaches exist to replicate services and their state from one
node to another. In contrast to existing solutions, our approach uses static, per-service
recovery schemes describing a set of nodes where to restore the service in case of
a failure. Also, we exploit capabilities of the operating system to provide the static
replication scheme of a service and its state. Static recovery schemes are particularly
beneficial as they allow determining a replication node in constant time.

5-6 Fall 2008 Workshop



2 KSTRUCT – THE BIGGER PICTURE

2.1 System Model

Our system consists of a set of machines (physical or virtual), called nodes, which are
interconnected via a reliable network. In the beginning, each node hosts exactly one
service instance. Within the fault model introduced by Christian [5], we only tolerate
crash faults of either nodes or service instances, i.e., a node or service instance that
crashed will remain silent and unfixed until the whole system may eventually be reju-
venated. Due to limitations in the underlying protocol stack, the omission fault class
and the timing fault class are mapped to the crash fault class. Tolerating faults in the
Byzantine fault class is beyond the scope of this paper.

A service typically processes a request regardless of previous messages (state-
less service behavior). However, in real-world service implementations there is an
urgent need for representing a common state between a service consumer and a ser-
vice provider [21]. Thus, in case of a node/service crash, it is not enough to simply
re-deploy the service on another node. Furthermore, the state has to be propagated in
advance to a recovery node. In our model, the state of the service is the aggregation
of all operating system provided resources, like open network connections, data base
connections or objects allocated on the heap. Further, we make the following assump-
tions: (1) this propagation is possible in a reliable way, and (2) the transmission delay
of a state transfer is much less than the average meantime to failure of a node. There-
fore, the communication network must allow end-to-end communication between the
cluster nodes and must provide a certain bandwidth with enough transmission capacity
to replicate the service state to the recovery node.

We maintain for each service a recovery list. A recovery list describes where a ser-
vice has to be re-deployed after its execution node failed. The set of recovery lists of all
services in the cluster compose the recovery scheme. In recent research, static recov-
ery schemes were investigated and algorithms were developed which ensure optimal
load distribution for a huge amount of cluster nodes [7]. The derived schemes ensure
the best achievable load distribution across the remaining cluster nodes in the case of
(multiple) node failure. We exploit the advantage of static recovery lists in our services
infrastructure: according to our restricted system model, it is sufficient to propagate
state changes only to the appropriate recovery node.

2.2 Implementation

Every node uses a modified operating system kernel which provides state replication
capability. This kernel must be able of (1) capturing the service state, (2) replicating the
service state to other nodes, and (3) restarting processes in the case of node failures.

On the operating system level, the state of a process can be described by its used
memory pages, and its kernel resources. For capturing the service state all memory
areas which were modified as a result of a service request have to be captured. Re-
sources have to be captured in a different way: File and network operations can be
recorded on the API level so that each operation can be “replayed” on the recovery
node.

The state transfer is based on static recovery lists. Each process has an associated

Fall 2008 Workshop 5-7



A Flexible Live Inspection Framework

Cluster Node X

Send Queue

...

Aggr. State

... ...

Process

Kernel StateWorking Set

Update Collect Changes

Recovery Node for Node X

Receive Queue

...

Aggr. State

... ...

Shadow Process

Kernel StateWorking Set

UpdateApply Changes

Figure 3: State Replication

recovery list, which determines where the process has to be restarted if the current
node is failing. The process state is incrementally replicated to this node. In this way,
we avoid some problems of other replication approaches: (1) No global checkpoints
are necessary. (2) There is one single replica per process. (3) The network traffic
caused by state replication is constant.

For state transfer, we propose an event driven (warm) replication scheme: updates
to the state are propagated in the event of a completed request. Figure 3 illustrates
the procedure of state transfer. (1) The system waits until the processing of the current
request is finished. (2) The state modification is determined: the current working set
of page frames is checked for updates. Modified pages are inserted into the transfer
queue. Also, modified kernel resources are inserted into the transfer queue. (3) The
changes are applied to a (locally) consistent state representation. (4) The content of the
queue is transfered to the recovery node. (5) After the state transfer was acknowledged
by the recovery node, the next request can be processed. (6) The recovery node
applies the state modifications onto the shadow service. This procedure is repeated
after every processed request.

In this way the complete service execution state is available in four representations:
(1) in the memory of the real service instance, (2) in the local state representation on
the same node, (3) in the memory of the shadow service instance on the recovery
node, and (4) in aggregated form on the remote node. The second representations
is necessary in case the recovery node crashes. In this case the replicated service
state is lost. The recovery list of the local process determines the next recovery node.
The local state representation is transfered to this next recovery node and the shadow
process is reinitialized. Afterwards, the state can be incrementally transfered to this
new recovery node as described above.

In the case of node failure, services are migrated from the failing node to the respec-
tive recovery nodes. State replication and process migration depend on the recovery
lists of the processes. A (static) recovery list determines the sequence of cluster nodes
where a specific process has to be restarted. In the following example we assume
a four-nodes-cluster and the following recovery list for process 0: R0 = {1, 3, 2}, i.e.,
if node 0 breaks down, the process is restarted on node 1, if node 1 breaks down
subsequently, the process is restarted on node 3 and so on. The recovery lists for

5-8 Fall 2008 Workshop



2 KSTRUCT – THE BIGGER PICTURE

Node 0

0 3

Node 1

1 0

Node 2

2 1

Node 3

3 2

Node 0

0 3

Node 1

1

0

Node 2

2

1

Node 3

3 2

Node 0

0 3

Node 1

1 0

Node 2

2 1

Node 3

3 2

Node 0

0 3

Node 1

1

Node 2

2 1

Node 3

3 2

0

1

A B

DC

Figure 4: Recovery

Fall 2008 Workshop 5-9



A Flexible Live Inspection Framework

all other processes can be derived by adding one (modulo four) to each position; i.e.,
R1 = {2, 0, 3}, R2 = {3, 1, 0}, and R3 = {0, 2, 1}.

Figure 4 shows the procedure if a node breaks down. (A) A service is executed on
four cluster nodes. Each process is replicated to one other node. (B) Node 1 breaks
down. Process 1 must be recovered. The replicated shadow process of process 0 is
lost. (C) The aggregated process states are transfered to the next recovery node of
each process. The state of process 0 is transfered to node 3 and the state of process
1 is transfered to node 0. (D) The shadow process of process 1 is initialized for service
execution.

Initial case studies have shown the feasibility of our approach. We have modified
the Windows Research Kernel [14] to allow for fault-tolerant service execution on a
multicomputer system: while one processor executes an active process, the process’
state is replicated on another processor. The system then allows to switch seamlessly
between both process instances.

2.3 Summary

We have presented an architecture for supporting a highly reliable, predictable, and
fault-tolerant service execution environment, which is most sought-after in SOA. We
achieve fault-tolerance by replicating the state of a service. The architecture therefore
exploits the benefits of static recovery lists: selecting a recovery node is made in O(1).
Also, the network traffic for replicating the service state is minimized, as the state has
to be transfered to only one recovery node. The state transfer was further refined
by modifying the OS directly which allows for fine-grained state-tracking. The initial
architecture was presented in [18].

3 Microsoft Internship

In this final part of my report, I would like to present the work I did during my internship
with Microsoft. Although only related through the Windows Research Kernel (WRK) to
my research, it was a personal gain and once in a lifetime chance I had to seize.

Among others, my internship had the following goals, which I will cover briefly in the
remainder of this report.

1. Leveraging access to the WRK memory management subsystem.

2. Design of a WRK authorization infrastructure.

Beside those goals I had the chance to meet with architects of the Windows op-
erating system and to get a slight insight on how Microsoft sees the future in service
computing.

5-10 Fall 2008 Workshop



3 MICROSOFT INTERNSHIP

3.1 The Easy Pager Project

The memory management subsystem is the part of the WRK that manages virtually all
aspects related to virtual memory. According to the Windows NT Design Documents
(part of the WRK [11]), the memory management subsystem is responsible for:

• Supporting virtual memory.

• Mapping files into a process virtual address space.

• Protecting shared memory and memory mapped files.

• Implementing an API for application control on virtual address space allocation
and mapping of shared memory.

• Supporting copy-on-write pages.

• Reserving and committing private memory without creating any memory objects.

A core feature of virtual memory is paging, which allows multiple processes to have
(1) their own address space and (2) to use more memory than is actually available on
the system. This is implemented by dividing the physical memory into page frames and
to assign at each point in time at most one virtual page of some process to that frame.
Pages that do not reside in memory are stored in a backing file.

Whenever a thread allocates memory, the virtual address space of its process is
increased by the amount needed. The WRK distinguishes reserving from committing
virtual address space. Only virtual addresses that are committed to a process are valid
for use by a thread of that process. Each process has its own private address space,
although some parts of it may be shared with other processes. On x86 architectures
that address space can range from 2 GB to 3 GB depending on the option Windows is
booted with. Physical and virtual memory are separated into portions called pages. To
distinguish virtual pages from physical pages, we henceforth refer to physical pages as
page frames. Not all pages of a process can be resident at the same time, i.e., a page
is mapped to a page frame. Thus the WMM must maintain information about which
pages are currently resident and which are not. This information is called the working
set and each process has its own working set.

The working set becomes particularly interesting when the page frames run short
or even are exhausted. In that case, the virtual page cannot be mapped directly to a
page frame. Instead the memory management subsystem has to decide, which page
to remove in order to free that page frame. The decision, which page to sacrifice is
crucial with respect to the overall performance of the OS. This is first, because pages
are usually written to a persistent storage, which has significantly higher access times,
and second, paging-out pages that are referenced again shortly afterwards keeps the
OS unproductively busy. Thus, paging or page replacement strategies or policies are a
fundamental part of operating system courses.

The WRK memory management subsystem is a very highly optimized system. Also,
dealing with working sets and paging is not as simple as in the model described above.

Fall 2008 Workshop 5-11



A Flexible Live Inspection Framework

For example, working sets are not static but can grow or shrink depending on the mem-
ory pressure. Accessing pages may result in additional page faults due to the memory
management architecture provided by the hardware, e.g., when a page table containing
the page is also paged out. Although dealing with those facets is interesting and oblig-
atory for operating system architects, it might be too sophisticated for undergraduate
students.

The Easy Pager project thus tries to abstract from all the nifty implementation details
given by the WRK memory management subsystem. It focuses particularly on paging
and page replacement strategies. Some goals include but are not limited to:

• Students shall implement their own working set structure.

• The Easy Pager and the WRK memory management subsystem co-exist, i.e., the
WRK will manage working sets as usual and is ignorant of the Easy Pager.

• The Easy Pager shall allow for managing only a subset of the address space, in
order to simplify the evaluation process of different implementations.

• The Easy Pager is event driven, i.e., in order to implement a different page re-
placement strategy, only a few event handlers have to be implemented.

The Easy Pager design has been implemented and will eventually be released in
the companion of the next WRK release. The release date has not been announced
yet.

3.2 Sharing WRK Related Content

Since the epoch of the WRK, the HPI and other universities around the world started
using it for their research and teaching. Both projects presented in this paper and the
Windows Monitoring Kernel [17] are for example based on the WRK. Although the WRK
license agreement explicitly encourages publication in conferences and workshops, it
is however difficult to share and distribute the content over the Internet. This is basically
because of the restriction that WRK related content may be used by universities only.
Especially in the unconstrained Internet it is a challenging task to (1) authenticate users
and (2) verify that they are eligible for the respective content.

A practical scenario should illustrate the dilemma. At the Operating Systems and
Middleware group, we host an HTML version of the WRK source code. This format has
several advantages over the static source code as it makes the WRK explorable and
provides a more systematic approach to the huge repository of information. Students
at the HPI profit from this repository in their operating systems courses. They may also
benefit from accessing our KStruct system. However, making the HTML documentation
available over the Internet is a challenging task as we must ensure that prospective
clients are eligible for the content.

During my internship I was able to design an infrastructure that enables participat-
ing universities to verify the identity of prospective clients and to verify their eligibility
for the content. The proposed solution may not be well aligned with current ongoing re-
search in the field of identity management or trust relationships. However it furthermore

5-12 Fall 2008 Workshop



REFERENCES

facilitates already existing building blocks within the Microsoft and Windows Research
Kernel ecosystem.

The proposed infrastructure can easily be adopted by participating universities.
However, the infrastructure has not yet been tested. With the HPI being the first in-
stitution to test the infrastructure outside of Microsoft, further details and evaluations
will soon be available.

3.3 Summary

Within this section, I presented those parts of my internship which were not covered
by a non-disclosure agreement. However, my internship lead to a fruitful collaboration
which is very likely to continue in one form or another.

4 Conclusion

I spent the past 3 months with an internship with Microsoft. Although a huge personal
gain, I was unable to proceed in my research efforts in a way I would have liked to
proceed during the past semester. Thus, the progress towards my Ph.D. thesis is rather
limited compared to the past report. However, I will continue my research to a more
holistic approach towards unified data center management, the basic infrastructure for
the cloud and service computing, with respect to fault-tolerance and load balancing.

In this report, I presented the KStruct framework as a promising candidate to se-
lectively monitor aspects of an operating system kernel. Applicability to virtualized
environments like data centers will be a next milestone. My proposed architecture on
how to further integrate and unify fault-tolerance capabilities for service computing into
the operating system is still a wide field that has to deal with reliable communication,
group membership protocols, achieving consensus in the presence of failures. I will
continue my investigation on how service-oriented architectures may benefit from ex-
isting solutions and where possible flaws may occur. This is however future work and
subject to ongoing research.

References

[1] DCE: Remote Procedure Call. Number C309. The Open Group, August 1994.

[2] Hp systems insight manager. http://h18013.www1.hp.com/cpq-
products/servers/management/hpsim/index.html, 2008.

[3] N. Aghdaie and Y. Tamir. Client-transparent fault-tolerant web service. Perfor-
mance, Computing, and Communications, 2001. IEEE International Conference
on., pages 209–216, Apr 2001.

Fall 2008 Workshop 5-13



A Flexible Live Inspection Framework

[4] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumen-
tation of production systems. In USENIX Annual Technical Conference, General
Track, pages 15–28, 2004.

[5] F. Christian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple
message diffusion to byzantine agreement. Technical Report RJ 5244 (54244),
IBM, 1985.

[6] T. J. Killian. Processes as files. In Proceedings of the USENIX Summer Confer-
ence, Salt Lake City, 1984.

[7] Kamilla Klonowska, Håkan Lennerstad, Lars Lundberg, and Charlie Svahnberg.
Optimal recovery schemes in fault tolerant distributed computing. Acta Inf.,
41(6):341–365, 2005.

[8] Michael W. Knop, Peter A. Dinda, and Jennifer M. Schopf. Windows performance
monitoring and data reduction using watchtower. September 2001.

[9] Jim Lau, Lau Cheuk Lung, J. da Fraga, and G.S. Veronese. Designing fault toler-
ant web services using bpel. Computer and Information Science, 2008. ICIS 08.
Seventh IEEE/ACIS International Conference on, pages 618–623, May 2008.

[10] Microsoft. Windows Operating System Internals Curriculum Resource Kit.
http://www.microsoft.com/resources/sharedsource/windowsacademic/curriculum-
resourcekit.mspx.

[11] Microsoft. The Windows Research Kernel.
http://www.microsoft.com/resources/sharedsource/Licensing/research-
kernel.mspx, 2006.

[12] L. E. Moser, P. M. Melliar-Smith, and Wenbing Zha. Making web services depend-
able. ares, 0:440–448, 2006.

[13] Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, and Kenneth J. Goldman.
Byzantine fault-tolerant web services for n-tier and service oriented architectures.
icdcs, 0:260–268, 2008.

[14] Andreas Polze and Dave Probert. Teaching operating systems: the Windows
case. In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 298–302, New York, NY, USA, 2006. ACM
Press.

[15] Mark E. Russinovich and David A. Solomon. Microsoft Windows Internals. Mi-
crosoft Press, One Microsoft Way, Redmond, Washington 98052-6399, 4 edition,
2005.

[16] Alexander Schmidt. Kstruct: A language for kernel runtime inspection. In Proceed-
ings of the Fall 2007 Workshop of the HPI Research School, Reinsberg, Germany,
October 2007. Hasso-Plattner-Institut.

5-14 Fall 2008 Workshop



REFERENCES

[17] Alexander Schmidt and Michael Schöbel. Analyzing System Behavior: How the
Operating System Can Help. In LNI GI Proceedings 110, 2007.

[18] Alexander Schmidt, Michael Schöbel, and Andreas Polze. Operating system sup-
port for reliable service computing. In Proceedings of the 5th Service Availability
Symposium, volume 2, Tokio, Japan, June 2008.

[19] Alexander Schmidt, Martin von Löwis, and Andreas Polze. KStruct: An adaptive
kernel inspection framework. In USENIX Annual Technical Conference, Poster
Session, Boston, MA, June 2008.

[20] Peter Tröger. Dynamische Ressourcenverwaltung für dienst-basierte Software-
Systeme. PhD thesis, Hasso-Plattner-Institut at Potsdam University, 2007.

[21] Peter Tröger, Harald Meyer, Ingo Melzer, and Markus Flehmig. Dynamic provi-
sioning and monitoring of stateful services. In Proceedings of the 3rd International
Conference on Web Information Systems and Technology (WEBIST 2007), pages
434–438, Setúbal, Portugal, 2007. INSTICC.

[22] Craig Tunstall and Gwyn Cole. Developing WMI Solutions. Addison-Wesley, 2002.

Fall 2008 Workshop 5-15



 



Active Information Graphs

Hagen Overdick

hagen.overdick@hpi.uni-potsdam.de

1 Introduction

The question ”does anybody have a good idea?” rarely is a good sign in the day to
day dealings of a knowledge worker. Ideas do not materialize out of thin air and while
systems like design thinking can help shape an ”idea production process”, the key
enabler to being innovative and productive is a clear goal and full attention to the project
at hand. However, work no longer has clear boundaries for a knowledge worker. Private
and business matters do compete for attention making it difficult to even tell which
project should be at hand.

Nevertheless, only actions drive a project towards closure. Deciding the next action
involves providing the right information and the right tools to the right actor at the right
time. However, what is the right information, when many people already complain about
information overload? How is information delivered and processed? Who gets the
information for what purposes and which tools are involved? How are progress and
results documented for future reference?

The difficult answer: It depends. A flood of information is pouring in on us everyday.
We need to collect and process this information, put it into relationship, adhere to and
discover dependencies between them, and to make things even more complicated, all of
these actions produce more information all interlinked in graph structures. Traditionally,
we treat these information graphs as passive data and write software to operate on
them.

In the course of this paper, we explore a paradigm shift towards treating information
graphs as active components. Instead of software operating on such graphs, the
graphs expose functionality themselves. This functionality includes modelling the graph,
visualizing it, as well as expressing and executing workflows with them.

The rest of this paper is structured as follows: In section 2 we look at business
processes and why a large class of them has to be regarded as an evolving information
graph. In section 3 an existing meta-process to structuring and evolving information
graphs in a workflow context is outlined. Section 4 summarizes the requirements for
an IT implementation of such a meta-processes. In section 5 resource orientation is
revisited from an implementers view, rather than the common client’s view description.
Section 6 explains how an Active Information Graph may be implemented in a resource-
oriented approach. The paper closes with related work in section 7 and an outlook and
conclusion in section 8.

Fall 2008 Workshop 6-1



Active Information Graphs

2 Processes

In Business Process Management (BPM) [29], the focus is on processes as the key
instrument to organizing actions into defined activities and to making their interrelation-
ship explicit to improve understanding and consequently increase efficiency, flexibility,
and sustainability of the organization.

Generally speaking, with the exception of leisure time, everything ongoing should
relate to a project with a defined result. In BPM there are several terms used for project,
such as workflow instance or case, however they tend to be bound to specific mindsets,
which should be avoided in a general discussion. In the context of this paper, a project
is defined as any desired result which requires more than one action step. Moreover, the
word action refers to loosely defined tasks (e.g. call Gero about the presentation next
week) while activity referes to tasks that can ultimately be automatized (e.g. reserve
beamer for next thursday at 13:00 in room C2.4)

The differentiation between actions and activities already hints at different classes of
processes. The easiest processes to handle a routine ones, characterized by a fairly
static structure, a-priori planability, and defined need for information and communication.
Traditional workflow systems focus on static processes as they are easy to plan. Indus-
trial manufacturing is the arch type of static processes and can be characterized by high
a-priori knowledge (i.e. clear differentiation between design time and runtime) and a very
high activity to action ratio (i.e. tasks are automatable). Semi-structured process are
less static and have a lower activity to action ratio, but they still follow general patterns.
A typical example for a semi-structured process as taking a customer from initial contact
to closing the deal. There a certain fix points (e.g. writing an offer, signing the contract),
but the process is more driven by the response of the customer than a static process
model. Finally, there is the class of ad-hoc processes. Ad-hoc literally means for this
purpose and signifies non-generalizable processes. Examples include both one-time
processes without a-priori knowledge (e.g. building a Large Hadron Collider) as well as
creative processes of knowledge workers (e.g. the output is unknown at start and every
exact output is produced only once).

Knowledge intensive processes are called wicked problems [25], as they have
unpredictable patterns of behavior. Most of the observable behavior is interdisciplinary
communication and information exchange. There is no clear end to such processes,
instead there are frequent review phases leading to either an iterative loop or termination
(successful or unsuccessful) of the process, some approaches even discuss making
these loops explicit [18].

3 Getting Things Done

In Getting Things Done (GTD) [2], David Allen shares his insights from coaching
thousands of people on being productive. His conclusions are based on the premise
that productivity is indirectly proportional to the things one has to keep in mind. Here,
keeping in mind is ment literally: if your brain does not trust you to be able to organize
and store all things current, it will unconsciously do so for you, but by doing so keep you

6-2 Fall 2008 Workshop



3 GETTING THINGS DONE

in a unrelaxed, unproductive state.
Consequently, one has to avoid remembering things actively and establish an or-

ganization system your brain will ”trust”. David Allen suggest a basic workflow for
processing incoming information as shown in Figure 1. From the perspective of BPM
this process can be regarded as a meta-process creating an environment in which
processes instances in the more traditional BPM sense are rooted. In GTD, process
instances are called projects. A project is defined as any desired result which requires
more than one action step, the definition inherited by this paper. Consequently, actions
may happen outside of projects (just one action to reach goal, e.g. a college is asking for
a paper, no need to create a project, simple provide the PDF). The GTD meta-process is
focused on emptying the inbox, which holds any kind of incoming information, including
notes to oneself. Experience recommends to simply process it linearly until it is empty.
Processing the inbox in low frequency is sufficient, there is no need to being distracted
e.g. by incoming mail and disrupt work for ever single incoming item. However, once any
item in the inbox is processed, it should never stay there. Again, the goal is to empty the
inbox. To do so, the first question to ask is, whether the item at hand is actionable, i.e.
does it require an action. If not, it may be irrelevant and should immediately be trashed.
If it is relevant but not actionable, it can either be a reference information to be stored
for quick retrieval (remember knowledge work is information intensive) or it might be an
idea not be acted upon right now. These should be kept on a review list, a tickler file for
future projects.

However, if the item currently processed is actionable, the very next question should
be for the next action, i.e. what can be done next. If this turns out to be a multi-step
action, the item in the inbox should be related to a project, either an existing one or
implicitly create a new one. Again, projects represent a desired outcome and as such
are the foundation for project plans. Project plans are a set of milestones along the way
towards the desired outcome. Another function of project plans is for reviewing progress.
According to Allen, it is sufficient to know the very next action within a project only. If
we go back to the discussion about processes, this approach appears to be a perfect
match for ad-hoc processes. Actions may take place without projects (i.e. process
instances), but are created on demand as driven by input. Once an ad-hoc process is
created, the focus is on creating a set of milestones leading to the desired result. Within
any given ad-hoc process, it is sufficient to determine the very next action to take. Any
ad-hoc process without a determined next action is in planning, but the project plan is
not focused on activities, but milestones.

Once the next action to take is determined - either ad-hoc while processing the inbox
or as the result of a project planning - the very next question to ask is how long it will take.
Here, Allen suggests a 2-minutes-rule, i.e. if it takes less than 2 minutes to complete
the action than simply do it. If not, there is yet another question to be answered: are
you the right actor of this action? If not, delegate the activity and keep a reference on
a ”waiting for” list. If yes, the action should be deferred. Either, to a fixed time (e.g. a
meeting) in a calendar or to one or more next actions lists. Why several lists? Because
context matters to most of these actions (e.g. a reminder to call someone is only useful,
when you are at a phone and have some quiet time).

The GTD meta-process is not bound to an IT solution. In fact, it can be implemented

Fall 2008 Workshop 6-3



Active Information Graphs

Inbox

What is it?
Is it actionable?

What's the next 
action?

Do it

Delegate it Defer it

Trash

Review list
(on hold)

Reference
(retrievable)

Projects
(planning)

Project plans
(for review)

Waiting for Calendar
(specific time)

Next actions
(to do asap)

NO

YES

YES NO

Will it take less 
than 2 minutes?

Right actor?

NO YES

Figure 1: Gettings Things Done - The Meta Process

6-4 Fall 2008 Workshop



4 REQUIREMENTS FOR AN IT-BASED BPM SUPPORTING GTD

without any IT solution at all and at the time of the book’s creation no IT implementations
where available. In the meantime, several such implementations where create, such
as OmniFocus1 and Things2. However, all available implementations focus on task
management, i.e. they act as reminder systems and do not integrate BPM features such
as automated activities and/or control flow between actions.

In the next section, requirements for an IT implementation of the GTD meta-process
allowing for more advanced BPM features are discussed.

4 Requirements for an IT-based BPM supporting GTD

From the above discussion we can deduce the following requirements:

• There is a differentiation between context and project.

• Projects are a grouping mechanism for various elements, including goals, mile-
stones, actions, activities, as well as supporting information relevant to the project.

• Contexts are orthogonal to projects. They group roles, locations, available actions
and activities, and project independent information.

• There needs to be a dynamic mapping from project elements into contexts. The
closest equivalent in traditional BPM systems would be task lists, however task
lists are traditionally bound to roles only.

• The central component to feed new elements into the system is an inbox, taking
untyped data and with the help of the GTD meta-process either evolving them into
typed elements or leading to the creation of typed elements based upon them.

• Having different contexts implies a distributed system as contexts explicitly incor-
porate different physical locations. Even today, not all locations can provide an
internet connection (e.g. airplanes), hence offline capabilities are desirable. Also,
distributing for scalability implies offline capabilities as servers will fail and dealing
with failure does not differ from dealing with offline operations.

• Eventually projects should be able to support control flow capabilities as described
in workflow patterns [30]. It has been shown [32] that not all workflow patterns
have local decidability, but nevertheless should be supported.

• Information, i.e. data objects, may reside outside of a project and may be refer-
enced by several projects at the same time.

1http://www.omnigroup.com/applications/omnifocus/
2http://www.culturedcode.com/things/

Fall 2008 Workshop 6-5



Active Information Graphs

5 Resource Orientation

In [8] the underlying principals of the world wide web where described. Out of this work,
the concept of resource orientation emerged. Resource orientation is an architectural
style with the following key priniciples:

• All members of a communication network are independent of it, instead they
expose functionality as resources. Interaction with resources should never be
transparent, as latency and network failures can not be made transparent.

• Resources have globally unique identifiers (URI) and each URI exposes a uniform
interface. All interfaces operate on synchronous and stateless request-response
interactions. The uniform interface does not prescribe the exchanged messages,
but helps identify content type (e.g. via mime-types [9]) and intention (e.g. via
verbs). Making intentions explicit allows for intermediate processing without explicit
knowledge of the application. Best example is caching for side-effect free reading.

• The preferred message type is hypermedia, i.e. content capable of encoding URIs.
Given hypermedia, the client is enabled to keep the application state as the sum
of all received messages. All possible state transitions are encoded into these
messages as URIs. A client should never be forced to guess or compute URIs,
but receive them explicitly.

While these principals capture a large portion of the success of the world wide web,
there description is purely from a client perspective. As this paper focuses on the server
side, let’s describe resource orientation from the server side as visualized in Figure 2:

Entity An entity is a set of persistent data and is primarily characterized by a disjoint
scope of transactional serializability. The concept was named and described in [12],
where the author also argues for an entity to not grow beyond the capabilities of a single
machine to allow for almost-infinite scaling of applications. Notice that a traditional
relational database must be regarded as a single entity, as arbitrary transactions across
all contained data is explicitly allowed by design. However, the recent rise of discussion
of sharding for scalability [13] gives validity to the requirement of keeping entities smaller
than the capabilities of a single machine.

Persistent Data may be stored in arbitrary form. This includes relational data as well
as documents. The persistence is guaranteed by the enclosing entity. Consequently,
transactional operations on persistent data can only happen when they all belong to the
same entity.

Function Functions operate on any subset of entities, including creating and deleting
entities themselves. For the sake of simplicity, we focus on functions operating on
persistent data only. Function may operate transactional on persistent data within a
single entity or exchange message with other resources (see below). However, the

6-6 Fall 2008 Workshop



5 RESOURCE ORIENTATION

Entity

Persistent 
Data Function

Resource

URI Uniform 
Interface

Intention

Behavior

Abstraction border

Figure 2: Visualizing an resource oriented entity

length of any transaction is limited to a single function call, i.e. calling a function will
start a transaction, returning from it will end it. Any interaction caused by the function
with other resources is not part of the transaction.

Intention Every function is an instance of an intention, i.e. all effects of executing
a function (both on persistent data as well as messages originated) must comply to
the definition of the intention implemented. In the case of the Hyper Text Transfer
Protocol (HTTP) [7] the following intentions3 are defined:

• GET: Interactions with the intention GET have an empty request body and are
guaranteed to have no substancial effect within the receiver of such request, i.e.
they are safe to call. GET responses are expected to be a description of the current
state of the targeted resource (see below). These attributes allow GET to act as
a universal reflection mechanism, it can be issued without any prior knowledge
of the resource. Also, as GET does not alter the state of the targeted resource,
the response can be cached. This has great benefits to a distributed architecture
and both aspects can be seized without prior semantic knowledge of the targeted
resources.

• PUT: Interactions with the intention PUT do cause an effect in the targeted resource,
but do so in an idempotent fashion. An idempotent interaction is defined as
replayable, i.e. the effect of N messages is the same as that of 1. In a distributed

3RFC 2616 refers to intentions as verbs

Fall 2008 Workshop 6-7



Active Information Graphs

system, where transactions may not be readily available, this is a great help to
error recovery.

• DELETE : Interactions with the intention DELETE do cause an effect in the targeted
resource, where that effect is expected to be some kind of termination. Just
as PUT, DELETE is defined as idempotent. However, as with all interactions, the
interpretation is solely the responsibility of the receiver.

• POST: All other types of interactions default to the intention POST, i.e. they cause an
effect in the receiver and they are not safe to replay. This is a catch all mechanism
for all interactions that can not be described by the prior intentions. Without a
uniform interface, all interactions must be treated like this, doing so causes loss of
context free reflection, caching and replayability at the protocol level.

Uniform Interface In resource orientation, all functionality is exposed via a uniform
interface. A uniform interface defines how interactions are executed, especially how
intentions are signaled and content types are negotiated. This leads to simplified
communication, loose coupling, and the possibility of intermediaries to intervene in the
message exchange (best example caching) without application knowledge.

Behavior From a client’s view only the behavior of a resource is relevant. Because
of the uniform interface the expressiveness of a behavior is limited. Hence, instead of
one complex behavior entities expose many simple ones. A behavior groups a set of
intention instances into a meaningful concept.

Resource A resource is the binding of a behavior to a specific subset of an entity
according to the uniform interface. This is the implementation view, from the client’s
perspective a resource is synonymous with an instance of a domain specific behavior.

URI Uniform Resource Identifiers allow for globally unique referencing of resources.
Note that the binding from URI to resource is not required, i.e. a URI can exist without
any actual binding, which allows references to be made to a concept before any
realization of that concept exists.

This description of resource orientation differs from previous papers, e.g. [20], where
resource was taking the position of entity. However, with this picture it is much easier to
explain why exposing resources does not automatically imply better scaling, as the size
of the entity is relevant. Also, showing which resources are actually within a transactional
scope is much easier.

To a client the entity is never exposed, nor should the client be required to be aware
of it. Only active resources are exposed and the architectural decisions of resource
orientation simplify dealing with a myriad amount of available resources.

6-8 Fall 2008 Workshop



6 ACTIVE INFORMATION GRAPHS

6 Active Information Graphs

As outlined elsewhere before [4,22], the author strongly believes resource orientation to
be well-suited for workflow applications. The current state is modeled as a resource,
all possible transitions are offered to the client as URIs embedded into hypermedia (i.e.
links) returned by interaction with these resources. This ensures loose coupling and
simplifies the introduction of new capabilities, they simply represent new links.

But in the case of ad-hoc processes the loose coupling goes beyond just client and
server. It also extends to decoupling data from projects. In the GTD meta-processes,
data exists before a project and might be used in more than one project at the same
time (e.g. reference material). Also, incoming information may evolve its type.

To address all these issues, we now introduce the concept of Active Information
Graphs. In the concepts of section 5 a graph is an entity consisting of nodes and edges.
Each node and edge is an individual persistent data object. In [21,23] a serialization
format was introduced including a resource-oriented protocol for creating, updating, and
deleting of nodes and edges of such Active Information Graphs, the Potsdam Encoding
for Models (PoEM).

Mapping the GTD meta-process onto Active Information Graphs, an individual Active
Information Graph for each project appears to best suited. All project elements are
represented by nodes and relationships between them by edges. Mapping a project
to an individual Active Information Graph (and consequently to an entity) is a good
compromise between the desire to keep entities as small as possible and the need for
transactional scopes. Our use cases from the Oryx project [5,6] indicate a transaction
scope at the project level to be useful, both for modelling (e.g. moving several elements
graphically at the same time) as well as executing (e.g. transition semantics of various
workflow patterns).

Environment A

Project : 
Entity

Persistence 
Engine

Function
(Behavior)

Persistent 
Data

Resource

replication

Environment N

Project : 
Entity

Persistence 
Engine

Function
(Behavior)

Persistent 
Data

Resource

Figure 3: Proposed architecture for Active Information Graph environments

Fall 2008 Workshop 6-9



Active Information Graphs

In section 4 we described contexts to be orthogonal to projects and the need for
offline capabilities, both from the use cases as well as from the aspect of scalability.
Offline capabilities are only possible with distributed hosting environments and in a
first step we simply map contexts to different execution environments. An execution
environment consists of a persistence engine and a set of available function. Execution
environments replicate Active Information Graphs completely, i.e. each environment is
capable of establishing a transactional scope over all elements of a graph. Additionally,
an environment contains a set of functions. Based on the available functions and graph
elements, resources are exposed analog to the outline in section 5. This architecture is
visualize in Figure 3.

Notice that the execution environments are completely abstracted away. To a client,
only resources are exposed and the sum of one entity’s resources jointly form one Active
Information Graph. The minimum active behaviors of an Active Information Graph is to
be editable are:

Active Information Graph behavior

• GET lists all graph elements in PoEM notation.

• PUT may be used to create Active Information Graphs. To enable this, the per-
sistence layer must expose a valid URI template [11], where all instances of this
template map to this behavior. Semantically, this is an update from void, as the
URI is chosen by the client and consequently bound conceptually before an Active
Information Graph was actually created.

• POST creates new graph elements from the content of the interaction. By using
POST the non-trivial task of naming a URI for the graph element is delegated to the
Active Information Graph itself.

• DELETE destroys the Active Information Graph and all its elements.

Each graph element provides at least one resource:

Active Element behavior

• GET returns the current representation of the element in PoEM notation.

• PUT updates the element. The lost update problem is solved via [19]. Notice, that
resource orientation favors a replace semantic, i.e. a complete representation is
send.

• DELETE removes this element from the Active Information Graph.

• POST is undefined for this behavior.

These two behaviors already allows for the implementation of the GTD meta-process
as outlined in section 3. However, actually knowing and adhering to the process is left
completely to the client, i.e. even though we have an Active Information Graph, we

6-10 Fall 2008 Workshop



6 ACTIVE INFORMATION GRAPHS

would simply treat it as data storage. The Active Information Graph truly becomes active,
when we start internalizing the process into the graph.

In PoEM typing a graph element is expressed as zero or more
<category term="concept" scheme="domain.uri" /> tags. The scheme attribute
references the defining domain of the type and the term attribute a specific type within
the referenced domain. Consequently, evolving an element’s type simply maps to
altering the set of <category /> tags.

Going back to the GTD meta-process in Figure 1 we could introduce a behavior
binding to all untyped notes and implement the first step in the GTD meta-process:

Process Input behavior Upon GET a small hypermedia form with the buttons
Actionable, Review list, Reference, and Trash is returned. The later button can directly
link to a DELETE on the Active Element behavior URI. The review list we assume to be
an independent Active Information Graph, hence its form will map to POST, as moving
an element from one graph to the other is crossing a transaction boundary. The actual
move is implemented by the bound function, i.e. it will POST the element to the targeted
graph and then execute a DELETE on the local node. Reference and Actionable we
consider to be types. Consequently, changing the type of an element can be mapped to
PUT on the Process Input behavior URI. The implementation will augment the matching
<category /> tag to the node. This in turn will allow other behaviors to bind to the node,
e.g. a Evaluate Next Action behavior to Actionable nodes.

Discovering, documenting, and implementing such behaviors will be a vital part of
future research, executed by evolving use cases in the domain of ad-hoc processes.
Eventually, this should lead into the support of all workflow patterns on top of the GTD
meta-process.

6.1 Performance considerations

Even if the name Active Information Graph is introduced in this paper, it is not the
first attempt to bind functionality to a graph, e.g. the original Oryx design included
a wiki-oriented execution environment directly driven by the modeled process graph.
The underlying technology was reused by a Olaf Märker in his master thesis [17],
again exposing resources based on modeled graphs4. All these former attempts did
not prosper, because of performance issues. These issues can be summarized as
decisions about indexing and granularity. Dynamically binding functionality to a graph
requires fine-grained access to the graph’s elements and fast lookups. The finer the
granularity of the graph’s elements is, the easier it is to realize fine-grained access.
However, the indexing overhead increases dramatically. The initial design was to keep a
persistent XML Document Object Model [15], simplifying dynamic queries. However, the
required parsing and indexing are just overwhelming and lead to a poor performance.
In [3] a different approach is shown. Instead of preprocessing data for random queries,
specific queries are prepared asynchronously via the map/reduce pattern. Applying

4To be precise: PiVM is tree-based

Fall 2008 Workshop 6-11



Active Information Graphs

this approach to Active Information Graphs, each node and edge is stored in whole
as an individual persistent data element and asynchronously operating map/reduce
operation create the desired indicies, providing dramatically improved reading and
writing operations and proven scalability (Google uses this approach internally). Going
back to the <category /> example, a map/reduce function could realize the binding of
functions to persistent data (i.e. graph elements exposing resources) by generated an
index of all <category/> tags and matching functions, effectively creating an index of all
possible bindings. Note, that such binding does not have to be limited to a single node,
in fact complex workflow patterns will bind to several nodes at the same time, made
possible by the enclosing transactional scope of the Active Information Graph. Binding
to several nodes should be easy to achieve via the map/reduce pattern, a statement to
be validated empirically shortly by a reference implementation.

6.2 Replication of projects

Another non-trivial feature of the proposed architecture is replication of Active Information
Graphs between environments. From the design of the architecture it is apparent, that a
multi-master replication is desirable, to allow operations on Active Information Graphs
in multiple environments concurrently. Traditionally, multi-master replication is realized
using distributed locks. However, as offline capabilities are also desirable, the use of
distributed locks is ill-advised [12]. Without locks, conflicts will arise and need to be
handled. In CouchDB [16] a very interesting approach is implemented and as of writing
the author is unaware of any scientific discussion of this approach:

Revisiting ACID properties [10] and contrasting them to the discussion in section 5
we can provide atomicity to an entity only individually for each replication, i.e. a single
environment. Once replications is used, there may be conflicts on merge, violating the
consistency requirement. However, if we introduce the concept of versioning to the
persistence layer, consistency and conflict resolution may be separated into distinct
features. On conflict, one version is declared the winner and all losers will be added
to the history as prior and conflicting versions. If all persistence engines use the same
deterministic approach (e.g. the version with the highest update frequency wins), global
consistency can still be guaranteed without the need for all persistence engines to
communicate with each other. Conflict resolution is pushed into the application realm.
As Active Information Graphs are designed to model and execute workflows anyhow,
exposing such conflict resolution as a behavior should be acceptable in the general
case. In the specific case, e.g an OR-join workflow pattern, this might not be acceptable,
as conflicts will be the norm in such cases. These specific cases need to be addressed
at the environment level, e.g. binding the execution behavior of an OR-join to a specific
environment.

6-12 Fall 2008 Workshop



8 CONCLUSION AND OUTLOOK

7 Related work

Intentional Programming [27] has the concept of an active source graphs, with pluggable
intentions. However, Intentional Programming is focused on software development itself,
i.e. the active graph is not the program, but the source code to a program, while Active
Information Graphs do not differentiate between development and runtime, they are the
applications themselves, evolving at runtime. In WASA2 [31] workflow instances and
schemas are represented as object graphs. However, elements of this graphs have
a fixed semantics and they do not expose functionality themselves. Here, the object
graph is primarily used to simplify runtime modifications. Regarding workflow flexibility
and ad-hoc processes, several approaches exist [1,24,26,28] and may be evaluated
on-top of Active Information Graphs. The notion of context awareness is a central
aspect of Context-oriented Programming [14], but focused on programming languages.
If and how the research results of Context-oriented Programing may be applied to
Active Information Graphs is future work, most likely they will aid the configuration of
environments.

8 Conclusion and Outlook

In the course of this paper, we have introduced Active Information Graphs as a frame-
work for managing, evolving, and working with graphs of information. While the general
approach may be applicable to a wide range of applications, it is motivated by and
focused on supporting knowledge workers dealing with projects in there daily work.
Knowledge-intensive processes are characterized by very little a-priori knowledge and
evolution of the processes at runtime. Active Information Graphs provide a framework
for creation, distribution, and binding of functionality to information graphs and in turn
provide a platform for further research and development. A high-performance implemen-
tation of the architecture outlined in this paper is a short-term goal providing distributed,
scalable, and offline-capabale Active Information Graphs. Next, an integration with the
Oryx editor for visual editing of Active Information Graphs is planed. In combination,
a development platform for applications based on Active Information Graphs is within
reach, allowing for empirical validation of the suitability of Active Information Graphs for
knowledge workers.

Fall 2008 Workshop 6-13



Active Information Graphs

References

[1] Michael Adams, Ter, David Edmond, and Wil van der Aalst. Worklets: A service-
oriented implementation of dynamic flexibility in workflows. On the Move to Mean-
ingful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages 291–308,
2006.

[2] David Allen. Getting Things Done. The Art of Stress-Free Productivity. Penguin,
2003.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Sixth Symposium on Operating System Design and Implemen-
tation, 2004.

[4] Gero Decker, Alexander Lueders, Hagen Overdick, Kai Schlichting, and Mathias
Weske. RESTful Petri Net Execution. In Proceedings of the 5th Workshop on Web
Services and Formal Methods (WS-FM), LNCS, Milan, Italy, Sep 2008. Springer
Verlag.

[5] Gero Decker, Hagen Overdick, and Mathias Weske. Oryx - An Open Modeling
Platform for the BPM Community. In Demo Session of the 6th International
Conference on Business Process Management (BPM), 2008.

[6] Gero Decker, Hagen Overdick, and Mathias Weske. Oryx - Sharing Conceptual
Models on the Web. In Demo Session of the 27th International Conference on
Conceptual Modeling (ER), 2008.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Technical report, The Internet
Engineering Task Force, 1999. http://www.ietf.org/rfc/rfc2616.

[8] Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000. Chair-Richard
N. Taylor, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[9] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Format
of Internet Messaged Bodies. Technical report, The Internet Engineering Task
Force, 1996. http://www.ietf.org/rfc/rfc2045.

[10] Jim Gray. The transaction concept: Virtues and limitations (invited paper). In Very
Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes,
France, Proceedings, pages 144–154. IEEE Computer Society, 1981.

[11] J.C. Gregorio, M.H. Hadley, M.N. Nottingham, and D.O. Orchard. URI
Template. Technical report, IETF, 2008. http://bitworking.org/projects/

URI-Templates/.

6-14 Fall 2008 Workshop



REFERENCES

[12] Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opinion. In
Third Biennial Conference on Innovative Data Systems Research, 2007. http:

//www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p15.pdf.

[13] Cal Henderson. Building Scalable Web Sites. O’Reilly, 2006.

[14] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented
Programming. Journal of Object Technology, 7(3):125–151, 2008.

[15] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Ro-
bie, Mike Champion, and Steve Byrne. Document object model (dom) level
2 core specification. Technical report, W3C, 2000. http://www.w3.org/TR/

DOM-Level-2-Core/.

[16] Damien Katz et al. The CouchDB Project. http://couchdb.org.

[17] Olaf Märker. Eine virtuelle Maschine für den π-Kalkül zur Implementierung von
Ressourcen mit dynamischen Verhalten. Master’s thesis, Hasso Plattner Institut,
2008.

[18] Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. The
action workflow approach to workflow management technology. In CSCW ’92:
Proceedings of the 1992 ACM conference on Computer-supported cooperative
work, pages 281–288, New York, NY, USA, 1992. ACM.

[19] Henrik Frystyk Nielsen and Daniel LaLiberte. Editing the web. Technical report,
W3C, 1999.

[20] Hagen Overdick. Resource-oriented Application Building, 2007.

[21] Hagen Overdick. Supporting Design Thinking with IT, 2008.

[22] Hagen Overdick. Towards Resource-Oriented BPEL. In Thomas Gschwind and
Cesare Pautasso, editors, Emerging Web Services Technology, volume II, pages
129–140. Birkhäuser, 2008.

[23] Hagen Overdick and Martin A. Czuchra. PoEM - Potsdam Encoding for Models.
Services Computing, IEEE International Conference on, 2:619–620, 2008.

[24] Artem Polyvyanyy and Mathias Weske. Flexible process graph: A prologue. In
Proceedings of the 16th International Conference on Cooperative Information
Systems (CoopIS), November 2008.

[25] Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory of planning.
Policy Sciences, 4(2):155–169, June 1973.

[26] Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska. Pockets of flexibility in
workflow specification. In ER ’01: Proceedings of the 20th International Conference
on Conceptual Modeling, pages 513–526, London, UK, 2001. Springer-Verlag.

Fall 2008 Workshop 6-15



Active Information Graphs

[27] C. Simonyi. Intentional programming: Innovation in the legacy age, 1996.

[28] W. van der Aalst, M. Weske, and D. Grunbauer. Case Handling: A New Paradigm
for Business Process Support. Data and Knowledge Engineering, 53:129–
162, 2005. http://bpt.hpi.uni-potsdam.de/twiki/pub/Public/MathiasWeske/
sdarticle.pdf.

[29] W. M. P. van der Aalst, A. Hofstede, and M. Weske. Business process management:
A survey, 2003. citeseer.ist.psu.edu/article/vanderaalst03business.html.

[30] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A.P. Bar-
ros. Workflow Patterns. Technical Report BETA Working Paper Series, WP 47,
Eindhoven University of Technology, 2000.

[31] Gottfried Vossen and Mathias Weske. The WASA2 object-oriented workflow man-
agement system. SIGMOD Rec., 28(2):587–589, 1999.

[32] Moe Thandar Wynn, David Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Achieving a General, Formal and Decidable Approach to the OR-Join in Workflow
Using Reset Nets. In Lecture Notes in Computer Science, pages 423–443. Springer
Berlin / Heidelberg, 2005.

6-16 Fall 2008 Workshop



FMC-QE - Hierarchies, Transformations
and Rules

Stephan Kluth

stephan.kluth@hpi.uni-potsdam.de

This report FMC-QE - Hierarchies, Transformations and Rules complements former
FMC-QE reports. After a general introduction and an introduction of FMC-QE, the hier-
archical modeling in FMC-QE and related work in this area are discussed. This mainly
includes decomposability, the adaption of Norton’s theorem to the Queueing Theory,
research on the formalization of hierarchies and aggregation methods in Petri Nets. In
the section model transformations, the while loop and the feedback loop transformation
are described, as well as open research questions like the transformation of a parallel
execution to a serial execution are raised. The rules, how to model multiplex scenarios,
in which multiple logical servers are mapped to a single real server, are described in
the section modeling rules. In this section also the modeling of multiclass scenarios
is described and again some open questions like the modeling and evaluation of a
semaphore synchronization scenario and exception handling are raised. Finally some
conclusions and an outlook are given in the last section.

1 Introduction

This report FMC-QE - Hierarchies, Transformations and Rules follows a series of re-
ports on FMC-QE, the Fundamental Modeling Concepts for Quantitative Evaluation.
After the 1st report in spring 2007: FMC-QE - Positioning, Basic Definitions and Graph-
ical Representation [22] defining FMC-QE basics and diagram types, the 2nd report
in fall 2007: FMC-QE - Case Studies [21] summarizing two case studies in FMC-QE
and the 3rd report in spring 2008: FMC-QE - Calculus [23] describing fundamental
mathematical laws, the load generation model and the FMC-QE Calculus including the
FMC-QE Tableau and the formulas in FMC-QE, this report describes the hierarchical
modeling, model transformations and modeling rules in FMC-QE.

After a short introduction into FMC-QE in section 2, this report is structured as
followed:

Section 3 summarizes related work in the area of hierarchical modeling and ag-
gregation and decomposition in the focus of quantitative modeling and evaluation from
the perspective of FMC-QE. The chapter 3.1 summarizes important publications on
the topic decomposability done by Simon and Ando [32], Courtois [10, 12] and Vantil-
borgh [34]. Norton’s Theorem of the electrical circuit theory was adapted to queueing
theory networks by Chandy, Herzog and Woo [9]. This results were further general-
ized and specialized for the quantitative evaluation of systems. Chapter 3.2 abstracts

Fall 2008 Workshop 7-1



FMC-QE - Hierarchies, Transformations and Rules

publications in this area and shows the relations to FMC-QE. Chapter 3.3 Formal Hier-
archies and Combination of Models summarizes approaches of formalizing hierarchies
and evaluating different subsystem with different kinds of modeling and evaluation tech-
niques. Chapter 3.4 summarizes some publications on introducing hierarchies in Time
Augmented Petri Net models. Literature on the Forced Traffic Flow Law, which is the
fundamental law for the hierarchical decomposition in FMC-QE, is described in chapter
3.5. Main ideas of the hierarchical modeling and evaluation in FMC-QE are given in
chapter 3.6.

Section 4 proposes model transformations in FMC-QE. These non automatic trans-
formations are made in order to support the evaluation of models which does not follow
all FMC-QE assumptions due for example a previous model in a different modeling
technique, like the Queueing Theory. These transformations are for example the trans-
formation of the while loop in chapter 4.1 and the transformation of a feed backward
loop in chapter 4.2. Also some open questions in the area of FMC-QE model transfor-
mation are raised.

Section 5 describes some FMC-QE modeling rules. This section will provide ideas
and methods, how to model different scenarios in FMC-QE. In the first chapter 5.1, the
modeling of a system in which multiple logical servers are mapped to one real server
is described. In FMC-QE, the modeling and evaluation of multiclass scenarios is also
supported. The description, how to model such systems is given in chapter 5.2. Again
some open questions in FMC-QE modeling rules are discussed.

Finally some conclusions and an outlook are given in section 6.

2 FMC-QE

The Fundamental Modeling Concepts for Quantitative Evaluation (FMC-QE) is a mod-
eling and evaluation calculus that originates from and extends the modeling technique
Fundamental Modeling Concepts (FMC) [24, 33] for the description and evaluation of
the quantitative system parameters. FMC-QE also integrates ideas, results and advan-
tages of the Queueing Theory and the Time Augmented Petri Nets.

The hierarchical service request, which is the origin of every service provisioning
process, is in the main focus of the FMC-QE modeling [38]. In order to realize the
hierarchical decomposition, the service requests are modeled, comparable to physics,
as a tuple of value and unit (SRqi={SRqi}[SRqi]).

In FMC-QE, systems are modeled in three different views from the perspective of
the hierarchical service request. These three views, based on FMC, are the hierarchical
service request structures, modeled in Entity Relationship Diagrams (example in figure
1(a)), the static (server) structures, represented in Block Diagrams (example in figure
1(b)) and the dynamic (control flow) behavior, described in Petri Nets (example in figure
1(c)).

After modeling the performance parameters of the systems in the FMC-QE dia-
grams, different performance parameters are used as input for the FMC-QE Tableau.
In this hierarchical balance sheet, based on the FMC-QE Calculus [23, 37], the per-
formance values of the system are then derived on the assumption of stationary pro-

7-2 Fall 2008 Workshop



2 FMC-QE

Request

Action: Execute Request

Server: Request Executer

Request Inititalization

Action: Initialize Request

Server: Initializer

vint = 1

Webservice
Action: Execute Webservice

Server: Webservice Executer

vint = 2

Request Generation

Action: Generate Request

Server: Client
[1]

[2]

(a) service request structures (E/R-Diagram)

Request Executer

Initializer

Mpx: Applicationserver

Client

Webservice Executer

Mpx: Webserver

[1]

[2] [2]

[1]

Logical Servers

Real Servers
Applicationserver

m = 1

XInit. = 0,2

Webserver

m = ∞

XWS.Exec. = 1

(b) static structures (Block Diagram)

Serve Request

Execute 
Webservice

Initialize 
Request

[1]

[2] [2]

Generate 
Request

[1]

(c) dynamic behavior (Petri Net)

Figure 1: FMC-QE Example

cesses. In the FMC-QE Tableau (example in table 1), the different performance values,
like queue lengths or response times are calculated.

Table 1: FMC-QE Tableau
nges 30
λbott 5,0000
f 0,8000
λ 4,0000

[bb] SRqi
[bb] p[bb-1],i vi,ext

[bb-1] vi,int 
[bb] vi

[bb] λi
[bb] Serveri Xi,measured

[bb] mi,ext
[bb-1] mi,int

[bb] mi
[bb] Xi,mpxed

[bb] μi
[bb] ρi

[bb] ni,q
[bb] ni,s

[bb] ni
[bb] Ri

[bb]

2 Webservice 1 1 2 2 8,0000 Webserver 1,0000 1 1 1 1,0000 1,0000 0,0000 8,0000 8,0000 1,0000
2 Request Initialization 1 1 1 1 4,0000 App. Server 0,2000 1 1 1 0,2000 5,0000 0,8000 3,2000 0,8000 4,0000 1,0000
1 Request 1 1 1 1 4,0000 1 1 1 5,0000 3,2000 8,8000 12,0000 3,0000
1 Request Generation 1 1 1 1 4,0000 1 1 1 4,5000 0,2222 0,0000 18,0000 18,0000 4,5000

Serverj mj Xj
[1] µj

[1] µj
[1]*mj

App. Server 1 0,2000 5,0000 5,0000
Webserver ∞ 1,0000

Dynamic Evaluation SectionMapping

Server Section

Experimental Parameters:

Service Request Section Multiplicity

The fundamental laws applied in the calculation of the performance values in the
FMC-QE Tableau are Little’s Law [26] and the Forced Traffic Flow Law [19]. Little’s Law
is used for the calculations of values inside a hierarchical level (horizontal). The Forced
Traffic Flow Law is the key to the vertical relationships among the different hierarchical
levels.

A main aspect in the development of FMC-QE is the scalable applicability to com-
plex systems. This is achieved through complexity reduction through the modeling in
different views and the distinction between operational and control states [38]. But

Fall 2008 Workshop 7-3



FMC-QE - Hierarchies, Transformations and Rules

the most important aspect in the complexity reduction is the hierarchical modeling and
evaluation in FMC-QE, which is the key to large systems. Related work in hierarchi-
cal quantitative modeling and the hierarchical modeling in FMC-QE is described in the
following section.

3 Hierarchical Modeling and Aggregation in Quantita-
tive Models

Hierarchical modeling is the key to complexity in the modeling of quantitative systems
in FMC-QE. This section gives an overview over related work in the area of quantitative
hierarchical modeling and also gives insights in the hierarchical modeling in FMC-QE.

In order to classify the different approaches and to clarify the understand of hier-
archies in FMC-QE, some definitions in are given: There are two different kind of hi-
erarchies: organizational hierarchies with super-/subordinate relations and abstraction
hierarchies with compose/decompose relations [38]. In organizational hierarchies, one
instance orders a service request to a hierarchically lower instance. In the abstraction
hierarchy, some parts are composed to a whole. Often there is a misunderstanding
between refinement and hierarchies. In the understanding of FMC-QE, there is only a
hierarchy if the service requests are transformed. A refinement of a huge flat network
is therefore not mandatory a abstraction hierarchy.

The decomposability in chapter 3.1 is often a hierarchical refinement, while Norton’s
Theorem, described in chapter 3.2 is often a flat refinement and not a hierarchical
aggregation of a subnet. The models and techniques shown in chapter 3.3 could be
both. The articles and books on the Forced Traffic Flow Law, summarized in chapter
3.5, are very closely related to the FMC-QE hierarchical understanding (described in
chapter 3.6) and therefore the models often include a hierarchical decomposition and
not only a non hierarchical refinement.

3.1 Decomposability

Simon and Ando [32] introduced decomposability and nearly-decomposable systems in
order to support aggregation of variables in the analysis of large and complex systems.
Completely decomposable systems [10] are systems in which state variables could be
classified in groups where:

• interactions within groups can be studied as if interactions among groups did not
exist and

• interactions among groups can be analyzed without referring to the interactions
within groups.

This hypothesis is correct [10], but often to rigorously. As mentioned, Simon and
Ando [32] introduced nearly completely decomposable systems. In the analysis of
such systems, there are good approximations [10] when interactions among groups

7-4 Fall 2008 Workshop



3 HIERARCHICAL MODELING AND AGGREGATION IN QUANTITATIVE MODELS

are weak compared to the interactions within groups. Simon and Ando [32] showed,
that in such systems, short-run dynamics and long-run dynamics can be distinguished:

• short-run dynamics represent the interactions of the variables within each sub-
system and

• long-run dynamics represent the interactions among the subsystems.

Therefore, the subsystems could be analyzed by local equilibriums and the whole
system could be analyzed by aggregate variables and a global equilibrium.

Courtois [10, 11] transferred the results of Simon and Ando to queueing networks
and computer performance analysis. He also introduced a hierarchy of aggregate vari-
ables in order to cope with the complexity of large systems. Through the dissection of
systems into subsystems with different models, the different models could be evaluated
separately and through the representation of the subsystems in aggregate variables,
these systems could be analyzed at different levels. Courtois also mentioned, that
through this technique and the related state-space partitioning, it is possible to analyze
the different subsystems with different methods like queuing theory, simulation and de-
terministic models.

In the hierarchical aggregation technique of Courtois, there remains a known ap-
proximation error [12,34]. This error is of the same order of magnitude as the maximum
degree of coupling between the different aggregation variables. As a result of this, the
aggregation variables or systems should be well conditioned and indecomposable [12].
Courtois also introduced multilevel aggregation [12].

A special case in the aggregation of matrices are nearly-completely decomposable
matrices which are also block stochastic [12]. Here, the eigenvalues of the aggregates
matrices are summations of the eigenvalues of the original matrices, which yields to
exact values for the steady state probabilities. Then the remaining error results only
from the aggregation of stochastic matrices to subsystems.

Based on this results, Vantilborgh [34] introduced conditions under which the aggre-
gation yields to exact results. He states and proves that the Perron-Frobenius eigenvec-
tor of an aggregated matrix is correct if, and only if the Perron-Frobenius eigenvectors
of the non aggregated base matrices are subparallel 1 to the Perron-Frobenius eigen-
vector of the aggregated matrix. The outcome of this is, that the aggregative analysis
of a system through the successive analysises of the subsystems yields exact results
for all steady-state distributions if and only if the Perron-Frobenius eigenvectors of the
customer behavior matrices of the subsystems are subparallel to the Perron-Frobenius
eigenvector of the customer behavior matrix of the aggregated system. Vantilborgh
also proves, that the equilbrium distribution of the aggregated system is equal to the
conditional distributions on the servers of the subsystems connditioned on the cus-
tomers served of queued at the servers, if and only if the Perron-Frobenius eigen-
vectorsof the subsystems are subparallel to the Perron-Frobenius eigenvector of the
aggregated system.

1subparallel [34]: An m-element vector v is subparallel to a vector u = [u1u2..un], n > m if there
exists a scalar k such that v = k[u1u2..un]

Fall 2008 Workshop 7-5



FMC-QE - Hierarchies, Transformations and Rules

The decomposability is very interesting for the research on FMC-QE, because it
shows the strengths and the assumptions of the decomposition. The results of the
approximation error and the exact aggregation could be applied to the hierarchical
decomposition of FMC-QE in order to show the accuracy of the hierarchical evaluation.

3.2 Norton’s theorem

Norton’s Theorem of the electrical circuit theory states, that in an electrical circuit of
batteries and resistors, it is possible to replace a subsystem by a single current source
and a parallel internal resistance with the same ‘equivalent’ behavior. Referring to [20]
this ’current source equivalent’ was published in parallel in the year 1926 by Edward
Lawry Norton [30] and Hans Ferdinand Mayer [29], who called this ‘Ersatzschema’
(equivalent circuits). Both results are based on the studies on Hermann von Helmholz
and Léon Charles Thévenin, who also were apparently unaware of the work of each
other. Therefore the Norton Theorem is sometimes also called Helmholtz-Thévenin,
Helmholz-Norton or Mayer-Norton Theorem [20].

Chandy, Herzog and Woo [9] adapted this results for the use in Queuing Networks
in order to replace a subsystem by a single composite queue. They proved Norton’s
Theorem for closed Gordon-Newell Networks and showed that it is also applicable to
open networks and networks which satisfy local balance. With this results, it is possible
to replace a subsystem by a composite queue in order to simplify the analysis of the
rest of the system. They prove, that for closed networks, the queue length distribution
for a queue in an equivalent network is the same as in the given network and the queue
length distribution at arrival for a queue in the equivalent network is also the same as
in the given network. For open networks with exponential service times and Poisson
arrivals they state, that the queue length distributions for all queues in a subsystem
in the equivalent network are the same as in the given network. They also show that
Norton’s Theorem holds for the class of networks which satisfy local balance. Here in a
closed network, the service rates at the composite queue is set equal to the throughput
to the short with the same number of service requests in the short. For open networks,
all uninteresting queues in the subsystem are replaced by a single composite Poisson
source which generates service requests of all classes, where each class is generated
independently. The generation rates are set equal to the throughput through the short
of the subsystem under consideration.

Balsamo and Iazeolla [3] extended Norton’s theorem for the use of any number of
queues and and arbitrary interface between the subsystem and the rest of the system.
They proposed a solution for BCMP-Networks [4] with one class of customers (exten-
sion to several classes is immediate [3]). They first construct a closed networks, called
the reduced network where the servers of the subnetwork are shorted (the service
times are set to zero) and the service rate of the composite queue is set to the through-
put of the original network with the same number of service requests in the network.
In the article they prove that the marginal probabilities for the queues and the queue
length distributions at arrival on the queues are the same for the original and the equiv-
alent network. They also describe an algorithm for the solution of the reduced network
and the equivalent network.

7-6 Fall 2008 Workshop



3 HIERARCHICAL MODELING AND AGGREGATION IN QUANTITATIVE MODELS

Walrand [35] proved, that Norton’s Theorem is also true for multiclass quasi re-
versible networks.

For FMC-QE the results of the transmission of Norton’s Theorem to Queuing Theory
is interesting in the development of aggregation methods in the hierarchical modeling
and analysis as well as the development of new model transformations like the serial-
parallel transformation.

In the related work discussed in this chapter, Norton’s Theorem is used for the
study of a subsystem without solving for the entire network. The idea is, to replace the
uninteresting parts of the entire system by the equivalent network and then study the
behavior of the rest of the system - hierarchies are not mentioned there. In contrast
to this, the purpose of the Norton’s Theorem in FMC-QE would not be to reduce a flat
network, but to develop methods for the analysis of hierarchical networks and not for
the refinement of flat networks.

3.3 Formal Hierarchies and Combination of Models

Malhotra and Trivedi [27] propose a formal expression of hierarchies in model speci-
fication and solution. In this methodology, the models are a composition of different
hierarchical models. Every model is treated as a black box and in the hierarchical
overall model the input and output variables are combined with the help of an inter-
connection matrix. Though the treatment as a black box and the output and input
connection, many different types of sub models are possible. If parameters are passed
from model Mi to model Mj, an order � is defined. The relation �� further defines
the transitive closure between the models. If the overall model is acyclic (If Mi �� Mj

then not Mj �� Mi) the solution of the overall model is achieved through the solving
of the model from the most-inner sub model to the overall model. If the overall model
is non-acyclic, an iterative solution is possible for the solution of the overall model.

Bause and Buchholz [6] use aggregation and disaggregation in their Product Form
Queueing Petri Nets [5]. Their results for the exact aggregation are based on Norton’s
Theorem.

Balbo, Bruell and Ghanta [2] propose a technique in which queuing network mod-
els and Generalized Stochastic Petri Nets are combined in a hierarchical modeling
approach. In their approach, the hierarchical subsystems which doesn’t violate the
BCMP-Theorem [4] are modeled as Product Form Queueing Networks (PFQN). Sub-
systems, which violate the BCMP assumptions, like systems with synchronization of
processes or simultaneous possession of resources by a process, are modeled as
Generalized Stochastic Petri Nets (GSPN [28]). Later the different results are com-
bined to an overall solution. Through this combination, it is avoided, that the whole
system is modeled as a GSPN model, which results in a state space reduction. In
this approach every subsystem is evaluated in isolation and the results are then aggre-
gated. In their paper they refer to the decomposability approach of Courtois [10,11] and
the approximation error of this approach. They [2] state, that through the solving of the
single sub models in isolation with the appropriate exact model, only the aggregation
would lead to an approximative error.

Fall 2008 Workshop 7-7



FMC-QE - Hierarchies, Transformations and Rules

The formal hierarchies are closely related to FMC-QE are therefore very interest-
ing. Also the combination of models could be used to solve special problems, like the
semaphore synchronization, described in chapter 5.3.

3.4 Aggregation and Hierarchies in Time Augmented Petri Nets

Bucci and Vicario [7] propose Communication Time Petri Nets (CmTPN). CmTPNs
augment the basic model of Petri Nets with inhibitor arcs, the timing constraints of
Time Petri Nets, and a module construct which permits the decomposition of a com-
plex model into smaller sub models [7]. This module construct consists of writing and
reading ports connected with communication links with transitions and places that are
referred as writing transitions and reading places. Writing and reading ports of the
different sub models can then be connected through channels to support the commu-
nication and interaction between the different sub models. The analysis of such models
consists of two steps: unit analysis and integration analysis. In the unit analysis, the
different subsystems are analyzed. The different sub models are separated from each
other and communicate only through interfaces. Through that interfaces, the environ-
ment of each sub model is defined. Then every sub model is analyzed similar to a
Time Augmented Petri Net. In the integration analysis, the whole model is computed,
by aggregating the results of the different subsystems.

Haddad and Moreaux [17] combine aggregation and decomposition in order to eval-
uate Petri Nets. In their understanding, aggregation reduces the state space by group-
ing states and solving the corresponding Markov chain on the set of state classes.
In the decomposition method they follow the decomposition of Plateau and Fourneau
( [31] referring to [17]), in which the state space is a cartesian product of smaller state
spaces. In their article, they also propose the concept of internal and external synchro-
nization, where internal synchronization means synchronization within one class and
external synchronization means synchronization between several classes.

Buchholz [8] proposes the hierarchical structuring of Superposed Generalized Sto-
chastic Petri Nets (SGSPNs). In his work, he presents a technique in which a hierar-
chical structure is generated in a preprocessing step in order to compute a compact
generator matrix. Through this approach, the problem of unreachable states is avoided.
In the approach, macro states and the generation of a macro transition system is pro-
posed. Macro states combine states of a component state space and a set of macro
states define a partition of the component state space. Each macro state represent a
set of detailed states. In the macro transition system, the state transitions of one macro
state to another (not locally) are defined. Through this macro transition system a global
reachability analysis is performed. The unreachablility of a global macro state implies
the unreachability of a detailed state, which allows the exclusion of unreachable states.

Freiheit and Zimmermann [14] propose a methodology for the automatic decom-
position of models. Their results are based on the decomposition of Stochastic Petri
Nets but could be extended to other modeling techniques. Their ”‘divide and con-
quer approach”’ is divided in three steps: In the first step, the system is decomposed
into smaller subsystems. In the second step, the dependencies between the different
subsystems are derived and extracted in ”‘low-level subsystems”’ and an aggregative

7-8 Fall 2008 Workshop



3 HIERARCHICAL MODELING AND AGGREGATION IN QUANTITATIVE MODELS

”‘basic skeleton”’. In the third step, the performance values of the system are computed
by an iterative approximation method.

3.5 Forced Traffic Flow Law

The Forced Traffic Flow Law (also called Forced Flow Law) [13, 25] is one of the main
laws in FMC-QE. Though the Forced Traffic Flow Law, the hierarchical service request
transformation of the server requests into subrequests is possible, which enables the
hierarchical decomposition in FMC-QE. In the Forced Traffic Flow Law, an arrival rate
λ

[bb−1]
sup(i) on hierarchical level [bb − 1] will be transformed into an arrival rate λ

[bb]
i on the

hierarchical level [bb] through the use of a traffic flow coefficient v
[bb]
i :

λ
[bb]
i = v

[bb]
i ∗ λ

[bb−1]
sup(i) (1)

The results of Denning and Buzen [13] are closely related to FMC-QE. Like in FMC-
QE, the Forced Traffic Flow Law is used for the hierarchical decomposition of service
requests in subrequests. They also define units for the service request in the defini-
tion of rates like service rates. In their two level models the overall service request is
called ‘job’ and the sub requests are called ‘request’. In their definition, the traffic flow
coefficient is called visit ratio and expresses the mean number of requests per job for
a device.

Lazowska et al. [25] described the specialization of the term ‘request’ on different
levels of details. For example a request at a disk is called disc access and a request at
the level of the entire system could be defined as a user-level interaction.

In Haas and Zorn [16], the Forced Traffic Flow Law (there: ‘Verkehrsflussgesetz’)
is used for the decomposition of a system into subcomponents. Through the decom-
position, the overall request is departed into subrequests at every component through
the visit ratio Vi and the throughput Di at every component could then be expressed as
Di = Vi ∗D. They also define a distinction of the different throughputs for every service
request class.

3.6 FMC-QE

In FMC-QE, the systems are modeled from the perspective of the hierarchical service
request [38]. On the basis of the three FMC [24,33] diagram types - Entity/Relationship-
Diagram, Block Diagram and Petri Net, the quantitative system properties are modeled
and evaluated.

The hierarchies of the service request structures are the main focus in FMC-QE,
because the service request in the origin of every service provisioning process [38] and
the hierarchical decomposition is the key to cope with complex systems. The systems
are modeled from three different hierarchical views: the service request structrues,
the (logical) server structures and the dynamic control flow behavior. Furthermore
the service requests are strictly modeled as a tuple of {V alue} und [Unit] (SRqi =
{SRqi} [SRqi]) in order to make the hierarchical decomposition possible through the

Fall 2008 Workshop 7-9



FMC-QE - Hierarchies, Transformations and Rules

service request transformation on the hierarchical borders of the model. On the basis
of clerical conventions, SRqi equals Ni and therefore:

Ni = {Ni} [Ni] (2)

The fundamental laws of the quantitative evaluation used in FMC-QE are Little’s
Law [26]:

N
[bb]
i = λ

[bb]
i ∗R

[bb]
i (3)

and the Forced Traffic Flow Law) [19]:

λ
[bb]
i = v

[bb]
i ∗ λ

[bb−1]
sup(i) (4)

In the scope of hierarchies, Little’s Law defines relations inside an hierarchical level
[bb] (horizontal). According to Little’s law, the number of service requests i on the
hierarchical level [bb] is a product of the arrival rate λ

[bb]
i of service requests Ni per time

unit and the response time R
[bb]
i .

The Forced Traffic Flow Law defines inter-hierarchical relations and defines there-
fore vertical relations between the hierarchical levels. It is the key to the hierarchical
modeling in FMC-QE. The Forced Traffic Flow Law defines, that an arrival rate λ

[bb−1]
sup(i)

of service requests Nsup(i) per time unit on hierarchical level [bb− 1] will be transformed
into an arrival rate λ

[bb]
i of service requests Ni on the hierarchical level [bb]. This trans-

formation is done with the help of the traffic flow coefficient v
[bb]
i . As already mentioned,

in FMC-QE, the service requests are modeled as a tuple of {V alue} und [Unit]. So the
Traffic Flow Coefficient is not only a scalar of {V alue} but also the basis for the service
request transformation from the unit service request N

e[bb−1]
sup(i) to a number of unit service

requests N
e[bb]
i :

v
[bb]
i =

{
v

[bb]
i

}[
v

[bb]
i

]
=

{
v

[bb]
i

}[
N

e[bb]
i

N
e[bb−1]
sup(i)

]
=

{
v

[bb]
i

} [
N

e[bb]
i

]
[
N

e[bb−1]
sup(i)

] (5)

Here the service requests N
e[bb−1]
sup(i) on the hierarchical level [bb − 1] are on superor-

dinate (sup(i)) of the service request N
e[bb]
i on the hierarchical level [bb].

4 Model Transformations

In FMC-QE, the system is modeled from the perspective of the hierarchical service re-
quest structures, processed by the system. In order to evaluate the model in the FMC-
QE Tableau, the model must follow a tree shaped structure. If the modeled system
does not follow this assumption, due to modeling with a different modeling technique
or special system behavior, the model is transformed into a tree shape structure. After
the transformation, the behavior of the transformed model is equivalent to the behavior
of the original model, but analyzable with the FMC-QE Tableau.

7-10 Fall 2008 Workshop



4 MODEL TRANSFORMATIONS

In the following chapters, some model transformations are defined. Chapter 4.1
describes the transformation of a while loop and chapter 4.2 defines the transformation
of a feed backward loop. Finally some open questions are raised in chapter 4.3.

4.1 While Loop

In FMC-QE, a while loop is transformed in order to compute the performance values of
the model in the FMC-QE Tableau. Figure 2 shows an FMC-QE model of a while loop.
The loop body is represented by the execution of the service request SRqi.

[bb-1]
Execution of SRqsup(i)

[bb]

Execution of

SRqi

SRqsup(i)

SRqi
Server: SRqi-Server 

[bb-1]

[bb]

vi,int = loopcount

 SRqi-Server 

Xi
mi

Figure 2: Original While Loop

In the service request structures, the loop is represented by a hierarchy of service
requests. The service request SRqsup(i) represents the whole execution of all iterations,
while the service request SRqi represents one single loop body execution. The traffic
flow coefficient vi,int represents the mean number of loop iterations. In the Petri Net,
the inner service request loop represents the while loop and the corresponding real
server has the multiplicity mi and the Service time Xi.

[bb-1]
Execution of SRqsup(i)

[bb]

Exec. of

SRqi 1

Exec. of

SRqi vi,int

Figure 3: While Loop Transformation (Serialization)

In the first step of the transformation, the loop is transformed to a sequence of
executions of the loop body (SRqi), like shown in figure 3.

Then the single executions of the loop body are combined to one execution in which,
the service time is the sum of the single service times. This step is shown in figure 4.
In this transformation, the arrival rate of the service requests SRqi is not changed:

λ
′ [bb]
i = λ

[bb]
i (6)

Fall 2008 Workshop 7-11



FMC-QE - Hierarchies, Transformations and Rules

[bb]
Execution of SRqsup(i)

[bb+1]

Exec. of 

SRqi

SRqsup(i)

SRqi
Server: SRqi-Server 

[bb-1]

[bb]

vi,int’ = 1

 SRqi-Server 

Xi’ = vi,int+Xi
mi

Figure 4: While Loop Transformation (Combination)

But the service time is the sum of the single executions of the loop bodys, respec-
tively the product of the mean loopcount vi,int and the original service time Xi:

X
′ [bb]
i = vi,int ∗X

[bb]
i (7)

4.2 Feed Backward Loop

In FMC-QE, feed backward loops, like shown in figure 6 are transformed into a feed
forward execution.

[bb-1]
Execution of SRqsup(i)

p=1-pret

[bb]

Exec. of 

SRqi

p=pret

SRqsup(i)

SRqi
Server: SRqi-Server 

[bb-1]

[bb]

vi,int = 1

Figure 5: Feed Backward Loop

In the feed backward execution there is a probability pret, that the execution service
request SRqi has to be repeated (e.g. failure).

[bb]
Execution of SRqsup(i)

[bb+1]

Exec. of

SRqi

SRqsup(i)

SRqi

Server: SRqi-Server 

[bb]

[bb+1]

vi,int’= vi,int/1-pret

Figure 6: Feed Forward

In the feed backward - feed forward transformation not the service time Xi but the
arrival rate λi is transformed. The increased arrival rate corresponds better to the real

7-12 Fall 2008 Workshop



4 MODEL TRANSFORMATIONS

system than the extension of the service rate. The new arrival rate λ′i is the product of
the traffic flow coefficient vi,int and the old arrival rate λi:

λ
′ [bb]
i = v

′ [bb]
i,int ∗ λ

[bb]
i (8)

The traffic flow coefficient is calculated due to the formula of the geometric sum [15]:

s =
∞∑

n=1

a1q
n−1 =

a1

1− q
(9)

as followed:

v
′ [bb]
i,int =

v
[bb]
i,int

1− preturn

(10)

In comparison to the transformation of the while loop, the service time X is not
transformed:

X
′ [bb]
i = X

[bb]
i (11)

4.3 Open Questions

In the following, some other interesting model transformations are shown, which are
under research.

Serial to Single Station A transformation of a sequence of n service requests SRq
[bb]
1

.. SRq
[bb]
n to an equivalent single service request SRq

[bb]
1..n would help in reducing huge flat

models into smaller aggregated ones. In comparison to a hierarchical serial execution,
the flat structure is combined on the same hierarchical level [bb] and this is not a service
request transformation to a hierarchically higher level. The corresponding FMC-QE
Petri Nets are shown in figure 7 (in an equivalent transformation SRq

[bb−1]
0 = SRq

′ [bb−1]
n ).

[bb-1]
Execution of SRq0

[bb]

Exec. of 

SRq1

[bb]

Exec. of 

SRqn

(a) Serial

[bb-1]
Execution of SRq0'

[bb]

Exec. of 

SRq1..n

(b) Single Station

Figure 7: Serial to Single Station Transformation

The first results are, that the service time of the service request SRq
[bb]
1..n is the sum

of all service times SRq
[bb]
1 .. SRq

[bb]
n :

X
[bb]
1..n =

n∑
i=1

X
[bb]
i (12)

Fall 2008 Workshop 7-13



FMC-QE - Hierarchies, Transformations and Rules

The service rate is the minimum of all service rates:

µ
[bb]
1..n = min(µ

[bb]
1 ..µ[bb]

n ) (13)

The definition of the multiplicity of the combined service request server m
[bb]
1..n is not

yet defined. Also the hadling of different traffic flow coefficients v
[bb]
i is not yet defined.

Parallel to Serial Another possible transformation, derivated from the electrical circuit
theory, is the transformation of a parallel execution into an equivalent serial execution,
like shown in figure 8. Here n service requests SRq

[bb]
1 .. SRq

[bb]
n are transformed to

the service requests SRq
′ [bb]
1 .. SRq

′ [bb]
n and SRq

[bb−1]
0 is the hierarchical superordinated

service request (in an equivalent transformation SRq
′ [bb−1]
0 = SRq

[bb−1]
n ).

[bb-1]
Execution of SRq0

[bb]

Exec. of 

SRq1

[bb]

Exec. of 

SRqn

(a) Parallel

[bb-1]
Execution of SRq0'

[bb]

Exec. of 

SRq1'

[bb]

Exec. of 

SRqn'

(b) Serial

Figure 8: Parallel to Serial Transformation

The service rate of the parallel execution should be the same as the service rate in
the serial execution:

µ
′ [bb−1]
0 = min(µ

′ [bb]
1 ..µ[′ bb]

n ) = min(µ
[bb]
1 ..µ[bb]

n ) = µ
[bb−1]
0 (14)

In the parallel execution, the service time of the whole execution is the maximum of
all service requests:

X
[bb−1]
0 = max(X

[bb]
1 , .., X [bb]

n ) (15)

In the serial execution, the service time of the whole execution is the sum of all
service requests:

X
′ [bb−1]
0 =

n∑
i=1

X
[′ bb]
i (16)

If the transformation is equivalent then:

X
′ [bb−1]
0 = X

[bb−1]
0 (17)

So:

7-14 Fall 2008 Workshop



5 MODELING RULES

X
′ [bb−1]
0 =

n∑
i=1

X
′ [bb]
i = max(X

[bb]
1 , .., X [bb]

n ) = X
[bb−1]
0 (18)

Which would reduce the execution all service requests executed in serial to the
longest executed service request in the parallel case.

Branch to Serial Another open question is the transformation of a branch to a serial
execution, like shown in figure 9.

[bb-1]
Execution of SRq0'

Cond. 1

or 

Prob. p1

Cond. n 

or 

Prob. pn

[bb]

Exec. of 

SRq1

[bb]

Exec. of 

SRqn

Cond. n 

or 

Prob. pn

(a) Branch

[bb-1]
Execution of SRq0'

[bb]

Exec. of 

SRq1'

[bb]

Exec. of 

SRqn'

(b) Serial

Figure 9: Branch to Serial

In this transformation, the single service times of the transformed execution should
be weighted, but it remains the same problem as in the parallel serial transformation,
that the execution collapses to the longest service request.

5 Modeling Rules

In the following section, some special modeling rules are described. In chapter 5.1 the
modeling of multiplexers (one real server for multiple logical servers) are defined. The
modeling of a multiclass senario is descibed in chapter 5.2. In chapter 5.3 some open
modeling questions are raised.

5.1 Multiplex

The mapping of several logical servers to one or more real servers very common. An
example for this scenario are several threads mapped to a processor. The multiplexer
is the key to model and evaluate such scenarios in FMC-QE. A multiplexer in signal
transmission is shown in figure 10.

Figure 11 shows exemplary FMC-QE hierarchical structures (service request, static
and dynamic). In this example, a service request A is decomposed into service request
A.1 and A.2. A.2 is further decomposed into service request A.2.1 and A.2.2. In this
example, the logical server Request A.1 Server and the logical server Request A.2.1

Fall 2008 Workshop 7-15



FMC-QE - Hierarchies, Transformations and Rules

Source 1

Source 2

Source m

Channel 1

Channel 2

Channel m

Sink 1

Sink 2

Sink m

(a) User View

Source 1

Source 2

Source m

M
u
lt
ip
le
x
e
r

Channel

Sink 1

Sink 2

Sink m

D
e
m
u
lt
ip
le
x
e
r

(b) System View

Figure 10: Multiplexer/Demultiplexer [36]

Server share one real server called Server X. This could be seen in the block diagram
in figure 11(b).

In the diagram of the real servers in figure 12 it could be seen, that Server X has
the multiplicity m = 1.

In order to calculate the performance values of the modeled system in the FMC-QE
Tableau, a multiplexed service time Xi,mpxed must be calculated for every logical server.
Referring to the last report [23] the calculation of the multiplexed service time is as
followed:

The service time (X [bb]
i,mpxed) a service request received from a server depends on the

number of all logical servers handled by a real server (
∑

∀ SRqi of Serverj
mi) and the mul-

tiplicity of the real server (mj). If
∑

∀ SRqi of Serverj
mi ≤ mj then, every logical server is

handled by a dedicated real server and the measured service time and the multiplexed
service time are the same (X [bb]

i,mpxed = X
[bb]
i,measured). In this case the redundant real server

would idle. If
∑

∀ SRqi of Serverj
mi > mj, every service request receives a longer service

time, because the server or the servers are handling other service request types in
parallel. The received service time is then calculated as: Xi,measured ∗ Xj

X
[bb]
i,measured∗v

[bb]
i

∗ mi

mj
.

In the special case infinite servers (both logical and real are infinite servers) Xi,mpxed

is defined like
∑

∀ SRqi of Serverj
mi = mj, X

[bb]
i,mpxed = X

[bb]
i,measured. To summarize the para-

graph:

X
[bb]
i,mpxed =

X
[bb]
i,measured if

(∑
∀ SRqi of Serverj

mi

)
≤ mj

Xi,measured ∗ Xj

X
[bb]
i,measured∗v

[bb]
i

∗ mi

mj
else

(19)

While Xj is the service time a server needs to served the its parts of the top level
service request. It is defined as the normalized sum of all measured corresponding
service times.

Xj =
∑

∀mpxed SRqi

(
X

[bb]
i,measured ∗ v

[bb]
i

)
(20)

For the rest of the calculated values, there is no distinction between multiplexed
servers and non-multiplexed (dedicated) servers.

The corresponding FMC-QE Tableau of the example in shown in table 2.

7-16 Fall 2008 Workshop



5 MODELING RULES

Service Request A

Action: Serve Request A

Server: Request A Server

Service Request A.1

Action: Serve Request A.1

Server: Request A.1 Server

vint = 1

Service Request A.2

Action: Serve Request A.2

Server: Request A.2 Server

vint = 2

Service Request Generation

Action: Generate Request A

Server: Client A

Service Request A.2.1

Action: Serve Request A.2.1

Server: Request A.1 Server

vint = 1

Service Request A.2.2

Action: Serve Request A.2.2

Server: Request A.2.2 Server

vint = 1

[1]

[2]

[3]

(a) service request structures

Request A Server

Request A.1 Server

Mpx: Server X

Client

Request A.2 Server

Request A.2.1 Server

Mpx: Server X

Request A.2.2 Server

Mpx: Server Y

[1][1]

[2] [2]

[3] [3]

(b) static structures

Serve Request A

Serve 

Request 

A.1

[1]

[2]

Auftrag A 
generieren

[1]

[2]
Serve Request A.2

[3]
Serve 
Request 
A.2.1

[3]
Serve 
Request 
A.2.2

(c) dynamic behavior

Figure 11: FMC-QE Multiplex Example - Logical Structures

Server X 

m = 1

XReq.A.1 = 0,2

XReq.A.2.1 = 0,2

Server Y

m = ∞

XReq.A.2.2 = 1,0

Figure 12: FMC-QE Multiplex Example - Real Servers

Fall 2008 Workshop 7-17



FMC-QE - Hierarchies, Transformations and Rules

Table 2: FMCQE Multiplex Example - Tableau

n g
es

30
λ b

ot
t

1,
66

67
f

0,
80

00
λ

1,
33

33

[b
b]

SR
q i

[b
b]

p [
bb

-1
],i

v i
,e

xt
[b

b-
1]

v i
,in

t [b
b]

v i
[b

b]
λ i

[b
b]

Se
rv

er
i

X i
,m

ea
su

re
d[b

b]
m

i,e
xt

[b
b-

1]
m

i,i
nt

[b
b]

m
i[b

b]
X i

,m
px

ed
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
n i

,s
[b

b]
n i

[b
b]

R
i[b

b]

3
S

er
vi

ce
 R

eq
ue

st
 A

.2
.2

1
2

1
2

2,
66

67
S

er
ve

r Y
1,

00
00

1
1

1
1,

00
00

1,
00

00
2,

66
67

0,
00

00
2,

66
67

2,
66

67
1,

00
00

3
S

er
vi

ce
 R

eq
ue

st
 A

.2
.1

1
2

1
2

2,
66

67
S

er
ve

r X
0,

20
00

1
1

1
0,

30
00

3,
33

33
0,

80
00

3,
20

00
0,

80
00

4,
00

00
1,

50
00

2
S

er
vi

ce
 R

eq
ue

st
 A

.2
1

1
2

2
2,

66
67

1
1

1
1,

00
00

0,
00

00
2,

66
67

2,
66

67
1,

00
00

2
S

er
vi

ce
 R

eq
ue

st
 A

.1
1

1
1

1
1,

33
33

S
er

ve
r X

0,
20

00
1

1
1

0,
60

00
1,

66
67

0,
80

00
3,

20
00

0,
80

00
4,

00
00

3,
00

00
1

S
er

vi
ce

 R
eq

ue
st

 A
1

1
1

1
1,

33
33

1
1

1
1,

00
00

3,
20

00
3,

46
67

6,
66

67
5,

00
00

1
G

en
er

at
e 

R
eq

ue
st

 A
1

1
1

1
1,

33
33

1
1

1
17

,5
00

0
0,

05
71

0,
00

00
23

,3
33

3
23

,3
33

3
17

,5
00

0

Se
rv

er
j

m
j

X j
[1

]
µ j

[1
]

µ j
[1

] *m
j

S
er

ve
r X

1
0,

60
00

1,
66

67
1,

66
67

S
er

ve
r Y

∞

D
yn

am
ic

 E
va

lu
at

io
n 

Se
ct

io
n

M
ap

pi
ng

Se
rv

er
 S

ec
tio

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s:

Se
rv

ic
e 

R
eq

ue
st

 S
ec

tio
n

M
ul

tip
lic

ity

7-18 Fall 2008 Workshop



5 MODELING RULES

5.2 Multiclass

If there are different kinds of service requests and it is not reasonable to combine the
different arrivals so a single class of service requests, multiclass models are the way
of modeling such systems. In FMC-QE, the multiclass scenario is just an extension of
the multiplex case. In multiclass models, the logical structures differ from each other,
so there is a different model for every class. In figure 13 the service request structures,
the logical server structures and the dynamic behavior of service request class A is
shown.

[1]

[2]

Service Request A

Action: Serve Request A

Server: Request A Server

Service Request A.1

Action: Serve Request A.1

Server: Request A.1 Server

vint = 1

Service Request A.2

Action: Serve Request A.2

Server: Request A.2 Server

vint = 2

Service Request Generation

Action: Generate Request A

Server: Client A

(a) service request structures

Request A Server

Request A.1 Server

Mpx: Server X

Client

Request A.2 Server

Mpx: Server Y

[1][1]

[2] [2]

(b) static structures

Serve Request A

Serve 

Request 

A.2

Serve 

Request 

A.1

[1]

[2] [2]

Generate 
Request A

[1]

(c) dynamic behavior

Figure 13: FMC-QE Multiclass Example - Class A

In class A, a service request A is decomposed into a serial execution for two service
requests A.1 and A.2. A.1 is handled by server X and A.2 is handled by server Y.

In the other class B (described in figure 14), there is also a decomposition into two
service requests B.1 and B.2. The service request B.2 is furthermore decomposed into
two parallel executed service requests B.2.1 and B.2.2. The logical server is mapped
to the real server X, is mapped to Y and is mapped to Z.

In addition to the logical structures of the two classes A and B in the figures 13 and
14, the real servers are defined in figure 15. There is a multiplex of server X for the
logical servers Request A.1 Server and Request B.1 Server and a multiplex of server
Y for the logical servers Request A.1 Server and Request B.2.1 Server. The server Z
is a dedicated server for the service request B.2.2 in class B.

The corresponding tableau of of the multiclass example is shown in table 3. In com-
parison to a non multiclass model, this table consists of more than one experimental
parameters and service request section.

Fall 2008 Workshop 7-19



FMC-QE - Hierarchies, Transformations and Rules

[1]

[2]

Service Request B

Action: Serve Request B

Server: Request B Server

Service Request B.1

Action: Serve Request B.1

Server: Request B.1 Server

vint = 1

Service Request B.2

Action: Serve Request B.2

Server: Request B.2 Server

vint = 2

Service Request Generation

Action: Generate Request B

Server: Client

Service Request B.2.1

Action: Serve Request B.2.1

Server: Request B.2.1 Server

vint = 1

Service Request B.2.2

Action: Serve Request B.2.2

Server: Request B.2.2 Server

vint = 1

[3]

(a) service request structures

Request B Server

Request B.1 Server

Mpx: Server X

Client B

Request B.2 Server

Request B.2.1 Server

Mpx: Server Y

Request B.2.2 Server

Mpx: Server Z

[1][1]

[2] [2]

[3] [3]

(b) static structures

Serve Request B

Serve 

Request 

B.1

[1]

[2]

Generate 
Request B

[1]

[2]
Serve Request B.2

[3]
Serve 
Request 
B.2.1

[3]
Serve 
Request 
B.2.2

(c) dynamic behavior

Figure 14: FMC-QE Multiclass Example - Class B

Server X 

m = 1

XA.1 = 0,2

XB.1 = 0,2

Server Y

m = 1

XA.2 = 0,33

XB.2.1 = 0,2

Server Z

m = 1

XB.2.2 = 0,1

Figure 15: FMC-QE Multiclass Example - Real Servers

7-20 Fall 2008 Workshop



5 MODELING RULES

Table 3: FMC-QE Multiclass Example - Tableau

n g
es

30
λ b

ot
t

0,
94

34
f

0,
80

00
λ

0,
75

47

[b
b]

SR
q i

[b
b]

p [
bb

-1
],i

v i
,e

xt
[b

b-
1]

v i
,in

t [b
b]

v i
[b

b]
λ i

[b
b]

Se
rv

er
i

X i
,m

ea
su

re
d[b

b]
m

i,e
xt

[b
b-

1]
m

i,i
nt

[b
b]

m
i[b

b]
X i

,m
px

ed
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
n i

,s
[b

b]
n i

[b
b]

R
i[b

b]

2
S

er
vi

ce
 R

eq
ue

st
 A

.2
1

1
2

2
1,

50
94

S
er

ve
r Y

0,
33

00
1

1
1

0,
53

00
1,

88
68

0,
80

00
0,

00
00

0,
80

00
0,

80
00

0,
53

00
2

S
er

vi
ce

 R
eq

ue
st

 A
.1

1
1

1
1

0,
75

47
S

er
ve

r X
0,

20
00

1
1

1
0,

40
00

2,
50

00
0,

30
19

0,
13

05
0,

30
19

0,
43

24
0,

57
30

1
S

er
vi

ce
 R

eq
ue

st
 A

1
1

1
1

0,
75

47
1

1
1

2,
50

00
0,

13
05

1,
10

19
1,

23
24

1,
63

30
1

G
en

er
at

e 
R

eq
ue

st
 A

1
1

1
1

0,
75

47
1

1
1

38
,1

17
0

0,
02

62
28

,7
67

6
28

,7
67

6
38

,1
17

0

n g
es

30
λ b

ot
t

0,
94

34
f

0,
80

00
λ

0,
75

47

[b
b]

SR
q i

[b
b]

p [
bb

-1
],i

v i
,e

xt
[b

b-
1]

v i
,in

t [b
b]

v i
[b

b]
λ i

[b
b]

Se
rv

er
i

X i
,m

ea
su

re
d[b

b]
m

i,e
xt

[b
b-

1]
m

i,i
nt

[b
b]

m
i[b

b]
X i

,m
px

ed
[b

b]
μ i

[b
b]

ρ i
[b

b]
n i

,q
[b

b]
n i

,s
[b

b]
n i

[b
b]

R
i[b

b]

3
S

er
vi

ce
 R

eq
ue

st
 B

.2
.2

1
2

2
4

3,
01

89
S

er
ve

r Z
0,

10
00

1
1

1
0,

10
00

10
,0

00
0

0,
30

19
0,

00
00

0,
30

19
0,

30
19

0,
10

00
3

S
er

vi
ce

 R
eq

ue
st

 B
.2

.1
1

2
1

2
1,

50
94

S
er

ve
r Y

0,
20

00
1

1
1

0,
53

00
1,

88
68

0,
80

00
3,

20
00

0,
80

00
4,

00
00

2,
65

00
2

S
er

vi
ce

 R
eq

ue
st

 B
.2

1
1

2
2

1,
50

94
1

1
1

10
,0

00
0

0,
00

00
0,

15
09

0,
15

09
0,

10
00

2
S

er
vi

ce
 R

eq
ue

st
 B

.1
1

1
1

1
0,

75
47

S
er

ve
r X

0,
20

00
1

1
1

0,
40

00
2,

50
00

0,
30

19
0,

13
05

0,
30

19
0,

43
24

0,
57

30
1

S
er

vi
ce

 R
eq

ue
st

 B
1

1
1

1
0,

75
47

1
1

1
2,

50
00

0,
13

05
0,

45
28

0,
58

34
0,

77
30

1
G

en
er

at
e 

R
eq

ue
st

 B
1

1
1

1
0,

75
47

1
1

1
38

,9
77

0
0,

02
57

29
,4

16
6

29
,4

16
6

38
,9

77
0

Se
rv

er
j

m
j

X j
[1

]
µ j

[1
]

µ j
[1

] *m
j

S
er

ve
r X

1
0,

40
00

2,
50

00
2,

50
00

S
er

ve
r Y

1
1,

06
00

0,
94

34
0,

94
34

S
er

ve
r Z

1
0,

40
00

2,
50

00
2,

50
00

Se
rv

er
 S

ec
tio

n

Ex
pe

rim
en

ta
l P

ar
am

et
er

s:

Se
rv

ic
e 

R
eq

ue
st

 S
ec

tio
n

M
ap

pi
ng

Ex
pe

rim
en

ta
l P

ar
am

et
er

s:

Se
rv

ic
e 

R
eq

ue
st

 S
ec

tio
n

M
ul

tip
lic

ity

D
yn

am
ic

 E
va

lu
at

io
n 

Se
ct

io
n

D
yn

am
ic

 E
va

lu
at

io
n 

Se
ct

io
n

M
ap

pi
ng

M
ul

tip
lic

ity

Fall 2008 Workshop 7-21



FMC-QE - Hierarchies, Transformations and Rules

5.3 Open Questions

Other interesting modeling and evaluation questions are concurrent processes and the
quantitative modeling of exception handling.

Concurrent Processes The usage of FMC-QE in the performance modeling and
evaluation of concurrent processes and synchronization would be an interesting re-
search question.

pact1

λ1Treq1

preq1

α1Tstr1

pacc1

µ1Tend1

pidle

pact2

λ2 Treq2

preq2

α2 Tstr2

pacc2

µ2 Tend2

Figure 16: Semaphore Synchronization [28]

There were attempts to model and analyze concurrent processes, more precisely a
semaphore synchronization, with FMC-QE. A model and a tableau of the semaphore
synchronization shown in figure 16 was already set up. Parts of this model are shown
in figure 17 and figure 18.

shared memory

Processor 2Processor 1

Semaphor-

HandlerR

P(S)

Semaphor S

Memory

Allocator 1

R

Memory

Request

local memory

Memory

Allocator

memory for Processor 1 or 2

DCA-Actor

Workload Generator

R

V(S)

R
Job

R

P(S)

Memory

Allocator 1
R

Memory

Request

local memory

Memory

Allocator

DCA-Actor

Workload Generator

R

V(S)

R
Job

Figure 17: Semaphore Synchronization - Server Structures (FMC)

There is also an FMC-QE Tableau with an iterative approximative solution in use
[39]. In further research, other concurrent processes will be modeled and evaluated.
Also other iterative solutions like [18] will be investigated.

7-22 Fall 2008 Workshop



5 MODELING RULES

T
S

P

A1

Serving  Semaphore Request

AS = A1 + A2
A

2

A2

Waiting for  Semaphore Release

A1

T
S

V

N
1

s

T
1
1

N
1

kA,s

N1
1

X
1
1=

1 [TU]

X
1

3=

1/10

[TU]W
1
S

cap K1

X
1

2=

1/100

[TU]

T
1

S

N
1

kA,q

A
1

N
1
1,q

N
1
2,q

= 0

N
1

3,q

= 0T
1

2
T

1
3

N1
S N

1
2 N

1
3

N
1
q

N
1

ext

cap K
1

X1
ext

IS

T
2

1

N
2
kA,s

N2
1

X
2
1=

1/2 

[TU]

N2
2 N2

3

X
2
3=

1/5

[TU]

W
2
S

cap K
2

X
2
2=

1/100

[TU]

N2
S

N
2

kA,q

A
2

N
2

1,q

T
2

S

T
2

2
T

2
3

N
2

3,q

= 0
N

1
2,q

= 0

N
2

q

N
2
s

N
2

ext

cap K2

X
2

ext

IS

Figure 18: Semaphore Synchronization [39]

Fall 2008 Workshop 7-23



FMC-QE - Hierarchies, Transformations and Rules

Exception Handling Often it is useful to neglect the exception handling in the mod-
eling of systems, because in makes the models much more complex for the (hopefully)
rare events of exceptions. But, if the exception handling would be relevant for the quan-
titative evaluation of the system, a corresponding model should be established. In first
ideas, the FMC-QE model would follow the FMC modeling styles, like shown in figure
19.

T1

T2

T3

T4

error 

handling

T1

T2

T3

T4
error 

handling

Figure 19: Exeption Modeling in FMC [1]

But here are open questions like: How to cope with exception handling over many
hierarchy levels and multiple throw statements and so on.

6 Conclusions and Outlook

The hierarchical modeling in FMC-QE, described in section 3 is the key to model com-
plex systems. Though the hierarchical service request structures and the service re-
quest modeled as a tuple of value and unit, the quantitative evaluation of the models
in the FMC-QE Tableau is scalable to complex systems, which were unaccessible to
quantitative evaluation before. The related work on this field gives also basics and
ideas for further research and concretions.

The section model transformations 4 extend the applicability of FMC-QE to the mod-
eling and evaluation of scenarios which does not follow the FMC-QE hierarchical tree
shaped model.

The multiplex modeling and the possibility of modeling multiclass scenarios, de-
scribed in section 5: modeling rules, open the availability of FMC-QE for the modeling
and evaluation of another wide range of systems. Also the considerations of how to
model exception handling, addresses interesting research questions.

After the definition and description of FMC-QE in the last three reports, includ-
ing basic definitions, diagram types, case studies, the calculus as well as hierarchical
modeling, model transformations and modeling rules in this report, the next research
will be focused using FMC-QE in order to model Product Form and Non Product From
Queueing Networks in order to find a clear and simple criterion in the distinction be-
tween these types of networks. Also the open questions raised in this report will be
addressed.

7-24 Fall 2008 Workshop



REFERENCES

References

[1] Rémy Apfelbacher, Andreas Knöpfel, Peter Aschenbrenner, and Sebastian Pr-
eetz. FMC Visualization Guidelines. Technical report, Hasso-Plattner-Institute,
Potsdam, January 2005.

[2] G. Balbo, S. C. Bruell, and S. Ghanta. Combining Queueing Networks and Gen-
eralized Stochastic Petri Nets for the Solution of Complex Models of System Be-
havior. IEEE Transactions on Computers, 37(10):1251–1268, October 1988.

[3] S. Balsamo and G. Iazeolla. An Extension of Norton’s Theorem for Queueing
Networks. IEEE Transactions on Software Engineering, 8(4):298–305, July 1982.

[4] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios.
Open, Closed, and Mixed Networks of Queues with Different Classes of Cus-
tomers. Journal of the ACM, 22(2):248–260, 1975.

[5] Falko Bause and Peter Buchholz. Product Form Queueing Petri Nets: A Com-
bination of Product Form Queueing Networks and Product Form Stochastic Petri
Nets. Technical Report 529, Fachbereich Informatik Universitt Dortmund, Dort-
mund, Germany, 1994.

[6] Falko Bause and Peter Buchholz. Aggregation and Disaggregation in Product
Form Queueing Petri Nets. In Proceedings of the 7th IEEE International Workshop
on Petri Nets and Performance Models (PNPM’97), pages 16–25, Los Alamitos,
CA, USA, 1997. IEEE Computer Society.

[7] Giacomo Bucci and Enrico Vicario. Compositional Validation of Time-Critical Sys-
tems Using Communicating Time Petri Nets. IEEE Transactions on Software En-
gineering, 21(12):969–992, December 1995.

[8] Peter Buchholz. Hierarchical Structuring of Superposed GSPNs. IEEE Transac-
tions on Software Engineering, 25(2):166–181, March/April 1999.

[9] K. M. Chandy, U. Herzog, and L. Woo. Parametric Analysis of Queuing Networks.
IBM Journal of Research and Development, 19(1):36–42, January 1975.

[10] P. J. Courtois. Decomposability, instabilities, and saturation in multiprogramming
systems. Communications of the ACM, 18(7):371–377, 1975.

[11] P. J. Courtois. Decomposabilty, Queueiing and Computer System Applications.
ACM Monograph Serices. Academic Press, Inc., New York, San Francisco, Lon-
don, 1977.

[12] P.J. Courtois. Error Analysis in Nearly-Completely Decomposable Stochastic Sys-
tems. Econometrica, 43(4):691–709, July 1975.

[13] Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of Queueing
Network Models. ACM Compututer Surveys, 10(3):225–261, September 1978.

Fall 2008 Workshop 7-25



FMC-QE - Hierarchies, Transformations and Rules

[14] Jörn Freiheit and Armin Zimmermann. A Divide and Conquer Approach for the
Performance Evaluation of Large Stochastic Petri Nets. In Proceedings of the 9th
IEEE International Workshop on Petri Nets and Performance Models (PNPM’01),
Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[15] Baerbel Grimm, Willi Woerstenfeld, Peter Pfeil, and Karlheinz Martin. Das grosse
Tafelwerk. Volk und Wissen Verlag GmbH, Berlin, first edition, 1994.

[16] Martin Haas and Werner Zorn. Methodische Leistungsanalyse von Rechensyste-
men. R. Oldenbourg Verlag GmbH, München, Wien, 1995.

[17] S. Haddad and P. Moreaux. Evaluation of High Level Petri nets by Means of
Aggregation and Decomposition. In Proceedings of the 6th IEEE International
Workshop on Petri Nets and Performance Models (PNPM’95), pages 11–20, Los
Alamitos, CA, USA, 1995. IEEE Computer Society.

[18] Philip Heidelberger and Kishor S. Trivedi. Analytic Queueing Models for Programs
with Internal Concurrency. IEEE Transactions on Computers, 32(1):73–82, Jan-
uary 1983.

[19] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, New York, USA, 1991.

[20] Don H. Johnson. Origins of the equivalent circuit concept: the voltage-source
equivalent. Proceedings of the IEEE, 91(4):636– 640, April 2003.

[21] Stephan Kluth. FMC-QE - Case Studies. Presented at the Fall 2007 Workshop
of the HPI Research School on Service-Oriented Systems Engineering, Hasso
Plattner Institute for Software Systems Engineering, Potsdam, Germany, October
2007.

[22] Stephan Kluth. FMC-QE - Positioning, Basic Definitions and Graphical Repre-
sentation. Presented at the Spring 2007 Workshop of the HPI Research School
on Service-Oriented Systems Engineering, Hasso Plattner Institute for Software
Systems Engineering, Potsdam, Germany, April 2007.

[23] Stephan Kluth. FMC-QE - Calculus. Presented at the Spring 2008 Workshop of
the HPI Research School on Service-Oriented Systems Engineering, Hasso Plat-
tner Institute for Software Systems Engineering, Potsdam, Germany, April 2008.

[24] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Modeling
Concepts: Effective Communication of IT Systems. John Wiley & Sons, March
2006.

[25] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Inc., Februar 1984.

7-26 Fall 2008 Workshop



REFERENCES

[26] John D. C. Little. A Proof of the Queueing Formula L = λ ∗ W . Operations
Research, 9:383–387, 1961.

[27] M. Malhotra and K.S. Trivedi. A methodology for formal expression of hierarchy in
model solution. In Proceedings on the 5th International Workshop on Petri Nets
and Performance Models, pages 258–267, Toulouse, France, October 1993. IEEE
Society Press.

[28] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.
John Wiley & Sons, Inc., New York, NY, 1995.

[29] Hans Ferdinand Mayer. Über das Ersatzschema der Verstärkerröhre [On equiv-
alent circuits for electronic amplifiers]. Telegraphen- und Fernsprech-Technik,
15:335–337, 1926.

[30] Edward Lawry Norton. Design of finite networks for uniform frequency character-
istic. Technical Report TM26-0-1860, Bell Laboratories, 1926.

[31] Brigitte Plateau and Jean-Michel Fourneau. A methodology for solving Markov
models of parallel systems. Journal of Parallel and Distributed Computing,
12(4):370–387, 1991.

[32] Herbert A. Simon and Albert Ando. Aggregation of Variables in Dynamic Systems.
Econometrica, 29(2):111–138, April 1961.

[33] Peter Tabeling. Softwaresysteme und ihre Modellierung. Springer, Berlin, Heidel-
berg, 2006.

[34] Hendrik Vantilborgh. Exact Aggregation in Exponential Queueing Networks. Jour-
nal of the ACM (JACM), 25(4):620–629, 1978.

[35] J. Walrand. A Note on Norton’s Theorem for Queuing Networks. Journal of Applied
Probability, 20(2):442–444, June 1983.

[36] Siegfried Wendt. Nichtphysikalische Grundlagen der Informationstechnik. Inter-
pretierte Formalismen. Springer, Berlin, 2 edition, 1991.

[37] Werner Zorn. Calculus Paper. Hasso Plattner Institute for Software Systems
Engineering, Internal, Status 20070313, March 2007.

[38] Werner Zorn. FMC-QE - A New Approach in Quantitative Modeling. In Hamid R.
Arabnia, editor, International Conference on Modeling, Simulation and Visualiza-
tion Methods (MSV 2007) within WorldComp ’07, pages 280 – 287, Las Vegas,
USA, June 2007. CSREA Press.

[39] Werner Zorn. Hierarchische Modellierung auf Basis von Bedienanforderungen.
Presented at the Institut für Operations Research, Humboldt-Universität zu Berlin,
Berlin, April 2007.

Fall 2008 Workshop 7-27



 



Identity Management for
Cross-Organizational SOA

Ivonne Thomas

ivonne.thomas@hpi.uni-potsdam.de

Identity Management describes the process of establishing, representing and rec-
ognizing a person’s identity as digital identities in computer networks. Managing iden-
tities is a critical prerequisite to determine the legitimate actions this identity may per-
form. For this reason, it is the foundation for identity-based access control mechanisms.
Traditional approaches for identity management work well as long as systems are used
by a small set of users within the trusted circle of their organization. However, SOA
facilitates not only the seamless connection of systems located in one trust domain,
but also of systems provided by partner organizations or third-parties which are under
foreign administration and therefore represent a completely different trust domain. The
vision of the future SOA is to have an Internet of Services – a global market place on
which services are offered and consumed by independent organisational units. In such
a setting traditional identity management solutions lack of scalability, user convenience
and security. New approaches as federated identity management and decentralized
identity management face the new situation, but still bear many open problems.

This report identifies the new challenges for identity management in cross-organi-
zational SOA environments and describes identity federation as a concept for the con-
trolled sharing of identity information between trust domains. To evaluate the trustwor-
thiness of shared identity information, it is important to analyse the underlying trust
relationships in order to assess the trustworthiness of the information’s source. In this
report the concept of organizational trust and the concept of identity trust are intro-
duced which can be used to classify these trust relationships. Based on this, the report
describes possible approaches to establish and manage trust for cross-organizational
identity management and outlines the future research direction.

1 Motivation

In the past, there was no need to share identities from one organization or company to
another, since each organization acted as its own authority for managing their users –
thus forming a closed trust domain. However, this has changed quite a bit with SOA,
services and the vision of an Internet of Services. Collaborations across the borders of
the own trust domain are not only common, but required to keep pace with fast chang-
ing business needs. The design of Service-oriented Architectures allows a seamless
communication between applications independent from the platform on which they run
and across domain boundaries; therefore, making them perfectly suitable for the inte-

Fall 2008 Workshop 8-1



Identity Management for Cross-Organizational SOA

gration of services provided by independent business partners. The vision is to choose
services from a broad portfolio and to compose and re-compose them according to
concrete business requirements. The management of user identities across organi-
zational borders is a key element to follow through such a vision since each service
regardless whether located in the same or another trust domain needs identity infor-
mation in order to perform access control and to prevent unauthorized access. The
following section describes the new challenges for identity and access management
in open environments and highlights why traditional identity management mechanisms
lack in the context of cross-organizational SOA.

1.1 New Challenges for Identity and Access Management in SOA

Consistency In todays online world, digital identities are exploding in numbers, are
dispersed over the network and are difficult to keep consistent. As a consequence,
the registration and maintenance of digital identities (user accounts) becomes not only
annoying, but also bears significant security risks. User are loaded with dozens of ac-
counts - each one requiring separate user identifier and credentials such as passwords.
This leads to the situation that the same passwords is used for multiple accounts or that
passwords are chosen in a way in which they are easy to remember resulting in an in-
creased security risk. Furthermore, along with an increased number of digital identities,
difficulties arise to maintain identity data and to keep it up-to-date, since each account
needs separate consideration. Data which is not up-to-date bears the risk that a user
gains access although he is not authorized anymore, for example, when he left the
company or was granted a different job position. To address such issues, solutions are
required, which either provide consistency between accounts and/or which facilitate a
reduced number of accounts.

Scalability Each partner in the network needs to be identied and authorized to ac-
cess another partners condential resources. Traditional approaches for identity man-
agement like the isolated model (cf. Jøsang [4]) require users to register with every
single service and to reauthenticate each time they use a service in another trust do-
main. As businesses have become more distributed, registering and authenticating for
each service leads to an explosion of accounts and expensive maintenance cost to
manage users from many different domains. Accounts need to be created, but also
need to be changed or deleted completely once legitimations change. If users are not
located within the same administrating domain, tracking changes in a person’s position
or role is difficult. In particular with regard to business partners which are having their
own security requirements and procedures, traditional approaches do not scale with an
increased number of service users, service providers and security requirements. The
challenge is to apply mechanisms which work well regardless of the number of users
and trust domains involved.

Availability vs. Protection of Services On a service market place, on which ser-
vices can be used by everyone, organizations are faced with the task to simultaneously

8-2 Fall 2008 Workshop



1 MOTIVATION

protect their resources from unauthorized access while at the same time making them
available to a wide range of users. However, each service call should have the appro-
priate level of access control, not to low to prevent security breaches and not high to
preserve user convenience and high costs. This means, each transaction is associ-
ated a different security risk in case someone gets unauthorized access to the assets
it provides. Such trust requirements can range from low-level access control for non-
confidential information to high-level financial transactions which would result in high
financial loss in case of security breaches. Therefore depending on the value of the
transaction or information assets, the level of access control needs to be higher or
lower. The optimal balance between availability and protection of services is needed to
allow for secure, but not inmoderate access to services.

Costs Costs with regard to identity management are a crucial factor in most compa-
nies. Identification processes are expensive and time-consuming and the management
of users as for example in a company’s active directory requires permanent updates to
reflect changes in the personnel structures as new or leaving employees. Therefore,
with regard to collaborations, building on existing identity and access management in-
frastructures does not only save time and money, but also has an advantage with regard
to security. That is, the responsibility for the user account to be up-to-date is left at the
domain which is administrating this user and thus prevents misuse of accounts of users
which have left the organization. Therefore, identity and access management mecha-
nisms should support the sharing of identity and access management infrastructures
between the organizations.

Federation Partnerships between organizations with the aims to use services and
other resources together are increasing and come along with the challenge to bring
together existing identity management systems. In order to enable resource access
across completely unrelated security domains, users of one domain need to be known
in the foreign domain. Since identification processes are expensive and organizations
will stick to their own identity management infrastructure, mechanisms are required
which introduce the own users to the foreign trust domain. This requires mechanisms
to express accounts in an understandable format and to transfer the whole account or
parts of the account to the foreign domain.

Trust In order to use services and to communicate identity information between dif-
ferent security domains a pre-existing trust relationship is required. If a relying party
should accept identity information received from somewhere outside its own control, it
needs to trust the other organizations identity infrastructure.This means, it need to trust
the partner organization to manage their identity information in a way that is consistent
with the security the company requires for those resources.

Fall 2008 Workshop 8-3



Identity Management for Cross-Organizational SOA

Figure 1: CNN Political Markets Start Page

2 Sharing Identity Information for Access Control: The
Concept of Identity Federation

Sharing identity information across the internet is a concept which is already used by
a number of technologies such as CardSpace or OpenID. This section will start with
a real-life example for a Login to a foreign web site using OpenID. Given this small
example, the basic procedures for identity federation are demonstrated. Afterwards,
the concept of identity federation is explained in detail. Finally, Section 2.3 will give an
overview about exisitng solutions which use the concept of identity federation.

2.1 Example for Identity Federation: OpenID

OpenID is a very lightweight technology to enable the sharing of identity information
across the web. Due to its simplicity it is well suited to demonstrate the basic steps
necessary to perform authentication and authorization across different trust domains.
As an example, a web page of CNN is used, which requires an authenticated user. This
page, called CNN Political Market 1 (cf. figure 1), allows to place virtual puts and gets
on politicians. In order to login, a user can either provide a password or a so-called
OpenID Url. An OpenID Url identifies a user and contains the information about the
entity, which administrates the user’s identity information, the so called identity provider.
On request CNN uses this information and redirects the user to the login page of his
identity provider, which will check for the right credentials. This procedure is shown
in figure 2: As the OpenID provider we use the HPI OpenId Provider, which has been
implemented as a student project during the last year and which is identified by the URL
https://openid.hpi.uni-potsdam.de. Once a user enters its HPI OpenID Url at the CNN

1http://politicalmarket.cnn.com/

8-4 Fall 2008 Workshop



2 SHARING IDENTITY INFORMATION FOR ACCESS CONTROL: THE CONCEPT
OF IDENTITY FEDERATION

Figure 2: CNN Political Markets Login using OpenID

Figure 3: The HPI OpenID Provider requests authorization from the user to share
identity information.

web site, the request is redirected to the HPI, which will prompts for a username and
password of the HPI account of the user. When the user enters the right credentials,
s/he is logged in and asked for permission to share its identity information with the
foreign domain (cf. figure 3). Once the sharing is permitted, the request is redirected
to the CNN web site and contains the information, that the user was authenticated
successfully. Based on this information, the user is logged in to the foreign web site
without the need to re-authenticate. Furthermore, a session is created, which allows
the user to log in to any other web site which supports OpenID without the need to
retype a password. The next section will give a detailed description about the sharing
of identity information across trust domains, called identity federation.

2.2 The Concept of Identity Federation

Managing numerous digital identities and associated authentication credentials is cum-
bersome for most computer users and often bears significant security risks. Nonethe-
less, service providers often need a portion of our identity to perform a service (identity-

Fall 2008 Workshop 8-5



Identity Management for Cross-Organizational SOA

based service), or to hold us liable in case anything bad happens. As a consequence, a
concept for the controlled sharing of identity information was developed, called Identity
Federation.

The idea of identity federation is to leave the responsibility for the users account
in the managing domain and, instead, propagate required identity information to the
relying partner in the foreign domain. The advantage of this approach is that identity
management can build on existing Identity and Access Management infrastructures,
which saves time and money and also leaves the responsibility for the user account to
be up-to-date at the domain which is administrating this user.

The basic building block of Identity Federation is the trusted federation relationship
established between identity providers and service providers. An identity provider (IdP)
holds digital identities of registered users for the purpose of provisioning these identi-
ties, or portions of them, to a party willing to rely on this information (the relying party).
A service provider (SP) usually takes the role of the relying party. It allows users to
authenticate themselves at a federated identity provider and then relies on the asser-
tion issued by the IdP upon successful authentication. As this authentication can be
made persistent over some time period (a session is created), users can be freed from
reauthenticating, if they access another service provider that is federated to the same
identity provider. This effectively enables single-sign-on (SSO) across security domain
boundaries.

In order to establish the unique user identity at the service provider, several methods
can be employed. One way is to purely rely on the identity attributes retrieved from the
identity provider and have no local user management (no user account at the SP). If
the user previously registered an account at the service provider, s/he is offered the
option to authenticate at her/his identity provider and link the SP account to the IdP
account. A combination of both methods is to initially obtain relevant user data from
the identity provider and then automatically create an account for the user.

An important issue in Identity Federation is privacy. Private identity data is shared
between various parties over a mainly insecure network, raising the risk that it falls in
the wrong hands. This threat is partly addressed by the trust relationship that underlies
a federation and the regulations dened in the federation agreement, which oblige fed-
eration partners to adhere to certain privacy policies. Further mechanisms to prohibit
unauthorized parties from easily deducing an identity is to maskerade unique user IDs
by mapping them to pseudonyms.

One of the key mechanisms to implement identity federation is the issuance and
exchange of exchange of security tokens. A security token in the web service context
is an XML construct, which contains information about its holder’s attributes signed by
an authority. The signature allows the receiver of the token to verify the authenticity
of the source of the claims it contains. With such a token issued in one domain, the
owner can ask for access to ressources in a completely different security domain. In
a typical federation scenario as shown in figure 4, three kinds of entities are involved:
the Identity Provider (IdP), the Service Provider (SP) and the User. The User as the
requesting party registers with his identity provider, which will verify the user’s attributes
and manage this information under a unique identifier (user account). Usually the
identity provider provides some kind of service, a secure token service (STS), which

8-6 Fall 2008 Workshop



2 SHARING IDENTITY INFORMATION FOR ACCESS CONTROL: THE CONCEPT
OF IDENTITY FEDERATION

Figure 4: Typical federation set-up

can be accessed by all client applications to obtain security tokens. Once the user
authenticates to the client application a request is sent to the STS to verify the user’s
claims and to issue a security token containing this information. This token can be sent
to a relying party, usually the service provider, who is willing to rely on the information in
the token. The service provider allows users to authenticate themselves at a federated
identity provider and then relies on the assertion issued by the IdP upon successful
authentication.

2.3 Existing solutions

Many standardization organisations and initiatives have proposed specifications and
solutions for an identity management based on decentralized information. The following
sections give a short overview about the main solutions and the fields in which they are
used.

2.3.1 OpenID

OpenID defines a very lightweight web protocol to authenticate a user in one domain
and to share his identity information with another domain. The latest version of OpenId
is version 2.0 [1], whose major improvements compared to the previous version 1.1,
concern the security of the protocol. One improvement, for example, is the establish-
ment of a nonce to prevent reply attacks. Another improvement is the support of the
new association type DH-SHA256 and session type HMAC-SH256 for stronger encryp-
tion.

The central idea of OpenID is to use a URL as the identifier. As this can be any
URL, a party has to rely on the Identity Provider to determine correctness of a claimed

Fall 2008 Workshop 8-7



Identity Management for Cross-Organizational SOA

identity. The OpenID authentication protocol species that the relying party should use
the information provided in a XRDS document to discover the authentication endpoint
of the Identity Provider. In order to work with the Identity Provider, the relying party has
to establish an association with the provider, which constitutes the federation. Essen-
tially, both setup a shared secret using Diffie-Hellman Key Exchange [7]. Necessary
trust between them to perform this procedure has to be built beforehand and is out of
scope of the OpenID protocol.

If an association was established at one point in time, the relying party can redi-
rect the user’s user agent to the Identity Provider with an authentication request. The
Identity Provider, in turn, authenticates the user and depending on the outcome of
this process either issues an authentication approval assertion, or a failure message.
Therewith the user’s user agent is redirected back to the relying party. In case of an ap-
proval assertion, the relying party verifies the signature (technically an authentication
code) in the assertion using the shared secret established earlier.

2.3.2 CardSpace

CardSpace is the new identity management technology that Microsoft introduced after
the lessons learnt from the past experiences with .Net Passport. Windows CardSpace
is an identity metasystem, which allows transaction-based identity. It is a component
of Microsoft’s initiative to create an identity metasystem. CardSpace rests on a foun-
dation of WS-Security, WS-Trust, WS-SecurityPolicy and WS-MetadataExchange, and
will run on any platform that supports those standards. CardSpace is part of Windows
Vista and is also included in the .NET Framework 3.0. It supports both self-issued and
managed identities, similar to OpenID. Identities are stored as InfoCards in CardSpace
and serve as the digital equivalent to the physical identification cards stored in many
people’s wallets. In order to authenticate using a CardSpace managed identity, a Secu-
rity Token Service must be used that generates signed, encrypted tokens conforming
to the WS-Trust standard.

2.3.3 Liberty Alliance

The Liberty Alliance [13] is the largest initiative for developing a federated identity ar-
chitecture with about 200 members from the industry, the government and academic
organizations. It is a commercial initiative which was founded in 2001 by 30 major com-
panies like Sun, HP and Oracle in order to foster the development of open standards
for federated identity management. Up to today, the Liberty Alliance has published a
large set of technical as well as business specications to implement federated identity
architectures. While the technical specications propose solutions from a technological
perspective, the project also attaches great importance to the business relationships
underlying the technical infrastructure. It considers ”trust the necessary foundation
for secure interoperability, and central to the successful realization of whats possible
on the Web” [13]. Therefore, business guidelines have been developed to help es-
tablishing strong trust relationships between business partners as well as between
enterprises and their customers. The specied architecture of the Liberty Project is

8-8 Fall 2008 Workshop



2 SHARING IDENTITY INFORMATION FOR ACCESS CONTROL: THE CONCEPT
OF IDENTITY FEDERATION

comprised of three parts: the Identity Federation Framework (ID-FF), the Web Ser-
vices Framework (ID-WSF) and the Identity Services Interface Specications (ID-SIS).
The ID-FF is a framework to enable identity federation and management by features
like identity/account linkage, simplied sign on, and simple session management. ID-
WSF is a framework to support web services for requesting, retrieving and updating
identity information in a federated environment. It supports, for example, sharing of
attributes, service discovery as well as security mechanisms to protect the exchanged
messages. Finally, the ID-SIS is based on the ID-WSF framework and aims on build-
ing high-level applications. The framework species, for example, geo-location services,
directory services, calendar services and many more. Every member of the Liberty
Alliance commits to implement the developed guidelines in order to build a large net-
work of Liberty-enabled applications. A first implementation of a subset of the Liberty
Alliance Project specications is available from Sun [9].

2.3.4 WS-Federation

WS-Federation [5], the Web Service Federation Language, is a public draft specication
which has been developed as a joined initiative of Microsoft and IBM and is part of the
WS-Security specications. WS-Federation contains a proposal for a reference model
to provide identity security for web services from a technological and business point of
view. As the Liberty Project, WS-Federation is also motivated by business use cases.
Technically, WS-Federation is built on top of WS-Policy, WS-Trust and WS-Privacy. It
uses these specications as building blocks for dening additional federation concepts,
such as mechanisms for federating identity, attribute, authentication and authorization
assertions between different security domains.

2.3.5 SAML

The Security Assertion Markup Language (SAML) [3] has been approved as an OA-
SIS standard to describe security assertions about the authentication, authorisation or
attributes of a subject with the aim to share this information between different trust do-
mains. The latest version, SAML 2.0, was ratified in March 2005. SAML 2.0 has been
a major step towards federated identity management, since it provides formats and
mechanisms to describe the attributes of a person as well as authentication and autho-
risation decisions in a standard XML format. Even though SAML was not developed to
complement web service standards, it fits perfectly well with them. It addresses pre-
cisely well the web services’ need for portable identity. Therefore, it has been adopted
by the WS-Security standard and extensions for SOAP exist which describe the trans-
port of a SAML assertion within a SOAP message. However, SAML is not bound to
a specific transport protocol. For example, the SAML URI binding defines the way in
which SAML assertions are communicated using URI resolution.

Fall 2008 Workshop 8-9



Identity Management for Cross-Organizational SOA

2.4 Limitations

All technologies and specifications have in common that they assume that trust is es-
tablished out-of-band and a trust relationship either exists or not. In fact, none of the
specications talks about the qualities of the trust relationship. For example to rate a
company according to its trustworthiness based on parameters as authentication or
privacy agreements is not possible. The specifications only mention that some sort of
trust relationship exists. In addition, it is neither clearly specified how complex trust
structures can be mirrored to metadata, nor whether this is necessary at all.

3 Layered Trust Model

This section identifies two types of trust relationships which are required to accept iden-
tity information from a foreign partner and to perform access control decisions based
on the received information. First, a trust relationship is required between the service
provider and the identity provider in order to trust the correctness of the assertions
and second, for a concrete transaction, the service provider has to decide whether the
identity-based information in the assertions are sufficient to reach a certain trust level
which is required to perform the request. While in the first case, the trust relationship
is of a long-running kind, the trust establishment in the second case is part of identity-
based access control mechanisms. We call the first kind of trust, organizational trust
and the second kind identity trust. The following section gives a detailed characteriza-
tion and comparison.

3.1 The Concept of Organizational Trust

Organizational trust refers to the quality of the trust relationship between the partici-
pants of a SOA. When service consumers and service providers are located within the
same trust domain, the registration, authentication and management of participants
happens under the same administrative control and are, therefore, usually fully trusted.
However, with regard to cross-organizational SOA involving services from different or-
ganizations, trust between the participants of a SOA is not given per default, but re-
quired to allow access to the services of a partner organization. Models for identity
management as Federated Identity Management establish cross-organizational trust
by setting up federation agreements and contracts to extend the trust domain of an
organization to the federation. Having a federation or not, whenever organizational
borders are crossed by a SOA, the question of whether the partner is trusted arises.
Factors as past experience, the minimum trust settings for, for example, registration
and authentication of users or the reputation of a company are important attributes to
assess the trustworthiness of the potential business partner. Also, the kind of business
relationship is an important factor. A B2B relationship is usually much more trustwor-
thy than a B2C relationship due to contracts which manifest certain obligations and
procedures of the business partners. All these factors make up the quality of the trust
relationship. This quality can be quantified in a value, which we call Organizational

8-10 Fall 2008 Workshop



3 LAYERED TRUST MODEL

Trust Level in the following. The assessment of the organizational trust level is in par-
ticular important with regard to authorisation and access control which is most often
based on identity information. An organization will only rely on identity information re-
ceived from outside its own control, when it recognizes the source of information as
trustworthy. Therefore, the trustworthiness of this source has to be assessed and put
in relation with the damage that might be caused by trusting on malicious information.
The assessment resulting in the organizational trust level directly influences the credi-
bility of identity information, which is the foundation for identity-based access control.

3.2 The Concept of Identity Trust

The identity of a subject is important for most systems in order to provide personal-
ized service or to hold us liable in case anything bad happens. Therefore, reliable
authentication mechanisms are required. They ensure the credibility of identity infor-
mation which provide the foundation to perform access control. A broad range of ac-
cess control models have been developed in the last decades, defining access control
constraints based on particular security information such as the user’s role (RBAC [8])
or the user’s team affiliation (TBAC [12]). Since all these pieces of information can be
considered as attributes of involved objects, the attribute-based access control model
(ABAC) can be seen as the most comprehensive access control model, as described
in [2]. Within the borders of one organization, the organizational role of a subject is
often the attribute of choice to perform access control, since it can be understood as
”A set of expectations and behaviours associated with a given position in a social sys-
tem.” [?] and therefore implicitly reflects the trust one can put into the correct behaviour
of a subject. While this ”role behaviour” is predictable within one organization, it is hard
to predict for a subject from a foreign organization since role definitions are not or in-
sufficiently known. Here, attributes as the affiliation to a company or a person’s credit
line are more meaningful. In either case, the provision of such trust-related attributes is
required to build up trust in the identity of the user and its behaviour. This trust, which
we call identity trust, is the concept behind all access control models.

With regard to access control in SOA, each transaction requires a different thresh-
old for access control, not to little to prevent security breaches and not to much in view
of user acceptance and convenience. Requirements can range from low-threshold
access for services providing non-confidential information to high-risk financial trans-
actions which require strong access control mechanisms. Therefore, depending on the
value of a transaction and the risk associated with it, a transaction has specific trust re-
quirements, which are described as part of access control policies. Such requirements
are for example reflected as a specific role or stricter requirements for authentication.

To establish identity trust, trust-related information as specified in the access control
policy is exchanged, often conveyed in security tokens, so called credentials. Each cre-
dential effects the identity trust and can lead to an update or downgrade of the identity
trust level. With regard to authentication, approaches exist [10] that describe how the
quality of the authentication effects the trust level. Besides attributes as the authenti-
cation of a subject, the identity trust is furthermore effected by the organizational trust
level of the organization which issued the credential. Since, as mentioned earlier, the

Fall 2008 Workshop 8-11



Identity Management for Cross-Organizational SOA

organizational trust level of an organization indicates the credibility of security informa-
tion received by this organization, a low organizational trust level should also lead to a
downgrade of the identity trust level.

3.3 Comparison

Table 1 summarizes the concepts of organizational trust and identity trust and com-
pares them. As Organizational Trust refers to the quality of the trust relationship be-
tween organization, it implicitly answers the question: ”Can we trust the issuer of a
token?”. The decision to trust another entity as an Identity Provider in a SOA infras-
tructure, is a decision which is drawn before any messages start flying around. Usually,
federation agreements or similar contracts are negotiated and signed when setting up
the federation. These decisions are then configures in the SOA infrastructure. As com-
pared to this, identity trust is the trust between the subject of the transaction and the
service provider. It is service-call specific and therefore is negotiated each time, a call
for a new transaction receives.

Organizational Trust Identity Trust
refers to the quality of the trust

relationship between organizations
refers to the identity associated with a

transaction
Can we trust the issuer of a security

token?
Can we trust the subject in the token?

determined out-of-band determined during service call
configurable negotiable

Table 1: Comparison of Identity Trust and Organizational Trust

4 Trust in Identity Federations

The previous sections introduced the problems with traditional identity and access man-
agement when applied to a SOA environment and described the concept of identity
federation as it is already used by existing technologies and standards. As trust is
the foundation to share identity information between security domains, a classification
into organizational and identity trust has been introduced. This sections points out ap-
proaches to establish both identity trust as well as organizational trust, since both are
required to share identity information securely between domains.

4.1 Organizational Trust

4.1.1 Using Federations to establish Trust

Federation agreements are written contracts negotiated by the leading members of
two or more cooperating companies, which contain common agreements, rules and

8-12 Fall 2008 Workshop



4 TRUST IN IDENTITY FEDERATIONS

Figure 5: Patterns based on direct trust

conditions both partners need to adhere to. Federation contracts, therefore, ensure
that a relying party can trust the processes and methods used by the identity provider.
Such common agreements, rules and conditions comprise, for example, regulations on
the registration of users, on the authentication of users or privacy agreements. Since
the contracts also define penalties in case one partner does not adhere to the agreed
upon obligations, federation contracts ensure that all parties are exposed to an equal
risk in the case of failure.

4.1.2 Describing Trust Relations and Trust Requirements as Trust Patterns

When looking at the concept of Identity Federation, one can identify certain recur-
ring scenarios how identity providers and service providers affiliate into federations. In
these scenarios, different types and qualities of trust are distributed among the federa-
tion participants. In particular, in order to achieve a trustworthy collaboration between
business partners, it is important to know: (a) which trust requirements need to be
met to establish a trust relationship within a federation; and (b) which additional trust
requirements arise when crossing federation borders. We have identified those scenar-
ios that are covered by current Identity Federation theory and examined them for their
inherent trust requirements. In the following, we will refer to them as trust patterns.

Our trust analysis employs a method similar to the method described by Povey in [6].
In his work, Povey presents an approach to develop trust policies by starting with a risk
management analysis. Risk management explicitly deals with risk as the combination
of event uncertainty and event impact. Minimizing one or both of them is the goal of
risk management. According to [6] this is generally achieved in a fourstep process.
First, valuable assets, threats to them and the impact of their compromise need to be
identied. Second, threats emerge because of vulnerabilities, which therefore have to
be found. Third, the risk of an attack exploiting vulnerabilities is determined. Finally, a
decision must be made whether a risk is accepted or mitigated.

We adapted the risk management procedure to our needs and simplied it to some

Fall 2008 Workshop 8-13



Identity Management for Cross-Organizational SOA

Figure 6: Patterns based on direct and indirect trust

extent. Initially, we identify assets and potential general threats. Because we almost ex-
clusively deal with sensitive identity information and authentication artifacts, the impact
of asset compromisation is likely to be severe for all assets. Hence, mitigating risks is
absolutely necessary. In a second step we describe threats and vulnerabilities in detail
and give a rough estimate of the probability of their exploitation. We have subsumed
this examination under the term risks and conduct an examination from the viewpoint
of every participant or role. This will be helpful for the derivation of trust requirements
in the nal step, since trust was dened to be directional.

We identified recurring patterns in identity federation topologies and classified them
into those based solely on direct trust relationships (cf. figure 5) and those which
also include indirect trust relationships (cf. figure 6). Our results are summarized in
the paper ”Trust Requirements in Identity Federation Topologies” and submitted for
publication.

4.1.3 Using Reputation to assess Organizational Trust

Reputation is another approach to assess the trust someone can put into an organi-
zation. Reputation facilitates indirect trust relationships. There is no direct trust rela-
tionship between an entity A and an entity C. Instead both entities have a direct trust
relationship with a third entity B. This relationship is leveraged to assess the trustwor-
thiness of the unknown communication partner. The advantage is that such a trust
relationship is established quickly and cost-saving, but has to that effect a lower confi-
dence level than trust relations based on the direct trust model.

4.2 Identity Trust

4.2.1 Further Classification

In an open environment, identity is most often relevant when determining whether to
trust a subject. While in the early days of computers, a digital identity was often nothing

8-14 Fall 2008 Workshop



5 CONCLUSION AND FUTURE WORK

more than an identifier, a user’s digital identity today a complex structure. Further
parameters as the authentication of a user, its payment information such as a credit
card are important to decide whether a transaction can be performed or not. Therefore,
we can further classify trust into an identity into certain subcategories as trust into the
registration of a user, its authentication or past experiences.

Authentication Trust Different partners in the federation might have different reg-
ulations on the authentication process that even exceed the requirements of a ser-
vice provider. In these cases, the authentication method should not be stipulated in
advance. For a flexible service access, different authentication methods should be
allowed that comply with the services requirements. However, more flexibility in the
authentication step results into a complicated access control step. For this reason, ap-
proaches exist to subsume different properties of the authentication process into a level
of trust and grant access to a resource if the requirements of the expected trust level are
met. Typical approaches define levels of trust by grouping requirements into categories
of similar impact, by considering the economic loss or by using a combination of impact
and likelihood. Moreover, ideas exist to describe the strength of the authentication by
a numerical value and to subsume them into a quantified trust level. Our approach for
an authentication trust level is based on the probability that an attacker can crack the
authentication method and is subsumed in the paper ”Using Quantified Trust Levels to
Describe Authentication Requirements in Federated Identity Management ” [11].

Registration Trust Identification processes are decisive to assess the trust into a
user since they reflect the processes to create a digital identity. A registration which
takes place online without any verification whether the user’s name or his/her address
are correct is much less trustworthy than a registration which requires the user to show
an identity document such as a passport to a real person which will check whether
the identity of the prospektive user matches the information in the presented pass-
port. Therefore, differences as these should be considered when assessing the trust
someone can put into the identity of user and should be reflected by a different trust
level.

Reputation Trust Past experiences as for example from previous transactions tells
a lot about a user’s trustworthiness. Has a previous transaction been successful, it
might be more likely that the user performs in the expected way. Therefore, different
approaches exists, which take the reputation of a user into account when assessing its
trustworthiness and base the decision for granting access on its reputation based on
previous transactions or transactions performed with other service providers.

5 Conclusion and Future Work

With federation in place the integration of businesses becomes seamless. Identity
Federation enables SSO between independent security domains in Web–based and

Fall 2008 Workshop 8-15



Identity Management for Cross-Organizational SOA

service–oriented environments. It also forms the foundation for new models of identity
management. These models are more collaborative than those employed today and
put the user as the owner of identity information in a more controlling position. This
report showed the new challenges of identity management systems when applied in
a service-oriented environment. As one of the main challenges and a pre-requisite to
apply a federated identity management, trust has been identified as the key to share
identity information. We have seen, that in order to share identity information, trust
has to be considered on two layers: This is on one hand the trust relationship between
the organizations and on the other hand the trust relationship between a service and
the requester. I presented a classification into Organizational trust to describe the
first relationship and Identity trust to describe the trust into the subject of a request.
Various approaches have been introduced to establish either trust relationships. That
is for the organizational trust mainly the establishment of a federation by means of
federation contracts. To characterize these trust relationships trust patterns have been
introduced which describe the trust requirements in dependency of risks and potential
threats as well as the assets one has to protect. These ideas have been submitted
as as a paper to the IEEE AINA conference. In the area of identity trust, a further
classification has been proposed to assess the trust in different aspects concerning
an identity, such as trusting its registration, trusting its authentication, or trusting its
attributes. Concerning the authentication trust several papers have been successfully
published which describe how one can assess the trust into an authentication process.

The research conducted so far lays the foundation for various research directions.
Possible extensions include the definition of a formal model to express organizational
trust, identity trust and their relationship with the aim to use this model for improved
access control decisions. If we introduce the concept of non-absolute trust between
organizations, one important question to answer is how this would affect the identity
trust, that is the trust into the subject certified by this organization. And last, but not
least, it is necessary to define the parameters which influence a trust relationship and
which decide about the fact whether a relying party can trust another party or not.
Future work also comprises the integration of these trust considerations in existing
identity management solutions as the HPI OpenID provider and an implementation of
the concepts as a proof of concept.

References

[1] M. Atkins, J. Bufu, J. Ernst, B. Ferg, B. Fitzpatrick, M. Glover, H. Granqvist,
D. Hardt, C. Howell, J. Hoyt, D. Recordon, D. Reed, M. Scurtescu, and K. Turner.
OpenID Authentication 2.0 - Final, 2007. non-normative specification.

[2] Hai bo Shen and Fan Hong. An attribute-based access control model for web
services. In pdcat, pages 74–79. IEEE Computer Society, 2006.

[3] J. Hughes, P. Madsen, E. Maler, R. Philpott, N. Ragouzis, and T. Scavo. Security
Assertion Markup Language (SAML) V2.0 Technical Overview, 2008. Commitee
Draft.

8-16 Fall 2008 Workshop



REFERENCES

[4] Audun Jøsang, John Fabre, Brian Hay, James Dalziel, and Simon Pope. Trust re-
quirements in identity management. Proceedings of the 2005 Australasian work-
shop on Grid computing and e-research, 44:99–108, Jan 2005.

[5] Hal Lockhart, Steve Andersen, Jeff Bohren, and Yakov
Sverdlov. Web Services Federation Language. http://www-
128.ibm.com/developerworks/library/specification/ws-fed/, 2007.

[6] Dean Povey. Developing Electronic Trust Policies Using a Risk Management
Model. In CQRE, pages 1–16, 1999.

[7] E. Rescorla. RFC 2631: Diffie Hellmann Key Agreement Method, 1999. Request
for Comments.

[8] Ravi S. Sandhu and Edward J. Coyne. Role-based access control models. IEEE
Computer, 29:38–47, 1996.

[9] Sun microsystems Inc. Implementation of the Liberty Alliance Project Specifica-
tions, 2007.

[10] Ivonne Thomas, Michael Menzel, and Christoph Meinel. Quantified trust levels for
authentication. In Highlights of the Information Security Solutions Europe (ISSE)
2008 Conference. Vieweg-Verlag, 2008.

[11] Ivonne Thomas, Michael Menzel, and Christoph Meinel. Using quantified trust
levels to describe authentication requirements in federated identity management.
Proceedings of the 2008 ACM workshop on Secure web services, 2008.

[12] Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls (tbac):
A family of models for active and enterprise-oriented autorization management. In
DBSec, pages 166–181, 1997.

[13] J. Tourzan and Koga, Y. et al. Liberty ID-WSF Web Services Framework Overview,
Version: 2.0, 2006. non-normative specification.

Fall 2008 Workshop 8-17



 



 
Fall 2008 Workshop  

9-1 

 

Taking Trust Management to the next level:  
Analysis and Formalization  

 

 
Rehab AlNemr 

rehab.alnemr@hpi.uni-potsdam.de 

ABSTRACT  

Business often develop proprietary reputation systems for their community, with 
the side effect of locking users into that service if they wish to maintain their 
reputation  (Bonawitz, Chandrasekhar, & Viana, 2004). Reputation is used in multi-
agent models like e-commerce, and distributed computation and reasoning. 
Currently, virtual communities are using their own reputation values only without 
exchanging. Reputation transfer is a controversial subject that is considered either 
not applicable or of high potentials. 

Trust is used to carry out decisions in case of uncertainty. In that sense it is used 
in peer-to-peer (P2P) networks to facilitate its interactions. In P2P networks, peers’ 
willingness to share the content they have and forward the queries plays an 
important role during the content search process. Using reputation in P2P systems 
can be an incentive for peers to cooperate. The goal is to have dynamic social 
networks that work on acquiring, processing, establishing, analyzing, exchanging and 
evolving of knowledge. In this report, the connections of trust management to the 
classic IT security disciplines authorization, trust, and identity management will be 
laid out. With this background, a generic architecture for context-aware reputation 
systems, which can interact with identity-related services like identity providers and 
policy decision or enforcement points, is presented. More specialized architectures 
for different environments—business- or consumer-oriented—will be derived from the 
generic architecture.  

Continuing from the point of putting the model that facilitates reputation transfer to 
the path of analyzing, I have been defining the work domain and the candidate 
systems that could work with the proposed model, analyzing the existing reputation-
based communities, categorizing them, and identifying reputation tools used.  
Following that, I am working on defining the most suitable ontologies to be used in 
order to build the knowledge-base used by the model. The goal is to formalize the 
proposed model to integrate into real life applications and problems, and to finally 
develop the standardized reputation reference models.  

1  Introduction 

Since the rise of the so-called Web 2.0, many social Web sites focusing on people 
and their relationships have attracted large number of users, and became a 



Taking Trust Management to the next level  

 

9-2 Fall 2008 Workshop 

 

marketplace for various business interactions. In these Web communities, reputation 
related to different contexts needs to be exchanged. The perception, calculation and 
interpretation of this reputation differ from one community to the other creating the 
belief that reputation transfer is a matter of fiction. By taking a closer look at the 
actual difficulties of reputation transfer, we can identify the crucial points of a working 
reputation transfer system and finally present a means of implementing such 
framework.  

The simplicity of current reputation systems resembles the simplicity of early 
identity management solutions, which basically consisted of simple databases 
containing usernames and passwords. Existing work on reputation systems focuses 
on improving the calculation of reputation values, preventing malicious actions, and 
deployment into the business world. The achievements in other domains, among 
them decentralization, standardization, and opening datasets for future 
enhancements, have not been considered for reputation systems. Reputation models 
should be capable of including and processing information that cannot be foreseen 
when developing or implementing the model. This will also allow combining 
reputation information from independent sources into a more comprehensive view on 
the reputation of users, services, or agents. Here, a framework is proposed that 
facilitates the transfer of an agent’s reputation from one community to the other by 
introducing: 

 

 A new representation for the reputation value or profile; Reputation object 

 The development of reference models to diminish the distance between multi-
perceptions of different communities and platforms.  

 The use of reputation centers to facilitate reputation transfer and highlight the 
importance of their role in analyzing attacks.  

 Defining the knowledge domain and the candidate systems that could work with 
the proposed model.  

 
I am analyzing the existing reputation-based communities, categorizing them, and 

identifying reputation tools that are used. Following that, I am providing guidelines to 
define the most suitable ontologies to be used in order to build the knowledge-base 
used by the model. The goal is to formalize the proposed model to integrate into real 
life applications and problems, and to finally develop the standardized reputation 
reference models. The connections of trust management to the classic IT security 
disciplines authorization, trust, and identity management will be laid out. Later I am 
presenting the work with my colleague Matthias Quasthoff, where identity 
management techniques are used to help deploying the model. 

The report is organized as follows; first, a summary of the previously presented 
concepts and models, followed by concepts in identity management that add up to 
form the future vision for reputation based systems and the use of new identity 
management approaches to ensure the development of these systems are 
introduced.  

  



 2 CONTEXT-AWARE REPUTATION-BASED 
FRAMEWORK          

 

Fall 2008 Workshop 9-3 

 

2  Context-aware Reputation-based Framework 

In the last report, I have presented a model that can be used to facilitate reputation 
transfer in service oriented architecture. I will summarize in the next subsections the 
main constructs and concepts of this model. Later I will introduce some concepts and 
definitions that are used in the work of combining identity management with 
reputation management. 
 
Using Reputation Objects instead of Reputation Values 

Most of the existing reputation-based systems lack the connection between 
general reputation and the context of the given reputation. I have suggested the use 
of an object that has the context attached to its value. It is agreed that trust is 
context-specific even if it holds the same information. For example, a professor in a 
medical school may simplify treatment information regarding certain disease to his 
students but will need to use other form of the same information in actual treatment. 
Therefore the need to link between the value and its meaning is crucial. Reputation 
object contains a multidimensional array, a matrix, which represents the reputation 
linked with its context and the RRTM used to calculate this value. 

 
Object Reputation { 

 TrustMatrix [context][reputation value][RRTM]; 

 Time ValidTime; 

 Credentials PresentedCredentials; //optional 

} 

Associating context with trust sure increase the complexity of the overall system, 
but it is critical for deriving meaningful trust.  

 
 

Developing Reputation Reference Trust Models 
The calculation of reputation values and the perception of the meaning of each 

value differ from one system to another. I suggest the development of Reputation 
Reference Trust Models (RRTM) that can be used as reference when publishing 
reputation values, thus narrows the difference in perceptions.  Reference trust 
models can be used in this case, to refer to a set of measures that each person 
based his opinion on. If trust judgment measures taken by one person are stricter 
than the others, this person may refuse to take recommendation from others who use 
softer measures. There is a big difference between belief in trustworthiness and 
actions due to trustworthiness. The distinction is important because if a trustier has 
past interactions with the trustee that does not mean that all future interactions are 
guaranteed. Though the trustee is trusted but the action due to this trustworthiness 
differs every time. 

Reference trust models can be used in this case, to refer to a set of measures that 
each person based his opinion on. If trust judgment measures taken by one person 
are stricter than the others, this person may refuse to take recommendation from 
others who use softer measures. In this way a participant may make a local 
evaluation of global information and according to the RRTM which he is using. 
Forming the models should be followed by forming mapping functions to facilitate 



Taking Trust Management to the next level  

 

9-4 Fall 2008 Workshop 

 

reputation transfer from one model to the other. If it is not sufficient to have one trust 

model that can be used by different platforms, then the solution is to have standard 

models and mapping functions between them. This decreases the semantic distance 

of trust definitions, where each entity, platform, service, or agent has different 

interpretations and measures for trust judgment.  

 

 

 

Figure 1: The Framework/Model 

 
Developing and supporting the use of Trust Reputation Centers 

The final goal of my research is to be able to implement a framework that 
facilitates Reputation Transfer between different platforms. This can happen only if 
we use Trust centers, much like using Certificate Authorities. TRC will be a pool of 
user reputation gathered from different platforms. Each user, agent, or service can 
have two values that define his reputation: an overall reputation (trusted or non-
trusted for malicious users), and a context-based reputation object (RO). When two 
users from two different platforms (or organizations) establish an interaction, the TRC 
can be used as a transparent trusted third party. Transparency here means that it will 
not be enough to get a binary decision (trust or distrust) from the center, but also the 
RO that details reputation values regarding each context, or a specific context, and 
the RRTMs used. Interacting users send the center a request to get others reputation 
objects or values. The request should contain the RRTM used by the platform. The 
center transfers the stored value to the correspondent value of the requester RRTM 
using mapping functions.  

Another advantage to this approach is that new users in any platform or 
community won’t have a zero reputation but rather they will start with a value 
obtained by the center- transferred reputation. The center also can act as a 
negotiator or investigator of agents’ reputations in a network. Moreover, using a 

Platform 2 

RRTM2 RRTM1 

RRTM2=f(RRTM1) 

Reputation transfer 

Reputation 
Reference 
Trust 
Models 

(RRTM) 

Mapping 
function 

Trust Reputation 
Center 

User DB 

ROs 
Attack 

Analyzer 

Platform 1 



 3 IDENTITY MANAGEMENT          

 

Fall 2008 Workshop 9-5 

 

centered trust party is the possibility of observing ballot stuffing attacks. Ballot 
stuffing attack is when a group of user may perform unfairly high or low ratings that 
may affect positively or negatively the user reputation. An observer will identify large 
variance of a single user’s reputation/rating per context. The detection and 
attenuation of biased ratings will be one of the center tasks. Existing models for 
analysis can be used (Sherchan, Loke, & Krishnaswamy, 2006). The action that 
follows the detection may vary from one center to the other. Center components are: 

 User Database with the associated reputation objects. 

 Reputation Reference Trust Models  

 Mapping functions between these models 

 Attack Analyzer 
 
 
Since it is unfeasible for service-oriented entities to keep information on large 

scale, some flexible degrees of uncertainties, and hence trust, must be established. 
Until now there is no legitimate authority per jurisdiction to compute trust values. The 
future vision of these systems is to be able to transfer reputation values from one 
service or community to the other (from eBay to Amazon, from Facebook to Flickr, 
etc.). These communities should have some common jurisdictions, so the transferred 
reputation value is meaningful. As human way of thinking, the perception of the 
degrees of trust differs from one service to another. Transferring reputation values 
eliminates the need for having to manage different "accounts" in different 
communities, which can be essential in the e-business world. It can be beneficial also 
in other situations: when an agent in one platform requests an interaction with 
another agent in different platform, or when an agent registers in a new platform and 
does not want to start with zero reputation value.  

Mapping identities and transporting identity and reputation information between 
services requires new, standardized formats and protocols. The information can be 
expressed with the help of Semantic Web technologies such as RDF or OWL, and 
can then be transported using HTTP. However, the architecture model underlying 
HTTP (Fielding, 2000) leaves it open how to request and transmit these data, given 
that this involves authorization and access rights delegation. Existing solutions to 
access rights delegation such as OAuth (OAuth Workgroup, 2007) are not suitable 
for large-scale non-interactive service interaction. (Quasthoff, Enlightenment 2.0: 
Facilitating User Control in Distributed Collaborative Applications, 2008) (Alnemr & 
Meinel, 2008)  

3  Identity Management  

3.1   Managing digital identity 

With the concepts introduced in the previous section, identity management can 
described as the combination of the fundamental tasks presented in this section, 
making up the so-called identity management life cycle. Representations of digital 
identities can be user profile pages on the WWW, SAML tokens (OASIS, 2008), or 
even just one line of text in a password file.                                                                                                                                                                                                                                        



Taking Trust Management to the next level  

 

9-6 Fall 2008 Workshop 

 

 
Establishing and describing identities. Digital identities are used to recognize 

participants that have been dealt with before. It is up to the designer of an information 
system which of a participant’s properties to choose to accomplish this task. These 
properties can comprise the name, contact data, or passport number, but also less 
identifying information such as date and time of first interaction, or some other 
context information like IP addresses used, or just even hash values of these data. 
Only after a digital identity has been established, i.e. has been linked to the 
participant, we can refer to the identity and further describe the participant, i.e. add 
user profile information and link other attributes to the digital identity. It is important to 
see that finally destroying a digital identity can be hard. Destroying an identity is 
virtually impossible if descriptions of the identity in question are controlled by third 
parties, something which is quite realistic in an open information system like the 
WWW or an open service infrastructure.  

 
Authentication. Digital identities serve several purposes. On the one hand, they 

are used to refer to the participant linked to an identity when issuing statements like 
trust assessments. On the other hand, participants choose a digital identity linked to 
them or establish a new one when they are about to interact with other participants in 
an identifiable manner (Cranor, et al., 2006). Using a digital identity in an interaction 
requires authentication, i.e. the confirmation that a digital identity is indeed linked to 
the participant in the interaction. Depending on the requirements to data protection 
and other considerations, authentication mechanisms can be designed for varying 
complexity and security, e.g. by requiring or doing without multi-factor authentication 
(OASIS, 2008).  

 
Authorization. Many possible interactions in information systems are actually not 

desired. Accessing resources or information and triggering specific actions, be it 
placing orders or placing a call on somebody else’s phone, should often be restricted 
to a subset of potential participants or to specific circumstances. Even in ―open‖ 
systems where authorization is not required or desired, when excluding spammers 
and other potential attackers, actually authorization mechanisms are put in place. 
Authorization decisions can be based on virtually any kind of information, ranging 
from the digital identity of a participant over other attributes describing the identity, 
e.g. role or task assignments, to highly dynamic evaluation of context information 
right before an interaction. Especially in open systems basing authorization on 
enumeration of authorized digital identities is not feasible and also the definition of 
pre-defined roles or tasks will be hard (Seigneur & Jensen, 2007). Hence, modern 
decentralized and open information systems employ more generic attribute-based or 
context-aware authorization mechanisms, which will also be fed by trust and 
reputation systems. 

 

3.2   Implementing digital identity management 

Any identity management architecture can be broken down to an agglomeration of 
participants and components. While in final implementations some of the 



 3 IDENTITY MANAGEMENT          

 

Fall 2008 Workshop 9-7 

 

components presented in this section could be combined into a single service, 
especially in open systems this combination can lead to severe interoperability 
issues, as will be presented later in this report. On the contrary, by boiling down each 
type of service to its core functionality, better flexibility and conceptual soundness 
can be achieved. 

 
Identity Provider (IdP). Digital identities are managed by special services, so-

called identity providers. Identity providers are responsible for linking a digital identity 
to participant with the help of an identifier and authentication mechanisms. In 
systems where relying parties (i.e. services interacting with identity providers) accept 
digital identities issued by different identity providers, a participant must either specify 
its identity provider along with the identifier, or the identity provider must be 
discoverable from the identifier, e.g. as OpenID does with the help of URI (Recordon 
& Reed, 2006). As has been mentioned in the previous section, different scenarios 
can require different security levels. Hence, an identity provider truly designed for 
serving multiple use cases needs to support flexible combinations of authentication 
factors. The SAML protocol allows relying parties to request certain authentication 
mechanisms and identity providers to return the information which authentication me-
chanisms have actually been used (OASIS, 2008). 

 
Security Token Service (STS). These are specified in the WS-Security 

specification (OASIS, 2004) and help decoupling participants, services, and the 
identity provider. Tokens themselves can contain various claims about the identity 
described, authentication and authorization. They can also contain further information 
restricting possible uses of the token, e.g. by restricting the validity period or relying 
parties. Separating STS from the identity provider, results in better cross-domain 
interoperability and protocol independence. 

 
Policy Decision Point (PDP), Policy Enforcement Point (PEP). As a single 

identity provider can be used with several services, letting the identity provider decide 
on authorization for all these potentially unknown services is not feasible. Similarly, 
due to the potential desire for reuse of authorization and trust policies, the reasoning 
on authorization and trust decisions takes place at the policy decision point, which 
can be independent of the service or resource being accessed. The service itself only 
features a policy enforcement point, which delegates the authorization decision to the 
PDP. 

3.3   Identity management architectures 

Identity management silo. Classic closed-world applications and services—
desktop- or Web-based—usually feature a built-in user and password database. 
Identities are established through invitation, e.g. by administrators or existing users, 
or self-registration, e.g. in large Web communities. Depending of the potential user 
base of such a system, legal contracts between the service provider and service 
users, and the mode of registration (invitation or self-registration) a more or less 
traceable link will exist between the digital identity and the participant. Disadvantages 
of such setting are obviously the need of carrying the burden of identity management 



Taking Trust Management to the next level  

 

9-8 Fall 2008 Workshop 

 

instead of being able to just use an existing identity management system, and lacking 
interoperability with other identity-enabled computer systems. However this system 
architecture is being chosen quite often due to relatively low initial system and policy 
framework complexity. However, as systems designed around a specific user 
database usually have severe conceptual limitations with regards to identity 
management, this approach should is unsuitable for modern open systems except 
the consequences are well-thought and do not interfere with future development of 
the system. 

 
Identity management in the Social Web. The Social Web, also known as Web 

2.0, features a specific kind of Web sites allowing users to publish data about 
themselves, photographs or other text and multimedia content in dedicated Web 
sites. Especially Social Networking sites like Myspace, Facebook, or LinkedIn can be 
seen as Identity Providers, because they are centered around their users identity. 
However, the reuse of the identity described outside the Social Networking site is 
often limited. Some few Web sites allow further processing of digital identities by 
publishing some parts of the identities with the help of RDF and FOAF (Brickley & 
Miller, 2007) or just by some proprietary interfaces (Winer, 2003). On the other hand, 
there are emerging Web-scale identity management standards like OpenID 
(Recordon & Reed, 2006) and CardSpace (Microsoft Developer Network, 2005), 
which do allow for separation of identity providers and relying parties, and for 
extensive reuse of digital identities and claims about an identity. Social Web sites 
offer quite efficient, yet proprietary policy engines based on describing other users 
from the participant’s perspective (―friend‖ or ―family member‖). However, all the 
Social Web sites are still missing to take the next logical step of clearly structuring the 
their services into identity provider functionality (―Who am I?‖), policy decision point 
(―Who can see what parts of my data?‖), and the specific business segment—
describing events, places and creative work (―Where do I love to go? What did I see 
there?‖) etc. This clear structuring along with offering substitution of parts of these 
services with services from other providers with the help of standardized protocols 
and data formats would lead to new opportunities to Web users (Quasthoff, 2008).  

 
Identity management in service-oriented architectures. Identity management 

in SOA approaches the identity and data portability issues from a different 
perspective compared to identity management on the Social Web. More precisely, 
many of the concepts introduced in the previous sections have been fixed in SOA-
centric documents and specifications (OASIS, 2004). Where identity management 
and system architecture on the Social Web can be described as being developed in a 
bottom-up approach, WS-Security standards have been developed in a rather formal 
top-down approach. Also, the requirements to business-scale identity management 
are somewhat different. The contractual requirements of a company to their 
employees’ identity provider will be more detailed compared to what a Web user 
expects from some Social Web site. Also, the potentially unlimited number of identity 
providers a specific service has to cope with will be rather manageable in a 
enterprise SOA, as likely all employees of a single company, e.g. contractors or 
customers, will share a common identity management system. Besides the formal 
approach, which can be a solid basis for concrete implementations, there are three 



 4 MODEL’S USE CASE AND DISCUSSION          

 

Fall 2008 Workshop 9-9 

 

obstacles preventing WS-* standards from becoming the straightforward solution to 
digital identity management in general: The high level of abstraction and universality 
of the proposed architecture; the focus on SOAP Web services in implementations 
along with strong security mechanisms, and the constraint of being able to ―federate‖ 
legacy enterprise identity management systems, disregarding completely 
decentralized solutions that will be possible with the help of trust and reputation 
systems. 

 

4  Model’s Use case and discussion 

4.1   Transferring Reputation Object: A use case 

Stock Market and Real estate Market: A use case 

The usability of transferring reputation objects between two communities is best 
illustrated by an abstract use case. The participants of stock market and real estate 
market communities are shown in figure2. We are using the use case of one agent, a 
technical analyst, in the stock market who wants to register in a real-estate 

community. The reputation object ROStockMarket in a stock market is viewed as the 

collective value of his reputation in: Real-estate, Forex, Financial, and Commodity.  
ROStockMarket[ConextS][value] 

where ContextS  {Credentials, Real-estate, Forex, Financial, Commodity} and is the 

domain of all related properties belonging to a stock market agent. In real estate 

market the properties that describe an agent reputation RORealestateMarket are: 

Location, Value Estimation, Quality, Future Value estimation, Marketing skills, and 
being Friendly. 

 

RORealestateMarket[Conext][value] 

where ContextR  {Location, Value Estimation, Quality, Future Value estimation, 
Marketing skills, Friendliness} and is the domain of all related properties belonging to 
a real estate market agent. It is expected from a technical analyst in a stock market, 
who has high reputation in real-estate stocks, to be experienced in some of the real-
estate properties; namely: value, location, and part of future value estimation, hence 
the semantic intersection between the two communities’ properties. Hence, we can 
conclude from the real-estate reputation in the stock market reputation object to 
these reputation values in the real-estate reputation object, but cannot predict any 
other reputation value, thus he will have zero reputation for Marketing skills. 
   
NewAgent RORealestateMarket = ROStockMarket[ContextS][value] ∩ RORealestateMarket[ContextR][value] 

 
The same can be done for communication between existing systems, like: 

 eBay and Amazon,  

 Credit Card rating databases,  

 Credit Card databases and Western Union, 

 eBay and PayPal 
 



Taking Trust Management to the next level  

 

9-10 Fall 2008 Workshop 

 

 
 

Figure 2: The Stock-Real estate Markets use case 

 

4.2   Framework Strength points 

4.2.1   Benefits of using Reputation Object  

For communities like eBay, Delicious, Amazon, Allexperts, etc., the question is 
since the ratings are written in natural languages, then what are the benefits of the 
RO attributes? The answer is there are three proved benefits: 

1. Easier to maintain the answers to the eBay and Amazon rating questions. For 
example: the after buy Questionnaire: Was the product in the described 
condition? Was it delivered on time?  

2. Easier to select a seller according to what is most suitable to my requirements. 
For example: I need faster delivery service and I don’t care about the price 

3. Avoiding Lawsuits by specifying exactly the topic and properties of rating. 
That is said, the main reason Reputation object is used is to enforce the 

connection between general reputation and the context of the given reputation. The 
context is linked to each reputation value for a single agent.  

 

Reputation Systems and Law 
 
An interesting study about legal challenges that face online reputation systems is 

being conducted in (Chandler, El-Khatib, Benyoucef, Bochmann, & Adams, 2007). 



 5 ANALYSIS AND FORMALIZATION OF THE 
MODEL          

 

Fall 2008 Workshop 9-11 

 

The authors explore legal cases against systems like eBay (California, Grace 
vs.eBay) and Amazon (cases in UK and USA). The main reason of most of the cases 
is rating ambiguity. Users misrepresent their rating in a way that both influence 
negatively the entity being rated and does not correspond to the rating attributes. For 
example: A used-books seller who was rated badly because the book was not good 
or too long, although the book was in a very good condition (which is what matters for 
rating a used-books seller). From the legal point of view, systems like eBay hold no 
responsibility for users who are expressing their taste. What is important from the 
legal perspective is the distinction between ―expressions of fact‖ and ―opinion‖. 
Though eBay instituted limited assurance coverage; Standard Purchase Protection 
Program, the problem still exists and growing. What these systems need is specific 
rating attributes categorized semantically according to the sub contexts of the rated 
subject. The less vague the rating, the less legal issues arise.  

This is achieved if Reputation objects are being used. It can break down the rating 
into attributes like delivery and quality. Even quality can be further sub-categorized. 
By saving this in the object, the user is able to express his opinion and at the same 
time his rating corresponds directly to these attributes which leads to less lawsuits.  
 

4.2.2   Benefits of using RRTMs 

Going through standardizing reputation trust models is long and needs lots of 
research. The question is: why standardizing reputation model factors and properties 
into RRTMs, instead of letting agents interact directly and asking directly for the 
reputation value from the other platform? 

 The answer is simple, in order to do so, the destination platform has to request for 
the entire history of the agent from the source platform. This is required to let the 
destination calculate its own view of trust and reputation, therefore a new value. At 
the end it is a holistic approach that consumes time and loads the system with too 
much computation, especially if this is done for every agent who is requesting 
reputation transfer. 

 

5  Analysis and Formalization of the model 

 
In the previous sections, we have laid out the future vision for reputation based 

systems and the model that fulfill this vision. To deploy such model, a thorough 
analysis must take place. This analysis consists of several processes like:  

 Defining the domain of reputation systems without being limiting 

 Checking the existing systems to avoid current problems and inflexibility 

 Defining the categories of the reputation systems 

 Defining concepts, terms and relationships that build up a common 
Ontology to be used by most of reputation systems 

 From this ontology, construct a knowledge base that will be used in the 
model 



Taking Trust Management to the next level  

 

9-12 Fall 2008 Workshop 

 

 Defining the main constructs of the trust relationship 

 Determine how identities are handled in the framework 

 Give instructions for implementation  

5.1   Reputation Systems Categorized 

Reputation systems are fitter for e-services because the notions modeled seem 
more intuitive to the domain. They can be categorized by characteristics (Chandler, 
El-Khatib, Benyoucef, Bochmann, & Adams, 2007): 

1. The subject of rating 
2. The providers of the ratings (open to public or restricted) 
3. The business model (revenue derived from an associated online auction, retail 

channel, advertising, or a public service) 
4. Relative Reviews (whether users ratings are relative to the attributes of rating) 

 
The subject of the rating varies from individuals like Allexperts.com, eBay or 

Amazon, Business like BizRate.com, to Articles or posting like in Kuro5hin.org, 
Slashdot.com and Products and services like Epinions.com. 

Reputation systems can also be categorized based on the common features and 
properties of the online communities: 

1. E-market places like eBay 
2. Opinions and activity sharing sites like Epinions, Del.icio.us, LastFm  
3. Business/Jobs network sites like Linkedin.com & Ryze.com 
4. Social/entertainment sites like Friendster.com & Facebook  
5. News site like Kuroshin.org, Slashdot, & Zdnet  
6. The Web/Semantic Web as for anyone who publish anything – decentralized 

way 
7. P2P networks where peer clients share opinions about other peers.  

 
Figure 3: Online reputation systems categorized based on characteristics 

 
In peer-to-peer (P2P) networks, the problem is that the system is open and 

autonomous by definition. Malicious peers can distribute corrupted files easily or 
even some peers can download files without letting their files available for download, 
a technique known as free riding. On the other hand, peers can benefit from one 
active good-peer if they know that he is good and active. A way to ensure marking 
both good and bad peers is to let every peer express their opinion to the others. 

Reputation Systems 

Business Model Subject of Rating Relative Review Providers of the rating 

Products/Services Public Restricted Articles/Posting Business Individuals 



 5 ANALYSIS AND FORMALIZATION OF THE 
MODEL          

 

Fall 2008 Workshop 9-13 

 

Using reputation concept can be an incentive for peers to cooperate. Interacting 
peers can provide recommendations, positive or negative, about other autonomous 
entities. This encourages more interaction and keeps track of entities behavior.  

 
 

 
 

Figure 4: Online reputation systems categorizes based on common features and properties 
 

Reputation systems also can generally be described into two abstract Reputation 
Topologies:  

1. Directly: by users’ statements about their experiences (all social networks). 
2. Indirectly: from behavior (Google: view the behavior of creating a hyperlink to 

a Web Page as evidence of the quality, reliability of that web page). Or like the 
number of cross citations that a given author or journal has accumulated over 
a period of time. It is a science known as Scientometrics. It is the study of 
measuring research outputs such as journal impact factors. (Baumgartner & 
Pieters, 2000) 

 

5.2   Previous and Existing Reputation Tools and Systems 

Most of the existing tools focus on using contextual cues which vary from system 
to another to evaluate the level of trust that should be placed on a trustee requesting 
the establishment of a trust relationship. The conceptual function is almost the same 
in all tools; the change lies in the reputation calculation and dissemination. 

For Poplano 2000, it uses simple math formulas, specifically designed for solving 
the problem of searching distributed databases but at the same time constraints 
cannot be specified. SECURE tool reasons about trust, where risk is a significant 
consideration here. The Nameless (work of Doyle & Shrobe) 2000 is a probabilistic 
model that constantly collects security related data about the users from a broad 
variety of resources including intrusion detection systems, system logs, network 
traffic analyzers and so forth. In our model, this tool mostly fits into the Attack 
Analyzer process. SULTAN 2003 contains lots of building blocks like specification 
editor, the analysis engine, the risk service, the trust monitor, and the trust 

Reputation Systems

E
-M

ark
etp

laces

O
p

in
io

n
s/

activ
ity

 
sh

arin
g

B
u

sin
ess/

jo
b

s

S
o

cial/
en

tertain
m

en
t

N
ew

s

W
eb

/
B

lo
g

sp
h

ere/
S

W P
2P



Taking Trust Management to the next level  

 

9-14 Fall 2008 Workshop 

 

consultant. Having all these processes in one system, it is expected that it is not 
lightweight to be installed. (Grandison, Trust Management Tools, 2007)  

The problem with these tools and systems that most of them have more than one 
of the following shortcomings:  

 do not consider interaction between different systems/platforms/services, 

 cannot be fit to avoid legal issues, 

 produce general reputation values regardless of the context,  

 cannot be adjusted to benefit from the ongoing evolution in technology and 
information science; generally, not adaptive to evolved knowledge, 

 have simple calculations, sometimes even unrealistic, 

 do not consider distrust, or 

 do not consider trust monitoring, update and propagation. 
 

5.3   Knowledge base and the base constructs of relationships 

To share common understanding of the information structure among agents or 
services, a common Ontology must be defined. This Ontology should not be used 
only in one domain but also in multiple domains. This includes defining the system 
participants, terms used, new and old concepts, and the base constructs of system 
relationships (Context, measurability and level of trust, cardinality, mathematical 
properties, and influencing factors like Mistrust, distrust, risk, agreements, 
experience, diffidence, incentive, and legislation)  

This all lead to build up a knowledge base that is needed to help in the decision 
support process and to enable the reuse of the domain knowledge. Most of the terms 
and concepts used in the knowledge base are identified in figure 5. 
 

 
 

Figure 5: Terms and Concepts used in the model 



 6 TRUST MANAGEMENT AND IDENTITY 
MANAGEMENT          

 

Fall 2008 Workshop 9-15 

 

6  Trust Management and Identity Management  

As described earlier in this report, moving from identity management silos to Web-
scale identity management has required establishing a relatively complex vocabulary 
and construction kit of components and interactions. The same holds for the 
integration of Web-scale trust management. As has been shown, high versatility of 
identity providers and low dependence of services upon specific identity providers is 
crucial for achieving an open ecosystem of services and service providers. Similarly 
the future trust management infrastructure must allow for high flexibility and low 
interdependence between services, identity providers, and trust reputation centers. 
Reduced interoperability and intentional hard-wiring should be supported in some 
scenarios, but must not be enforced in the general architecture. 

In terms of the basic service vocabulary presented earlier in this report, the 
storage of reputation objects, the mapping function, and the attack analyzer are 
composable services as shown in Fig. 6. Due to the open nature of reputation—we 
don’t know beforehand what interactions, events, and opinions will finally constitute 
the reputation of a participant, nor can we know all the contexts in which a participant 
may gain reputation in future—reputation information should be exchanged in a 
flexible, but well-defined format. RDF with underlying RDF reputation schemas will be 
the technology of choice for linking descriptions of interactions (―A purchase has 
been made‖), users (―The user’s name is …‖), and ratings (―Delivery was quick, 
technical product quality was good, but the product itself is lacking certain features‖). 
It will be the task of the trust reputation center to gather reports by participants, i.e. 
other users, services, and special services such as the attack analyzer or the 
mapping function, and to compute meaningful per-context ratings as specified by the 
requested RRTM.  

Due to user privacy concerns, reputation information should not be available for 
public data retrieval. Rather, the user should have control over which trust reputation 
centers to use, and which services to allow access to his reputation data. From the 
perspective of services, the user should not be able to hide reputation information. 
Hence, a reputation search service is required returning a list of TRCs that store 
reputation information about the user, without automatically revealing this 
information. When a user first registers with a new Web site, the following actions 
should be triggered: 

 
1. The Web site queries the reputation search service for the list of TRCs storing 

reputation information of the user. 
2. The Web site asks the user for permission to query the reputation information 

from the centers returned by the search service. 
3. For each of the centers, the user grants or denies access to his reputation 

data. 
4. If access to all reputation centers is granted, the Web site queries and 

processes the reputation information according to its own RRTM. If access to 
some TRCs is denied, the Web site can choose one of the following actions. 

a. Tolerate: Accept the partial access and proceed, even at risk of 
deliberately being excluded from processing low reputation information 



Taking Trust Management to the next level  

 

9-16 Fall 2008 Workshop 

 

b. Mark: Accept the partial access as in a), but add information to the 
reputation object giving the user low reputation for transparency 

c. Punish: Accept the users decision, but refuse to import any data from 
TRCs, hence considering the user as a new user, starting his reputation 
information from scratch 

d. Reject: Abort user registration 
 
Reject is relevant if the Web site accepts only users with already established 

reputation, and does not want to Tolerate or Mark incomplete reputation information. 
 
By the protocol presented, reputation transfer between different Web sites and 

platforms is possible. At the same time, the user’s privacy is respected and the user 
retains control over his reputation data without giving him the opportunity to hide 
valuable information. 
 

 

 
 

Figure 6: Combining trust management and identity management 

 

7  Conclusion 

The above work was conducted with my colleague Matthias Quasthoff and was 
accepted as a book chapter for Handbook of Research on P2P and Grid Systems for 
Service-Oriented Computing: Models, Methodologies and Applications. In this book 
chapter, we have given a definition of trust and trust management. We related trust in 
information systems to the perception of trust in social science. It can be observed 
from different point of views: trust meaning, components, types, and sources. Trust 
management has been defined as the process of making assessments and decisions 
regarding trust relationships. It has been observed that trust management tools are 



 7 CONCLUSION          

 

Fall 2008 Workshop 9-17 

 

still maturing and not ready for wide deployment in P2P and other open, distributed 
systems. 

As reputation and trust management requires the notion of digital identity and 
identity management, the relevant concepts including participants, interactions, roles, 
infrastructure, and information have been defined. Using these concepts, the identity 
management lifecycle and prototypical identity management architectures have been 
laid out. 

I introduced my context-aware reputation framework and pointed out the need for 
complex reputation objects instead of plain reputation values per user. We introduced 
the notion of standardized reputation reference trust models (RRTM), which explain 
the point of view on reputation for each Web community. The mediation between 
these points of view is facilitated by trust reputation centers (TRC). Afterwards we 
analyzed existing trust management tools. All of them are incapable of adapting to 
the dynamic requirements in open systems. Last, we presented how the identity 
management architecture should be combined with the trust management framework 
presented. In this part, we defined a behavior model for reputation transfer and 
formalized this into a protocol. 

From analyzing reputation systems, tools, and theories, the most important aspect 
is to provide adjusted reputation that reflects evolving knowledge. Trust management 
is not only about establishing trust relationships, but also about trust monitoring, 
update, and propagation. The proposed use of reputation objects along with trust 
reputation centers and reference models, and the combination with recent identity 
management technologies forms our contribution. 
 

References 
 

Alnemr, R., & Meinel, C. (2008). Getting more from Reputation Systems:A Context–
aware Reputation Framework based on Trust Centers and Agent Lists. The Third 
International Multi-Conference on Computing in the Global Information 
Technology (pp. 137-142). Greece: IEEE Computer Society Press. 

Baumgartner, H., & Pieters, R. (2000). The Influence of Marketing Journals: a 
Citation Analysis of the Discipline and its Sub-Areas. Tilburg: Tilburg University, 
Center of Economic Research. 

Bonawitz, K., Chandrasekhar, C., & Viana, R. (2004). Portable reputations with 
EgoSphere. Massuchusetts: MIT Internal Report. 

Brickley, D., & Miller, L. (2007, November 1). FOAF Vocabulary Specification 0.91. 
Retrieved from http://xmlns.com/foaf/spec/ 

Chandler, J., El-Khatib, K., Benyoucef, M., Bochmann, G., & Adams, C. (2007). Legal 
Challenges of Online Reputation Systems. In L. K. R. Song, Chapter in Trust in 
E-Services: Technologies, Practices and Challenges (pp. 84-111). Hershy: Idea 
Group Publishing. 

Cranor, L., Dobbs, B., Egelman, S., Hogben, G., Humphrey, J., Langheinrich, M., et 
al. (2006, November 1). The Platform for Privacy Preferences 1.1 (P3P1.1) 
Specification. Retrieved from http://www.w3.org/TR/P3P11/ 



Taking Trust Management to the next level  

 

9-18 Fall 2008 Workshop 

 

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based 
Software Architectures. Irvine: University of California. 

Grandison, T. (2007). Trust Management Tools. In R. Song, L. Korba, & G. Yee, 
Trust in E-Services: Technologies, Practices and Challenges (pp. 198-216). 
Hershy: Idea Group Publishing. 

Microsoft Developer Network. (2005, May 1). Microsoft's Vision for an Identity 
Metasystem. Retrieved from http://msdn.microsoft.com/en-
us/library/ms996422.aspx 

OASIS. (2008, August 01). SAML Specifications. Retrieved from 
http://saml.xml.org/saml-specifications 

OASIS. (2004, March). Web Services Security. Retrieved from http://www-
128.ibm.com/developerworks/library/specification/ws-secure/ 

OAuth Workgroup, O. C. (2007, December 4th). OAuth Core 1.0. Retrieved 
December 4th, 2007, from http://oauth.net/core/1.0/ 

Quasthoff, M. (2008). Enlightenment 2.0: Facilitating User Control in Distributed 
Collaborative Applications. In Proc. of the 2008 WI-IAT Doctoral Workshop. 
Sydney: IEEE. 

Recordon, D., & Reed, D. (2006). OpenID 2.0: a platform for user-centric identity 
management. Proc. of the 2nd ACM workshop on Digital identity management 
(pp. 11-16). Alexandria: ACM. 

Seigneur, J.-M., & Jensen, C. D. (2007). User-Centric Identity, Trust and Privacy. In 
R. Song, L. Korba, & G. Yee, Trust in E-Services: Technologies, Practices and 
Challenges (pp. 293-322). Hershey: Idea Group Publishing. 

Sherchan, W., Loke, S. W., & Krishnaswamy, S. (2006). A fuzzy model for reasoning 
about reputation in web services. Proceedings of the 2006 ACM symposium on 
Applied computing (pp. 1886 - 1892). Dijon, France: ACM. 

Winer, D. (2003, June 1). XML-RPC Specification. Retrieved from 
http://www.xmlrpc.com/spec 

 



Automated Service Composition for
Minimal Goals

Harald Meyer

harald.meyer@hpi.uni-potsdam.de

This report gives a brief overview of some of my research in the past six months.
The main focus is on automated service composition of minimal goals. Additionally, a
brief summary of a joint project with Software AG on service tagging is given.

Optimality of service compositions is seen as the number of activities or additional
quality of service metrics. We argue that this is not enough. Charging a credit card if it
is not necessary, is wrong. We extend an automated service composition approach by
the notion of minimal goals.

Achieving real world effects in excess to the specified ones can be problematic.
But only allowing specified real world effects is too restrictive for practical usage. We
therefore propose an approach that limits the amount of achieve unspecified effects.

1 Introduction

The goal of service orientation is the alignment of the IT infrastructure to the business
goals of a company [2, 5, 14]. Service composition is a fundamental concept of ser-
vice orientation. Using service composition, existing functionality can be aggregated
to form new, more complex functionality. Today, service composition is mostly done
manually at design time. This makes adaptation to changes in the service landscape
or business requirement changes difficult. Also, the manual creation of service com-
positions is an error-prone and complex task. Finally, compositions are not tailored to
the individual service request. This means that for individual requests unnecessary
tasks are performed. Different approaches for the automation of service composition
exist [3,6,15,16,18].

Existing approaches have in common that they try to create a service composition
that achieves certain goals. What they do not tackle is to achieve only these goals.
Optimality of service compositions is often seen as the number of activities, the length
of the critical path, or additional quality of service metrics (costs, execution time). We
argue that this is not enough. Achieving only the required goals can be crucial when the
goals are real world effects. For example, charging a credit card if it is not necessary,
is wrong. In this paper, we extend an automated service composition approach by the
notion of minimal goals.

A first step towards a better composition approach is to separate effects with regard
to their possibly negative impact. Achieving certain effects in excess of the specified
goals is more problematic than achieving others. The critical effects are actually the real

Fall 2008 Workshop 10-1



Automated Service Composition for Minimal Goals

world effects in contrast to unproblematic information space effects. This separation is
not new. In WSMO [17] real world effects are the only effects. Information space effects
are called postconditions.

Given the separation of information space effects and real world effects, a first ap-
proach might be to change the composition approach as follows. Reaching the goal
in information space means to achieve at least all the information space effects from
the goal (plus possibly additional ones). Reaching the goal in the real world means to
achieve exactly the real world effects from the goal.

While this approach is nice in theory, it is too restrictive for practical usage: One
is often not interested in all real world effects. Certain real world effects are mere
byproducts. If one is required to model them, specifying a service request becomes
much more complicated. It means that one needs to know all the effects of all services
and specify the effects one wants to achieve and the effects one does not want to
achieve. This essential encodes assumptions about which services will be used into
the service composition.

Our approach is different. Instead of requiring a perfect match for real world effects,
we instead just try to achieve as few additional real world effects as possible. We call
this approach composition for minimal goals. Hence, we allow for real world effects we
did not intend. In some cases, these effects might actually be harmful (e.g. charging a
credit card). But given the algorithm presented in this paper, we can argue that these
additional effects will only the limited.

The rest of the paper is structured as follows. We will introduce in Section 2 a
motivating scenario and show why composing for minimal goals makes sense. In Sec-
tion 3 automated service composition using heuristic search is introduced. We present
search strategies and a heuristic to guide them. Section 4 then defines what minimal
goals are and how to incorporate a heuristic for overachievement estimation into exist-
ing search strategies. After an overview of related work in Section 5, the paper closes
with a summary and a look at future work.

2 Motivating Scenario: Online Shopping

E-commerce companies must be flexible. They want to integrate new partners eas-
ily, expand their product portfolio, and expand into new regions and countries. Be-
cause of its declarative nature, automated service composition can be advantageous
over explicitly modeled processes for these companies. We will use one process from
E-commerce, namely order processing, to demonstrate in this paper why composing
minimal goals is important.

A variant of the order processing service composition is depicted in Figure 1. The
input to the process is an order and customer and payment data. The items of the
order are packaged and then shipped. In parallel, payment is performed. Payment
consists of two services. The first authorizes the payment and blocks the amount on
the customers credit card. Only the second then performs the actual payment. Other
payment options are available as well. Another service performs the payment without
first authorizing it. Finally, it is also possible to pay with a gift voucher. Another option

10-2 Fall 2008 Workshop



2 MOTIVATING SCENARIO: ONLINE SHOPPING

Package
Order

Ship
Package

Authorize
Payment

Perform
Payment

Figure 1: Service Composition of the Order Processing Process.

for customers is to gift wrap individual items. Altogether, the available services are:

• Package Order : takes and order (precondition) and packages it (effect)

• Ship Package: takes a packaged order (p) and ships it (e)

• Gift Wrap Item: takes an item from an order (p) and wraps it as a gift (e)

• Payment :

– Direct Payment : takes customer information and the amount of money (p),
transfers the amount from the customer to the company, and marks the pay-
ment as performed (e)

– Authorize Payment : takes customer information and the amount of money
(p) and authorizes the payment by emitting a payment token (e)

– Perform Payment : takes a payment token (p), transfers the amount from the
customer of the company, and marks the payment as performed (e)

– Pay With Gift Voucher : takes a gift voucher (p), invalidates the gift voucher,
and marks the payment as performed (e)

Given this service landscape, it is easy to show why composing for minimal goal is
advantageous. Most services have real world effects. Doing more than intended to do
can be expensive (gift wrapping even though the customer did not want it) or annoying
to customers (performing unnecessary payments even though the customer used a gift
voucher), which, in the end, will be expensive, too. It has to be noted that this can
even happen if the composition is supposedly optimal, if optimality means number of
services or length of the critical path: A composition that did not use the gift voucher
but instead used the Direct Payment service has the same number of services. But it
is clearly not what the customer wants to happen.

One could argue that composing for minimal goal is not really necessary and could
be replaced by more elaborated modeling what to achieve and what not to achieve. For
example, one could state for each item of the order that it should not be gift wrapped.
But of course this is impracticable. Another example is the payment token exchanged
between the Authorize Payment and Perform Payment services. If it is not deleted by
the latter, we are required to state it as part of the goal. But as we do not know which
payment service is used, this becomes difficult. If we leave it out, we cannot use the

Fall 2008 Workshop 10-3



Automated Service Composition for Minimal Goals

two-step payment processing. If we include it, we have to use the two-step payment
processing. Does automated service composition make sense then? We encode which
service to use in the request. We also need to know which services are available to
explicitly exclude their potentially dangerous effects. How to overcome these problems
by composing minimal goals will be shown in the remainder of this paper.

3 Automated Service Composition using Heuristic Search

Heuristic search is a frequently used approach in automated planning and automated
service composition [10, 12]. Given a service request consisting of an initial state, a
goal, and a set of service operations, find a path in state space that leads from the
initial state to a state satisfying the goal. The service invocations on the path and their
ordering on the path is the service composition. The state space is a graph with states
as vertices and service invocations (the instantiations of service operations) as edges.
Formally, these concepts are:

Definition 1 A logical expression e ∈ E defined over a alphabet (R, F, C, V ) with the
set of relations R, the set of functions F , the set of constants C, and the set of variables
V is:

• A term t is a logical expression. T is the set of terms. Tground is a subset of T
containing only ground terms. T and Tground are defined as:

– A variable v ∈ V is term (v ∈ T , v /∈ Tground).

– A constant c ∈ C is a term (c ∈ Tground).

– If f ∈ F is a function and terms t1, ..., tn ∈ T then f(t1, ...tn) ∈ T . Iff t1, ..., tn ∈
Tground then f(t1, ...tn) ∈ Tground

• If r ∈ R is a relation and t1, ..., tn ∈ T are terms then r(t1, ..., tn) is a logical
expression (i.e. r(t1, ..., tn) ∈ E).

• If e is a logical expression, so is ¬e (e ∈ E ⇒ ¬e ∈ E).

• If e1 and e2 are logical expressions, so is their disjunction e1 ∨ e2 and conjunction
e1 ∧ e2 (e1, e2 ∈ E ⇒ e1 ∨ e2 ∈ E and e1 ∧ e2 ∈ E).

Literals are all r(t1, ..., tn) and ¬r(t1, ..., tn).
A logical expression a satisfies another logical expression a′ (written as: a |= a′)

if every positive literal of a′ is in a (∀l ∈ a′+, l ∈ a) and no negative literal of a′ is in a
(∀¬l ∈ a′+, l 6∈ a).

Definition 2 A service request R = (a0, g,Op) is a triple consisting of the initial state
a0 ∈ E, the goal g ∈ E and a set of service operations Op. A state is a logical
expression. services.

Definition 3 A service operation is a tuple s = (I, O, pre,eff) consisting of:

10-4 Fall 2008 Workshop



3 AUTOMATED SERVICE COMPOSITION USING HEURISTIC SEARCH

• I: List of input parameters

• O: List of output parameters

• pre: The precondition is a logical expression and must be satisfied in order to
invoke the service.

• eff: The effect is a logical expression. It describes the changes to the current
state resulting from the invocation of the service.

A service invocation i = (s, Z) is a pair consisting of a service operation s = (I, O, pre,eff)
and a variable assignment Z : V → Tground that assigns every variable a ground term.
Formally speaking, this is a Herbrand interpretation and Tground is the Herbrand uni-
verse [9]. Variables v ∈ V are all the elements from I and O plus the additional vari-
ables from pre and eff . preZ and effZ are the precondition and effect with all variables
bound according to the variable assignment Z.

3.1 Search Strategies with Heuristics

Our work is based upon previous research by Hoffmann and Nebel, who developed the
planners FF [8] and Metric-FF [7]. They introduced enforced hill-climbing as a planning
algorithm and relaxed Graphplan as its heuristic. Hill-Climbing is a search algorithm
guided by a heuristic function hdist : Estate ×E → R+

0 . This heuristics hdist(a, g) delivers
an approximation of the distance (measured in numbers of services to invoke) of the
state a to the goal g. Starting with the initial state, a new state is selected from the
direct successors.

The first successor that is, according to the heuristic, better (e.g. nearer to the
goal) than the current state is selected and assigned as the new current state. This
process is continued until the current state satisfies the goal or search fails. It fails if a
state a, which is unequal to g, is reached so that no direct successor a′ with h(a′, g) <
h(a, g) exists. Given an admissible heuristics and a mechanism to prevent visiting
states multiple times, the algorithm always terminates.

(a) (b)

3

2 1

0

1

3

1 1

0

2 1

Figure 2: Hill Climbing is not optimal (a) and incomplete (b).

Hill-Climbing does not create optimal compositions and it is incomplete. Figure 2(a)
illustrates the reason for its inoptimality. Displayed are states, their heuristic values,
and possible state transitions. If the state with heuristic value 2 is evaluated first, it
is selected even though a shorter path exists. Another problem is the greediness of

Fall 2008 Workshop 10-5



Automated Service Composition for Minimal Goals

Hill-Climbing. Greediness means that optimization is done locally without taking the
path to the current state into account. This is only of importance if a cost function is
associated with state transitions. Otherwise the admissible heuristics guarantees that
greediness does not affect the composition result. Figure 2(b) demonstrates why Hill-
Climbing is incomplete: If the upper path is taken, composition fails after the first state
with heuristic value 1 as no direct successor with a better heuristic value can be found.
Such a state is called a local maximum. Using an extended version of Hill-Climbing,
Enforced Hill-Climbing the problem of local maxima can be solved. If the algorithm gets
trapped in a local maximum, it switches the breadth-first search until it reaches the end
of the plateau. As classical Hill-Climbing, its enforced variant is incomplete and does
not guarantee optimal solutions. Best-first search is a strategy similar to Hill-Climbing.
But instead of selecting the first neighbor that is better, it selects the best neighbor.
Like Hill-Climbing it is incomplete and inoptimal.

Greediness is the source for incompleteness and inoptimality. It tries to optimize for
lower distance estimations not taking into account the costs it took for getting to the
current state. A non-greedy algorithm is for example A∗. To calculate the goodness of
a state it does not only take into account the estimated distance to the goal, but also
the (known) distance from the initial state. In every step, the unevaluated state with
lowest combination of estimated distance and actual distance from the initial state is
selected. Situations in which a greedy algorithm is lured into an inoptimal path or into a
dead end can be solved by A∗ because it is able to turn around (back track). All uneval-
uated states together are called the frontier. Figure 3 demonstrates this. Each states
contains the estimated distance (top) and the distance from the initial state (bottom).
The current state has a bold border while unevaluated states have a dotted one. In the
initial state, the upper path it taken because it has a lower distance estimation than the
lower path (with equal initial state distances). During phases (b) and (c) it turns out that
the distance estimation was too low and in (c) the algorithm stops evaluating the upper
path. The sum of actual distance from the initial state (3) and the estimated distance
to the goal (1) is higher than for the first state in the lower path (2 + 1). Hence in (d)
the lower path is selected, through which in the following the optimal solution for this
problem is found. If the heuristics is admissible, this means that the estimations do not
overestimate the actual distance, A∗ is guaranteed to find the optimal solution and is
complete.

3.2 Heuristics: Distance Estimation

A common estimation technique is relaxation: some constraints from the original prob-
lem are removed, making the problem easier to solve. Then the distance for the relaxed
version of the problem is taken as an estimation of the distance in the unrelaxed prob-
lem. Hoffmann and Nebel [8] did this with their Relaxed Graphplan heuristics hdist.
Negative effects are ignored and a solution for the planning problem is found using the
Graphplan algorithm [4]. As they showed, the resulting heuristic is admissible and in P .
Graphplan is a planning algorithm, which separates planning into two phases: graph
building and solution extraction. In the graph building phase a planning graph is built.
It is a leveled, directed graph:

10-6 Fall 2008 Workshop



4 HEURISTIC SEARCH USING OVERACHIEVEMENT ESTIMATION

3
0

1
1

1
2

0
3

2
1

1
2

1
3

3
0

1
1

2
1

3
0

1
1

1
2

2
1

3
0

1
1

1
2

2
1

1
3

3
0

1
1

1
2

2
1

1
2

1
3

(a) (b) (c)

(d) (e)

Figure 3: A∗ finds optimal plans.

Definition 4 A planning graph is a leveled, directed graph Gplanning = (
⋃

i<n Li, E) with
Li∗2 being the fact layers and Li∗2+1 being the activity layers. A layer consists of vertices
li ∈ Li which are either facts or activities. Edges only connect vertices from adjoining
layers: E ⊆ Li∗2 × Li∗2+1 ∪ Li∗2+2 × Li∗2.1

Figure 4 illustrates such a graph. A fact layer represents a state. The first fact layer
is the initial state. All invocable services are added to the first activity layer. This activity
layer produces a new fact layer including all the effects of the selected services. This
is continued until a fact layer is reached that contains all the goals.

For solution extraction backward search is performed. Starting from the final layer,
all service invocations in the previous layer are selected that contribute to goal. In
the next step, producing service invocations are selected for the facts required by the
previously selected service invocations and the remaining goal facts. This is continued
until the first fact layer is reached. The total number of service invocations selected is
then taken as the heuristic value for distance from the initial state to the goal.

4 Heuristic Search using Overachievement Estimation

The heuristic used to guide the search in the previous section was an estimation of the
distance of given states from the intended goal. The composition algorithms presented
so far do not take into account whether the goal achieved by the composition contains
unnecessary real world effects. An extension to do this will be presented in this section.
As only real world effects are important for this, states need to be separated into real
world and information space effects:

1The original definition of planning graphs [4] also allows edges inside layers. They are used to
denote mutual exclusion relationships between activities or facts.

Fall 2008 Workshop 10-7



Automated Service Composition for Minimal Goals

Gift Wrap 
Item

Package 
Order

order

customer

voucher

Gift Wrap 
Item

Direct
Payment

Authorize 
Payment

Pay with Gift 
Voucher

amount 
of money

packaged(order)

wrapped(item)

payed(order)

token

Ship
Order

Perform 
Payment

shipped(order)

payed(order)

fact layer activity layer fact layer fact layeractivity layer

order

customer

voucher

amount 
of money

packaged(order)

wrapped(item)

token

order

customer

voucher

amount 
of money

charged(customer) charged(customer)

Figure 4: A Planning Graph.

Definition 5 Given a logical expression e, einf represents the information space part
and erw represents the real world part of the expression (Note: e = einf∪erw, einf∩erw =
∅)

Using real world effects, it is possible to calculate how good or bad a state is with
regard to how much more it achieves than intended by the goal. The result of this
calculation is the overachievement score:

Definition 6 Given state s and service request R = (a0, g,SD) the overachievement
score scoreover(s, a0, g) of state s for initial state a0 and goal g is:

• |srw \ a0rw \ grw| if s |= g

• ∞ otherwise.

The overachievement score of a state is hence infinite if it does not satisfy the goal
and otherwise it is the number of additional facts in the state that are not necessary
to satisfy the goal. The lower the overachievement score of the achieved state, the
better the composition. That helps to decide which composition is best among a set of
compositions. But it does not help in creating a good composition. Another heuristic
could be used together with the Relaxed Graphplan heuristics. The overachievement
heuristic hover is an estimation of the overachievement score of the achieved goal state
of a service composition starting in the current state. To calculate it without too much
overhead, we let hover be the overachievement score of the achieved goal state of the
Relaxed Graphplan solution.

Let us look at how solution extraction in Relaxed Graphplan works. Figure 5 shows
the planning graph from Figure 4. But instead of displaying the whole graph it starts in
the final fact layer with only the facts from the goal (the order is shipped and payed).

10-8 Fall 2008 Workshop



4 HEURISTIC SEARCH USING OVERACHIEVEMENT ESTIMATION

Now those service invocations from the activity layer are selected that fulfill any of the
goals. These are Ship Order and Perform Payment. Goals might also be fulfilled by
service invocations in earlier activity layers. Now as we have fulfilled the goals, we have
to fulfill the preconditions of the selected service invocations in the next step. We can
do this using Package Order and Authorize Payment. The other service invocations
in this activity layer are not part of the solution. This means the extracted solution is
neither optimal with regard to its length (using Direct Payment or Pay with Gift Voucher
would have been shorter ) nor with regard to overachievement (using Payment with Gift
Voucher would have prevented the unnecessary real world effect charge(customer)).

Gift Wrap 
Item

Package 
Order

order

customer

voucher

Gift Wrap 
Item

Direct
Payment

Authorize 
Payment

Pay with Gift 
Voucher

amount 
of money

packaged(order)

wrapped(item)

payed(order)

token

Ship
Order

Perform 
Payment

shipped(order)

payed(order)

fact layer activity layer fact layer fact layeractivity layer

charged(customer) charged(customer)

Figure 5: The Planning Graph after Solution Extraction.

The idea now is, to calculate the overachievement score for the state reached by
the relaxed solution. In this example, the overachievement score is 2. The facts token,
packaged(order), and charged(customer) were not part of the goal (which contained
shipped(order) and payed(order)). The fact token is an information space fact. Hence
it is not counted towards the overachievement score.

This example shows why it was not sufficient to allow only specified real world ef-
fects: packaged(order) is an unspecified real world effect. It is a required intermediate
step to shipping the order. The heuristic calculation is only an estimation and does not
deliver the minimal possible overachievement score. If Pay with Gift Voucher was used
instead of Authorize Payment and Perform Payment, the overachievement score would
have been 1.

How the overachievement heuristic can be used to guide the search depends on
what we want do achieve. Minimal overachievement or minimal composition sizes? De-
pending on the preference different strategies on how to incorporate the overachieve-
ment heuristic must be followed. How this can be done will be presented in the next
two sections.

The overachievement heuristic can vary dramatically from one state to it prede-
cessors or successors in state space. It can increase, decrease or remain the same.
The heuristic is inadmissible. Using it with A∗ as a search strategy, one can not guar-
antee optimality with regard to overachievement. Additionally, if one prefers minimal
overachievement over minimal composition size, A∗ is optimal neither with regard to

Fall 2008 Workshop 10-9



Automated Service Composition for Minimal Goals

overachievement nor to composition size minimality. But as we will see in the next sec-
tion, if one prefers composition size minimality one can guarantee it with A∗. Of course,
preferring composition size minimality means that one cannot make such guarantees
about minimal overachievement.

4.1 Preference of Minimal Overachievement

We can use the overachievement heuristic with Hill-Climbing by selecting the first
neighboring state which has a lower distance estimation and at most the same over-
achievement estimation as the current state. Only if we do not find such a neighboring
state, we take into account states with higher overachievement estimation. With A∗ we
select the unevaluated state from the frontier with the lowest overachievement estima-
tion and if several unevaluated states have the same overachievement estimation, the
one with the lowest distance to the goal.

4

3

4

2

3

2

2

Package
Order

Gift
Wrap

Pay with
Gift Voucher

Authorize
Payment

Direct Payment

1

2

Package
Order

...

Gift
Wrap

Direct Payment

0

...

Ship
Order

+1

-1

+1

+2

Figure 6: Search with Minimal Overachivement Preference

Figure 6 shows how composition could work when using best-first search. The initial
state is an order and the customer wants to pay with a gift voucher. The syntax is similar
to previous illustrations of the search space. The rectangles are states connected by
service invocations. The number inside the the rectangle is the hdist value for this state.
Below some states, their effect on the overachievement heuristic is shown. As we have
seen in Figure 5, the overestimation heuristic’s value for the initial state is 3. A +X
means that the overestimation for this state is estimated to be worse than that of the
previous state. Accordingly, −X means that it is better than the previous state.

In the example, we select the state reached by Pay with Gift Voucher as the next
state after the initial state. It has the best overachievement estimation (hover of value 2).
It is also the best state according to the distance estimation. What we can see here,

10-10 Fall 2008 Workshop



4 HEURISTIC SEARCH USING OVERACHIEVEMENT ESTIMATION

is that without using overachievement estimation, the algorithm could have equally well
selected the state following Direct Payment.

In the example, the algorithm was able to calculate the exact values for the over-
achievement score. This is not always the case. Sometimes the estimated over-
achievement score his higher and sometimes lower than the actual one. Higher than
estimated overachievement scores are easy to understand: by ignoring negative ef-
fects, the size of the state increases. If one of the services actually deletes something
from the state that is not part of the goal or precondition to another service, ignoring
this effect makes the estimated overachievement score higher than it actually is. One
example is the Pay with Gift Voucher service. Its deletion of the voucher after its invo-
cation is ignored in Figure 6. Otherwise it would have a −2 instead of a −1 effect on
the estimated overachievement score of the previous state.

A

A
B
C

B

+B, +C

+B, -A

Figure 7: Overachievement estimation can be lower than actual value.

Interestingly, the possibility for lower than actual overachievement score estima-
tions stems from ignoring negative effects, too. By ignoring the negative effects during
heuristic calculation, we might come up with a simpler solution than actually possible.
During the calculation of the heuristic this is not apparent. Take a look at Figure 7.
It shows three states and transitions from one of them to the two others. The letters
inside the states are the facts of the state and the transitions are labeled to indicate
what is happening: +X means that X is added and −X means that X is removed from
the state. If our goal now was to achieve a state in which both A and B are true, only
the top-right state is a goal state. It has an overachievement score of 1. But during the
calculation of the overachievement heuristics, negative effects are ignored. Hence, the
lower-right state seems to be a goal, too. But it has a score of 0. The heuristic would
calculate 0 also as the overachievement heuristic for the initial state.

4.2 Preference of Composition Size

Preferring minimal overachievement over composition size means that we can guaran-
tee optimality for neither. Another approach is to prefer composition size: the search
strategy is primarily guided by distance estimations and only to choose among several
states with the same estimated distance, we choose the one which promises smaller
overachievement. Using an optimal search strategy like A∗, we are guaranteed to find
optimal solutions with regard to composition size.

Fall 2008 Workshop 10-11



Automated Service Composition for Minimal Goals

In Figure 6, preference among both heuristics did not matter. The result would
gave been the same. In the first step, two states are equally good with regard to
composition size: the states following Pay with Gift Voucher and Direct Payment. Using
the overachievement heuristic the algorithm would have chose the state following Pay
with Gift Voucher. But if the service landscape contains a Cash on Delivery service that
ships the order to the customer and collects the money on delivery, the result would
differ. While, we would still use Pay with Gift Voucher with minimal overachievement
preference, for composition size preference we would now use the new service. If
the customer wanted to pay with the provided gift voucher, this is clearly not what he
intended. But it is the smallest possible composition (consisting only of Package Order
and Cash on Delivery).

This means that when preferring composition size, one will normally not only get
smaller composition but also compositions with higher consequently overachievement
scores. But, on rare occasions, it is actually possible that one will get compositions with
lower overachievement scores by using composition size preference. This can be the
case if ignored negative effects trick the heuristic into assuming a larger composition
has a lower overachievement score than a shorter one.

4.3 Achieving Better Overachievement Score Estimations

Negative effects are ignored during the calculation of both heuristics. One possible
extension for the calculation of the overachievement heuristic is to use the real effect
of the solution extracted from the planning graph. The planning graph is still build and
the solution is still extracted from the relaxed problem (negative effects are ignored).
But when calculating the state reached by the composition, negative effects are taken
into account. This has three implications. First, overachievement scores will always
be lower or equal to the ones where negative effects were ignored entirely. Secondly,
the overachievement estimations can still be lower, higher, or equal to the actual over-
achievement. And finally, the calculated state that is reached might not actually satisfy
the goal. This is the case if service invocations delete facts required in the goal. Three
solutions are possible to calculate the overestimation score for such states:

• Follow the second condition of Definition 6. States have an infinite score.

• Calculate the score for the state even though it does not satisfy the goal.

• Calculate the score for the state reached without negative effects.

We have not done any experiments on which approach is better. But the first ap-
proach might cut away too many viable paths in search space. The second approach
might favor paths that will not lead to the goal (dead ends). The third approach seems
to be most promising. But it is mixing and comparing scores reached through differ-
ent calculations. This potentially leads to strange and hard to understand interactions
among them.

10-12 Fall 2008 Workshop



6 SUMMARY

5 Related Work

To the best of our knowledge, the notion of composing for minimal goals is new. The
Web Service Modeling Ontology (WSMO) [17] separates information space and real
world effects. In service matchmaking Paolucci et al [13] distinguish degrees of match:
exact, plug in, subsumes, and fail. Their approach differs from ours mainly because
it is concerned with finding services and ranking them accordingly whereas we cre-
ate service composition that rank high. Other matchmaking approaches support more
elaborate rankings but are still concerned with finding and not creating service (com-
positions).

Related are also the numerical state variables of for example Metric-FF [7]. Like
our approach, Metric-FF extends the Enforced Hill Climbing search algorithm of FF. A
numerical state variables are part of logical states. Service invocations can affect the
value of such variables. Numerical state variables might be an alternative to the pre-
sented overachievement heuristic. We count the number of facts in the current state not
required by the goal and modify it accordingly when we add service invocations. Part
of the goal then is to optimize for low values for this numerical state variable. There
a two problems that prevent an easy implementation. The approach for optimization
of numerical state variables in Metric-FF is based on a cost-based notion. Service
invocations can only increase the value of the numerical state variable. With the over-
achievement score this is not the case: service invocations can increase it, decrease it,
or leave it unaltered. And the algorithm does not guarantee optimality. Other planning
systems supporting PDDL have similar optimization capabilities [1,6,16].

6 Summary

The main contribution of this paper is the introduction of the notion of overachievement
minimality. It is based on the observations that in automated service composition it
can be harmful to achieve more real world effects than required and that specifying all
effects of correct solutions is not feasible. We extended an existing heuristic search
algorithm by the capability to find solutions with smaller overachievement scores. We
present two different ways to plug the new overachievement heuristic into the exist-
ing search algorithm. In the first approach we prefer overachievement minimality over
composition size minimality, but we cannot guarantee optimality for either. With the sec-
ond approach we prefer composition size minimality and can, with the correct search
strategy, also guarantee its optimality. With regard to overachievement scores the first
approach will normally deliver better solutions than the second one.

Our future work is aimed at improving the approach to guarantee overachievement
minimality. Our first step into this direction will be to look at problems without negative
real world effects. We assume that guaranteeing optimality with regard to overachieve-
ment is easier in such problems and would require a better solution extraction phase
for Relaxed Graphplan that extracts solutions with minimal overachievement from the
planning graph. We will also investigate the necessity of real world negative effects and
how they could possibly abolished (most likely not possible) or at least be contained.

Fall 2008 Workshop 10-13



Automated Service Composition for Minimal Goals

7 Project Report: SOA Governance using Tagging

The goal in introducing a SOA is to reduce logical dependencies between IT compo-
nents and to close the gap between business requirements and their representation in
the IT landscape [2, 5, 14]. The introduction of a service layer to decrease and control
logical dependencies, however, comes at the cost of increased technical complexity.
The control and steering of IT assets and their life cycle in such a complex SOA land-
scape is what is referred to as SOA Governance. Governance is key to the success
of SOA initiatives and requires support in terms of methodologies and tools. SOA gov-
ernance tools aim at regulating the life cycle of a service or other reusable IT asset
from its inception to its retirement. During its life cycle a service will pass a number
of steps that are all defined and controlled in the SOA governance system. An IT as-
set’s life cycle can be divided into two phases: the providing and the consuming phase.
The providing phase covers the part of the life cycle that regulates how a service goes
into production. The consuming phase defines how it will be consumed once it is in
production.

Discovering services is difficult in large service landscapes. Semantic Web ser-
vices [11] are a promising approach to find services based on functionality. Service
functionality is described through preconditions and effects. But creating them and
writing queries to find services according to preconditions and effects is a complex
task. Additionally, semantic service specifications only capture functional aspects. Al-
though some standardization efforts like Web Service Modeling Ontology (WSMO) in-
clude quality of service specifications, other aspects are important as well. Functional
descriptions and the service interface are in many cases not sufficient decision criteria
for a service consumer. Additional information that might be important to know for a
consumer are:

• In what business contexts has the service been used (successfully)?

• How often has this service been found and bound to consumers already?

• How do other users of the SOA governance system rate this service?

• What other services have been used by consumers of this service?

These questions can hardly be added to the functional description by the service
provider. They depend on the usage of the service in the organization. Therefore, it
is of high value to let users add their individual functional and technical descriptions to
the service meta-data in an easy and informal way like tagging. Furthermore, the SOA
governance system can maintain dynamic tags that depend on the usage of a service
like its popularity or its performance. The advantage of letting users add their view on
the service with individual tags is that the collection of tags provide a common view
on the service rather than only the view of the provider. The combination of these tags
make it more easy for consumers to discover and bind a service and therefore increase
the value and efficiency of an SOA.

10-14 Fall 2008 Workshop



7 PROJECT REPORT: SOA GOVERNANCE USING TAGGING

7.1 Scenario

The scenario we use is taken from a Software AG Centrasite plugin to manage the life
cycle of services and other artifacts in a service landscape. As you can see in Figure 8
the service landscape consists of nine typical ERP services. With this, the landscape
is rather small. But to illustrate tagging use cases it is sufficient. Another aspect of this
service landscape is that its services are high-level services. A service like Personnel
Development is rather abstract. In reality it will consist of several, more fine granular
services.

Travel
Management

Personnel
Development

Billing
Order

Customer
Management

Employee
Masterdata

Order
Management

Organization
Information

Product
Management

Sales
Management

Figure 8: Service Landscape

7.2 Use Cases

The use cases for service tagging are use cases for three distinct roles: service engi-
neer, process engineer, and service landscape manager. The service engineer devel-
ops new services. A process engineer develops new processes based on the available
services and the service landscape manager is for example responsible for knowing
what the service landscape looks like, updating services, or making services easy to
find. In short, he manages the service landscape.

Tagging service ownership The owner of a service can be a person, a department,
or an organization. The person could be the service engineer who developed the ser-
vice or somebody who is responsible for the operation of the service. This can be used
to know whom to contact in case of problems. Tagging service ownership on the level
of departments can give information about which departments participate in a process
or whether services with similar functionality are provided by different departments.
Tagging service ownership on the level of individual persons is done by the service en-
gineer and the service landscape manager. On the department level it is done by the
service landscape manager. One example of a service ownership tag is a tag HR for
EmployeeMasterdata, OrganizationInformation, ad emphTravelManagement to denote
that they are provided by the human resources department.

Fall 2008 Workshop 10-15



Automated Service Composition for Minimal Goals

Tagging service functionality Using tags to express service functionality is closest
to semantic service specifications. But instead of expressing the functionality in formal
way using preconditions and effects, tags represent just keywords on what the service
does. An initial tagging of service functionality might be done by the service engineer
who developed the service. But tagging service functionality gets to its real strength
when it is used by service users (e.g. a process engineer) to describe what a service
does for them. This can help to capture unintended usages of services as well as
bridging terminology differences between service engineers and service users.

The OrganizationInformation service might have been developed with users from
human resources in mind, but is actually also used in processes of other departments
as well (e.g. to find someone responsible for an approval). This use might not be
captured in the tags provided by the service engineer. The first process engineer to
use the service in this manner might decide to tag this new, unintended usage to help
himself or others to find the service in the future. An example for different terminology
between service engineers and user could be the TravelManagment service: is it used
to approve and book business trips or is it used by employees to request leaves of
absence or vacations? Users in the human resources department can tag the service
to describe what it does in their own words.

Tagging service affiliation Affiliation describes in which the business processes or
the applications in which a service is used. Tagging affiliation allows impact analysis of
what happens when a certain service is no longer available. Combined with information
about in which system a service is implemented, the information can be used by service
landscape managers to know whether a system is still necessary or which processes
need to be changed if a system is shut down. Tagging service affiliation gives an
overview of which services are often used together. This information can be used
by process engineers to find services. Based on already selected services, they can
browse the service landscape to see which services are used together with these.
In an advanced version, this browsing could be done by the process modeling tool.
The tool checks which services might be interesting for the current modeling situation
and suggests them. Another elaboration of tagging service affiliation is to perform the
tagging automatically based on modeled processes.

A slightly different form of tagging for service affiliation, is tagging negative affiliation.
Negative affiliation means that services cannot be used together. Most likely, this would
have to be done manually to capture experiences about the service landscape.

Tagging service quality and characteristics This use case is done by process engi-
neers and landscape managers to capture experiences of service usage. To a smaller
extend, the service engineer can tag non-functional attributes like cost, security, or
physical location. This usage is closest to how semantic service specification lan-
guages see service quality. These tags are rather static and do not contain information
about the actual operation of service. On the other hand, the tagging by process en-
gineers and landscape managers is about how a service operates. This includes the
performance and reliability of services.

10-16 Fall 2008 Workshop



7 PROJECT REPORT: SOA GOVERNANCE USING TAGGING

Tagging Service Life Cycle Tagging the life cycle of service is an easy but limited
approach to life cycle management. Much more elaborate approaches exist. A tag
can represent a phase in the life cycle of a service. For example, each service from
the scenario is available in different versions. As the versions of the services are not
aligned, it is often unclear which service versions are the current ones, which are cur-
rently in development, or which are already deprecated and should not be used in new
processes. The service landscape manager could assign a tag current to the current
version of each service. As the tags of life cycle management are not predefined, the
landscape manager can use his own terminology or follow an existing life cycle.

Tagging for task organization A service engineer might mark services he needs to
work on (e.g. to fix bugs). The process engineer might group services he wants to
use in a future process. A service landscape manager might do some landscaping and
mark which services he still has to look at. For all three, the tags will disappear as soon
as the tasks are finished and the tags will normally be of no use for others. In these
two aspects, tagging for task organization differs from all other use cases.

7.3 Implementation

We integrated the tagging functionality into Centrasite as a plugin. The plugin UI is
integrated into Centrasite Control. Oryx is a Web-based modeling tool developed at
the Business Process Technology group at the Hasso Plattner Institute. It is currently
mainly used to model business processes using the Business Process Modeling Nota-
tion (BPMN) but stencil sets exist to, for example, also model EPCs or Petri nets. The
non-UI part of the tagging plugin interfaces with Centrasite using the Java API for XML
Registries (JAXR). Hence, this part can be used by an registry that supports JAXR. All
the tags of user as well as all tags by all users form classifications schemes. The tags
for an individual service are classifications.

Figure 9 shows a screenshot of the tagging plugin inside Centrasite Control. The tag
cloud lists all tags and the tags are sized according to their frequency. The deprecated
tag is the biggest as multiple, deprecated versions of each service exist. Using the
current tag, a user can easily find the newest version of each service. The other tags
are the results of the different use cases we presented in the previous section. Besides
looking at the tag cloud, the plugin includes screens to edit the tags of services, list
services with a specific tag, and search for services based on tags.

Figure 10 is a screenshot of Oryx. On the right hand side, it includes inspectors to
access a Centrasite repository. One can browse the repository using tags and if one
has found a suitable service, drag it onto the modeling canvas to integrate it into the
current process. The aforementioned functionality for suggesting services based on
the current modeling context, has not yet been implemented.

Fall 2008 Workshop 10-17



Automated Service Composition for Minimal Goals

Figure 9: Tagging inside Centrasite

Figure 10: Tags during Process Modeling in Oryx

10-18 Fall 2008 Workshop



REFERENCES

References

[1] Ivan Serina Alfonso Gerevini, Alessandro Saetti. Planning with numerical expres-
sions in lpg. In Proceedings of the 16th European Conference on Artificial Intelli-
gence (ECAI-04), 2004.

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services
– Concepts, Architectures and Applications. Data-Centric Systems and Applica-
tions. Springer, 2004.

[3] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, and Massimo Mecella.
Composition of services with nondeterministic observable behaviour. In Proceed-
ings of the Third International Conference on Service-Oriented Computing, vol-
ume 3826 of Lecture Notes In Computer Science, pages 520–526, Heidelberg,
2005.

[4] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281 – 300, 1997.

[5] Steve Burbeck. The tao of e-business services. IBM developerWorks, 2000.

[6] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochas-
tic local search and temporal action graphs. Journal of Artificial Intelligence Re-
search, 20:239 – 290, 2003.

[7] Jörg Hoffmann. Metric-FF planning system: Translating ”ignoring delete lists” to
numeric state variables. Journal Of Artificial Intelligence Research, 20:291 – 341,
2003.

[8] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan genera-
tion through heuristic search. Journal of Artificial Intelligence Research, 14:253 –
302, 2001.

[9] Stephen Cole Kleene. Mathematical Logic. Dover Publications, 2002.

[10] Dominik Kuropka, Peter Tröger, Steffen Staab, and Mathias Weske. Semantic
Service Provisioning. Springer, 2008. (to appear).

[11] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services.
IEEE Intelligent Systems, 16(2):46–53, 2001.

[12] Harald Meyer and Mathias Weske. Automated service composition using heuristic
search. In Business Process Management (BPM 2006), volume 4102 of Lecture
Notes In Computer Science, pages 81–96, Heidelberg, 2006. Springer.

[13] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Se-
mantic matching of web services capabilities. In Proceedings of the First Interna-
tional Semantic Web Conference on The Semantic Web, pages 333–347, London,
UK, 2002. Springer-Verlag.

Fall 2008 Workshop 10-19



Automated Service Composition for Minimal Goals

[14] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing: Introduc-
tion. Communications of the ACM, 46(10):24–28, 2003.

[15] Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso.
Planning and monitoring web service composition. In Workshop on Planning and
Scheduling for Web and Grid Services (held in conjunction with The 14th Interna-
tional Conference on Automated Planning and Scheduling, pages 70 – 71, 2004,.

[16] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. Htn planning
for web service composition using shop2. Journal of Web Semantics, 1(4):377 –
396, 2004.

[17] http://wsmo.org. Web Service Modeling Ontology, 2005.

[18] Liangzhao Zeng, Boualem Benatallah, Hui Lei, Anne Ngu David Flaxer, and Henry
Chang. Flexible Composition of Enterprise Web Services. Electronic Markets –
Web Services, 13:141–152, 2003.

10-20 Fall 2008 Workshop

http://wsmo.org


Business Process Model Abstraction and
Flexible Process Graph

Fall 2008 Workshop

Artem Polyvyanyy

Artem.Polyvyanyy@hpi.uni-potsdam.de

This report summarizes research activities for the period from April 2008 to October
2008—the second six months at HPI Research School. In this report we present results
achieved in two research fields of investigation: business process model abstraction
and novel approach for modeling ad-hoc business processes—flexible process graph
(FPG).

1 Business Process Model Abstraction

Business process models are the instrument facilitating business process management
task in modern companies. Every model is a representation of a business process used
by a certain group of stakeholders. The desired level of model granularity depends on a
stakeholder and a current task. Top level management prefers coarse grained process
descriptions facilitating fast and correct business decisions, while employees directly
executing processes appreciate fine granular specifications of working procedures.
Thus, it is a common situation when a company maintains several models for one busi-
ness process. To ease the maintenance, modeling notations like Business Process
Modeling Notation (BPMN) [8] or Yet Another Workflow Language (YAWL) [1, 2], allow
hierarchical model structuring. A model hierarchy permits organizing process details at
different abstraction levels. Unfortunately, these approaches require considerable ef-
fort when a process model is changed: keeping separate models consistent as well as
preserving inter subprocess dependencies is laborious. Different approaches of pre-
senting significant process model information to a user are discussed in [5–7, 11, 16].
An alternative approach is to derive coarse grained process models from the existing
detailed models on demand. This technique can be referred to as a process model
abstraction.

Abstraction is generalization that reduces the undesired details in order to retain
only information relevant for a particular task. Abstraction mechanisms are used in
many domains where users suffer from information overload. One of the most well-
known examples is cartography, where geographical maps visualize landscapes on
different scales. While a map of a particular town provides detailed information on
houses and side streets, the world map captures shapes of continents, main river con-
tours, and marks locations of the largest cities. To stay useful to a reader large scale
geographical maps reduce the level of details, but are based on the information de-

Fall 2008 Workshop 11-1



Business Process Model Abstraction and Flexible Process Graph

rived from the detailed maps. Process model abstraction goal is to produce a model
containing significant information based on the detailed model specification.

The ideas presented in this report emerged from a joint research project with AOK
Brandenburg—the health insurance company in Teltow, Germany. The operational
processes of the company are captured in about 4 000 event-driven process chains
(EPC) [10]. The goal of the project is to derive methods of automated abstractions
from process model details. In [14] we have discussed the developed abstraction
mechanisms. This report focuses on the method providing a user control over the
abstraction—an abstraction slider.

1.1 Process Model Abstraction

In this section we provide basic definitions, describe several motivating abstraction sce-
narios, and derive abstraction criteria that can be employed for controlling the process
of model abstraction.

1.1.1 Fundamentals

Let us start with the definition of a process model adopted from [18].

Definition 1 (N,E, type) is a process model if:

• N = NA ∪ NE ∪ NG is a set of nodes where NA 6= ∅ is a set of activities, NE is a
set of events, and NG is a set of gateways; the sets are mutually disjoint

• E ⊆ N × N is a set of directed edges between nodes representing the control
flow

• (N,E) is a connected graph

• type : NG → {and, xor, or} is a function that assigns to each gateway a control
flow construct.

Given Definition 1 we define a business process model abstraction as a function per-
forming a process model transformation.

Definition 2 A business process model abstraction is a function A : P × S → P , such
that:

• P is a set of process models

• S is an abstraction setting, S ⊆ C × R:

– C ⊆ T × {asc, desc} is a finite set of abstraction criteria, where T is a set
of abstraction criteria types, asc indicates that higher criterion values are of
higher significance, desc indicates that lower criterion values are of higher
significance

11-2 Fall 2008 Workshop



1 BUSINESS PROCESS MODEL ABSTRACTION

– R is the set of real numbers; an element of this set is the criterion value
distinguishing significant elements from insignificant

• if p′ = A(p, s), where p, p′ ∈ P, s ∈ S, p = (N,E, type), p′ = (N ′, E ′, type′), then
|N ′| ≤ |N |.

An abstraction process transformation must not increase the number of model nodes.
The parameters of an abstraction function are a process model and an abstraction set-
ting. An abstraction setting defines a subspace of abstraction criteria values and, thus,
puts restriction on the elements which should appear in the abstracted process model.
Only model elements conforming to the abstraction setting should remain in the result-
ing model. An abstraction criterion is a pair, where the first element is a criterion type
and the second element is a hint specifying the relation between the element criterion
value and the element significance. An example of the abstraction criterion can be
a pair (activity execution cost, asc), i.e., the higher the execution cost, the higher the
activity significance in the model.

Abstraction task implies answering its what and how :

• What parts of a process model are of low significance?

• How to transform a process model so that insignificant parts are removed?

Answers to both questions should address the current abstraction context, i.e., a
business task a user solves at the moment. The choice of an abstraction setting an-
swers the what question. A concrete abstraction function implementation answers the
how question.

1.1.2 Abstraction Scenarios

In this report we aim at learning common principles of process model abstraction. Let
us introduce several process model abstraction use cases. The use cases presented
are the starting point for analysis and understanding of the abstraction problem.

A business process model analyst might be interested in activities which are exe-
cuted frequently in a process. Such activities are of high importance, since they no-
ticeably influence execution time and cost of a business process. Consequently, these
activities play an important role in such tasks as business process optimization and
reengineering.

Alternatively, an analyst can be interested in activities that consume more time in
comparison to other process activities. These activities contribute a large share to the
overall process execution time and are natural candidates for being studied during the
task of process improvement. Once such an activity is optimized, the overall process
execution time might drop considerably. Besides, in some situations the execution cost
is proportional to the execution time.

Activity execution cost and overall process execution cost are crucial properties of
a business process. Since an activity cost has a direct influence on the overall process
cost, identification of activities with high costs is another scenario.

Fall 2008 Workshop 11-3



Business Process Model Abstraction and Flexible Process Graph

Abstractions that reduce insignificant process instances constitute another set of
abstraction scenarios. In these scenarios properties of process instances are used as
abstraction criteria. For example, one might be interested in “typical” executions of a
business process model. A typical execution means that among all possible ways of a
business process completion it is the one that is executed most often. Abstractions of
this type result in process models describing only process instances which are often
observed. Similarly, process instances with the highest duration or cost may be in
the focus of process abstraction task. These abstractions result in a process model
representing either most time consuming or most “expensive” process instances.

1.1.3 Abstraction Criteria

Abstraction criteria help to tell significant process model elements from insignificant.
Abstraction criteria are properties of model elements or model fragments that enable
elements comparison and allow identifying information relevant for the task at hand.
Analysis of the business scenarios shows that different abstraction criteria can be used
for the task of business process model abstraction. A choice of an abstraction criterion
or a set of criteria is problem specific. The following abstraction criteria can be derived
from the aforementioned scenarios.

Relative probability (pr) of reaching a process node n from its direct predecessor
np is the probability of an edge transition from np to n, pr : {(np, n) ∈ E} → [0, 1].

Mean occurrence number of a node (mi) is the mean number that the node i occurs
in a process instance.

Relative effort of a process activity (er) is time required to execute the activity,
er : NA → R+.

The relative effort of an activity is measured in time units (e.g., minutes or hours)
and quantitatively coincides with the activity duration. However, semantically the effort
concept is close to the concept of cost. For instance, if two activities are executed in
parallel their total effort is the sum of efforts of both activities.

Absolute effort of a process activity (ea) is the mean effort contributed to the execu-
tion of the activity in a process instance, ea : NA → R+. Absolute effort can be obtained
as the product of relative effort and the mean occurrence number of the activity.

In addition to properties of process model activities, properties of other model ele-
ments can be used as abstraction criteria. One can use properties of process instances
as abstraction criteria. A model abstraction based on such a criterion preserves signif-
icant process instances in a model. Following, we define abstraction criteria relevant to
process instances.

Probability of a process instance (Pi) is the probability of a process instance i to
happen within a process execution.

Effort of a process instance (Ei) is the effort to be invested in the execution of a
process instance i and can be found as the sum of efforts of all the activities executed
within this instance.

The proposed list of abstraction criteria does not claim to be a complete one. It can
be extended once there is a demand for new abstraction scenarios.

11-4 Fall 2008 Workshop



1 BUSINESS PROCESS MODEL ABSTRACTION

0

1

0.00

(a) Initial process model (b) Abstracted model with the
slider set to 0.37

(c) Abstracted model with the
slider set to 1.00

Figure 1: Process model abstraction slider (unreadability intended)

Each abstraction assumes that a process model contains information required for
the abstraction procedure or data from which this information can be derived. For
instance, an abstraction using relative probability as abstraction criterion requires a
process model to possess information about edge transitions. However, most process
modeling notations, such as EPC or BPMN, can be extended to allow enriching models
with such concepts as probability of edge transition, activity execution time, or activity
mean occurrence number.

1.2 Abstraction Slider

In this section we focus on the what question of the process abstraction. We use a
slider metaphor to propose an approach enabling flexible control over process model
abstraction. It is shown how the slider can be employed for distinguishing significant
process model elements from insignificant ones. We provide examples demonstrating
the approach and illustrating that the slider works effectively with different abstraction
criteria.

1.2.1 Slider Concept

Once an abstraction criterion is selected, the required level of abstraction should be
specified. Since the desired level of detail cannot be predicted without a priori knowl-
edge about the abstraction context, a decision about a suitable abstraction level is
postponed to the moment when there is a demand for a concrete model. Ideally, a
user should be able to change an abstraction level continuously within the whole range
from an initial detailed process model to a process model containing only one activ-
ity. This activity, bounding the abstraction level above, semantically corresponds to the
whole process. A model abstraction exhibiting such a behavior can be controlled by an
abstraction slider.

The slider concept is employed in many engineering systems, where a controlled
parameter has to be changed smoothly. Numerous examples of a slider can be found

Fall 2008 Workshop 11-5



Business Process Model Abstraction and Flexible Process Graph

in IT systems. For instance, this control is used in modern geographic information
systems (GIS), where a user controls map scale by means of a zoom slider. A slider is
a simple entity that can be formalized as follows.

Definition 3 A slider is an object that can be described by:

• [Smin, Smax]—a slider interval with a minimum value Smin and a maximum value
Smax

• s ∈ [Smin, Smax]—a slider state.

Every abstraction criterion discussed in this report (see section 1.1.3) has a quanti-
tative measurement. Therefore, a partial order relation holds for criterion values. Since
criteria describe elements of a process model, these elements can be ordered accord-
ing to the selected criterion. For instance, if activity relative effort is used, an activity
taking two minutes precedes an activity taking four minutes. The partial order rela-
tion enables element classification. One can choose a value splitting the set into two
classes: elements which criterion value is less than the specified value and elements
which criterion value exceeds it. Elements of the first class are assumed to be insignif-
icant and should be omitted in the abstracted model, while elements of the other class
are significant and should be preserved. A value according to which elements are clas-
sified is called an abstraction threshold. In the example, an abstraction threshold of
three minutes results in the two minutes activity to be assumed insignificant and to be
reduced, while the four minutes activity is significant and is preserved in the abstracted
process model. Thus, a process model abstraction slider is a function which for a given
process model fragment and a specified threshold value tells if this fragment is signifi-
cant or not. According to the slider definition, an abstraction slider is a slider with the
slider interval defined on an interval of abstraction criterion values and the slider state
associated with the current threshold.

1.3 Abstraction Slider Examples

Figure 1 illustrates application of a slider to control a business process model abstrac-
tion. In the example the abstraction criterion is activity absolute effort. Activities with
higher absolute efforts are considered to be more significant, i.e., asc ordering is used.
The business process is captured in EPC notation. Figure 1(a) presents the initial pro-
cess model. The business process model corresponds to the case when the slider
state is 0.00, i.e., no activities are reduced. If the slider state changes to 0.37, the
model shown in Figure 1(b) is produced. As a result of abstraction more than 50%
of the nodes are reduced. When the slider state is set to 1.00, the process model
degenerates into one activity (see Figure 1(c)). Every abstracted business process
model contains only elements which properties exceed the specified threshold. There-
fore, elements of an abstracted model are more homogeneous in relation to a used
abstraction criterion.

From a user perspective a slider control regulates the amount of elements pre-
served in a business process model. The slider state is directly associated with the

11-6 Fall 2008 Workshop



1 BUSINESS PROCESS MODEL ABSTRACTION

XOR

XOR

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

0.2 0.150.65

0.25 minute(s)

0.25 minute(s)

3.0 minute(s)

3.0 minute(s)

0.25 minute(s)

Open
KH-case is 
available

Evaluate
LKNE-data

KH-case is 
closed

AU-case
information is 

available

Make a 
telephone call

to KFB 

Case is
documented

Make a 
telephone call
to employee

Information
on case is not

available

Document 
the results

Document 
the results

0.45 minute(s)

0.0375 minute(s)

0.05 minute(s)

0.05 minute(s)

0.6 minute(s)

(a) Abstraction criterion is relative proba-
bility

XOR

XOR

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

0.2 0.150.65

0.25 minute(s)

0.25 minute(s)

3.0 minute(s)

3.0 minute(s)

0.25 minute(s)

Open
KH-case is 
available

Evaluate
LKNE-data

KH-case is 
closed

AU-case
information is 

available

Make a 
telephone call

to KFB 

Case is
documented

Make a 
telephone call
to employee

Information
on case is not

available

Document 
the results

Document 
the results

0.45 minute(s)

0.0375 minute(s)

0.05 minute(s)

0.05 minute(s)

0.6 minute(s)

(b) Abstraction criterion is absolute effort

Figure 2: Process model abstraction sliders with different abstraction criteria

threshold value, classifying model elements into significant and insignificant. In the
simplest case a user specifies an arbitrary value used as a threshold (which means
that the slider interval is [−∞,+∞]). An obvious drawback of this approach is that a
user has to study a process model thoroughly in order to provide a helpful threshold
value. A low threshold value makes all the elements in a process model to be treated as
significant, i.e., no nodes or edges are reduced. On the other hand, a threshold which
is too high may lead to reduction of the whole process model to one activity. A pro-
cess model containing one activity provides such a small amount of information about
a business process that the abstracted model becomes useless. To avoid confusing
situations, the user should be guided by an interval in which all the “useful” values of
abstraction criteria lie.

Alternatively, the abstraction slider can control a share of nodes to be preserved in a
model. Since abstraction mechanism possesses information about the model element
properties, it is always possible to estimate the threshold value which results in the
reduction of the specified share of the process model.

As we have mentioned, an abstraction slider can manage abstraction process based
on various criteria. Depending on the chosen criteria and the current slider state, ab-
straction results in different process models. Consider two examples from Figure 2. In
both cases the same fragment of an EPC is shown. The fragment presents an exclu-
sive choice taking place during execution of an operational process in health insurance
industry. The process model is enriched with the information about the probabilities of
connection transitions. Each function has two labels: function relative effort and func-
tion absolute effort (in italic). Figure 2 shows what parts of this fragment are considered
to be significant depending on the selected abstraction criterion and the slider state.

Fall 2008 Workshop 11-7



Business Process Model Abstraction and Flexible Process Graph

Two different criteria are used: relative probability (Figure 2(a)) and activity absolute ef-
fort (Figure 2(b)). Color coding is used to show correspondence between the range of
the slider state change and the elements which are considered to be significant within
this range. Let us assume that activity absolute effort is considered as criterion and
the slider state changes in the range between 0.05 and 0.45 (colored with light gray).
Function “Make a telephone call to KFB” is considered significant in this range, while
functions “Evaluate LKNE-data” and “Document the results” are insignificant. At the
same time function “Make a telephone call to employee” is significant till slider state
exceeds 0.60. Figure 2 vividly visualizes the importance of abstraction criteria choice:
the coloring of process fragments substantially differs from one case to another.

1.4 Process Model Transformation

In this section we address the how question of the process model abstraction task. We
base our solution on process model transformation and reduction rules. Reduction and
transformation rules are widely used for analysis of process models and have been
extensively studied in literature [9, 15]. In this section two classes of abstraction rules
are introduced: elimination and aggregation. Afterwards, requirements for abstraction
and their influence on the transformation rules are discussed. We argue when each
of the techniques is appropriate. Finally, an example of an abstraction approach is
presented.

1.4.1 Elimination and Aggregation

Once it is known which elements of a process model are insignificant, they have to be
abstracted from. Different techniques can be used to reduce insignificant elements.
We distinguish two approaches: elimination and aggregation.

Elimination means that an insignificant process model element is omitted in the
abstracted process model. As a result of elimination a model contains no information
about the omitted model element. Elimination can be seen as the simplest abstraction
method. Although, it still requires rules assuring that the process model is well-formed
and preserving the ordering constraints of the initial model.

Aggregation implies that insignificant elements of a process model are aggregated
with other elements. In contrast to elimination, aggregation allows preserving informa-
tion about the abstracted element in the model. If two sequential activities are aggre-
gated into one activity, the properties of the new activity comprise properties of the
aggregated activities. For instance, the execution cost of an aggregating activity can
be defined as the sum of execution costs of aggregated activities.

An abstraction approach can be based on the exclusive usage of elimination or ag-
gregation; combination of both techniques is also possible. Elimination can be seen as
the simplest technique, since it requires only the rules of correct elements dropping.
However, elimination is insufficient in many cases. Aggregation requires more sophis-
ticated specification of how the properties of the aggregated elements influence prop-
erties of aggregating elements. The choice of an abstraction methodology depends on
the requirements imposed on the abstraction.

11-8 Fall 2008 Workshop



1 BUSINESS PROCESS MODEL ABSTRACTION

1.4.2 Transformation Requirements

An essential requirement for a process model abstraction is preserving the process
execution logic: neither new ordering constraints should be introduced, nor the existing
ones should be changed. Process transformation rules that satisfy this requirement
are discussed in [11].

Further, one may formulate additional requirements on abstraction rules. If a com-
pany uses process models for estimation of the workforce required to execute business
processes, information about the absolute effort of process execution should be pre-
served in a process model. Abstractions which preserve process properties are called
property preserving abstractions. In this particular case effort preserving abstraction is
discussed. If an abstraction must be property preserving, elimination is not sufficient:
once a model element is omitted all the information about its properties is lost. Within
a property preserving abstraction elimination can be applied only to those elements
which do not influence the property being preserved.

It is an additional requirement for any abstraction to produce well-formed abstracted
process models. Thus, features of modeling notations should be taken into account by
transformation rules. As a consequence, we can expect different rules to be used, e.g.,
for EPC and BPMN.

Every requirement which is imposed on an abstraction restricts transformation rules.
It could be the case that an insignificant model element cannot be reduced, because
of the too restrictive set of rules. Assume an effort preserving abstraction should be
performed. If there is an activity to be reduced and the abstraction does not specify a
rule how to handle the given activity (so that the process absolute effort is preserved),
this activity should be preserved in the model. In this sense an important finding is to
show which class of process models can be abstracted to one activity by a given set of
rules. As we have argued, not every set of rules allows this. An abstraction which is not
capable of reducing a process model to one function is called best effort abstraction,
since it only tries to assure that a given process model is abstracted to the requested
level using the given set of rules.

Fall 2008 Workshop 11-9



Business Process Model Abstraction and Flexible Process Graph

2 Flexible Process Graph

Businesses document their operational processes as process models. The common
practice is to represent process models as directed graphs. The nodes of a process
graph represent activities and directed edges constitute activity ordering constraints.
A flexible process graph modeling approach proposes to generalize process graph
structure to a hypergraph. Obtained process structure aims at formalization of ad-hoc
process control flow. In this report we discuss aspects relevant to concurrent execution
of process activities in a collaborative manner organized as a flexible process graph.
We provide a real world flexible process scenario to illustrate the approach.

2.1 Foundations

In this section we briefly present the main concepts of FPG. FPG was first introduced
in [13] and is a formal way for representing ad-hoc process control flow. In the core of
FPG lies generalization of a directed process graph edge which defines a sequential
execution of adjacent activities. In mathematics, generalization of a graph is a hy-
pergraph [3, 4]. Hypergraph edges (hyperedges) are arbitrary sets of nodes. Thus, a
hyperedge is an edge that can connect multiple activities. As opposite to a graph-based
sequence control flow pattern, it is allowed that within a hyperedge a process partici-
pant can choose which activity to execute next. A process model becomes hypergraph,
rather than graph-structured:

Definition 4 A flexible process graph (FPG) is a triple (A,E, T ) where:

• A is a finite set of activity nodes

• E is a finite set of edges e = 〈I(e), O(e)〉 ∈ E, A ∩ E = ∅

– I : E → P(A) is a function defining edge input activities

– O : E → P(A)\∅ is a function defining edge output activities

– ∀e ∈ E : I(e) ∩O(e) = ∅

• T is an edge type function, T : E → {and, xor, or}.

Each edge e ∈ E in FPG is split into two subsets of input I(e) and output O(e) activ-
ities to obtain a directed hypergraph. Unlike regular graph-structured process models
that contain special routing nodes—gateways, FPG introduces edge types that imple-
ment routing decisions. The structure of FPG is fixed and does not change during
execution of a process instance. Dynamics of a process represented as FPG is speci-
fied by process state transitions:

Definition 5 A state of a flexible process graph (A,E, T ) is defined by a state function
S : A → N0 × N0 mapping a set of activity nodes onto the pairs of natural numbers
including zero (N0 = N ∪ {0}).

11-10 Fall 2008 Workshop



2 FLEXIBLE PROCESS GRAPH

When in a certain state, each activity node a ∈ A of FPG is assigned two numbers
S(a) = (ω, β) ∈ N0 × N0. Sω(a) = ω (white tokens) specifies the number of instances
of activity a that need to be accomplished from now on in the process instance. Re-
spectively, Sβ(a) = β (black tokens) specifies the number of activity instances so far
accomplished in the process instance.

2.1.1 Process Instantiation

FPG process initialization is performed in two steps: 1. S(a) is set to (0, 0) for all a ∈ A,
2. For each activity a ∈ A the initial enabling is performed. An activity a is enabled at
process start if ε∗(a) holds:

ε∗(a) = ∃e ∈ E : a ∈ O(e) ∧ I(e) = ∅ ∧ cond(e, a)

The cond predicate implements edge type t ∈ T routing decisions (e.g., ∀a ∈ O(e) :
cond(e, a) = true, if T (e) = and). If ε∗(a) holds, the process state S is modified to give
S ′, such that S ′(a) = S(a) + (1, 0).

2.1.2 Activity Firing

An activity a ∈ A can fire in an FPG process instance if it is enabled (Sω(a) > 0). Activity
firing results in the process state S change to S ′, such that S ′(a) = S(a) + (−1, 1), i.e.,
one white token gets painted black. Activity firing is instantaneous, consumes no time,
and indicates a completion of the corresponding activity. After activity a has fired,
the activity enabling has to be performed on a set composed of output activities of a:⋃
{e∈E|a∈I(e)}O(e).

2.1.3 Activity Enabling

An activity a ∈ A can be enabled after execution of an activity aβ if ε(aβ, a) holds:

ε(aβ, a) = ∃e ∈ E∀ai ∈ I(e) : aβ ∈ I(e) ∧ a ∈ O(e) ∧ Sβ(ai) ≥ Sβ(aβ) ∧ cond(e, a)

An activity a enabling depends on execution of the preceding activity, e.g., aβ. An
activity a can be enabled if there exists an edge e ∈ E, such that a is the output activity
of e and aβ is the input activity of e. Further, for each input activity ai of the edge
e it holds that the number of accomplished instances of ai is at least the number of
accomplished instances of aβ. Also, the edge e type t ∈ T condition must hold. If
ε(aβ, a) holds, the process state S is modified to result in state S ′, such that S ′(a) =
S(a) + (1, 0).

2.1.4 Process Termination

A process instance terminates when there is no activity to execute, i.e., no activity is
enabled (∀a ∈ A : Sω(a) = 0).

Fall 2008 Workshop 11-11



Business Process Model Abstraction and Flexible Process Graph

2.2 From Formalism to Real World Business Processes

In this section we formally define the mechanism of activity assignment to different pro-
cess participants and address the FPG activity concept as a time lasting phenomenon.

2.2.1 Process Roles

Activities in business processes are either automated by software systems or exe-
cuted manually by people. Following, we discuss aspects concerning the assignment
of process activities to agents that actually execute them. For the sake of simplicity
we abstract from differentiating human and software agents and refer to them as roles.
Each role is a sequential system, i.e., can be in the process of execution of only one
activity at each moment in time. Therefore, concurrent activity execution can only be
achieved by several roles executing different activities. Following, we formally define
process role assignment:

Definition 6 A flexible process graph FPG = (A,E, T ) role assignment is a pair
(R,W ) where:

• R is a finite set of roles

• W : A→ P(R)\∅ is a roles assignment function.

Each activity in FPG must have at least one role assigned. Each activity in FPG
can be associated with several roles. Once enabled, an FPG activity a ∈ A can only be
executed by a role r ∈ W (a).

During FPG process instance execution, each participating role can observe a sub-
set of activities currently available for execution by the role—a role task list. By selecting
and executing an activity from the proposed list the role contributes to the achievement
of a process goal. The assignment of roles to FPG activities allows us to formally define
a concept of a role task list.

Definition 7 A role task list for the role r ∈ R from the role assignment (R,W ) for the
flexible process graph FPG = (A,E, T ) is a function L, where:

• L : R→ P(A) is defined on a subset of FPG activities

• L(r) = {a ∈ A|r ∈ W (a) ∧ Sω(a) > 0}, where r ∈ R.

Thus, a role task list is a subset of enabled activities of the FPG that are assigned
to a certain role. Note, that a process participating role can consult on the number of
enabled activity instances pending for execution by referring to the FPG state function
S (cf. Definition 5).

11-12 Fall 2008 Workshop



2 FLEXIBLE PROCESS GRAPH

init enabled

not started

running terminated

skipped

closed

initialize enable begin terminate

skip

Figure 3: Simple activity instance state transition diagram (adopted from [19])

2.2.2 Modeling Parallelism

So far we have presented FPG as the mechanism to define flexible activity enabling
scenarios. Similar to Petri net [12] transitions, activity firing in FPG consumes no time.
However, in real world scenarios instantiated business processes consist of activity
instances that actually take time. Each activity instance is represented by its state
transition system. Following, we discuss issues relevant to the interpretation of FPG
when providing a structure to a process on a set of activities that can not be assumed
instant by nature.

Figure 3 shows a simple activity instance state transition diagram. When an activity
instance is created it enters the init state. The enable state transition transfers the
activity to the enabled state. Before an activity instance enters the running state it can
still be skipped by the skip transition. An enabled activity instance can begin and enter
the running state. Once accomplished, an activity instance enters the terminated state.

[19] also proposes a complex model of the activity instance state transition system.
It allows an enabled activity instance to get disabled for some period of time. Also, a
running activity instance can get suspended and afterwards return to the running state.
Finally, the closed state in addition to terminated or skipped can also be failed, undone,
or cancelled.

It is always possible and is allowed to come up with other state transition systems to
represent activity instances. Therefore, instead of focusing on a one particular solution
we rather state a list of generic requirements we expect any activity instance state
transition system to fulfill if designed to be used as an FPG building block. An activity
instance internal state transition system must contain the following generic states:

• enabled state—a state which means that the activity instance has to be accom-
plished in the process instance in order to realize the process goal

• running state—a state signals that work is currently conducted for the purpose of
accomplishing the activity instance

• terminated state—a state which means that the activity instance was accom-
plished for the purpose of reaching the process goal.

Additionally, an activity instance state transition system must allow only a strict order
on proposed activity states: first enabled, then running, and finally the terminated state.

Fall 2008 Workshop 11-13



Business Process Model Abstraction and Flexible Process Graph

Once an activity is in one of the proposed states it can not return to the previous one
given by the order. However, other states might be injected in between, e.g., an enabled
activity can be disabled for some period of time or a running activity can be suspended
and afterwards returned back to the running state.

The state transition diagram from Figure 3 satisfies the proposed requirements. It
contains enabled, running, and terminated states and does not allow any scenarios
that are forbidden by the proposed ordering constraints. Note, that one can decide on
desired behavior by selecting appropriate mapping of generic states, e.g., one might
decide to map the closed or the terminated state from Figure 3 onto the generic termi-
nated state.

Once a direct correspondence between the generic activity instance states and the
concrete activity implementation states is done, one can automatically map FPG tran-
sition states onto activity instance states. The generic enabled activity instance state
corresponds to the FPG activity enabling and the generic terminated state corresponds
to the FPG activity firing (cf. section 2.1). Thus, once an FPG activity is enabled fol-
lowing the FPG execution semantics a new activity instance should be transferred to
the generic enabled state. Once an activity instance is terminated, has reached its
generic terminated state, the corresponding FPG activity should fire to mark the FPG
process state transition. The impact of the decision of a mapping between concrete
and generic activity instance states should become clear now. In case we decide to
map the generic terminated state onto the terminated state from Figure 3 the decision
to skip the activity will not trigger the FPG state transition. Alternatively, if decided to
accept the closed state as the generic terminated state, the FPG state transition will
be triggered regardless of actually performing some work on accomplishing an activity
instance or skipping it.

There is no direct mapping of the generic activity instance running state onto the
FPG formalism. However, there is an additional constraint that no two activities exe-
cuted by one role can be in the running state. We have already presented a concept of
roles (cf. section 2.2.1). A role is a sequential system capable of executing assigned
process activities. A role can consult its task list (cf. Definition 7) prior of selecting
an activity for execution. Once started with the selected activity (entered the generic
running state) the role should not be able to work on other activities. Only when the
running state of the activity instance is left, the role can proceed with other activities.

In the simplest case it should be restricted that only one assigned role can execute
an activity and that once started with the activity execution the role should accomplish
it and bring it to the generic terminated state. However, more sophisticated scenarios
can be envisioned. A role can suspend current activity execution in order to switch to
another enabled activity and then return to the execution of the prior activity. Also, one
can think of scenarios where several roles collaboratively accomplish an activity, i.e.,
several roles select the same activity for execution from their role task lists.

2.3 Flexible Business Process Scenario

In this section we present a real world flexible business process scenario. We show
how this scenario can be formalized as a FPG.

11-14 Fall 2008 Workshop



2 FLEXIBLE PROCESS GRAPH

Check 
stock

Negotiate
product

customis.

Do staffing

Make 
production 

plan

Purchase
raw 

materials

Prepare 
gifts

Prepare 
promotional 

info

Prepare 
invoice

Manufacture 
product

Decide on 
shipper

Pack

Archive 
order info

Ship order

Figure 4: Petri net model that captures flexible business process scenario

The scenario describes a process of customizing, preparing, and shipping an order
to a customer. The business process is decomposed to activities as follows. Once an
order is confirmed by the customer, “negotiate product customization” (NPC) activity
takes place. In the scenario we do not concentrate on a specific product but assume
a generic one, e.g., this can be a backpack. Following, “check stock ” (CS) activity
takes care of determining whether all basic materials are available to realize the order.
One can “purchase raw materials” (PRM ) required to customize a product, “make
production plan” (MPP ), and “do staffing” (DS) by assigning responsible for the task
“manufacture product” (MP ). Some additional work packets need to be performed
prior of shipping the order to the customer; these are “prepare gifts” (PG) and “prepare
promotional info” (PPI) to include into the order shipment. Also, somebody needs to
take care and “prepare invoice” (PI). Once the order is ready someone has to “decide
on shipper ” (DOS), “pack ” (P ), and “ship order ” (SO). Finally, it is required to “archive
order info” (AOI).

It is clear that one might come up with several reasonable process models on the
proposed set of activities. Following, we specify designed flexible activity execution
constraints we assume for our scenario. A process instance can start with execution
of either NPC or CS. Once both are accomplished, it is allowed to proceed in any
order with execution of PRM , MPP , and DS activities. Once all the materials are
available, production plan is ready, and workers are identified, it is possible to start
with MP activity. At the same time somebody can take care of order supplements and
perform PG, PPI, and PI activities. Once the ordered product is manufactured and
all the supplements are prepared, activities concerned with order finalization can take
place. It is required to accomplish AOI, DOS, and P activities. If order is packed and
the delivery method is determined it is possible to proceed and do SO activity.

Fall 2008 Workshop 11-15



Business Process Model Abstraction and Flexible Process Graph

Prepare 
gifts

Prepare 
promotional 

info

Prepare 
invoice

Do staffing

Check 
stock

Negotiate
product

customis. Make 
production 

plan

Decide on 
shipper

Purchase
raw 

materials

Manufacture 
product

Pack

Archive order 
info

Ship order

Figure 5: FPG model that captures flexible business process scenario

The Petri net model from Figure 4 captures the flexible process scenario. The model
suffers from explosion of modeling constructs, in particular Petri net places, that attempt
when combined to represent all possible states of the flexible process scenario.

Figure 5 shows a graphical representation (for details refer to [13]) of the FPG model
(A,E, T ) that also captures our flexible process scenario, E = {e1, e2, e3, e4, e5} such
that: e1 = 〈∅, {NPC,CS}〉, e2 = 〈{NPC,CS} , {PRM, MPP,DS}〉, e3 = 〈{PRM,
MPP,DS} , {MP,PG, PPI, PI}〉, e4 = 〈{MP, PG, PPI, PI} , {P,DOS,AOI}〉, e5 =
〈{P,DOS} , {SO}〉, and function T is such that T (e1) = T (e2) = T (e3) = T (e4) =
T (e5) = and.

After the process initialization phase, activitiesNPC and CS get enabled, S(NPC) =
S(CS) = (1, 0). Eventually both activities are accomplished in the ad-hoc manner and
result in the FPG state S such that S(NPC) = S(CS) = (0, 1). Once in such a state
further activities enabling takes place and S(PRM) = S(MPP ) = S(DS) = (1, 0). The
process continues by obeying the FPG execution semantics until S = (0, 1) for all the
process activities. Then, the termination condition holds and the process terminates.

The amount of FPG model elements from Figure 5, contrary to the case of the
model from Figure 4, clearly exhibits a linear behavior in respect to the amount of
modeled execution constraints. One might introduce concurrency into the FPG model
by distributing activities among different roles, e.g., supplementary activities PG, PPI,
and PI can be assigned to a different role as MP activity.

11-16 Fall 2008 Workshop



REFERENCES

3 Conclusions

Business process model abstraction is a way to derive high level process models from
the detailed ones. This report proposed a slider as the mean for controlling model
abstraction level. We argued that the abstraction task can be decomposed into two
independent subtasks: learning process model elements which are insignificant (ab-
straction what) and abstracting from those elements (abstraction how). The work re-
ported primarily focuses on the former problem. Several abstraction scenarios were
provided to motivate the task of business process model abstraction. These scenarios
were further reused to extract abstraction criteria. We proposed to adopt a slider con-
cept in order to manage abstraction criterion interval and specify desired abstraction
level. The principles of abstraction slider were explained, as well as examples of its
work were provided. As the direct continuation of this work we foresee development of
transformation rules which can be used together with the abstraction slider concept.

Also, this report briefly presented the FPG formalism and contributed to the interpre-
tation of FPG when modeled for concurrent execution of process activities by different
process participants. This report together with [13] finishes overall introduction of a
novel approach for representing ad-hoc process control flow. The future work will be
concerned with validation of the approach. The applicability of FPG for formalization of
Service Science [17] environment is currently under investigation.

Acknowledgments

The author acknowledge the support of the project partner AOK Brandenburg in Teltow,
Germany, in particular Dr. Anke-Britt Möhr, Norbert Sandau, and Anja Niedersätz. The
work in the domain of business process model abstraction is conducted jointly with
Sergey Smirnov and Prof. Mathias Weske. The topic of Flexible Process Graph is
developed together with Prof. Mathias Weske.

References

[1] W. Aalst, L. Aldred, M. Dumas, and A. Hofstede. Design and Implementation of
the YAWL System, 2004.

[2] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language (Revised version). Technical Report FIT-TR-2003-04, Queensland Uni-
versity of Technology, Brisbane, 2003.

[3] C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., 1985.

[4] C. Berge. Hypergraphs: The Theory of Finite Sets. Amsterdam, Netherlands:
North-Holland, 1989.

[5] R. Bobrik, M. Reichert, and T. Bauer. Parameterizable Views for Process Visual-
ization. Technical Report TR-CTIT-07-37, Enschede, April 2007.

Fall 2008 Workshop 11-17



Business Process Model Abstraction and Flexible Process Graph

[6] R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In BPM
2007, volume 4714 of LNCS, pages 88–95, Berlin, 2007. Springer Verlag.

[7] Ralph Bobrik, Thomas Bauer, and Manfred Reichert. Proviado—Personalized and
Configurable Visualizations of Business Processes. In EC-Web, pages 61–71,
2006.

[8] BPMI.org. Business Process Modeling Notation, 1.0 edition, May 2004.

[9] B. Dongen, M. Jansen-Vullers, H. Verbeek, and W. Aalst. Verification of the SAP
Reference Models Using EPC Reduction, State-space Analysis, and Invariants.
Comput. Ind., 58(6):578–601, 2007.

[10] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report Heft
89 (in German), Veröffentlichungen des Instituts für Wirtschaftsinformatik Univer-
sity of Saarland, Saarbrücken, 1992.

[11] D. Liu and M. Shen. Workflow Modeling for Virtual Processes: an Order-
preserving Process-view Approach. Information Systems, 28(6):505–532, 2003.

[12] C.A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, Bonn,
Germany, 1962. (In German).

[13] A. Polyvyanyy and M. Weske. Hypergraph-based Modeling of Ad-Hoc Business
Processes. In Proceedings of the 1st International Workshop on Process Man-
agement for Highly Dynamic and Pervasive Scenarios, Milan, Italy, 9 2008.

[14] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Reducing the Complexity
of Large EPCs. Technical Report 22, Hasso Plattner Institute at University of
Potsdam, 2008.

[15] W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

[16] M. Shen and D. Liu. Discovering Role-Relevant Process-Views for Recommending
Workflow Information. In DEXA, pages 836–845, 2003.

[17] Jim Spohrer, Paul P. Maglio, John Bailey, and Daniel Gruhl. Steps Toward a Sci-
ence of Service Systems. Computer, 40(1):71–77, 2007.

[18] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer Verlag, 2007.

[19] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer Verlag, 2007.

11-18 Fall 2008 Workshop



REFERENCES

Publications

Table 1 presents the current list of published scientific papers, as well as submitted
papers and ideas under investigation.

Paper title Paper type Conference Status
1 A Quantitative Evaluation of the

Enhanced Topic-based Vector
Space Model

Tech.rep. HPI’08 published

2 An Ontology-based Service Dis-
covery Approach for the Provi-
sioning of Product-service Bun-
dles

Conf. paper ECIS’08 published

3 Hypergraph-based Modeling of
Ad-Hoc Business Processes

W/s paper PM4HDPS’08 published

4 Reducing Complexity of Large
EPCs

W/s paper EPK’08 accepted

5 Semantic Querying of Business
Process Models

Conf. paper EDOC’08 published

6 Process Model Abstraction—A
Slider Approach

Conf. paper EDOC’08 published

7 Flexible Process Graph—A Pro-
logue

Conf. paper COOPIS’08 published

8 Business Process Model Ab-
straction

Book chap. submitted

9 On Formalizing Service Science
Environment

W/s paper ISSS’09 in preparation

10 Business Process Model Ab-
straction by SESE Decomposi-
tion (working title)

Conf. paper to be decided in preparation

11 Triconnected Business Process
Model Abstraction (working title)

Conf. paper to be decided in preparation

Table 1: Publications overview

Fall 2008 Workshop 11-19



 



ContextJ
Context-oriented Programming for Java

Malte Appeltauer
Software Architecture Group

Hasso-Plattner-Institut
Universität Potsdam

malte.appeltauer@hpi.uni-potsdam.de

Technology for mobile devices is continuously evolving. This causes a demand
for new applications that help mobile users to cope with challenges in their every-day
life. Such applications often contain user-specific computations, which are based on
dynamic context information. However, programming languages used for their imple-
mentation do not explicitly support context-dependent behavior. Instead, context-aware
functionality must be modeled at application level, hindering separation of concerns
and further software evolution. Context-oriented Programming (COP) is an approach
to support modularization and context-dependent dynamic composition of cross-cutting
concerns. There are several COP implementations for dynamic languages, however,
no statically typed language, such as Java, in which many of those applications are
implemented, has been extended yet.

In this paper, we present our two approaches to COP for Java: ContextLogicAJ,
an aspect-based COP pre-compiler, and ContextJ, a full Java language extension. We
give an overview of the implementation of our ContextJ compiler and introduce its lan-
guage constructs. Furthermore, we exemplify software development with ContextJ on
a service-oriented mobile application.

1 Introduction

Research and technology in the area of mobile and distributed environments have
recently achieved significant improvements. Many software systems based on this in-
frastructure provide personalized, context-dependent functionality. For such systems,
context reasoning and representation is an important technical issue. They are typi-
cally implemented in a service-oriented approach and composed by services, which
provide context-dependent functionality. Due to the cross-cutting nature of context-
dependent functionality, developers have to consider an additional complexity in the
software model. To cope with the complex task of developing context-aware applica-
tions, we need appropriate means for the representation of context-dependent behav-
ior.

COP [10] supports modularization and dynamic system composition. While various
implementations of COP exist for dynamic languages [4, 10], an implementation of a
complete COP language extension for a complex, statically typed language - such as

Fall 2008 Workshop 12-1



ContextJ - Context-oriented Programming for Java

Java - is not described in literature. However, to benefit from COP in large software
systems and to validate its modularization and composition features for complex ap-
plications, it is necessary to provide support for languages, such systems are typically
written in. COP extensions to dynamic languages can be implemented via their meta-
object protocols. Java does not provide meta-level access with equivalent expressibil-
ity as dynamic languages, thence language extensions need at least pre-compiler or
compiler adaptations, if not virtual machine support. For experimental purposes, we
implemented both a pre-compiler based on an aspect-oriented library and a compiler
for Java-based COP.

In this paper, we report on our implementation of COP functionality as extension to
Java. We describe, how COP features can be mapped to Java byte code using rewrite
techniques provided by a compiler framework. Section 2 introduces to Context-oriented
Programming. The features of ContextJ are described in Section 3. An overview of the
ContextJ compiler implementation is given in Section 4. Section 5 presents an applica-
tion implemented with ContextJ, while Section 6 discusses future work and summarizes
the paper.

2 Context-oriented Programming for Java

2.1 Overview

The COP paradigm features a new approach of software modularization by support-
ing an explicit representation of context-dependent functionality. Such functionality can
be dynamically activated for a certain control flow and trigger dynamic behavioral vari-
ations. Due to dynamic composition, software evolution becomes more flexible and
accessible. We do not restrict the definition of context to a certain domain. Instead,
context is everything that is computable, such as a variable’s value, the control flow,
or the system state. Context can also consist of more complex information, as, for
example, personalization, security settings, location-awareness, and more. A broad
introduction to COP is provided by [10]. COP language extensions have been imple-
mented for some dynamic programming languages, such as Lisp, Squeak/Smalltalk,
Python, Ruby, and Groovy. These language extensions implement at least the follow-
ing core features of COP.

Modularization. Layers are an orthogonal modularization concept to classes, in
which cross-cutting, context-specific functionality can be encapsulated. Layers can
range over multiple modules and provide alternative or additional definition of their
entities, e.g., classes, methods, or functions. Feature redefinitions are declared within
layers. They represent behavior, which should be executed while the enclosing layer is
active.

Dynamic composition. Behavioral variations can be executed before, after, or in-
stead of the original functionality. During its execution, a behavioral variation can pro-
ceed to the next variation that is provided by another active layer. If no other active layer
provides a variation, the original functionality is executed. Layers can be activated and
deactivated at run-time.

12-2 Fall 2008 Workshop



2 CONTEXT-ORIENTED PROGRAMMING FOR JAVA

1 public class Person {
2 private String name
3 private String address;
4

5 public Person(String name , String address) {
6 this.name = name;
7 this.address = address;
8 }
9 public String getAddress () {

10 return this.address;
11 }
12 public String getName () {
13 return this.name;
14 }
15 public String toString () {
16 return this.getName ();
17 }
18 }

Figure 1: A simple Java class that models a person.

Dynamic scoping. To achieve fine-grained composition, layer activation is scoped
for a certain block of execution statements. For all control flows within this block the
behavioral variations of the current active layers will be executed instead of the default
behavior.

2.2 ContextJ*

The former COP implementations take advantage of the language’s meta-level protocol
to enable dynamic composition. This method is not feasible for the extension of a
statically typed language, such as Java, because of its restricted meta-level access.
In [10], the authors present ContextJ*, a plain Java 1.5 library-based implementation
that features the core concepts of COP. This implementation demonstrates that COP
can be simulated by means of the Java programming language without any extension
to the syntax or semantics of the language.

Figure 1 contains a simple Java class to which we will refer in the following ex-
amples. The class Person provides the fields name and address and corresponding
accessors. The toString method returns the person’s name. The listing in Figure
2 shows layer declarations and activation using ContextJ*. The method toString
(Lines 8-10) calls a LayerDefinition object layers to select the appropriate layered
method at run-time. Within the class initializer (Lines 11-25), layered method variations
of toString are assigned to layer. A layer activation of Address for the execution of
toString is shown in Lines 26-34. For more details of the ContextJ* library, see [10].

As this simple example shows, the proper use of ContextJ* requires developers to
follow several idioms. This code tangles the implementation of the core concerns and
hinders seamless software development. In the following, we describe a pre-compiler
that we developed based on an aspect-oriented language that overcomes some of

Fall 2008 Workshop 12-3



ContextJ - Context-oriented Programming for Java

1 import static be.ac.vub.prog.contextj.ContextJ .*;
2

3 public class Person implements IPerson {
4 //... see Figure 1
5 private LayerDefinitions <IEmployer > layers =
6 new LayerDefinitions <IPerson >();
7

8 public String toString () {
9 return layers.select (). toString ();

10 }
11 { layers.define(RootLayer ,
12 new IPerson () {
13 public String toString () {
14 return name;
15 }
16 }
17 );
18 layers.define(Layers.Address ,
19 new IPerson () {
20 public String toString () {
21 return layers.next(this) + address;
22 }
23 }
24 );
25 }
26 public void someMethod (){
27 with(Layers.Address ).eval(
28 new Block() {
29 public void eval() {
30 print(toString ());
31 }
32 }
33 }
34 }
35 }

Figure 2: Layer definition and composition using ContextJ* [10].

these drawbacks.

2.3 ContextLogicAJ

In collaboration with the University of Bonn we implemented a pre-compiler,
ContextLogicAJ [2] that is based on a generic aspect library for the aspect-oriented
language LogicAJ [13]. Layer activation management is encapsulated in advice dec-
larations in a special COP aspect. Section 4.1 describes the dispatching technique
that is implemented in ContextLogicAJ. To use the aspect as COP pre-compiler, the
following idioms must be considered:

• Layers are represented by (empty) subclasses of contextj.Layer.

12-4 Fall 2008 Workshop



3 CONTEXTJ

1 import contextj.Layer;
2 import contextj.ContextJ;
3

4 public class Person {
5 //... see Figure 1
6 public String toString(Address _layer) {
7 return ContextJ.proceed () + getAddress ();
8 }
9 public void someMethod () {

10 Layer.activateLayer(Address.class)
11 print(toString ());
12 Layer.deactivateLayer(Address.class)
13 }
14 }

Figure 3: Layer declaration and composition using ContextLogicAJ.

• The layer, to which a certain method belongs to, is represented by the type of its
first parameter.

• The scope of layer composition must be manually controlled by the methods
activateLayer and deactivateLayer.

• The aspect library provides a static proceed method which forwards the execu-
tion to the next layer or to the original method.

Figure 3 shows the implementation of our running example using ContextLogicAJ.
The first definition (Lines 6-8) in the figure represents a partial definition of toString
for the layer Address. By convention, the type of the first parameter of a method
denotes it’s layer, thus, toString belongs to layer Address. The method uses the
proceed function which calls the original method or the partial method definition of the
next layer of the current composition. It is implemented as a static method with an
empty body. The aspect uses this method call as join point to inject the behavior of the
proceed function. The last method in the listing presents an activation of Address for
the control flow of print.

Compared to the ContextJ* implementation, the code for layer definition is clearly
reduced. However, developers still have to mind some coding conventions. With this
two prototypes we gathered experiences that we use for the implementation of a first
ContextJ compiler.

3 ContextJ

3.1 Language Features

One drawback of the preceding COP approaches to Java is that the application code
is tangled with infrastructural code that is necessary for proper use of the COP library.

Fall 2008 Workshop 12-5



ContextJ - Context-oriented Programming for Java

1 declarelayer Address;
2

3 public class Person {
4 //... see Figure 1
5 layer Address {
6 public String toString () {
7 return proceed () + ", " + getAddress ();
8 }
9 }

10 public void someMethod () {
11 with(Address) {
12 print(person.toString ());
13 }
14 }
15 }

Figure 4: The ContextJ variant of Person. Layers encapsulate behavioral variations.

This is error-prone and does not help to gain better program modularity. It is more de-
sirable that developers can focus on the implementation of layer declarations and layer
compositions, supported by dedicated language constructs for this work. This section
presents the ContextJ language, which extends the Java programming language with
COP features. In the following, we refer to standard Java elements using ’...’ and
present only the ContextJ constructs and their entry points in the Java syntax.

3.2 Modularization

In ContextJ, layers are provided as class members. The syntactic structure of the
construct is shown below.

ClassMemberDeclaration := ... | MethodDeclaration | Layer
Layer := layer Identifier { MethodDeclaration* }

A layer declaration begins with the keyword layer, followed by the layer’s identifier
and a list of method definitions, which either specify new methods or extend existing
methods of the class. New methods are only visible while the layer is active. In Java,
the visibility of methods can be declared public, default, protected, or private. Due to
dynamic composition, ContextJ extends this feature with dynamically scoped method
access. For different contexts, objects provide different interfaces. A layered method
definition that has the same signature as another method of the class, is a partial
method definition. It overrides the original method with its context specific behavior.

To trigger the execution of a behavioral variation provided by a following layer or the
original method, the build-in expression proceed can be used.

Expression := ... | Proceed
Proceed := proceed( Argument )

Argument := Expression | Expression, Argument

12-6 Fall 2008 Workshop



3 CONTEXTJ

1 declarelayer HTML;
2 //...
3 layer HTML {
4 public String getName () {
5 return "<b>" + proceed () + "</b>";
6 }
7 public String getAddress () {
8 return "<i>" + proceed () + "</i>";
9 }

10 public String toString () {
11 return "<html ><body >" + proceed () + "</body ></html >";
12 }
13 }

Figure 5: Layer declaration with multiple methods in ContextJ.

In the example of Figure 4, the layer Address contains a partial method toString
(Lines 6-8) that is called instead of the default definition while the layer is active. The
partial method definition calls the original method (using proceed) and extends its
result with layer specific behavior (adding the address). Similar to Java’s super method
it is possible to pass arguments to the next method using proceed.

In our experiments with the language constructs, we observed that typos in the
identifier often occur in layer definitions, such as declaring ’adress’ instead of ’Address’.
Methods of the mistyped layer ’adress’ are then not executed at activtion of ’Address’.
To avoid this problem, we introduced a declaration statement for layers, whose syntax
is shown below.

TopLevelDeclaration := ... | LayerDeclaraion
LayerDeclaration := declarelayer Identifier ;

To define a layer in a class, it must be declared in its enclosing compilation unit. Typos
within layer declarations can now be detected at compilation time. Figure 4 shows such
a declaration for the layer Address (Line 1).

3.3 Dynamic Composition

To control layer activation and composition, ContextJ supports a special block construct
that can be used in method bodies.

Statement := ... | LayerActivation
LayerActivation := with ( Argument ) { Statement* } ;

The keyword with is followed by a list of arguments denoting the layers to be activated.
The actual block contains the statements that are executed while the layers are active.
After the execution of the last statement all layers of this composition are deactivated,
even if the block is left by an exception or return statement. More than one layer
can provide a partial method definition at run-time, making the order of layer activation

Fall 2008 Workshop 12-7



ContextJ - Context-oriented Programming for Java

1 public void someMethod () {
2 with(layersForCurrentMode ()) {
3 print(person.toString ());
4 }
5 }
6 public List <String > layersForCurrentMode (){
7 ArrayList layers = new ArrayList ();
8 if(inAddressBookMode ())
9 layers.add("Address");

10 if(inWebExportMode ())
11 layers.add("HTML");
12 return layers;
13 }

Figure 6: Layer composition in ContextJ.

relevant for method execution. The list of active layers works according to the last-in-
first-out principle: If more than one layer provides a redefinition of a certain method, the
layer that was activated at last is the first layer to which the method call is delegated. If a
behavioral variation contains proceed, but no following layer provides a corresponding
behavioral variation, the original method definition is called. Figure 5 introduces a
second layer, HTML, to our example. For web export, it renders the class properties
with HTML tags. The layer contains a partial definition of toString. When both layers,
HTML and Address, are composed together, their activation order controls, which partial
definition of toString is called first.

ContextJ supports direct and indirect layer activation. For direct activation, the layer
identifiers are passed to the argument list. Figure 4 shows an explicit activation of the
layer Address (Lines 11-13).

Often, the computation of the layers to be used is complex, or the layer list can-
not be specified at compile-time. For more flexibility, we allow expressions of type
Iterable as arguments. The elements of Iterable must be strings, otherwise an
exception is thrown at run-time1. If the argument expression returns an empty list, the
default behavior is executed. An example for a layer computation is given by Figure 6
the layer activation construct calls a method that computes the layer composition. Con-
sider, layersForCurrentMode returns the list ["Address", "HTML"]. Then, the call
toString is passed to the layer HTML first2. This layered method creates some HTML
wrapper and accesses the next partial definition via proceed. Layer Address invokes
the original toString method and attaches the address to its return value. For all calls
within this control flow, it is checked if an active layer provides a behavioral variation.
Thus, calls within the control flow of Address are wrapped by partial definition of the
HTML layer.

The ContextJ language allows layer declaration and composition without bothering
developers with COP specific glue code. This advantage over the preceding solutions

1To be conform to the Java type system, we do not introduce a new primitive for layers. Instead, a list
of strings can be used as argument for with.

2The list is accessed according to the last-in-first-out principle.

12-8 Fall 2008 Workshop



4 THE CONTEXTJ COMPILER

Figure 7: Mapping of ContextJ syntax to Java.

ContextJ* and ContextLogicAJ lead to a seamless integration of our new language
constructs into Java. In the following section, we describe the implementation of our
ContextJ compiler.

4 The ContextJ Compiler

4.1 Layer-aware Method Invocation in Java

Since we want to use ContextJ with existing Java tools and environments, our com-
piler should be byte code compatible to Java. To generate plain Java byte code from
ContextJ source code, we require a generic mapping from ContextJ to Java syntax.
This mapping and its implementation in our compiler is described in Section 4.2. In
the following, we present a pattern to execute COP semantics without any language
extension in Java. This approach has been developed for the ContextLogicAJ pre-
compiler. We adapt the pattern to transform ContextJ into Java elements within the
re-write phase of the ContextJ compiler.

For layer-aware method call adaptation in Java, we need to follow some idioms in
our class design. For a call to a method M and a list of active layers Lactive:

1. Compute the next layer Li ∈ Lactive that contains a partial method definition (MLi
)

for method M .

2. Execute ML0

Fall 2008 Workshop 12-9



ContextJ - Context-oriented Programming for Java

Figure 8: Implementation of method call dispatching with layers.

(a) If MLi
contains a proceed command, lookup the next layer Lx ∈ Lactive, x > i

that contains MLx and execute this method

(b) If no other layer is found, execute the original method definition

For a plain Java implementation of the above algorithm, we note some observations.
The selection of the appropriate method definition depends on the dynamic structure of
Lactive that can be implemented as a list consisting of layer objects. The list members
Li decide, if they provide a definition for the currently called method M . Thus, layers
provide a method corresponding to each of their partial method definition. Because
partial definitions can access the state of M ’s class, Li cannot host the code of MLi

.
Instead, MLi

must be declared within M and Li’s method must call it. To distinguish
multiple partial definitions of M , Li passes itself as an argument to MLi

. This behavior
is well known as double dispatch, see, for instance, the Visitor Pattern [8]. Layer acti-
vation can be implemented straight forward: Two methods control the add and replace
functionality of Lactive.

Figure 7 presents a mapping of a layer to Java constructs using double dispatch.
Figure 8 shows a control flow of a method call with active layer. A partial method
definition MLi

is a method with the same signature as it’s base version M , except
that it’s first parameter denotes the type of the enclosing layer Li. Layers are classes
that inherit from contextj.Layer. Lactive is represented by a thread-local list of layer
objects. For each method MLi

, a layer Li contains an accept method, which calls MLi

and passes its own instance as first parameter. If Li does not contain MLi
, the next

layer in the list is called. Therefore, the superclass contextj.Layer contains a default
implementation for the accept method that calls the next layer in the list.

12-10 Fall 2008 Workshop



4 THE CONTEXTJ COMPILER

4.2 Compiler Implementation

For the implementation of our compiler we use the JastAdd [9] compiler framework.
Typically, compiler extensions require adaptations on several parts of the compiler,
such as the lexer/scanner, parser, abstract syntax tree (AST), and semantic analysis.
JastAdd is a modular compiler framework that uses aspect-oriented techniques to en-
capsulate these specifications into dedicated modules. In a build process the single
specifications are woven into an executable compiler.

For byte code compatibility we extend the JastAdd Java Extensible Compiler [7]. In
the following, we describe the implementation of our compiler.

Lexical Tokens

ContextJ extends the set of Java keywords with layer, proceed, declarelayer, and
with. The extension of the scanner is shown in Figure 9. For lexical analysis JastAdd
uses JFlex [12], a scanner generator for Java. Each keyword specification provides a
corresponding terminal symbol that can be used in the parser. The keyword specifica-
tion is woven into the scanner at build-time.

<YYINITIAL > {
"with" { return sym(Terminals.LAYER_ACTIVATION ); }
"layer" { return sym(Terminals.LAYER ); }
"proceed" { return sym(Terminals.PROCEED ); }
"declarelayer" { return sym(Terminals.DECLARE_LAYER ); }

}

Figure 9: Specification of ContextJ terminal symbols in Beaver syntax.

Abstract Syntax

JastAdd provides an object-oriented abstract grammar from which the Java AST repre-
sentation is generated. The abstract grammar does not contain any behavior specifica-
tion; this is done by separate attribute and equation specifications. For a modularized
specification, inter-type declarations are used to extend existing trees. For ContextJ,
the Java AST is extended with four node types. Layer is defined as subtype of a
class member declaration. As child nodes it contains a TypeAccess node and a list
of method declarations. The statement LayerActivation contains an expression, de-
noting the layers to be activated, and a block of statements, which scopes the layer
activation. The delegation function proceed contains a list of arguments. Finally, the
node LayerDecl represents the import declaration for layers. The AST specification is
shown in Figure 10.

Fall 2008 Workshop 12-11



ContextJ - Context-oriented Programming for Java

Layer:MemberDecl ::= TypeAccess:Access MethodDecl *;
LayerActivation:Stmt ::= Arg:Expr Block ;
Proceed:Access ::= Arg:Expr*;
LayerDecl:ImportDecl ::= <ID:String >;

Figure 10: Declaration of the AST nodes for ContextJ

Parsing

By default, JastAdd uses the Java-based parser generator Beaver [5], a LALR(1)
parser generator. The system is able to consume the tokens that are generated by
JFlex. Beaver accepts a context free grammar, expressed in the Extended Backus-
Naur Form (EBNF), and converts it into a Java class that implements a parser for the
language described by the grammar. The parser extension shown in Figure 11 speci-
fies the syntactic structure of the with construct. The declarations of the other ContextJ
constructs are implemented in the same fashion. The symbol LAYER ACTIVATION is fol-
lowed by an expression which denotes the layer to be activated and which is embraced
by parenthesis and a block. This declaration is assigned to the variable block stmt,
which is initialized within the parser specification of Java and represents all variations of
block statements for this language. This clause will be added as a new block statement.
The variables expression and block used within the declaration refer to the declara-
tion of expressions and block statements. The specification also declares, which code
should be executed for the initialization of the AST object.

Stmt block_statement =
LAYER_ACTIVATION LPAREN expression.p RPAREN block.b

{: return new LayerActivation(p,b); :};

Figure 11: Parser extension for the with statement.

AST Transformations

For the implementation of the behavior shown in Section 4.1, we make use of JastAdd’s
re-writing facilities. Typically, re-write rules change or replace a certain AST node or
subtree with an other. For instance, the JastAdd Java Compiler uses re-write rules
to transform Java 1.5 constructs into 1.4 syntax. We use this technique to replace
LayerActivation nodes with Java methods that initialize the list of active layers, and
to transform Proceed nodes into delegations to the next active layer, see Figure 7. The
re-write rule of LayerDecl contains a side-effect. The node is re-written into a Java
import declaration and creates a corresponding class declaration node for the specified
layer, if the class has not already been generated by an other layer import declaration.
The class is a subtype of contextj.Layer, which is provided by the compiler. This
super class contains methods to manage the thread-local list of active layers, handle
layer activation, and traverse the layer list.

12-12 Fall 2008 Workshop



4 THE CONTEXTJ COMPILER

Figure 12: AST transformation of layer nodes to Java elements.

While these rules are implemented straight forward, it takes more effort to specify
transformations for the declaration of a layer L. To use the double dispatch mechanism
described in 4.1, we need accept and visit methods for each layer:

• A new parameter of type L is inserted into the parameter list of each partial
method definition MLi

. With this parameter, MLi
can be used as an accept

method. When all partial methods have been transformed, the encapsulating
layer L is removed from the class member list.

• For each MLi
a forwarding method M forward is created in L’s class. It acts as visit

method and calls MLi
with its own instance as first parameter.

• A default version of M forward, Mdefaultforward, is created in the super class
contextj.Layer. This method traverses Lactive for the first layer that provides
an implementation of M forward.

• The body of M will be replaced with a call to Mdefaultforward.

• A new method wrapper for the original behavior of M is added to M ’s enclosing
class. This method is called by Mdefaultforward if no layer in Lactive provides a
M forward.

Finally, the compiler generates byte code for the transformed layers. The application
can then be executed as plain Java program. Figure 12 describes the transformation
step at AST level. After re-write, the layer Address is replaced with a class. The class
Person is extended with additional methods. The method body of toString has been
moved to a new wrapper method.

Fall 2008 Workshop 12-13



ContextJ - Context-oriented Programming for Java

Figure 13: Behavioral variations based on layer compositions [2].

5 An Application of ContextJ

Most context-dependent systems are developed based on context-management frame-
works, such as ContextWatcher [3, 14]. Such an infrastructure supports context rea-
soning, for instance, based on ontologies, and passes context information and changes
to applications. We do not focus on context management frameworks but on enhanc-
ing the support of context-aware system adaptation at programming language level [1].
We believe, that COP provides good abstractions to specify the behavior or behavior
adaptations which have to be executed dependent on the current context.

We will give an example for a service-based mobile application in the following sub-
section. Since we want to point out the interaction of services and context information,
we chose a domain with frequent context changes.

5.1 Sharing Context Data

Mobile community applications (e.g., [11, 14]) allow users to share information about
their mood, activities, location, and more. In this scenario, we focus on the location
representation of buddies on mobile devices. Consider, Lucy and Tim are using our
community software on their mobile clients. When Lucy checks Tim’s current location
with her cell phone, the graphical representation of this information depends on Lucy’s
context: If Lucy’s device is currently connected to the Internet at high-bandwidth, a web
map service is requested to render Tim’s location on a map. Figure 13a gives an exam-
ple for this map representation. Contrary, if the bandwidth is low, Tim’s representation
depends on Lucy’s need for active information. This information is stored in Lucy’s user
profile and is accessible for applications. In the case that Lucy prefers a nice graphical
representation over the refresh period, a map with Tim’s outdated location is shown
(Figure 13c). The map is labeled with the time stamp of the last update. Alternatively,

12-14 Fall 2008 Workshop



5 AN APPLICATION OF CONTEXTJ

1 layer ActualInformation {
2 public UIComponent renderUser () {
3 String buddyLocation = requestService("getBuddyLocation", "Tim");
4 return renderMap(requestService("getMap", buddyLocation ));
5 }
6 }
7 layer OutdatedInformation {
8 public UIComponent renderUser () {
9 UIComponent component = proceed ();

10 component.add(renderTimeStampOfLastUpdate ());
11 return component;
12 }
13 }
14 layer TextualRepresentation {
15 public UIComponent renderUser () {
16 String buddyLocation = requestService("getBuddyLocation", "Tim");
17 return renderText(buddyLocation );
18 }
19 }

Figure 14: Alternative layer definitions for a method.

if Lucy insists on up-to-date information, Tim’s position data is simply shown as a text
(Figure 13b) as long as the bandwidth is too low for updating the map image.

When Tim arrives at the underground station, his GPS device is unable to receive
data any more. Hence, Lucy receives the information that Tims location information is
not actual (Figure 13d).

5.2 Implementation using ContextJ

In the following, we present a COP-based implementation of parts of our scenario. We
focus on the modularization of context-dependent behavioral variation with layers and
the dynamic composition of layers.

Modularization. Consider, the functionalities for the different location representa-
tions shown in Figure 13 are modularized into different layers.

Dynamic Composition. Each combination of these layers yield to a different com-
position. Dynamic compositions are controlled by dynamic layer activations. The next
listing shows such an activation. The service call getBuddyActivity is invoked within
the low bandwidth context, which is inferred by the method call Bandwidth.isLow.
Thus, Lucy receives the compressed list of activities computed by the layered method
definition of the previous listing. Note that layer activation is thread-local; a parallel
service request of Tim, for instance, would not be dispatched to the layered method.

Different Combinations of layer activations lead to different compositions. The
listing shown in Figure 15 contains an activation of multiple layers to compose the
behavior shown in Figure 13(d). The invocation of renderUser is passed to the
OutdatedInformation layer. First, the proceed function delegates the call to the
next layer. The TextualRepresentation layer renders the location simply as a text

Fall 2008 Workshop 12-15



ContextJ - Context-oriented Programming for Java

1 Activity a;
2 if(getBandwidth (). isLow ()) {
3 with(OutdatedInformation ,TextualRepresentation) {
4 a = client.requestService("getBuddyActivity", "Tim");
5 }
6 }

Figure 15: Conditional layer activation.

and returns the component back to OutdatedInformation that adds a time stamp to
it.

6 Summary and Future Work

In this paper, we presented two systems that provide COP for Java. We introduced
ContextLogicAJ, an aspect library that can act as a pre-compiler to inject COP specific
behavior into Java applications. COP functionality is implemented by advice declara-
tions, thus it is easy to change layer-specific behavior at source code level by changing
its advice code. However, application developers have to follow some coding conven-
tions for proper use of the COP functionality of the aspect. To overcome this drawback,
we developed ContextJ, a language extension to Java. We constructed a compiler for
ContextJ, whose design and implementation is described in this paper. We presented
an application written with ContextJ to show the benefits of COP for service-oriented
mobile applications.

With the first version of the ContextJ compiler we can support a broad range of
context-dependent Java-based applications. In future, we plan to expand the domain
of COP to distributed systems. For real applications based on distributed or service-
oriented infrastructures, layer composition and activation must be propagated in the
whole system. Therefore, we will implement a service-oriented middleware that allows
exchanging layer information between distributed objects. For an assessment of the
support of modularity, development and evolution of software, we plan to apply this
middleware to a mobile client of the IYOUIT [6,14] platform that we currently implement
for Android [15]. With this system we can support the development and evolution of
context-aware programming in distributed applications.

References

[1] Malte Appeltauer and Robert Hirschfeld. Explicit Language and Infrastructure
Support for Context-aware Services. In Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, and Christian Scheideler, editors, Beiträge der 38.
Jahrestagung der Gesellschaft für Informatik, volume INFORMATIK 2008 - Be-
herrschbare Systeme dank Informatik of Lecture Notes in Informatics, pages 164–
170, München, Germany, September 2008. Gesellschaft für Informatik.

12-16 Fall 2008 Workshop



REFERENCES

[2] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. Dedicated Programming
Support for Context-aware Ubiquitous Application. In UBICOMM 2008: Proceed-
ings of the 2nd International Conference on Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies, Valencia, Spain, September 29 - October 4
2008. IEEE Computer Society Press.

[3] Jakob Bardram. The Java Context Awareness Framework (JCAF) – A Service In-
frastructure and Programming Framework for Context-Aware Applications. In Pro-
ceedings of the 3rd International Conference on Pervasive Computing, Albrecht
Schmidt, University of Munich, May 2005.

[4] Pascal Costanza and Robert Hirschfeld. Language Constructs for Context-
oriented Programming: An Overview of ContextL. In DLS ’05: Proceedings of
the 2005 symposium on Dynamic languages, pages 1–10, New York, NY, USA,
2005. ACM.

[5] Alexander Demenchuk. Beaver - a LALR Parser Generator, October 2008.
http://beaver.sourceforge.net.

[6] DoCoMo Communications Laboratories Europe GmbH and Telematica Instituut.
IYOUIT. http://www.iyouit.eu/portal/.

[7] Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on
Object oriented programming systems and applications, pages 1–18, New York,
NY, USA, 2007. ACM.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley, Boston,
MA, USA, 1995.

[9] Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler construc-
tion system. Sci. Comput. Program., 47(1):37–58, 2003.

[10] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, March-April 2008.

[11] Ralf Kernchen, David Bonnefoy, Agathe Battestini, Bernd Mrohs, Matthias Wag-
ner, and Mika Klemettinen. Context-awareness in MobiLife. In 15th IST Mobile &
Wireless Communication Summit, Mykonos, Greece, 2006.

[12] Gerwin Klein, Steve Rowe, and Régis Décamps. JFlex - The Fast Scanner Gen-
erator for Java, October 2008. http://www.jflex.de.

[13] Günter Kniesel and Tobias Rho. Generic Aspect Languages - Needs, Options and
Challenges. JFDLPA, Sep 2005.

Fall 2008 Workshop 12-17



ContextJ - Context-oriented Programming for Java

[14] Johan Koolwaaij, Anthony Tarlano, Marko Luther, Petteri Nurmi, Bernd Mrohs,
Agathe Battestini, and Raju Vaidya. Context Watcher – Sharing context infor-
mation in everyday life. In J.T. Yao, editor, Web Technologies, Applications, and
Services, Calgary, Canada, July 17-18 2006. IASTED, ACTA Press.

[15] Open Handset Alliance. Android. http://www.code. google.com/android.

12-18 Fall 2008 Workshop



Modeling and Verification of Self-adaptive
Service-oriented Systems

Basil Becker

basil.becker@hpi.uni-potsdam.de

1 Introduction

It is a fact of life that software is always embedded in a social and technical context
which changes over time. Therefore to preserve the value of the software changes
are unavoidable which adjust the software to its current context [29]. The rate at which
such adjustments are required can vary from the short term reaction to frequent context
changes (e.g., mobility) or very slow and only gradual changes (e.g., the user behavior,
new requirements). While the former need rapid system adaptation using pre-defined
heuristics or adaptation rules, effective support to change, extend, or migrate complex
software systems is today responsible for a large fraction of the maintenance efforts to
operate a complex software.

Adaptive and self-managed systems [27] which realizes properties such as self-
healing, self-configuring or self-optimization employing self-adaptation [32,34,42] have
been proposed as a means to address these different challenges.

Advanced software-intensive systems in the future are expected to consist of auto-
nomous agents which coordinate with each other and exploit their context knowledge
to enhance their behavior and exhibit self-adaptive behavior ( [35, 40]) exploiting the
flexible nature of software. Such self-adaptive behavior can be organized either in a
top-down manner when considering an individual system, or bottom-up when consid-
ering cooperative systems. Top-down self-adaptive systems usually assess their own
behavior and change it when the assessment indicates a need to adapt using usually
an explicit internal representations and goals. Bottom-up self-adaptive systems in con-
trast are usually composed of a number of elements which interaction is governed by
often rather simple rules.1

Traditional modeling approaches such as component-based modeling do not cover
the dynamic character of the envisioned self-adaptive systems well. Therefore we sug-
gest using instead a service-oriented approach, which employs collaborations of mul-
tiple roles in form of service contracts (cf. [6, 11]) to address systems with bottom-up
self-adaptive behavior in form of dynamical structural adaptation as it occurs for exam-
ple when autonomous vehicles build convoys. We present how such service-oriented
view can be modeled by a well-defined subset of UML class diagrams with UML collab-
orations as well as well-defined behavioral rules for the structural changes and service

1When the overall behavior emerges from the strict local interaction of the elements, this class of
system is also often named self-organizing systems [40].

Fall 2008 Workshop 13-1



Modeling and Verification of Self-adaptive Service-oriented Systems

contract instantiation or termination (cf. [1, 4]). The details of the role and link behav-
ior of the collaborations not considered in this paper are covered by state machines
extended with real-time constraints [17,19].

As outline in [46] it is necessary to ensure that the complex self-adaptive behavior
does not result in any harm. In [1], we therefore addressed the formal verification
inventing a technique to automatically check inductive invariants for potentially infinite
state models for such systems without time. In [4], we extended this approach to also
cover timed behavior. In both cases, the rules result in an underspecification for the
involved roles which allow them to exploit the resulting degrees of freedom within the
rule-based coordination to incorporate also local optimization and planning behavior.
Due to the often rather limited mental and sensorial capabilities of the involved agents
and their distribution, we made however no assumptions that the self-adaptation of a
system will fix any problems (cf. [21]).

In [19], we presented our approach which allows checking the local timed coordi-
nation for collaborations with a finite number of roles. We employ model checking to
verify the real-time behavior of the interaction of collaboration and its roles separately.
We then combine this in a compositional manner with the verification of the component
synchronization by ensuring that the components refine the collaboration roles. The
proper combination of the former approach to verify the real-time coordination for one
collaboration and the pure structural rules has been presented in [17].

However, besides the emergent effects which result in bottom-up self-adaptive be-
havior and the incorporated local optimization and planning as addressed by these
techniques, also the rules themselves might be subject to evolution when also com-
positional adaptation [30] is considered. To approach this problem we present in this
paper a first idea how to provide suitable run-time checks for changes of these rule sets
such that the required safety properties which have to be guaranteed by the distributed
rule-based self-adaptive behavior can still be guaranteed. We therefore demonstrate
how our existing verification technique for invariant checking for complex rules [1,4] can
be adjusted such that it becomes an incremental technique which is more suitable for
online checks.

The rest of this paper is two fold. The first part (Sections 2 - 6) covers the incremen-
tal verification of inductive invariants and has been published in [2]. The second part
(Sections 7-10) then focuses on the modelling aspects of service-oriented self-adaptive
systems and is based on work, presented in [3]. The report closes with a conclusion
and an outlook to future work.

2 State of the Art

In contrast to other approaches which address the verification of self-adaptive sys-
tems [21,46], we cover timed infinite state systems with structural adaptation and also
evolution in form of changing sets of rules.

A number of related approaches [8, 16, 37, 44] for the verification of systems with
structural changes exist. However, they do not support time dependent behavior, re-
quire an initial configuration, only support finite state systems (or systems for which an

13-2 Fall 2008 Workshop



3 MODELING

Figure 1: UML class diagram describing the system’s elements and their relation to
each other

abstraction to a finite state model of moderate size exist), and do not support evolution.
For the verification of infinite state systems with changing structure only a few at-

tempts exist which however do not support time or evolution as approached in this pa-
per: Graph transformation systems are transformed in [7] into a finite structure, called
Petri graph which consists of a graph and a Petri net. Both can be analyzed with exist-
ing tools and for infinite systems the authors present an approximation. The approach
is, however, not appropriate for our needs as it requires an initial configuration and
the formalism is rather restricted, e.g., rules must not delete anything. In [9], partner
graph grammars are employed to check topological properties of the platoon building.
The partner abstraction and abstract interpretation are used to compute over approxi-
mations of the set of reachable configurations. However, the supported partner graph
grammars restrict not only the model but also the properties which can be addressed
a priori.

Real-Time Maude [33] is the only approach we are aware of that addresses struc-
tural changes as well as time. It is based on rewriting logics and provides tool support
for simulation and bounded model checking. However, it like other approaches requires
an initial configuration and is limited to finite state models.

3 Modeling

Throughout the paper we will use a common application example to explain and visu-
alize the theoretical findings. The application example is based on a research project
named Railcap2, which aims at developing a new intelligent transportation system. The
Railcap system is build around small, autonomous shuttles. This enables providing a
public transportation system, which will serve the customers’ individual needs. A sin-
gle shuttle has an enormous energy consumption. Hence, techniques for achieving an
even energy balance are required. Railcap proposes the building of convoys to achieve
this goal. The convoys are only efficient w.r.t. the energy balance if the shuttles are in
close proximity and therefore arises a need for the real-time coordination among them.

The set of possible states of our system is modeled through UML class diagrams.
In Figure 10 the class diagram we use as ontology is shown. Within our system we

2http://www.railcab.de

Fall 2008 Workshop 13-3



Modeling and Verification of Self-adaptive Service-oriented Systems

}s1.timeAtTrack >= 10; s1.timeAtTrack'=0{

«create»
on

 «destroy» on
 

on 

next
 

Shuttle:s2

Track:t2

Shuttle:s1

Track:t1

Figure 2: moveSimple rule Story Pattern

}s1.timeAtTrack > 3{

front
 

rear  

«create» front  

«create»
rear

 

on

 

on
 

next

 

«create»

DistanceCoordination:dc

DistanceCoordination:dcNAC

Shuttle:s2Shuttle:s1

Track:t1 Track:t2

Figure 3: createDC rule Story Pattern

distinguish between Shuttles and WorkShuttles, whose difference is described through
the fact that Shuttles can instantiate the DistanceCoordination service contract and Work-
Shuttles can’t. Both types can be located at Tracks and each Track can have a successor
that can be reached via the next association. Shuttles are said to be in a convoy if they
have the DistanceCoordination service contract instantiated. WorkShuttles are used to
maintain the Tracks and therefore could not build any convoys.

For modeling behavior we facilitate Story Pattern. In Figure 2 such a Story Pattern
is shown. Story Pattern are a special extension of UML object diagrams [25] that are
able to describe changes to the object structure in a compact fashion. The meaning of
the mentioned Story Pattern can be translated as follows: The Shuttle s1 only advances
from Track t1 to Track t2 if there is no other Shuttle located at Track t2. In addition to the
structural requirements, this Story Pattern has a guard (s1.timeAtTrack ≥ 10) and an
update statement (s1.timeAtTrack′ = 0) attached to it.3 Detailed semantics follow in
Section 4.1.

Due to space limitation we cannot show all rules in this paper. Beside the rule shown
in Figure 2 our system further consists of rules that allow movement with an instanti-
ated DistanceCoordination service contract and a move rule dedicated to WorkShuttles.
Creation and deletion of the DistanceCoordination service contract is established by two
rules, which are depicted in Figures 3 and 4.

3The employed rules can only express local atomic changes (effects). We assume that self-adaptive
systems typically are distributed systems and following investigating local atomic changes is not a re-
striction but a necessity.

next

 

on

 

«destroy»

rear

 

«destroy»

front

 

on

 

Shuttle:s1

«destroy»

DistanceCoordination:dc Shuttle:s2

Track:t1 Track:t2

Figure 4: deleteDC rule Story Pattern

13-4 Fall 2008 Workshop



4 INVARIANT CHECKING

}s1.timeAtTrack > 5{

front

 

rear 

on on

 

next
 

DistanceCoordination:dc

Track:t1 Track:t2

Shuttle:s2Shuttle:s1

Figure 5: Forbidden Story Pattern

To guarantee the safety of the autonomous vehicles, we have to exclude states
which represent an accident or a hazard. Those states are specified through instance
situations, i.e. Story Pattern without creation or deletion elements.

For our application example those states have to be excluded where two Shuttles
are in close proximity without having a DistanceCoordination service contract instantiated
(cf. right graph in Figure 5) or a WorkShuttle is close to any other vehicle. The left graph
in Figure 5 depicts this for a WorkShuttle being close to a Shuttle.

4 Invariant Checking

In this Section we roughly describe how invariant checking for timed and untimed graph
transformation systems works. More detailed description of this verification technique
could be found in [1] and [4]. We will first describe the employed formal model, review
the basic idea of our approach [1] for untimed models and then finally describe the
extension to also cover time dependent behavior [4].

4.1 Formal Model

For a given set A of attributes a attributed graph is a pair (G,α) consisting of a graph G
= (N,E) with node set N and a partial function α : N × A → R providing evaluations
for the attributes defined for each node. A system state, given as an object diagram,
can be encoded as an attributed graph by modeling objects as nodes with attributes
and links as edges.

A condition φ over node attributes can then be evaluated for any evaluation function
α. To describe more complex properties we use graph pattern P which consist of two
sets of positive and negative nodes, and two sets of positive and negative edges. An
attributed graph pattern is a pair (P, φP ) consisting of a graph pattern P and a condition
φP over the attributes of the positive nodes. An attributed graph pattern matches an
attributed graph (G,α) if the positive elements of P matches G, the negative ones
cannot be matched, and the condition φp is also true for α when the nodes are mapped
according to the match of P and G.

A graph transformation rule (L,R)r consists of two graph patterns, a left hand side L
(LHS) and a right hand side R (RHS). L consists of those elements of the Story Pat-
tern that are not annotated with �create�, including negative elements, whereas R

Fall 2008 Workshop 13-5



Modeling and Verification of Self-adaptive Service-oriented Systems

consists of all elements not annotated with �destroy�. The elements annotated with
�create� will be created by the rule, while those annotated with �destroy� will be
deleted. Elements without annotations are preserved by the application. We write
G→r G

′ if rule r can be applied to graph G and the application results in graph G′. We
write G →∗ G′ if G is transformed into G′ by a (possibly empty) sequence of rule ap-
plications. For the Story Pattern moveSimple in Figure 2 we thus have that L contains
the positive nodes for s1, t1, and t2 while s2 is the only contained negative node.

We have attributed graph rules ((L, φ), R, µ)r with φ a condition over L and µ an
evaluation for all positive nodes new in R and an arbitrary subset of the nodes which
are in R and L where (L, φ) instead of L must be matched and the resulting attribute
evaluation is determined by the update µ. We write (G,α) →r (G′, α′) if rule r can be
applied to graph (G,α) and the application results in graph (G′, α′). We write (G,α)→∗
(G′, α′) if (G,α) is transformed into (G′, α′) by a (possibly empty) sequence of rule
applications. In the moveSimple rule of Figure 2 the condition φ equals the guard
s1.timeAtTrack > 10 whereas µ equals the update statement s1.timeAtTrack′ = 0.

A graph transformation system (GTS) S = (R, p) consists of a set of graph trans-
formation rules R (defined by a set of Story Patterns), defining all possible transforma-
tions in the transformation system, and a priority function p : R → N, which assigns
a priority to each rule (the higher the number assigned to a rule the higher the rule’s
precedence). An additional set of initial graphs may describe the initial states of the
system.

To also cover timed behavior we decompose the set of attributes into a set C ⊆ A
of clocks and a set of normal attributes A \ C. Given an evaluation function α, we refer
to that evaluation function where the values of all clock variables is incremented by x
as α⊕ x (resp. α	 x for decrement).

A timed graph transformation system (TGTS) S = (R,Ru, p) is then defined for
(R, p) a valid attributed graph transformation system and Ru ⊆ R the subset of all
urgent rules.

In the case of TGTS, we have additional time steps where the clock values increase
over time. For δ ≥ 0 we have (G,α)→δ (G′, α⊕ δ) if for all x ≤ δ holds (G,α⊕ x) does
not match any urgent rule r′ ∈ Ru.

4.2 Untimed Case

In our approach a set of forbidden graph patterns F = {F1, . . . , Fn} are employed to
represent possible safety-violations (hazards, accidents) of our system. The related
property ΦF , denoted by G |= ΦF , holds iff G matches none of the graph patterns in F .
We call G a witness for the property ¬ΦF if G in contrast matches a forbidden graph
pattern F ∈ F .

The property ΦF is an operational invariant of the GTS S iff for a given initial
graph G0 for all reachable G (G ∈ {G′ | G →∗ G′} holds G |= ΦF (cf. [15]). However,
due to the Turing-completeness of graph transformation systems with types check-
ing them is restricted to finite models and thus does not fit to the considered class
of problems. We therefore instead tackle the problem whether the property ΦF is an
inductive invariant. This is the case if for all graphs G and for all rules r ∈ R holds

13-6 Fall 2008 Workshop



4 INVARIANT CHECKING

that G |= ΦF ∧ G →r G
′ implies G′ |= ΦF . If we have an inductive invariant and the

initial graph G0 fulfills the property, then ΦF is also an operational invariant as inductive
invariants are stronger than their operational counterparts.

The definition of an inductive invariant can be reformulated as follows to have a
falsifiable form: a property ΦF is an inductive invariant of a GTS S = (R, p) if and only
if there exists no pair (G, r) of a graph G and a rule r ∈ R such that G |= ΦF , G→r G

′

and G′ 6|= ΦF . Such a pair (G, r) which witnesses the violation of property ΦF by rule r
is then a counterexample for the initial hypothesis.

As explained in detail in [1], we can exploit the fact that the application of a rule
can only have a local effect to verify whether a counterexample exists. A counterex-
ample (G, r) can only exist when the local modification of G by rule r is necessarily
responsible for transforming the correct graph G into a graph that violates the prop-
erty. In addition, to have a possible counterexample we require that the rule r is not
preempted by a rule r′ with higher priority.

As we can represent the infinite many possible counterexamples by an only finite
set of representative patterns Θ(Rl, Fi) of graph patterns P ′ that are combinations of
a RHS Rl of a rule rl and a forbidden graph pattern Fi ∈ F (cf. [1]), we can check that
no counterexample exists (and ΦF is thus an inductive invariant) only considering this
finite set.

4.3 Timed Case

Verification of inductive invariants for TGTS differs from the untimed case. According
to the time model we have introduced in Section 4.1 the system’s behavior is given by
the alternation between discrete and time steps. Therefore, reaching a forbidden graph
pattern in principle could involve a rule application as well as a time step. Basically
the approach for the timed case maps the time related aspects on a system of linear
inequalities which can then be checked by a constraint solver which require that all
conditions of the timed graph transformation system are linear.4 The discrete aspects
are handled similar to the untimed case.

For a property ΦF being an inductive invariant for an TGTS S = (R,Ru, p), with
F = (F1, ψ1) . . . (F1, ψ1) it is required that there exists no pair ((G,α), r) of an attributed
graph (G,α) and an attributed rule r ∈ R such that (G,α) |= ΦF , (G,α) →r→δ (G′, β),
and (G′, β) 6|= ΦF . If such a pair ((G,α), r) exists it is, analogously to the untimed case,
called a counterexample for the timed case.5

Again, only a finite set of representative patterns Θ((Fi, ψi), rl) of graph patterns P ′

that are combinations of a RHS Rl of a rule rl = ((Ll, φl), Rl, µl)rl and a forbidden graph
pattern (Fi, ψi) ∈ F have to be considered.

In Figure 6 a scheme for the verification of a TGTS is depicted. According to this
we have to check for any graph pattern (P ′, φP ′) ∈ Θ((Fi, ψi), rl) for some (Fi, ψi) ∈ F

4It is to be noted that also early versions of UPPAAL (cf. [45]) relied on constraint solving for the
verification of real-time systems.

5This condition in fact requires that for an initial state (G,α) we check not only (G,α) |= ΦF but also
(G,α⊕ x) |= ΦF for all x with (G,α)→x (G,α⊕ x).

Fall 2008 Workshop 13-7



Modeling and Verification of Self-adaptive Service-oriented Systems

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

φm

LIEs LIEt
LIEtLIEs LIEu

k 6= l

LIEu

Rl

(Fi,ψi)

(Lm,φm)

(Ll,φl)

(F ′i,ψ
′
i)

(Fj,φj)

(Lk,φk)

t

tt1

ψi

Figure 6: Schema to check a potential counterexample ((P, φP ), rl) with resulting graph
pattern (P ′, φP ′) that is a combination of a RHS Rl of a rule rl and a forbidden graph
pattern (Fi, ψi) ∈ F in the timed case

and rl ∈ R whether the pair ((P, φP ), rl) with (P, φP ) defined by (P, φP )→r→δ (P ′, φP ′)
is a counterexample for ΦF or not as follows:

1. Check that the rule rl can be applied to attributed graph pattern (P, φP ) and that
the (P ′, φP ′) results from this application plus a time step of length δ ≥ 0 (this
implies that no rk ∈ Ru \ {rl} exists with p(rk) > p(rl) that matches (P, φP ) and
that for all x ≤ δ holds that (P ′, φP ′ 	 x) is matched by no rm ∈ Ru, due to the
definition of rule application).

2. Check that there exists no (Fj, φj) ∈ F with (Fj, φj) v (P, φP ) (otherwise (P, φP )
is already invalid).

For rules with higher priority ((Lk, φk)) as well as forbidden attributed graph patterns
((Fj, ψj)) holds in the case they also contain clock constraints that a match found in the
source graph pattern does not directly invalidate the counterexample but rather restrict
the possible clock values. We derive a system of linear inequalities LIE s to encode
this. Further the application of the rule r may either update or not affect clock variables
(cf. 4.1) this has to be encoded in the system of linear inequalities, too.

We have to show the target graph pattern’s reachability. In the untimed case this
has been done, if the graph rule could not be preempted. This check is required but
not sufficient for the timed case. Urgent rules may in fact prevent that we reach a
clock evaluation which fulfills the clock constraints of the structural embedded forbidden
graph patterns. This effect has to be encoded in a system of linear inequalities including
boolean conditions.

Thus, we can finally use a solver for linear inequalities to check the forbidden graph
pattern’s reachability. In case the system of linear inequalities is not satisfiable the
current pair is not a witness against system’s correctness. Otherwise, the found clock
and attribute valuations serve together with the current pair as witness against the
system’s correctness.

Listing 1: Complete Algorithm
1 Boolean check ( (R,Ru, p),F )
2 begin
3 f o r a l l (Fi, ψi) ∈ F , rl ∈ R do
4 C := checkPair ( (R,Ru, p), (Fi, ψi), rl ) ;
5 i f (C == ∅ ) then

13-8 Fall 2008 Workshop



5 INCREMENTAL INVARIANT CHECKING

6 return fa lse ;
7 f i
8 done
9 return true ;

10 end

The complete algorithm performs this check for any given rule ((Ll, φl), Rl, µl)rl ∈ R
and forbidden graph pattern (Fi, ψi) ∈ F by computing in a subroutine checkPair as
depicted in Listing 1.

checkPair computes all possible target graph patterns (Θ((Fi, ψi), Rl, µl) and then
derives the related source graph patterns. The above outlined cases are then employed
to decide whether the source graph pattern (P, φP ) represents potentially safe graphs
that can be transformed into unsafe graphs by applying r plus a time step δ.

5 Incremental Invariant Checking

For the incremental checking we have to store some information gathered during the
checking. The checkPair function therefore returns the information which elements
permit to exclude the existence of a counterexample in form of a check.

Definition 1 If for a TGTS S = (R,Ru, p) no counterexample for any (P ′, φP ′) ∈
Θ((Fi, ψi), rl) for some (Fi, ψi) ∈ F and rl ∈ R could have been found using higher
priority rules R′ ⊆ R with ∀r′ ∈ R′ : p(r′) > p(rl) that preempt rl, urgent transitions
R′u ⊆ Ru which preempt that (Fi, ψi) can be reached and forbidden graph pattern F ′ ⊆
F that exclude that the initial graph was correct, we call the tuple (R′,R′u,F ′, (Fi, ψi), rl)
a valid check for Θ((Fi, ψi), rl).

The checking of S |= ΦF as outlined in Listing 1 therefore equals to derive a com-
plete set of checks defined as follows:

Definition 2 A set of checks C is complete iff for each forbidden pattern (Fi, ψi) ∈ F
and all rules rl ∈ R of a TGTS S = (R,Ru, p) a valid check (R′,R′u,F ′, (Fi, ψi), rl)
exists.

To be able to cope with incremental changes to the TGTS S or forbidden graph
pattern F , we can exploit the following result:

Lemma 1 A valid check (R′,R′u,F ′, (Fi, ψi), rl) for a TGTS S = (R,Ru, p) and for-
bidden graph pattern set F is also a valid check for a TGTS S ′′ = (R′′,R′′u, p ′′) and
forbidden graph pattern F ′′ if

R′ ∪ {rl} ⊆ R′′ ∧R′u ⊆ R′′u ∧ F ′ ⊆ F ′′∧
∀r ∈ R′ : prio(r) > p(rl)⇒ prio′′(r) > p ′′(rl).

Proof: The result follows from the fact that (1) all higher priority rules in R′ which
preempt rl are still present in R′′ and still have a higher priority than Rl, (2) all urgent
transitions R′u which preempt that (Fi, ψi) can be reached are still present in R′′u and
(3) that all forbidden graph pattern in F ′ that exclude that the initial graph was correct
are also still present in F ′′. �

Fall 2008 Workshop 13-9



Modeling and Verification of Self-adaptive Service-oriented Systems

An algorithm that for a given change of the TGTS S reconstruct a complete set of
checks W rather than derived it fully anew by exploiting the result of Lemma 1 can thus
work as outlined in Listing 2.

Listing 2: Incremental algorithm
1 Set check ( (R′′,R′′u, p ′′),F ′′, (R,Ru, p),F ,W)
2 begin
3 Set RP := ∅ ; Set W’ := ∅ ;
4 i f (R′′ ⊂ R ∨R′′u ⊂ Ru ) then
5 f o r a l l (Fi, ψi) ∈ F ′′ ∩ F , rl ∈ R′′ ∩R do
6 / / check c o n d i t i o n o f Lemma 1
7 i f ( (R′,R′u,F ′, (Fi, ψi), rl) ∈W ∧
8 R′∪{rl}⊆R′′ ∧R′u⊆R′′u ∧ F ′⊆F ′′
9 ∧∀r∈R′ :p(r)>p(rl)⇒p′′(r)>p′′(rl)

10 ) then
11 / / s to re v a l i d check i n W’
12 W’ := W’ ∪ {(R′,R′u,F ′, (Fi, ψi), rl)} ;
13 else
14 / / not by W covered pa i r s
15 RP := RP ∪ {((Fi, ψi), rl)} ;
16 f i
17 done
18 else
19 / / a l l o ld checks remain v a l i d
20 W’ := W;
21 f i
22 / / pa i r s f o r a l l new forb idden pa t t e rn
23 f o r a l l (Fi, ψi) ∈ F ′′ \ F , rl ∈ R′′ do
24 RP := RP ∪ {((Fi, ψi), rl)} ;
25 done
26 / / pa i r s f o r a l l new ru l es
27 f o r a l l (Fi, ψi) ∈ F ′′, rl ∈ R′′ \ R do
28 RP := RP ∪ {((Fi, ψi), rl)} ;
29 done
30

31 / / check f o r a l l accumulated pa i r s
32 f o r a l l ((Fi, ψi), rl) ∈RP do
33 C := checkPair ( (R′′,R′′u, p′′)), (Fi, ψi), rl ) ;
34 i f (C == ∅ ) then
35 return ∅ ;
36 else
37 W’ := W’ ∪ C;
38 f i
39 done
40 return (W’ ) ;
41 end

The following theorem proves that the incremental algorithm is also correct even
though in several cases no new checks are done.

13-10 Fall 2008 Workshop



6 IMPLEMENTATION & EVALUATION

Theorem 1 The algorithm presented in Listings 2 returns a complete set of valid checks
iff the non-incremental algorithm presented in Listing 1 returns true.

Proof: Assuming that this is not the case, we have to consider the following cases:
(1) If one algorithm returns an empty set resp. false while the other algorithm did not, we
can conclude that the checkPair returns different results when called in both algorithms
for at least one pair which is not possible. (2) If the incremental algorithms returns a
non empty W’ and the old one true, the incremental algorithm might still contain invalid
checks. We can exclude that the call of checkPair has resulted in such an invalid check
(as this would result in the same error for the non-incremental algorithm) and restrict
us to the case where the check has been reused. However, as the check has been
only reused when the criteria of Lemma 1 are fulfilled (either by the check in the inner
if-statement in line 7-9 or when the rule and forbidden graph pattern set have been only
extended as checked by the outer if-statement in line 4), such an invalid check in the
set W’ of the incremental algorithm can be excluded. �

The non-incremental algorithm requires |F ′′| ∗ |R′′| calls to checkPair. For the in-
cremental algorithm we can observe the following worst-case complexity results: (1) If
the we add a new rule, this can result in |F ′′| required checks. (2) If the we add a new
forbidden graph pattern, this can result in |R′′| required checks. (3) If we remove a rule
or a forbidden graph pattern and no old check can be reused, we require |F ′′| ∗ |R′′|
checks. Therefore, in case (1) and (2) the worst-case complexity can be improved from
quadratic to linear only while in case (3) no speedup can be guaranteed. However, as
outlined in the following section, in the average case we pretty often reuse the stored
checks to also speedup the treatment of case (3).

6 Implementation & Evaluation

In this Section we want to give some insights into the implementation details of our
algorithm. The Section concludes with a small evaluation of our findings.

The basic idea underlying our implementation is to store the set W’ not as set but as
a bipartite graph. This graph is called dependency graph GD. GD is defined as follows:
GD = (VD, ED, LD) where VD = V S

D ] V T
D is a set of nodes, ED ⊆ V S

D × V T
D is a set of

edges and two labeling function LSD : V S
D 7→ (R × F) and LTD : V T

D 7→ R ∪ F . A node
v ∈ V S

D represents a pair of a graph rule and a forbidden graph pattern, whereas a
node v′ ∈ V T

D stands for a graph rule or a forbidden graph pattern respectively. When
a call to checkPair returned a new check (R′,R′u,F ′, (Fi, ψi), rl), we memorize this by
adding for s the node with LSD(s) = (rl, (Fi, ψi)) the following edges to the dependency
graph:

E ′D = ED ∪ {(s, t)|LTD(t) ∈ R′ ∪R′u ∪ F ′}.

In the case of removal of an graph rule or forbidden graph pattern j the incremental
algorithm traverses the removed node’s incoming edges and receives a list of pairs,
whose checks relies on the removed node.

E ′D = ED \ {(s, t) ∈ ED|LTD(t) = j}

Fall 2008 Workshop 13-11



Modeling and Verification of Self-adaptive Service-oriented Systems

For those pairs s with (s, t) ∈ ED and LTD(t) = j we have to check whether we can find
another check.

We have evaluated our approach by applying several successive modifications to
the system. The applied modifications subsume the update of a rule, the addition of
new forbidden graph pattern and the addition of a new rule. We started the evaluation
with a configuration of our system that only contained Shuttles. This system consists of
four rules and two forbidden subgraphs and its verification took 1553ms. For this ini-
tial system configuration (C0) obviously no incremental check was applicable. The first
applied modification (yielding configuration C1) replaced the rule moveSimple (cf. Fig-
ure 2) by a version which also considered WorkShuttles. In configuration C2 we added
the forbidden graph pattern required for WorkShuttles and finally in configuration C3 we
added a rule, which allows for moving of WorkShuttles. All of the checked configurations
are safe.

tall tinc ∆t #R #P ∆R ∆P

C1 1690 411 137 4 2 2 0
C2 3347 742 1657 4 8 0 6
C3 5075 894 1728 5 8 1 0

Table 1: Evaluation results

The evaluation results are depicted in Table 1. The rows contain the data for the
configurations an the columns denote the time for old algorithm tall, the time for the
incremental one tinc, the time difference between Ci and Ci−1 for the old algorithm ∆t.
#R, #P, ∆R and ∆P refer to the numbers of rules and forbidden subgraphs and the
changes applied to these sets.

The results show that the incremental algorithm can also in case of rule removal
(C1) perform much better than the non-incremental algorithm. In two out of three con-
figurations the incremental algorithm is even faster than the differences between the
durations of the non-incremental algorithm for both configurations.6 While the pre-
sented results are promising, the available data set is not sufficient to derive any more
general observations.

7 Modeling of correct self-adaptive systems

It is a fact of life that software is always embedded in a social and technical context
which changes over time. Therefore to preserve the value of the software changes
are unavoidable which adjust the software to its current context [29]. The rate at which
such adjustments are required can vary from the short term reaction to frequent context
changes (e.g., mobility) or very slow and only gradual changes (e.g., the user behavior,
new requirements). While the former need rapid system adaptation using pre-defined
heuristics or adaptation rules, effective support to change, extend, or migrate complex

6This unexpected observation can result as the old algorithm checks all pairs with the changed sets
of rules and forbidden graph patterns, while the incremental algorithm only checks the newly created
pairs with the extended system.

13-12 Fall 2008 Workshop



7 MODELING OF CORRECT SELF-ADAPTIVE SYSTEMS

software systems is today responsible for a large fraction of the maintenance efforts to
operate a complex software.

Adaptive and self-managed systems [27] which realizes properties such as self-
healing, self-configuring or self-optimization employing self-adaptation [32,34,42] have
been proposed as a means to address these different challenges.

The outlined requirements also hold for the next generation of advanced mecha-
tronic systems which will adjust their behavior to the changing system goals leading
to self-adaptation respectively self-optimization (cf. [38]). In this context the MECHA-
TRONIC UML approach has been developed [12, 13] which due to the restrictions of
the domain can provide a comprehensive model-driven approach for the development.
However, no such approach for the more general case exists where the limitations
exploited in the MECHATRONIC UML approach do not apply.

It is a fact that for a systematical engineering of self-adaptive systems modeling
and early analyzation is required. But as far as we know there already exist several
approaches that tackle the modeling of self-adaptive or dynamic systems. According
to [10] none of the existing approaches is able to model structural as well as behavioral
changes. The dynamic change of structural aspects has been investigated in [22, 28,
31,36,43], whereas the authors of [5,14,26,46] have put an emphasize on the modeling
of behavioral aspects.

In this paper a proposal for a comprehensive modeling approach for self-adaptive
systems with a rigorously defined formal semantics that enables to also address the
question of correctness will be presented. The approach requires that all required
modeling artifacts can be covered at the theoretical level by means of attributed graph
and attributed graph transformations. This formal model provides powerful concepts to
describe the structural changes which are initiated by the several layers of self-adaptive
software and thus is well suited to serve as the underlying formal model.

Instead of the underlying formal model of attributed graphs we suggest to employ
well proven software engineering techniques such as object diagrams consisting of
instances of a class diagrams to capture the state in a more convenient way. For
the different forms of behavior also specific graphical notations that cover the required
behavior in form of graph transformations are suggested. An extended combination of
activity diagrams and collaboration diagrams named Story Diagrams (cf. [24]) capture
the required operational parts. Goals are captured by a specification technique for
combine structural and temporal properties [18]. These four diagrams are employed
for a case study to demonstrate how the software structure and behavior including also
self-adaptive software with parameter as well as structural changes can be modeled.

For the modelling of behavior with graph transformations several well founded ap-
proaches exist (e.g. AGG7). Both, the work of Taentzer et al. [43] and Le Mètayer [31]
also used graph transformations to describe system changes. In contrast to the pre-
sented approach both approaches restrict themselves to pure graphs and changes
described by a single graph transformations while we will suggest UML structural mod-
eling and combine graph transformations with control flow concepts. In addition, both
approaches use graphs but not attributed graphs and are therefore more constrained
concerning their expressiveness than the presented approach.

7http://tfs.cs.tu-berlin.de/agg/

Fall 2008 Workshop 13-13



Modeling and Verification of Self-adaptive Service-oriented Systems

(a) Instance Situation of a component network (b) Component network shown in figure 7(a) as
typed and attributed graph

Figure 7: Different representations for a component model

Figure 8: Reference architecture for self-adaptive systems (from [27])

The application example we have chosen for this paper is a self-adaptive Pipe and
Filter architecture. In Figure 7(a) each filter is represented by a component and each
pipe by a connection between two components. Thus the components build a network.
The network is able to perform an operation on the input that it receives from the input
component. The results are available at the output components. The self-adaptive
system we have in mind can be optimized for two contradictory objectives. The two
objectives are the data rate that could be measured at the output components or the
delay that means the amount of time if takes until results are available for a given input.

We assume that each component provides three attributes throughput, maxT and
delay that hold the values for the data rate the component currently is able to provide,
the component’s maximum data rate and the time the component delays computation,
respectively. The components communicate with each other by message passing.

8 Requirements

We will use this section to point out what requirements an approach has to meet in
order to be considered useful for modeling correct self-adaptive systems.

We will use the reference architecture for adaptive and self-managed systems pro-
posed in [27] depicted in Figure 8 to outline our approach and characterize the possible
different forms of self-adaptation. The component control layer (CCL) contains the sys-

13-14 Fall 2008 Workshop



8 REQUIREMENTS

tem’s components and their computational logic. The CCL is monitored by the change
management layer (CML) which is able to change the CCL’s structure in order to restart
components etc. The topmost layer is the goal management layer (GML) that monitors
both the CCL and indirectly the CCL. In the GML the system’s “intelligence” is located.
Whenever the GML recognizes unwanted behavior, a plan is computed and passed to
the CML in order to regain an acceptable state (for details see [27]).

In system design one has to decide what a system’s characteristics are. For most
more complex systems this includes decisions among centralized and decentralized
systems, deterministic and nondeterministic systems etc. Of course all these choices
are valid for a self-adaptive system and following each formal model should support
them. Nevertheless, we have identified the following other requirements: (1) internal
and external change initiation (2) addition / removal of architectural elements (3) differ-
ent levels of abstraction (4) possibility to change system’s environment (5) possibility
to express time constraints (6) modeling of control flow (7) intuitive modeling and (8)
correctness. This list only contains the most relevant properties. Special domains or
intentions might require additional features. Special for the modeling of self-adaptive
systems are properties (1) to (4). The requirements (5) to (8) charaterize a good mod-
eling approach in general. In the following we will present the arguments that support
our decision.

In some systems the system decides on its own how to change its structure. In a
different setup this change could be intiated by an component, which is located outside
the system’s bounds. Following an approach for the modeling of self-adaptive systems
should support internal and external change initiaion (1).

The addition and removal of architectural elements (2) is a basic property a formal
approach has to provide. In case the system has to react on some events that pre-
vents some of the system’s goals to be feasible, the system has to change its goals.
Changing goals usually means that new goals are added (or activated) and old ones
are removed (or deactivated) from the system. Therefore it must be possible to add and
remove elements. Of course the same holds for other layers as well, if goals change
this could require an addition or a removal of architectural elements at the component
level.

The different levels of abstraction (3) are heavily associated to the three layers of the
reference architecture for self-adaptive systems. The topmost layer (goal management)
might be interested in a much more abstract view of the system’s state than the lowest
level. Further verification techniques are only capable to verify relatively small models,
so a high degree of abstraction is useful as well.

Self-adaptive systems are much more context aware than other systems are. This
requires to explicitly model the system’s context. Of course this also affects the system,
so it could be necessary to monitor the environment to be able to react on changes.
Following the changes in environment (6) have to be expressible by the approach.

The complexity of self-adaptive systems requires a modeling approach which is able
to provide some techniques for the modeling of control-flow (6). The system’s goals
typically include if-then constructs that, especially if interaction with the environment is
needed, can be augmented by timing constraints (5).

Especially for complex systems it is of high importance that the cognitive gap be-

Fall 2008 Workshop 13-15



Modeling and Verification of Self-adaptive Service-oriented Systems

tween modeling notation, formal model and developed system is not too big. The bigger
the gap, the harder mistakes are to identify. Correctness (8) should be assured for all
systems of course. For self-adaptive systems this requirement is of increased impor-
tance as those systems change their behavior on their own without or with few human
interaction. Followingly, it should be assured that the system is safe.

9 Modeling Self-Adaptation

We propose to use a graph transformation based approach to model self-adaptive sys-
tems at a high level of abstraction. To explain the benefits of this approach we will first
present the different modeling notations used at each layer and then outline how the
presented notations relate to graph transformation systems. Finally we will discuss how
the explicit modeling of representative models employed in the change management
and goal management can be avoided by idealization.

Figure 9: Story Pattern that describes the message passing between two components

Even if our approach has some similarities with MDA - i.e. it also uses model trans-
formations between different layers - it can not be compared to MDA. The main differ-
ence is that MDA performs activities at design time, whereas we propose a modeling
approach self-adaptive systems and following the acitivies are scheduled at run-time.
However, we use techniques such as automatic code generation for all employed mod-
eling techniques and following our approach can be seen as MDE.

9.1 Layers

Throughout this section we will present which modeling notations relate to which sys-
tem layer and explain how these modeling notations could be mapped to the formal
model introduced earlier. We will introduce a possible mapping of the requirements
and the three-layer-architecture for self-adaptive systems to the beforehand introduced
formal model.

The state and the state space of the CCL, CML and GML is described through one
UML class diagram, that is partitioned in disjoint views assigned to each layer, and
UML object diagrams. For our application example the class diagram is depicted in
Figure 10. The different layers can be distinguished by the different background colors.
The CCL is the lowest layer, the CML is aligned in the middle and the topmost layer
is the GML. The abstract class Marker is not assigned to any layer. It is only used for
making modeling easier. Each class diagram view could easily be translated into a
set of types and a mapping of attributes to types. At instance level the object diagram

13-16 Fall 2008 Workshop



9 MODELING SELF-ADAPTATION

Figure 10: Class diagram of the example system showing the separation into three
layers

provides information on the object’s type, which then will be used to create an typed
and attributed graph. The type sets of the different layers are named TCC , TCM and
TGM respectively.

Component Control Layer Beside structure the CCL also consists of some behavior
we have to model, too. We employ Story Patterns to describe the behavior within this
layer. In Figure 9 an example for such a Story Pattern is given. This Story Pattern is
sufficient as long as all components only have one successor. In case of multiple suc-
cessors a little more complicated Story Pattern has to be used that implements a loop.
For our model we abstract from the reception of the three attributes throughput, delay
and maxT. For simulation purposes etc. the values can be set non-deterministically.
Story Pattern in the CCL formally correspond to graph transformations over the state
which only refer to node and edges of TCC . Together with the information given in the
respective UML class diagram it is possible to completely describe the CCL as a typed
and attributed GTS.

• Attributed graph transformations which are restricted to TCC are internal to the
CCL. Other attributed graph transformation are not allowed at the CCL.

Change Management Layer For the CML we use the same modeling techniques as
for the CCL, but we also use an extended variant of Story Pattern called Story Dia-
grams. Story Diagrams augment Story Pattern with control flow elements as they are
known from UML activity diagrams. In our application example the CML is responsible
for the duplication of marked components. The reunion of duplicated components also
lies in the change management’s scope, but is not to be discussed in this paper. Fig-
ure 11 shows one of the Story Diagrams used at this layer. The Story Diagram’s first

Fall 2008 Workshop 13-17



Modeling and Verification of Self-adaptive Service-oriented Systems

activity ensures that only components that have an marker attached are considered.
The activity’s shape indicates that it is a for-each activity. For-each activities could be
used to model loops as they could be executed as long as the Story Pattern contained
in them matches in the host graph. So, for each component that has to be duplicated
the following is done. First Split and Join objects are created. Then each of the com-
ponents successors is connected to the newly created Join instance. Afterwards the
predecessor is connected to the Split instance. Finally the component gets duplicated,
the connections with Split and Join are set, the Duplicate mark gets deleted and the
throughput each component has to provide gets halved.

Figure 11: Story Diagram that duplicates a component if demanded by the GML

As the atomic actions of a Story Diagram are Story Pattern, a Story Diagram could
be translated into a sequence of graph transformations. The CML’s behavior is defined
above the classes of the CML and the CCL. The behavior described by the attributed
graph transformation rules over the state of the CCL and CML can be classified as
follows:

• Attributed graph transformations which are restricted to TCM are internal to the
CML.

• Attributed graph transformations which pre-condition requires elements from TCM
and TCC relates to status checks of the CML with respect to the CCL.

• Attributed graph transformations which post-condition requires elements from
TCM and TCC relates to change action of the CML with respect to the CCL.

Therefore, the CML can be characterized by its capability to change its own state as
well as the state of the CCL. Please note that changing a system’s structure also yields
a change in the systems behavior (cf. [27])

13-18 Fall 2008 Workshop



9 MODELING SELF-ADAPTATION

Goal Management Layer The GML is used to plan the system’s overall behavior in
order to meet its goals. For our rather simple application example this means finding
components that have to be duplicated. A component has to be duplicated if it has
a Required mark attached that demands a higher throughput than the component cur-
rently provides. The Story Diagram in Figure 12 implements a simplified heuristic to
identify such components. In the first row the Story Diagram computes the input the
component currently has to process. The second and third row of contain if-else activi-
ties (those contain a read-only Story Pattern and have exactly two outgoing transitions
that labeled with success and failure respectively) that evaluate the prior results. In
case the amount of data is less than the required throughput the Required mark is set
to any of the preceding components. In case the amount of data is too high for the
component to handle, the component is marked with a Duplicate mark.

Figure 12: Story Diagram that describes the Goal Management’s actions

According to [27] the GML is not only responsible for the computation of change
plans, but also for the management of goals, which the system is supposed to meet.
In our approach goals are captured by a specification technique for combine structural
and temporal properties [18] called TSSDs. TSSDs are very similar to Story Diagrams
but do not change the system. Further they allow to quantify single objects instead
of a whole graph pattern as Story Diagrams does. In Figure 13 an example TSSD
is depicted. The TSSD declares that whenever an Output component has a Required
marker attached then the component’s throughput must be higher than the required
throughput within 100 time units.

Currently it is impossible, given goal specifications, to generate behavior which ful-
fills the goals.8 But it is possible to generate code, which monitors behavior and identi-
fies violations of the specified goals (cf. [41]).

• Attributed graph transformations which are restricted to TGM are internal to the
GML.

• Attributed graph transformations which pre-condition requires elements from TGM
and TCM relates to change request of the CML with respect to the GML.

8Note that this is a general problem typically referred to as protocol synthesis, which is not specific to
our approach

Fall 2008 Workshop 13-19



Modeling and Verification of Self-adaptive Service-oriented Systems

Figure 13: TSSD demanding high throughput after at least 100 time units

• Attributed graph transformations which post-condition requires elements from
TCM and TCC relates to change plans of the GML provided to the CML.

Consequently, the GML can be characterized by its capability to change its own state
as well as the state of the CML. It is not expected that the GML has direct access to
the component control layer.

In addition, goals can be captured by properties which combine structural properties
with temporal constraints on the occurrence for the sequences of attributed graphs
denoted by TRACE((G,α)) which result from the execution of the graph transformation
systems with initial state (G,α).

At this point it becomes obvious that our approach is able to handle distributed
changes. There is no need that all layers of one system are deployed to the same
computing node. They could be distributed and even access the same layer concur-
rently.

9.2 Representative Models

In the previous paragraphs we have seen that each higher layer works on or with the
state of the layers below. So for example the Story Diagram shown in Figure 11 (which
is assigned to the CML) iterates over the CCL’s components and duplicate them if
necessary. Following the CML requires either direct access to the CCL or indirect
via a copy of a CCL, which is periodically synchronized with the CCL. Assuming a
decentralized system direct access is not an option, as the CCL must not be stopped.

In practice the CML and GML have to interpret the data they receive concerning
the CCL and CML respectively to locally maintain a related model of their current state.
This model is usually incomplete and may also not be fully up-to-date all the time.

A first solution might be techniques such as triple graph grammars (TGGs) [39]
which permit to update these models of the lower layer system in form of a graph when
required which could simplify the modeling and developing efforts to a great extent. To
make even frequent updates feasible even incremental versions for the synchronization
of models via TGGs [20] may be applicable. TGGs will be translated into a set of
operational rules, which are Story Pattern again. Following it is possible to describe
the synchronization in terms of a GTS.

13-20 Fall 2008 Workshop



10 CORRECTNESS

If we want to abstract from this additional effort and from the delayed updates of
the representative models, we can, however, go one step further and permit the CML
and GML to ”reuse” the real CCL as substitute for their model. Required constraints
on the visibility of information about the CCL have than to be respected by the rules
of the CML and GML. This can be accomplished at the type and attribute level by
restricting the known types accordingly such that the rules cannot access any additional
information. While the employed idealization has its limitations, the following step-wise
process concerning the modeling of representative models is suggested.

1. Start modeling assuming full access to all layers below.

2. Refine your model taking known or expected access restrictions into account.

3. If necessary also consider the extraction of the representative models and their
frequent updates using techniques such as TGGs.

Using TGGs it is easily possible to either clone one layer to make it visible or avail-
able in another layer or to abstract from the concrete representation. The representa-
tive models ensure that our approach is able to work with different levels of abstraction
(cf. requirement 3).

9.3 Discussion

So far we have presented a formally underpinned modelling approach which fullfills
all the requirements 2,4 and 5 as well as the requirements 1,3,6 and 7. The Marker
elements set in our application example initiate the required changes. As the system
does not distinguish who has set the mark internal and external change initation are
supported. Reference Models allow us to introduce different level of abstractions, and
Story Diagrams provide the required control flow for more complex operations. Re-
quirement (7) is obviously met, too.

10 Correctness

Throughout this Section we will present how the correctness of our modelled self-
adaptive systems could be ensured. Therefore we present two different approaches:
simulation and verification.

10.1 Simulation

In the early stages of the development process developers generally are more inter-
ested in a system solving the given problem rather than having a system which al-
ready ensures all safety properties. Thus, simulation is of great interest within the early
stages. For our approach, presented in this paper, this is achieved by code genera-
tion techniques, which are available for all of our presented modeling notations, and a
tool called Dobs (cf. [25]). Dobs allows the visualization of objects currently in memory

Fall 2008 Workshop 13-21



Modeling and Verification of Self-adaptive Service-oriented Systems

and the execution of methods provided by these objects. Dobs could be seen as a
debugger who is able to graphically display the current heap.

In Figure 14 a screenshot of Dobs is shown. The screenshot depicts a situation
equivalent to the situation shown in Figure 7(b). The visualization used within the sim-
ulation of our models is very similar to our proposed modeling notations and following
understanding and judging program behavior is eased.

Figure 14: Screenshot of Dobs showing an instance situation

10.2 Formal Verification

Beside the strict semantics another advantage of having a formally underpinned mod-
eling approach is the capability to verify the modelled system. Our approach is mainly
based on graph transformations and thus the verification technique we use is tailored
to this expressive formal model. We have developed a verification technique called in-
variant checking (cf. [1,4]) which is dedicated to the verficiation of graph transformation
systems.

Invariant Checking could be used to verify that a given set of graph transformations
will never reach a forbidden state, assuming the system starts in a valid state. Graphs
are used to model forbidden situations and a state is called invalid or forbidden if it
contains one of those graphs. The verification result only depends on the verified set
of graph transformations and forbidden situations. Followingly the verification result is
independent of the system’s start situation and hence a set of graph transformations,
which have been verified to satisfy a given specification, can be used in differnt systems
without verifying them again.

In Section 8 we required the addition and removal of components being one of a
modeling approach’s properties. Following this should also be supported by a verifica-
tion technique. Due to the fact that Invariant Checking only considers the set of graph
transformations and forbidden situations this obviously holds. Using Invariant Check-
ing we do not have to build the complete state space of the system - in fact we are
unable to do it, because the verification is independent of the start state. Thus, typical
problems such as state space explosion does not apply to Invariant Checking. On the
other hand the checked invariants are structural invariants and thus properties known
from temporal logics could not be verified. The same holds for the proof of deadlock
freedom.

13-22 Fall 2008 Workshop



11 CONCLUSION AND FUTURE WORK

With Invariant Checking we are also able to verify graph transformation systems,
which are augmented with timing constraints (cf. [4]). Therefore, clocks are modeled as
arguments of the nodes and the graph transformations are augmented with constraints,
which restrict the attributes valuations. Forbidden situations also have an additional
constraint.

Invariant Checking has been evaluated in several papers (cf. [1,4]) and has proven
to be an efficient verification technique. The verification’s time complexity is linear in
the number of rules and properties to be checked.

For smaller systems it is also possible to translate our models into the input lan-
guage used by GROOVE (cf. [23]). GROOVE then tries to build a labeleed transition
system containing all reachable states. Given this transition system it is possible to
apply standard model-checking algorithms to our modelled self-adaptive systems. Of
course this requires a finite and considerably small system. For a more detailed dis-
cussion and related work to this aspect please see [1].

11 Conclusion and Future Work

We presented in this paper the formal model of graph transformation systems and dis-
cuss how it serves most of the needs for modeling self-adaptive systems. Our proposed
approach for modeling self-adaptive systems based on this formal model employs UML
class and object diagrams and related extension of UML behavioral diagrams for the
modeling of structural changes. We use a simplified application example to present
how the approach can be employed to model self-adaptive systems at a high level of
abstraction.

The presented approach still has some limitations we have not solved, yet. The
constraints that restrict the applicability of Story Pattern have to be linear inequalities.
Further, the attributes are limited to either clocks or constants. For the modeling of
complex physical environments this is insufficient.

In the future we plan to further improve our approach. To be able to create even
more flexible rules we plan to add some reflection capabilities to GTS. A reflective GTS
would be much more expressive but the formal analysis might be impossible. In order
to be able to build a reflective GTS we first need an interpreter for Story Pattern and
Story Diagrams. Beside this an interpreter can help to ensure the separation into layers
(as stated in 9.1)

Concerning the verification of self-adaptive system we developed an approach to
incrementally check that changed rule sets which describe bottom-up self-adaptive
behavior adhere to the still present or newly added safety properties. The incremental
nature of the procedure permits to considerably reduce the checking effort in many
cases. While in some cases of changes also an speedup in the worst case could be
guaranteed, in case of erasing rules or parts of the invariant no speedup for the worst
case can be guaranteed.

The presented technique is a first step towards checking the run-time evolution
of systems with bottom-up self-adaptive behavior. It can be applied when an atomic
switching between different rules sets can be guaranteed. As future work we plan to

Fall 2008 Workshop 13-23



Modeling and Verification of Self-adaptive Service-oriented Systems

provide more evaluation results and look into the problem of decentralized evolution
and how this can be supported by run-time checks.

Own Work
[1] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling. Symbolic Invariant Verifi-

cation for Systems with Dynamic Structural Adaptation. In Proc. of the 28th International Conference
on Software Engineering (ICSE), Shanghai, China. ACM, 2006.

[2] Basil Becker and Holger Giese. Incremental Verification of Inductive Invariants for the Run-Time
Evolution of Self-Adaptive Software-Intensive Systems. In Proc. 1st Intl. Workshop on Automatic
Engineering of Autonomous and Run-Time Evolving Systems. IEEE Computer Society Press, 2008.
to appear.

[3] Basil Becker and Holger Giese. Modeling of Correct Self-Adaptive Systems: A Graph Transformation
System Based Approach. In Proceedings 1st IEEE Intl. Workshop on Autonomous and Autonomic
Software-Based Systems. IEEE Computer Society Press, 2008. to appear.

[4] Basil Becker and Holger Giese. On Safe Service-Oriented Real-Time Coordination for Autonomous
Vehicles. In In Proc. of 11th International Symposium on Object/component/service-oriented Real-
time distributed Computing (ISORC), pages 203–210. IEEE Computer Society Press, 5-7 May 2008.

References
[5] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing dynamic software archi-

tectures. LNCS, 1382:21, 1998.

[6] Jim Amsden, Pete Rivett, Kolk Henk, Fred Cummins, Jishnu Mukerji, Antoine Lonjon,
Cory Casanave, and Irv Badr. UML Profile and Metamodel for Services, June 2007.
http://www.omg.org/docs/ad/07-06-03.pdf.

[7] Paolo Baldan, Andrea Corradini, and Barbara König. A Static Analysis Technique for Graph Trans-
formation Systems. In Proc.
CONCUR, volume 2154 of LNCS, pages 381–395. Springer, 2001.

[8] Luciano Baresi, Reiko Heckel, Sebastian Thone, and Daniel Varró. Modeling and Validation of
Service-Oriented Architectures: Application vs. Style. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly with 11th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 68–77, New York, NY, USA, 2003. ACM.

[9] Jörg Bauer and Reinhard Wilhelm. Static Analysis of Dynamic Communication Systems by Partner
Abstraction. In Proceedings of the 14th International Symposium, SAS 2007, Kongens Lyngby,
Denmark, August 22-24, 2007, volume 4634 of Lecture Notes in Computer Science, pages 249–
264. Springer Berlin / Heidelberg, 2007.

[10] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger. A survey of self-
management in dynamic software architecture specifications. In WOSS 2004, pages 28–33. ACM,
2004.

[11] Manfred Broy, Ingolf Krüger, and Michael Meisinger. A formal model of services. ACM Trans. Softw.
Eng. Methodol., 16(1):5, 2007.

[12] Sven Burmester, Holger Giese, and Matthias Tichy. Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In Uwe Assmann, Arend Rensink, and Mehmet Aksit,
editors, Model Driven Architecture: Foundations and Applications, volume 3599 of Lecture Notes
in Computer Science (LNCS), pages 47–61. Springer Verlag, August 2005.

13-24 Fall 2008 Workshop



REFERENCES

[13] Sven Burmester, Matthias Tichy, and Holger Giese. Modeling Reconfigurable Mechatronic Sys-
tems with Mechatronic UML. In Proc. of Model Driven Architecture: Foundations and Applications
(MDAFA 2004), Linkoping, Sweden, June 2004.

[14] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and refinement of dynamic
software architectures. In Proc. IFIP, pages 107–126. Kluwer, 1999.

[15] Michel Charpentier. Composing Invariants. In Proc. of International Symposium of Formal Methods
Europe, volume 2805 of Lecture Notes in Computer Science, pages 401–421. Springer, 2003.

[16] Marcelo F. Frias, Juan P. Galeotti, Carlos Lopez Pombo, and Nazareno Aguirre. DynAlloy: Upgrad-
ing Alloy with actions. In Proc. ICSE, pages 442–451. ACM, 2005.

[17] Holger Giese. Modeling and Verification of Cooperative Self-adaptive Mechatronic Systems. In
Fabrice Kordon and Janos Sztipanovits, editors, Reliable Systems on Unreliable Networked Plat-
forms - 12th Monterey Workshop 2005 . Laguna Beach, CA, USA, September 22-24,2005 . Revised
Selected Papers, volume 4322 of Lecture Notes in Computer Science, pages 258–280. Springer
Verlag, 2007.

[18] Holger Giese and Florian Klein. Systematic Verification of Multi-Agent Systems based on Rig-
orous Executable Specifications. International Journal on Agent-Oriented Software Engineering
(IJAOSE), 1(1):28–62, April 2007.

[19] Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and Stephan Flake. Towards the
Compositional Verification of Real-Time UML Designs. In Proc. of the European Software Engi-
neering Conference (ESEC), Helsinki, Finland, Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering (ESEC/FSE-11), pages 38–47. ACM Press, 2003.

[20] Holger Giese and Robert Wagner. Incremental Model Synchronization with Triple Graph Gram-
mars. In Oscar Nierstrasz, John Whittle, David Harel, and Gianna Reggio, editors, Proc. of the 9th
International Conference on Model Driven Engineering Languages and Systems (MoDELS), Gen-
ova, Italy, volume 4199 of Lecture Notes in Computer Science (LNCS), pages 543–557. Springer
Verlag, October 2006.

[21] Matthias Güdemann, Frank Ortmeier, and Wolfgang Reif. Formal modeling and verification of
systems with self-x properties. In Proceedings of the Third International Conference on Autonomic
and Trusted Computing (ATC-06), 2006.

[22] Dan Hirsch, Paolo Inverardi, and Ugo Montanari. Graph grammars and constraint solving for soft-
ware architecture styles. In Proc. of ISAW’98, pages 69–72. ACM, 1998.

[23] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic States in GROOVE. In Model
Checking Software, 13th International SPIN Workshop, Vienna, Austria, March 30 - April 1, 2006,
Proceedings, volume 3925 of Lecture Notes in Computer Science, pages 299–305. Springer Berlin
/ Heidelberg, 2006.

[24] Florian Klein, Ulrich Nickel, Jorg Niere, and Albert Zündorf. From UML to Java And Back Again.
Technical Report tr-ri-00-216, University of Paderborn, Paderborn, Germany, September 1999.

[25] Hans J. Köhler, Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. Integrating UML Diagrams for
Production Control Systems. In Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Ireland, pages 241–251. ACM Press, 2000.

[26] J. Kramer and J. Magee. Analysing dynamic change in software architectures: A case study. In
Proc. of the International Conference on Configurable Distributed Systems, page 91. IEEE, 1998.

[27] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In FOSE 0́7:
2007 Future of Software Engineering, pages 259–268, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[28] Jeff Kramer, Jeff Magee, and Morris Sloman. Configuring distributed systems. In Proc. SIGOPS,
pages 1–5. ACM, 1992.

Fall 2008 Workshop 13-25



Modeling and Verification of Self-adaptive Service-oriented Systems

[29] Meir M. Lehman. Softwareś Future: Managing Evolution. IEEE Software, 15(01):40–44, 1998.

[30] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C. Cheng. Composing
Adaptive Software. IEEE Computer, 37(7), July 2004.

[31] Daniel Le Métayer. Software architecture styles as graph grammars. In Proc. SIGSOFT, pages
15–23. ACM, 1996.

[32] David J. Musliner, Robert P. Goldman, Michael J. Pelican, and Kurt D. Krebsbach. Self-Adaptive
Software for Hard Real-Time Environments. IEEE Inteligent Systems, 14(4), July 1999.

[33] Peter C. Olveczky and José Meseguer. Specification and Analysis of Real-Time Systems Using
Real-time Maude. In Tiziana Margaria and Michel Wermelinger, editors, Proceedings on Funda-
mental Approaches to Software Engineering (FASE2004), volume 2984 of Lecture Notes in Com-
puter Science. Spinger-Verlag Heidelberg, 2004.

[34] Peyman Oreizy. A Flexible Approach to Decentralized Software Evolution. In Proc. of the 21th
International Conference on Software Engineering (ICSE), pages 730–731, 1999.

[35] Peyman Oreizy, Michael M. Gorlick, Richard Taylor, Dennis Heimbigner, Gregory Johnson, Ne-
nad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54–62, June 1999.

[36] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime software
evolution. In Proc. ICSE, pages 177–186. IEEE, 1998.

[37] Arend Rensink. Towards Model Checking Graph Grammars. In Michael Leuschel, S. Gruner, and
S. Lo Presti, editors, Workshop on Automated Verification of Critical Systems (AVoCS), Technical
Report DSSE–TR–2003–2, pages 150–160. University of Southampton, 2003.

[38] Wilhelm Schäfer and Heike Wehrheim. The Challenges of Building Advanced Mechatronic Sys-
tems. In FOSE 0́7: 2007 Future of Software Engineering, pages 72–84. IEEE Computer Society,
2007.

[39] Andy Schürr. Specification of graph translators with triple graph grammars. In Graph-Theoretic Con-
cepts in Computer Science 20th International Workshop, volume 903 of Lecture Notes in Computer
Science, pages 151–163. Springer, 1994.

[40] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos. Self-Organisation
in MAS. Knowledge Engineering Review, 20(2):165–189, 2005.

[41] Michael Spijkerman. Monitoring gemischt struktureller und temporaler Eigenschaften von UML
Modellen. Master’s thesis, University of Paderborn, 2007. german.

[42] Janos Sztipanovits, Gabor Karsai, and Ted Bapty. Self-Adaptive Software for Signal Processing.
Communications of the ACM, 41(5):66–73, 1998.

[43] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change management by dis-
tributed graph transformation: Towards configurable distributed systems. In TAGT 1998, pages
179–193. Springer-Verlag, 2000.

[44] Dániel Varró. Automated formal verification of visual modeling languages by model checking. Soft-
ware and System Modeling, 3(2):85–113, 2004.

[45] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time communicating
systems by constraint-solving. In Dieter Hogrefe and Stefan Leue, editors, Proc. of the 7th Interna-
tional Conference on Formal Description Techniques, volume 6 of IFIP Conference Proceedings,
pages 243–258. Chapman & Hall, 1994.

[46] Jian Zhang and Betty H.C. Cheng. Model-based development of dynamically adaptive software.
In ICSE 0́6: Proceeding of the 28th international conference on Software engineering, pages 371–
380, New York, NY, USA, 2006. ACM.

13-26 Fall 2008 Workshop



On a Model for a Service Database

Mohammed AbuJarour

mohammed.abujarour@hpi.uni-potsdam.de

As a consequence of the wide adoption of the Service-Oriented Architecture (SOA)
in businesses, the role of service brokers has become vital, especially to manage ser-
vices and their metadata. Most standard features of service brokers, i.e., Service Reg-
istries and Repositories (SRR), are similar to those of Database Management Systems
(DBMS), but in different contexts and environments. In this work, we propose a new
approach to extend the features of the DBMS’s to provide the standard features needed
in a service broker.

1 Introduction: Service Brokers vs. DBMS

The focus of my research activities has shifted, from Information Retrieval and Infor-
mation Integration to Service Management. Service Management is a vital field in
Service-Oriented Computing. In this field, Information Retrieval techniques and con-
cepts can be adapted or extended to handle many issues in Service Management. For
example, XML Information Retrieval is so close to manage service artifacts. As shown
in Table 1, current service brokers do not provide any means of service data quality and
integration. I considered this problem in my first technical report [13], and I emphasize
it here again because of its importance.

One of the most common terms used for service brokers is Service Registries and
Repositories (SRR), which play a basic role in systems based on the Service-Oriented
Architecture (SOA) [18]; they manage, track, and classify services, both their data and
the metadata. Organizational polices are also enforced through service brokers in SOA
systems. Service consumers find the needed service(s) and establish the necessary
binding with the help of the service registry.

A service registry, like UDDI [10] or ebXML [5], contains only links or pointers to
service metadata or artifacts; it does not contain the artifacts themselves. On the other
hand, a service repository stores the metadata and artifacts itself [4]. One example
of service brokers is the ebXML Registry-Repository [4]. Table 1 lists some of the key
features of the ebXML Registry-Repository, and emphasizes the fact that a traditional
database does not provide such features. In our work, we try to integrate these missing
features into the DBMS itself, in order to get rid of any added complexity associated
with building a service broker on top of a DBMS.

Enterprise systems based on the n-tier [16] software architecture rely on the data-

Fall 2008 Workshop 14-1



On a Model for a Service Database

Standard Feature Database
ebXML

Registry-
Repository

Service discovery Inadequate query languages Yes

Evolution and version
management No Yes

Standard protocols for
subscription and notification

Database Change Notifications
(DCN) not enough

Yes

SOA security No Yes

Integration No No

Service data quality No No

Entailed complexity None
A new layer of
complexity

Table 1: The main features of the ebXML Registry Repository [4].

tier to manage application data. In traditional software and programing paradigms, e.g.,
structural programing, the managed data includes numerical, date-time, or string val-
ues. For such data, relational databases [15] are sufficient. As software architectures
and applications developed to the object-oriented paradigm, databases evolved corre-
spondingly to the object-oriented databases [19] where the main entity is an object.

Recently, software architectures have moved to the Service-Oriented Architecture
(SOA). A software application under this architecture is a collection of services interact-
ing over a network, such as the Internet, in order to achieve a business task or process.
A logical response to this recent trend in software development is the introduction of
Service Databases. The main entity in this model is the service, which encapsulates
the necessary features that builds up a service, including the data, metadata, polices,
and functionalities.

The description of the addressed problem follows this introductory section. Before
we introduce our proposed approach in Section 4, we refer to the main contributions
that have been made in this field in Section 3. Further implementation issues are
discussed in Section 5. We close with a conclusion in Section 6.

14-2 Fall 2008 Workshop



2 THE PROBLEM: THE RISING COMPLEXITY OF SERVICES

2 The Problem: The Rising Complexity of Services

Managing services and the information about them is no longer an easy job that could
be achieved using a traditional middleware solution. The main reason for this is the
increasing complexity of service information [12]. The types of service metadata are
versatile, e.g., XML, BPEL, XSLT, WSRP .. etc. Moreover, a service could be described
in more than one type.

There are several important issues to consider when a service broker is designed
(as shown in Table 1). Among these issues are:

• Service discovery: the primary functionality of a service broker is to help service
consumers find the needed services. Automatic cataloging of services and their
metadata is a necessary feature to achieve this requirement.

• Evolution and version management: service providers usually try their best to
provide the optimal service for their consumers. This is reflected in releasing new
versions of the previously published services. A service broker should be able
to handle such evolutions. It could simply replace the old service with the new
release. It could also keep the previous versions and let the consumer decide
which version to use taking into consideration compatibility and roles issues.

• Subscription and notification protocols: because a service broker is a meeting
point for many systems, it wold not be feasible for a service consumer to browse
the whole system to find a particular service, that has been added recently. This
could be time-consuming. As an alternative, the broker itself could provide pro-
tocols for subscription and notification, that notify the interested user about the
interesting services or changes.

• Security: the nature of SOA systems pushes the need for security to the surface,
e.g. Identity Management, Organization and federated Policy Enforcing.

• Integration: a service broker is a meeting point for several systems ( from dif-
ferent organizations or organizational divisions) and hence should be engineered
as a SOA integration platform. It should consider different data types and legacy
systems.

• Service data quality: the amount of information about services is usually so
huge [12]. This requires automatic content validation to ensure that the stored in-
formation is valid and useful. Another related issue to consider here is duplicates
management and redundancy because a service could be described using more
than one data type and a service could be provided by several service providers.

Fall 2008 Workshop 14-3



On a Model for a Service Database

Existing service brokers have some limitations. For example, in [14], the authors
showed that about 53% of the links discovered in UDDI Business registries were inac-
tive. In our model, all information should be verify to be up-to-date. Old information and
inactive links should be always discarded.

3 Related Work: Service Brokers

IBM’s WebSphere Service Registry and Repository (WSRR) “is the master metadata
repository for service interaction endpoint descriptions” [11]. WSRR is not limited to
web services (WSDL), but it deals also with SOA services described using SCDL, XSD
and policy decorations; other service metadata, e.g., WSRP , could not be managed by
WSRR. Additionally, WSRR does not manage service metadata across the whole SOA
life cycle; it interacts and federates with other metadata stores that do this. Another
limitation of WSRR is that it does not support service data quality.

Sun’s Service Registry is a Registry and Repository for web services [9]. Sun’s
Service Registry is based on ebXML Registry 3.0 with added support for UDDI 3.0.
This SRR is limited to web services only; it does not deal with SOA services in general.

Centrasite [2] is also a registry and repository for web services, which is based on
UDDI 3.0. It is a useful tool for SOA architects, SOA developers, and business analysts.
According to its information model, Centrasite stores metadata about services, as well
as the files that relate to those artifacts. Centrasite is limited to the web services inside
the organization only. This means that it integrates different web services from different
divisions within the organization.

FreebXML [4] is an open source, functionally complete reference implementation
for the OASIS ebXML Registry specifications as defined by the OASIS ebXML Reg-
istry Technical Committee [6]. FreebXML is a general purpose registry and repository.
Several organizations and associations have already deployed the FreebXML Registry
and Repository, such as United Nations CEFACT ICG, Government of Canada, France
Telecom and others. Service data quality is not one of the features of the FreebXML
Registry and Repository.

The QWS Dataset is a collection of web services gathered over the web. It includes
about 5,000 web services - so far. These web services were discovered using the Web
Service Crawler Engine (WSCE) from UDDI registries, search engines and service por-
tals [8]. We plan to use this list as an initial test case.

14-4 Fall 2008 Workshop



4 APPROACH: A DBMS-BASED SERVICE BROKER

4 Approach: A DBMS-based Service Broker

“ebXML Registry-Repository is the database for Web Services” [4]. Based on this as-
sumption and abstracting it one step further,we could say that a registry-repository is
the database for services in general.

Traditional service brokers build up a new layer on top of a database layer, which
increases the complexity of such systems. The basic idea of our approach, as shown
in Figure 1, is to combine both concepts - SRR and Database - into a single model
coined Service Database Model, which is basically a database model aimed at man-
aging services in SOA systems like a service broker does. This model is designed to
deal with both contents and metadata, which facilitates metadata-based discovery.

Figure 1: The Basic Idea of the Service Database Model.

In our approach, the client deals with an abstract type called service. The system,
which implements this model, deals then with the management of the underlying and
technical parts of the service. This includes usual information about the service, e.g.,
name, provider, version . . . , as well as actual files that describe the service, e.g. WSDL
,BPEL . . . . This hides the the complexity of the managed services and their metadata,
and simplifies the communication with the broker. A client could simply ask for services
using SQL commands, or an appropriate UI on top of SQL.

Cataloging services in a service broker and indexing tables in a relational database
are very similar in concept. Publishing new information involves automatic generation
of metadata that is used to discover the published information efficiently [12].

Most current databases already have a component called Database Change Noti-
fications (DCN), which provides server-side primitives that allow clients or applications
to subscribe to query results, and the server notifies them as soon as these query
results have been changed [17]. We extend this approach in our Service Database
Model to provide standard methods for subscription and notifications in services and
their metadata. It would be valuable for a client to receive a notification when a new

Fall 2008 Workshop 14-5



On a Model for a Service Database

version of a service it uses has become available.

Major relational and object database systems, such as Oracle and DB2, provide
XML support. Either by mapping XML to existing concepts or by providing native XML
support. DB2 falls into the latter category [20]. In our service database model, a similar
approach with some extensions can be used to handle service data and metadata, as
they are based on XML. PostgreSQL does not support all XML capabilities and fea-
tures [7]. For example, it supports indexing and search XML documents, but it does
not have an XML data type. Upcoming releases of PostgreSQL will include more and
more of the missing features. In [21], for example, the authors provide a roadmap for
the development of native XML type support in PostgreSQL.

Other standard features of service brokers are also already implemented in DBMS’s,
e.g., role-based access control through users and groups, and allowing information to
be linked and searched securely across and outside organizational boundaries using
distributed features of DBMS’s.

5 Implementation Issues: Service Management

Search engines and crawling techniques could be employed to discover services within
an environment, e.g., web services on the web. Special attention should be payed here
because of the nature of web services, where we usually lack enough descriptions.
We are going to test the best techniques in this field to automate service discovery
and validation on the web. This is part of a current master thesis. This will provide us
continuously with many services that we will try to manage under our model.

As soon as we gather many services, we need to have a common abstraction model
to describe a service. This model facilitates the interaction between the searching and
crawling part and the broker part. This step is still in progress.

As a next step, we have to choose an existing DBMS and try to introduce our model
inside it. There are adequate open-source DBMS’s, e.g., Apache Derby [1]. DBMS’s
are either relational -like MySQL-, object-oriented - like PostgreSQL-, or mix of both -
like DB2. From an implementation perspective for our model, a DBMS has a advantage
over others if it is an object one because a service is an object, with special features.

In Table 2, we compare between five important DBMS’s [3]. Some of the addressed
DBMS’s are commercial, but they are included here because they are important and
common, like Oracle and DB2. This comparison nominates PostgreSQL because it
is open source and object-oriented DBMS. It has many key features, such as ACID,
Transactions, and Blobs and Clobs support. On the other hand, Apache Derby has an
important feature, which is the ability to get it embedded into Java programs [1]. In the
upcoming months, we will test potential alternatives and choose among them the most
suitable one.

14-6 Fall 2008 Workshop



5 IMPLEMENTATION ISSUES: SERVICE MANAGEMENT

Apache Derby DB2 MySQL Oracle PostgreSQL

Maintainer Apache IBM Sun
Microsystems

Oracle
Corporation

PostgreSQL
Global
Development
Group

First public

release
2004 1982 1996 1979 1989

Latest stable

version
10.4.1.3 9.5 5.0.67 11g Release 1 8.3.4

Software

license
Apache License Proprietary GPL or

proprietary Proprietary BSD

Fundamental

Features

ACID
Referential
integrity
Transactions
Unicode
SQL interface

ACID
Referential
integrity
Transactions
Unicode
GUI & SQL
interface

ACID
Referential
integrity
Transactions
Unicode-Partial
SQL interface

ACID
Referential
integrity
Transactions
Unicode
SQL interface

ACID
Referential
integrity
Transactions
Unicode
SQL interface

Database

Capabilities

Union
Inner joins
Outer joins
Blobs and Clobs

Union
Intersect
Except
Inner joins
Outer joins
Inner selects
Merge
Blobs and Clobs

Union
Inner joins
Outer joins
Inner selects
Merge
Blobs and Clobs

Union
Intersect
Except
Inner joins
Outer joins
Inner selects
Merge
Blobs and Clobs

Union
Intersect
Except
Inner joins
Outer joins
Inner selects
Merge
Blobs and Clobs

Classification Relational Object-relational Relational Object-relational Object-relational

Table 2: Comparing some major DBMS’s.

Fall 2008 Workshop 14-7



On a Model for a Service Database

6 Conclusion: Service Management with DBMS

In this work we propose a new database model, the Service Database Model, that
helps SOA systems manage their services efficiently. We borrow the ideas used in
DBMS’s to solve the problem of managing services and their metadata and to provide
the necessary standard features to run a SOA system.

Existing service registries and repositories could be classified in two classes based
on purpose. One category includes those which include the registry component only,
like Centrasite, and the other one includes those which include both the registry and
the repository components, like WebSphere Service Registry and Repository. Another
possible classification is the classification by domain; some SRR’s deal only with web
services, e.g., Sun’s Service Registry, others deal with web services and SOA services,
e.g., freebXML.

Some service broker vendors tend to provide functionalities that are vendor-specific
[12]. By adopting our approach, there is always a common underlying platform, which
can be used by different implementations to communicate and cooperate. Service dis-
covery will be straightforward; it will be just like issuing an SQL statement to a Database
Management System. The complexity of having descriptions in many, different formats
will not be visible any more since the user or business-logic tier is using the same query
language.

References

[1] Apache Derby. http://db.apache.org/derby/.

[2] Centrasite community. http://www.centrasite.org.

[3] Comparison of relational database management systems.
http://en.wikipedia.org/wiki/Comparison of relational database management systems.

[4] ebXML registry-repository. http://ebxmlrr.sourceforge.net.

[5] Electronic business using eXtensible markup language. http://www.ebxml.org.

[6] Organization for the advancement of structured information standards.
http://www.oasis-open.org.

[7] PostgreSQL 8.2.10 documentation. http://www.postgresql.org/docs/8.2/static/datatype-
xml.html.

[8] Quality of web services. http://www.uoguelph.ca/∼qmahmoud/qws/index.html.

[9] SUN’s service registry. http://www.sun.com/products/soa/registry.

14-8 Fall 2008 Workshop



REFERENCES

[10] UDDI 3.0. http://www.oasis-open.org/committees/tc home.php?wg abbrev=uddi-
spec.

[11] Websphere service registry and repository. www.ibm.com/software/integration/wsrr.

[12] Effective SOA deployment using an SOA registry repository. 2005. White paper.

[13] Mohammed AbuJarour. Data integration in web services. Technical report, Hasso-
Plattner-Institut, Potsdam, Germany, April 2008.

[14] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. In WWW ’08: Proceeding of the 17th international conference on World
Wide Web, pages 795–804, New York, NY, USA, 2008. ACM.

[15] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[16] Wayne W. Eckerson. Three tier client/server architecture: Achieving scalability,
performance, and efficiency in client server applications. Open Information Sys-
tems, 10(1), 1995.

[17] Cesar Galindo-Legaria, Torsten Grabs, Christian Kleinerman, and Florian Waas.
Database change notifications: primitives for efficient database query result
caching. In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1275–1278. VLDB Endowment, 2005.

[18] Nicolai Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc., 2007.

[19] Won Kim. Introduction to object-oriented databases. MIT Press, Cambridge, MA,
USA, 1990.

[20] Matthias Nicola and Bert van der Linden. Native XML support in DB2 universal
database. In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1164–1174. VLDB Endowment, 2005.

[21] Nikolay Samokhvalov. XML support in PostgreSQL. In SYRCoDIS, volume 256 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Fall 2008 Workshop 14-9



 



Towards the Automatic Generation of
Effective, Map-Like Visual

Representations from Heterogeneous
Geodata in a Service-Oriented

Infrastructure

Dieter Hildebrandt

dieter.hildebrandt@hpi.uni-potsdam.de

Visual representations of geospatial information proved to be valuable means to fa-
cilitate thinking, understanding, and knowledge construction about human and physical
environments, at geographic scales of measurement. In particular, maps and map-like
2D and 3D visual representations are prominent and common examples of forms of vi-
sual representations that are leveraged in various application areas. For creating map-
like representations, the Internet has become the prominent medium through which
geodata is distributed and accessed.

In this paper, we address the design and implementation of standards-based sys-
tems that facilitates the automatic generation of effective map-like 2D and 3D visual
representations from heterogeneous geodata in a service-oriented infrastructure. We
identify basic requirements for such systems, identify concepts and methods that sup-
port implementing such systems and discuss their strengths and weaknesses. Further-
more, we outline the high-level design of a configurable, standards- and service-based
visualization pipeline that can be applied for their implementation. Particular focus is
placed on the integration of heterogeneous geodata and generalization as an essential
operator for the generation of map-like visual representations.

1 Introduction

Visual representations of geospatial information proved to be valuable means to facil-
itate thinking, understanding, and knowledge construction about human and physical
environments, at geographic scales of measurement [26]. In particular, maps and map-
like 2D and 3D visual representations are prominent and common examples of forms
of visual representations that are leveraged in various application areas. For creat-
ing map-like representations, the Internet has become the prominent medium through
which geodata is distributed and accessed. In modern environments, map-like repre-
sentations have the potential to literally use the Internet as its “database”, acting as
integrators for and dynamic portals to interconnected, distributed, heterogeneous geo-

Fall 2008 Workshop 15-1



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

data resources [29]. Within various application areas, fully automating the process of
generating map-like visual representations from distributed, heterogeneous geodata
sources and specified visualization requirements is desirable and required in order to
maximize cost reduction, flexibility, acceptance and applicability. Furthermore, generat-
ing visual representations that are generally effective and meet specified visualization
requirements is required for maximizing the usability of the representations.

For the design and implementation of distributed systems exhibiting the aforemen-
tioned characteristics, the architectural concept service-oriented architecture (SOA) is
commonly proposed [17, 25]. In order to improve the interoperability of distributed,
geospatial services, the Open Geospatial Consortium (OGC) [1] approves standards
commonly accepted in research and industry.

Presently, the implementation of a standards-based system that is required to fa-
cilitate the automatic generation of effective map-like visual representations from het-
erogeneous geodata in a service-oriented infrastructure faces several issues including
the following. No proposals by the OGC or other parties exist for services that perform
integration of heterogeneous geodata or automated generalization, a central operation
for creating map-like representations. The data models proposed by the OGC do not
support integration of heterogeneous geodata. The portrayal services proposed by the
OGC (WMS, W3DS and WPVS) do not generate effective map-like visual representa-
tions in general.

In this paper, we address the design and implementation of standards-based sys-
tems that facilitates the automatic generation of effective map-like 2D and 3D visual
representations from heterogeneous geodata in a service-oriented infrastructure. We
identify basic requirements for such systems, identify concepts and methods that sup-
port implementing such systems and discuss their strengths and weaknesses. Further-
more, we outline the high-level design of a configurable, standards- and service-based
visualization pipeline that can be applied for their implementation. Particular focus is
placed on the integration of heterogeneous geodata and generalization as an essential
operator for the generation of map-like visual representations.

The remainder of this paper is organized as follows. Section 2 briefly describes
general requirements for visual representations of geospatial information and presents
the conceptual process of generating map-like visual representations. In Section 3, we
briefly present the state of the art of standards for service-oriented geovisualization
systems as defined by the OGC and present extensions and supporting concepts.
Section 4 presents a functional decomposition of a proposed visualization pipeline into
a set of operators. In Section 5, we discuss some weaknesses of current proposals
presented in Section 3. Section 6 outlines the high-level design of a configurable,
standards- and service-based visualization pipeline. Finally, Section 7 concludes the
paper and outlines future work.

15-2 Fall 2008 Workshop



2 GENERATING EFFECTIVE MAP-LIKE VISUAL REPRESENTATIONS

2 Generating Effective Map-Like Visual Representations

In this Section, we briefly describe general requirements for visual representations of
geospatial information and present the conceptual process of generating map-like vi-
sual representations.

2.1 Requirements for Visual Representations

General requirements for visual representations of geospatial information are expres-
siveness, effectiveness and appropriateness [46]. A visual representation is consid-
ered expressive if only the information contained in the data is represented and the
information is represented unaltered. A visual representation is considered effective if
it supports the goal for its creation in an optimal way taking into account the context
of the application. Finally, if the tradeoff between efforts required for creating the vi-
sual representation and the benefits yielded by it is balanced, a visual representation
is considered appropriate.

For a differentiated discussion, the three dimensions of semiotics [7] – syntactics,
semantics and pragmatics – can be applied to the requirement of effectiveness.

Syntactic dimension The syntactic dimension comprises the relation of signs to
each other in formal structures. For instance, a visual representation is not ef-
fective on the syntactic level if overlap of graphical elements impairs the legibility
of the representation or too many graphical elements clutter a small display of an
output medium.

Semantic dimension The semantic dimension comprises the relation between signs
and the things they refer to. For instance, a visual representation is not effective
on the semantic level if a user is hindered in understanding graphical elements
due to an unfamiliar mapping of data to graphical variables.

Pragmatic dimension The pragmatic dimension comprises the relation of signs to
their impacts on those who use them. For instance, a visual representation is not
effective on the pragmatic level if it does not contain the information that a specific
user needs in a specific situation.

In Sections 4 and 5, the requirements for a system generating map-like visual rep-
resentations and the discussion of existing concepts and methods are presented in
terms of the three introduced dimensions of effectiveness.

2.2 Map-Like Visual Representations and Generalization

Map-like 2D and 3D visual representations use the spatial dimensions of data as a stan-
dard frame of reference and represent a part of geographical reality in an abstracted
way. They can be regarded as the outcome of a system that implements and executes
a specific visualization process and pipeline [46]. Depending on the design of the sys-
tem, the execution of the process is done manually by an expert user, semi-automatic

Fall 2008 Workshop 15-3



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

Cartographic 

Model

Primary 

Model

Reality

Object

Generalization
Model

Generalization

Cartographic

Generalization

Secondary 

Model

Figure 1: Abstract model of the generalization process as a set of model transforma-
tions [13].

or fully automatic. This process transforms a given set of geodata and a specified
set of visualization requirements into a map-like visual representation. It is the sys-
tem’s responsibility to produce a representation from the given geodata that meets the
specified requirements. These visualization requirements contain a specification of the
targeted application area of the representation, the spatial area of interest and gen-
eral requirements such as accuracy, information content and legibility. In general, the
process of producing map-like visual representations is complex and sophisticated and
requires a significant amount of expertise.

A central part of the process of generating maps and map-like representations is the
generalization subprocess. Generalization can be defined as the selection and simpli-
fied representation of detail appropriate to the scale and/or the purpose of a map [18].
An established abstract model of the generalization process is given by Grünreich [13]
(see Figure 1). Generalization is modeled as a set of model transformations that al-
low transforming aspects of reality into data sets or maps. The object generalization
transformation selects, captures, abstracts, and reduces aspects of reality and stores
these aspects digitally as the primary model. The model generalization transforms the
primary model into a model that is optimized for performance (memory and processor
requirements) and further processing in GIS or geovisualization systems but does not
address any visualization aspects. The cartographic generalization transformation pro-
cesses the primary or secondary model in order to produce a cartographic model that
represents a map.

With the intention to support the automation of the generalization process, the over-
all process can be decomposed into a set of generalization operators. In the literature,
various propositions for operators and the classification of operators exist that differ
in both number and terminology. McMaster and Shea [30] introduced the first set of
operators that was applicable to digital cartography. They proposed twelve operators:
simplification, smoothing, aggregation, amalgamation, merging, collapse, refinement,
exaggeration, enhancement, displacement, classification and symbolization. Because
of the complexity of the problem, automated generalization that allows for unrestrict-
edly effective geocommunication in the general case is not yet feasible. Nevertheless,
automation is already feasible for specific parts of the generalization process and for
generalization processes in specific application areas. We expect substantial progress
in this field in the medium term.

15-4 Fall 2008 Workshop



3 STATE OF THE ART IN SERVICE-ORIENTED GEOVISUALIZATION SYSTEMS

3 State of the Art in Service-Oriented Geovisualization
Systems

In this paper, we address the generation of map-like visual representations by stan-
dardized services within a spatial data infrastructure (SDI). Services are the key com-
ponents of SDIs. They represent modular units, providing specific capabilities through
an explicit interface. They allow for accessing, managing, processing, combining, and
visualizing various complex and massive geoinformation sources. On the one hand,
this geoinformation is widely distributed and varies, e.g., in semantics, format, and
scale. On the other hand, this diverse geoinformation is a keystone in a growing num-
ber of applications and systems. The overall vision is to combine this diverse geoinfor-
mation according to actual tasks and needs, to integrate it into workflows, and thereby
to support various processes by specialized services.

In SDIs, the standardization of data formats and service interfaces is a crucial issue
as it provides a common basis for communication, the reuse of existing capabilities, and
interoperability between system components. The standard and specification family of
the OGC focuses on geospatial interoperability. They are publicly available and form a
foundation for manifold activities in research and industry.

In this Section, first, we briefly present the state of the art of standards for service-
oriented geovisualization systems as defined by the OGC. Then, we name relevant
proposals for extending OGC standards and additional concepts that are presently not
reflected by OGC standards and that we have identified as valuable for supporting the
design and implementation of systems with requirements as discussed in Section 1.

3.1 OGC Standards

Figure 2 gives an overview of a selection of OGC standards and services that are
relevant for geovisualization and are applied in today’s SDIs. In the following, they are
explained in more detail.

3.1.1 Information Management

Web Feature Service and Web Coverage Service (and the original Web Map Service)
provide interfaces for accessing distributed geodata and transferring them in a stan-
dardized way, e.g., encoded in Geography Markup Language or as image.

The Geography Markup Language (GML) [39] is the fundamental OGC standard
for describing geospatial features. It is an XML-encoding and supports geometry and
geometric complexes, topology, coordinate reference systems (CRS), temporal and
dynamic information, units, measures, values, and dictionaries, directions, observa-
tions, and coverages. GML profiles describe a subset of the GML types, attributes, and
elements and can be extended to GML application schemas describing, e.g., domain-
specific feature types. A prominent example of a GML application schema is CityGML,
a standard for the description and exchange of 3D city models. Since version 3.0 GML
provides 3D features.

Fall 2008 Workshop 15-5



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

Information Management

Processing

Portrayal

Web Map Service Web Perspective 
View ServiceWeb 3D Service

Web Coverage 
Service

Web Feature 
Service

Web Processing 
Service

Web Coverage 
Processing Service

Data Model, Encoding

Geography Markup 
Language

CityGML

Keyhole Markup 
Language

Styled Layer 
Descriptor

Symbology 
Encoding

Filter Encoding

Metadata

Catalogue Service

Figure 2: OGC Standards for services, data models and encodings with relevance to
service-oriented geovisualization.

The Web Feature Service (WFS) [35] allows for accessing feature data encoded
at least in GML. By the definition of a bounding box or applying filters, the retrieved
data set can be restricted to a subset. The DescribeFeatureType operation returns a
schema description for every feature type that can be retrieved from the WFS by Get-
Feature operation. The optional Transaction allows for data manipulation (insert, up-
date, delete). The Web Coverage Service (WCS) [42] provides geospatial data as cov-
erages, i.e., “digital geospatial information representing space-varying phenomena”.
The transferred raster data sets can represent, e.g., elevation data or fume data and
have to be interpreted by the service consumer.

In the domain of spatial data infrastructures, metadata describes geospatial infor-
mation resources, regarding its discovery, evaluation and use. ISO 19115 [19] and
ISO 19119 [20] propose basic metadata elements for geographic information and spa-
tial services respectively. ISO 19139 [21] defines an applicable XML schema imple-
mentation for ISO 19115.

Catalogues are essential elements in complex and flexible service-oriented archi-
tectures, as they provide the functionality for publishing available resources and thereby
make them findable. The OGC Catalogue Services [38] contain metadata for geospa-
tial information, for available services, and further information needed for publishing
and accessing this data. It provides operations, e.g., for finding resources, retrieving
metadata, and managing the catalogue.

3.1.2 Generic Processing

The Web Processing Service (WPS) [40] provides so called “geospatial processes”
which include any processing of geospatial data (e.g., calculations), describes its func-
tionality (e.g., in WSDL1 format) and makes it available to the service user.

1Web Service Description Language

15-6 Fall 2008 Workshop



3 STATE OF THE ART IN SERVICE-ORIENTED GEOVISUALIZATION SYSTEMS

3.1.3 Portrayal Processing

According to ISO 19119, portrayal services also represent a type of processing ser-
vices. They produce image data or in the case of W3DS intermediate rendering arte-
facts, which are transferred as a computer graphical representation. WTS, WPVS and
W3DS represent first approaches for 3D portrayal.

The Web Map Service (WMS) [36] is capable of generating map-like 2D images.
WMS typically offers geoinformation as layers together with supported styles. A GetMap
request defines a set of styled layers (i.e., a set of layers and specific styles to apply),
which are rendered and combined at the server-side and returned to the consumer. A
styling-enabled WMS is described later. The Web Perspective View Service (WPVS),
which was originally defined as Web Terrain Service (WTS) [43], generates perspec-
tive views of a three-dimensional scene and transfers them as image to the service
consumer. The client may select from supported layers and which styling to apply to
the data. Depending on the server capabilities and functionality, the WPVS can gen-
erate high-quality images, which can be displayed even with simple clients. The Web
3D Service (W3DS) [34] generates scene graphs, which represent computer graphical
descriptions of a scene and have to be rendered by the client. On the one hand, this
requires for rich clients, on the other hand the W3DS allows for interactivity as known
from typical desktop applications.

Symbology Encoding (SE) [37] represents a language for defining rendering param-
eters for specific features and coverages. SE describes the symbolizer (line, polygon,
point, text, raster) to use for rendering the feature geometry, which appearance pa-
rameters to consider, and for which scale this styling is applicable. The Styled Layer
Descriptor (SLD) Profile for WMS [41] allows for user-defined styling: Together with
the GetMap request, an SE-encoded SLD description is transmitted inline or as URL
reference. Therefore, the WMS interface is extended for retrieving the feature types of
a layer.

3.2 Proposals for OGC Extensions and Supporting Concepts

3.2.1 Information Management

A multiple representation database (MRDB) can be described as a spatial database
which can be used to store representations relating to the same real world phenomena
in different themes and at different levels of precision, accuracy and resolution with
explicit links between the representations [6, 48]. In the context of cartographic gen-
eralization, MRDBs were successfully applied for creating adapted generalizations by
exploiting existing representations within a MRDB [6, 15], storing created generalized
representations for later reuse [10] and storing auxiliary data that is generated within a
generalization process for later reuse [32]. Hampe et al. [16] propose an extension of
the WFS standard for multiple representation data.

The integration of heterogeneous geospatial data is still an area of active research
(e.g., [4,24]). Geospatial data integration can be differentiated into a purely geometrical
integration and a semantical integration that includes the former. Another classification

Fall 2008 Workshop 15-7



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

scheme is concerned with the level of heterogeneity of the data: data sets that are to
be integrated can conform to the same data model or to different data models. As an
example, Regnauld [45] proposes an approach for the integration of data with hetero-
geneous data models that is based on ontologies. A system that aims at generating
map-like visual representations of data from distributed, heterogeneous sources has to
incorporate semantic data integration methods that can bridge different data models.

3.2.2 Generalization Processing

The automation of the generalization process was the focus of extensive research
within the last few decades. Research mainly targeted three levels of abstraction: gen-
eralization operators and implementing algorithms (e.g., [9]), the automated control of
the generalization process and the application of the operators [23] and algorithms and
data structures that assist the generalization process [32].

In recent years, we observed several efforts to offer generalization operators and
processes as distinct services on the Internet and to standardize these services. In the
WebPark project [11], a specific WMS implementation is presented that generalizes
requested map layers and styles them as specified by a SLD parameter. Burghardt
et al. [3] propose offering generalization functionality through dedicated generalization
services and present a hierarchical categorization for these services. Generalization
support services assist the generalization process by providing auxiliary measures,
procedures and data structures. Generalization operator services deliver the function-
ality of standalone generalization operators and may use support services for their im-
plementation. Generalization process services implement complete generalization pro-
cesses and may use operator and support services. In addition, researchers demon-
strate utilizing a workflow management system for the orchestration of generalization
services [44], wrapping generalization functionality with a WPS [12] and providing pro-
totypical implementations. Förster et al. [12] report on the early results and current
work in progress of a working group that targets at the standardization of generaliza-
tion services.

3.2.3 Portrayal Processing

As already discussed, the styling of the 2D portrayal from a WMS can be specified
using SLD. In contrast, until now no OGC standard exists that defines the styling of
3D portrayal from a W3DS or WPVS. Nevertheless, Haist et al. [14] and Neubauer et
al. [31] propose separate extensions for the SLD and SE for 3D portrayal.

4 Analysis of the Geovisualization Pipeline

In this Section, we present a functional decomposition of the visualization pipeline for
generating map-like 2D and 3D visual representations from heterogeneous geodata
and visualization requirements into a set of operators. Particular focus is placed on
the integration of heterogeneous geodata and generalization. Furthermore, we relate

15-8 Fall 2008 Workshop



4 ANALYSIS OF THE GEOVISUALIZATION PIPELINE

Geovisualization Pipeline

Filtering Mapping Rendering

Visualization 
Requirements

Map-Like 2D or 3D 
Visual Representation

Selection

Join

Transformation

Generalization

Rendering

Geodata

Geodata

...

Cartographic 
Model

Cartographic GeneralizationSecondary 
Model

Figure 3: Instance of a geovisualization pipeline mapping geodata and visualization
requirements to map-like visual representations. The proposed operators and the gen-
eralization model are related to the pipeline.

the visualization pipeline and the identified operators to the generalization model in-
troduced in Section 2. The presented decomposition is a result of an analysis of the
visualization process for the stated purpose. This analysis is based on proposals from
the OGC for service-oriented geospatial systems [33], common proposals for visual-
ization pipelines [5] and common practice for producing maps [2,30,47].

Figure 3 depicts the process of generating map-like visual representations from
geodata visualization requirements. The process incorporates at least five operators:
selection, transformation, join, generalization and rendering. These operators repre-
sent model transformations that transform one or more sets of input geodata into a
resulting set of (geo)data. The concrete application of an operator on given data is
guided by the set of given visualization requirements that act as additional input to the
operator. In order to design a concrete system, a set of operators is chosen, combined
and chained in such a way that the designed system meets given systems require-
ments. Each operator can be associated with a stage of the visualization pipeline, i.e.,
filtering, mapping and rendering. The generalization operator is an exception. Some
parts of its functionality are related to filtering (e.g., data abstraction) while others are
related to mapping (e.g., assignment of visual variables). In general, it is not possible
to split the functionality of the operator into a filtering and a mapping stage that are
executed in sequence without iteration. This is because of complex interrelations that
exist between the parts. Regarding the generalization model introduced in Section 2,
the input geodata corresponds to the secondary model, the intermediate output of the
mapping stage corresponds to the cartographic model and the generalization operator
corresponds to the cartographic generalization mapping.

Figure 4 depicts an example of a concrete process design that contains an inter-
action of the presented operators. This design describes a system that selects and
retrieves data from two different data sources, transforms each disjoint data set into a
common model, joins the transformed data and then generalizes and renders it into a
2D image that constitutes the map-like visual representation.

Fall 2008 Workshop 15-9



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

Selection

Generalization RenderingJoin

Transformation

Selection Transformation

Figure 4: Example design of a concrete process that contains an interaction of the
proposed operators.

4.1 Visualization Requirements

Visualization requirements are part of the input for the process. They describe on a
high level of abstraction what is expected of a map-like visual representation from the
perspective of a user. In order to be applicable in an automated system, the visualiza-
tion requirements have to be transformed into a visualization specification. This spec-
ification describes in a formal and more concrete manner the properties of the visual
representation that is to be generated. The visualization requirements should contain
a description of the real world section that the visual representation should contain in-
formation on (e.g., spatial bounding box and map scale for a 2D representation and
view frustum for a 3D representation), properties of the output medium (e.g., screen
resolution) and information on the intended application area of the representation. The
information on the intended application area of the map should include information on
the user (e.g., task, professional domain, emotional condition, age, interests, skills,
limitations) and context (e.g., type of device, conditions of light and sound) [22].

4.2 Operators

In order to support the generation of effective map-like visual representations, the pre-
sented operators and the data that they operate on have to satisfy several require-
ments. In the following, we list some basic requirements that we have identified.

Selection The selection operator must be capable of retrieving geodata and at the
same time their respective metadata from data sources. The geodata has to conform to
a semantic data model that clearly and explicitly relates the data to real world phenom-
ena. The metadata has to contain and make formally explicit semantic and pragmatic
aspects of the geodata: The metadata has to contain a self-description of the seman-
tic data model (semantic aspect). Moreover, it has to contain information regarding
the intended application area of the geodata, the acquisition scheme, quality, scale,
former processing, identification of representation and so on (pragmatic aspect). This
information is required for successive operators, for instance, in order to determine
the suitability of certain geodata for a specific application or to integrate geodata from
different sources. Here, we assume that geodata and metadata from all sources are
exchanged using a common encoding and that metadata adheres to a common data
model.

Furthermore, the operator has to incorporate the concept of multi representational
geodata and must be capable of retrieving specified representations from a MRDB.

15-10 Fall 2008 Workshop



4 ANALYSIS OF THE GEOVISUALIZATION PIPELINE

This capability is required for other operators that want to exploit existing representa-
tional geodata. In addition, storing different representations of the same phenomena
at the same time is common in practice.

Transformation On the semantic level, the transformation operator must be capable
of transforming a geodata set from its original data model into a different data model.
This includes that a consistent identification scheme is applied to all features within the
geodata set. On the syntactic level, the operator must be capable of transforming a
geodata set from its original CRS to a different one. These capabilities are required in
order to homogenize geodata from different sources by transforming them to a common
semantic and syntactic model.

Join As a precondition, the input geodata that the binary join operator merges must
be compatible and homogeneous on the pragmatic and to a certain extent on the se-
mantic and syntactic level. For two geodata sets to be homogeneous on the pragmatic
level, they are required to be equal, similar or consistent in properties such as intended
application area of the geodata, quality and scale. On the semantic and syntactic level,
the input geodata sets have to conform to a common data model and CRS. The join
operator must be capable of further homogenizing two input geodata sets. On the se-
mantic level, the operator has to match and link features if the geodata sets refer to a
shared set of phenomena. This may lead to geometrical adjustments of the features
on the syntactic level.

Integrating incompatible geodata will most probably lead to ineffective map-like vi-
sual representations. For example, when integrating two geodata sets with different
and specialized application areas, e.g., airplane navigation and pedestrian navigation,
most probably there will be no application area that the resulting geodata set would be
useful for (pragmatic level). As another example, when integrating two geodata sets
with non disjoint feature sets that are not labeled with feature entity identifications con-
sistently, feature duplicates might not be detected in later stages and appear on the
final representation (e.g., syntactic level).

Generalization Process The generalization process operator performs a complex
cartographic generalization process in terms of Grünreich’s model (see Section 2.2).
It generates cartographic geodata for rendering a map-like representation from input
geodata and given visualization requirements according to the purpose of the whole
system as specified in the systems specification. The input geodata must be homoge-
neous on the semantic, syntactic and pragmatic level. The output consists of general-
ized geodata and a visualization specification for the geodata. This is an application of
the general principle of separation of concerns that allows for improved reusability and
maintainability of the individual components.

For the internal design of the operator, as already noted, several frameworks ex-
ist, that decompose the generalization process into a set of generalization operators.
Though practice and research did not settle on just one established framework, they

Fall 2008 Workshop 15-11



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

usually include at least functionality to create an aggregated, simpler geometric ob-
ject from a set of objects (e.g., aggregation generalization operator [30]) and to define
the set of visual variables [2] for a geometric object (e.g., symbolization generalization
operator [30]). In general, in order to be generic and to achieve the expressiveness
of a specific framework, the generalization process operator has to implement all the
operators that a chosen framework includes.

Furthermore, generalization can be considered as a “holistic” process. This implies
that for the duration of the process, it generally has to have access to all the opera-
tors of the chosen framework and all the features that are considered for inclusion into
a representation. This is because several generalization operators are contextual [6]:
they depend on and may influence their spatial context. Therefore, in general, general-
izing isolated subsets of features and then simply merging the results of the individual
generalizations does not yield effective results [4]. The symbolization operator serves
as an example of an operator that cannot be applied isolated from other operators. The
results of this operator may have impact on the execution of other operators. For ex-
ample, the symbolization of a particular feature might have the effect that the required
space for the feature is enlarged and that nearby features must be displaced in order to
solve overlapping conflicts. Hence, arbitrarily applying symbolizations to geodata sets
without applying further generalization operators does not yield effective results.

The symbolization operator has to take into account the type and characteristics of
the output medium (syntactic aspect). The characteristics include the total display area
for the visual representation on the output medium, the size and shape of the picture
elements and the range of available colors.

Rendering The rendering operator produces a 2D raster image from a given geodata
set and a visualization specification. The operator applies the visualization specification
to the geodata set. Within this process, an implementation may produce an intermedi-
ate representation of the targeted image that combines both components and contains
less of the original semantics of the geodata. This representation depends on the di-
mensionality of the geodata to be displayed: for 2D, a vector-based representation may
be produced, for 3D, a representation that is based on vectors and scene graphs.

Finally, the operator has to generate the output 2D image by rasterizing the original
data or intermediate representation. On the syntactic level, the rasterization has to
take into account the type and characteristics of the output medium. For example,
depending on the relative size of the picture elements and display technology (CRT or
LCD), different antialiasing strategies should be applied.

5 Discussion of the State of the Art of Service-Based
Geovisualization

In this Section, we relate the state of the art in service-oriented geovisualization sys-
tems as stated in Section 3 to the proposed operators of the visualization pipeline as
stated in Section 4. We discuss some weaknesses of current proposals and show that

15-12 Fall 2008 Workshop



5 DISCUSSION OF THE STATE OF THE ART OF SERVICE-BASED
GEOVISUALIZATION

Selection Generalization Rendering

Join

Selection Generalization Rendering

Figure 5: WMS-SLD design in terms of the proposed operators.

they are not appropriate for designing and implementing a system that automatically
generates map-like visual representations from heterogeneous geodata.

5.1 Information Management

The proposed standard for geoinformation, ISO 19115 [19], does not contain informa-
tion regarding the intended application area of the geoinformation, conducted general-
ization processing of the data or identification of representation. Explicit information on
the intended application area is required in order to be able to select only geodata sets
that adequate for a given visualization requirement. Information on conducted gener-
alization processing is required in order to determine if a geodata set offers a certain
a level of detail. Finally, information on the identification of representation is required
to exploit effectively the presence of different representations from on or even multiple
data sources. Moreover, concepts of multiple representations are not supported by the
WFS.

GML enables domain communities to model specific domain models, called appli-
cation schemas. Service requester s can obtain geodata along with its data model in
shape of an application schema from a WFS. However, there are no proposed con-
cepts or services for mapping between the data models of different communities in the
general case. Ontologies have been suggested for solving this issue [45] but no results
were reported yet. For a solution based on ontologies, the GML must be extended to
support ontologies (e.g., tagging of features with concepts) in a standardized way.

Finally, no proposals exist for the higher-level task of integrating heterogeneous
geodata.

5.2 Generalization Processing

In general, WMS, W3DS and WPVS including the proposals for extensions mentioned
in Section 3.2 do not contain sufficient generalization functionality and thus do not gen-
erate effective map-like visual representations if the input geodata comes from different
sources.

To illustrate this, we exemplarily describe a WMS-SLD in terms of the operators
introduced in Section 4.2 (see Figure 5). First, the WMS executes a selection oper-
ator by choosing a specific WFS from a range of WFS as specified in the RemoteOWS

element of a SLD. Additionally, features from the chosen WFS are selected accord-
ing to the FeatureTypeName and Rule elements of the SE section of the SLD. Subse-
quently, the WMS executes a generalization process operator as specified in the SE

Fall 2008 Workshop 15-13



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

section of the SLD. For this purpose, the WMS classifies, assesses and enlarges the
selected features as specified in the Symbolizer element of the SE. Additionally, the
Symbolizer element specifies how the generalized features are rendered by the WMS.
Finally, the WMS can join several feature sets that have been selected, generalized and
rendered individually by stacking the individual results on top of each other in image
space (“painter’s algorithm”). Since the WMS requires that requested features from
different WFS are all available in a common CRS, and the join of the requested feature
sets takes place in image space, the WMS does not require a transformation operator.

This analysis indicates that a WMS-SLD applies generalization operators individu-
ally on each input geodata set. Moreover, the WMS-SLD does not implement indis-
pensable generalization operators such as aggregation. Because of these character-
istics, in general, a WMS-SLD does not generate effective map-like visual representa-
tions, as pointed out in Section 4.2. For W3DS and WPVS the discussion is analog
to the discussion of the WMS-SLD. The proposed extensions of the SLD (Section 3.2)
do not change the exposed characteristics. Consequently, for producing effective map-
like visual representations, the input geodata of a WMS, W3DS or WPVS must have
already been generalized as a whole. This requires additional functionality. Within a
SOA, this functionality can be provided in the shape of services. OGC publications
(e.g., [33]) hint at the meaningfulness of the existence of generalization services but so
far, no further effort was committed.

The central issue regarding the provision of automated generalization functionality
as standardized services is that it is not feasible yet to automate fully the cartographic
generalization process in the general case. Even if this issue is solved, agreeing on
a set of common abstractions for the standardization of generalization services might
prove challenging. Reported work on standardization efforts [12] is promising but is still
in an early stage.

Another minor issue of the WMS-SLD is that it does not sufficiently accounts for
the characteristics of the output medium. For instance, the WMS-SLD offers the func-
tionality of a specific selection generalization operator. A layer is only displayed by
the WMS-SLD if the current scale is within the specified valid scale range of the layer.
However, the calculation of the current scale does not take into account the actual pixel
size of the output medium, resulting, e.g., in the same visual representation on mobile
devices as well as video projectors.

Regarding 3D portrayal of map-like visual representations, another issue is that
common approaches for 3D portrayal do not generally produce effective visual rep-
resentations. For example, Figure 6 presents a 3D portrayal produced with common
techniques. The highlighted area reveals “pixel clutter” (artifacts on the syntactic level),
i.e., dead areas that contain little useful or even confusing information (impacts on the
semantic level). This exemplifies the need for generalization techniques that are spe-
cific for map-like 3D visual representations.

5.3 Portrayal Processing

For 3D portrayal of map-like visual representations, extensions for 3D of OGC’s SLD
and SE standards have been proposed [14, 31] that act as visualization specifications

15-14 Fall 2008 Workshop



6 DESIGN OF A CONFIGURABLE SERVICE-BASED GEOVISUALIZATION
PIPELINE

Figure 6: “Pixel clutter” as a symptom for insufficient generalization generated by com-
mon approaches for 3D portrayal.

for separate geodata. However, these proposals do not support specific visualization
requirements and do not exploit the full potential of 3D portrayal. For example, if pho-
torealistic representations are required, enabling realistic global illumination, water and
cloud rendering and controlling its properties supports this task. On the other hand,
if abstracted, non-photorealistic representations are required, enabling and controlling
specific techniques supports this task.

6 Design of a Configurable Service-Based Geovisual-
ization Pipeline

In this Section, we outline the high-level design of a configurable, standards- and
service-based visualization pipeline that can be applied for implementing a system
required to generate automatically map-like 2D and 3D visual representations from
heterogeneous geodata and visualization requirements.

For this purpose, we map the proposed operators (see Section 4) to existing OGC
standards and proposed new services. Figure 7 depicts the relevant services in the
context of an exemplary architecture. In the following, we briefly explain the four new
services and modifications to existing services and data models:

Geovisualization Process Service This service computes an output map-like visual
representation from the input visualization requirements and references to geodata
sources. The formalized visualization requirements include information on the applica-
tion area, the real world area to be visualized and characteristics of the output medium.
The service transforms the requirements into an internal visualization specification. It
implements an orchestration of processing services and acts as a facade to these ser-
vices. The orchestration is affected by the visualization specification. A reference to
geodata is expressed as a reference to an instance of a WFS, WCS or WMS with an
optional filter expression.

Fall 2008 Workshop 15-15



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

PortrayalGeneralizationData Compatibility

Generalization 
Service

Compatibility 
Validation

Service

Web Map Service

Web 3D Service

Geovisualization 
Process Service

Web Feature
Service

Web Coverage 
Service

Web Perspective
View Service

Integration
Service

Catalogue Service

Texture Styled Layer
Descriptor

... ... ... ... ...

...

Web Map Service

Figure 7: Exemplary architecture of a service-oriented subsystem utilizing existing and
newly proposed services that implements a process for the on-the-fly integration, gen-
eralization and portrayal of map-like 2D and 3D visual representations.

Compatibility Validation Service This service computes from the input validation
criteria and references to geodata sources if the referenced geodata sets are valid and
homogeneous. The validation can be performed on the syntactic level (e.g., CRS must
be the same or compatible, different geodata sets must spatially overlap, check if spatial
overlap of objects is plausible), on the semantic level (e.g., all geodata objects have a
type and this type is known and understood) and on the pragmatic level (e.g., intended
application areas of the geodata sets are compatible, geodata sets are still marked
as valid, quality and resolution is sufficient). This service implements the selection
operator.

Integration Service This service computes an output integrated, homogeneous geo-
data set from the input integration specification and references to geodata sources. If
the referenced geodata sets cannot be homogenized, the service throws an exception
or returns undefined results. The output geodata set can either be written to a set of
specified geodata storage services (e.g., transactional WFS and WCS) or kept in lo-
cal storages for direct retrieval by other services. The implementation of this service
and the Compatibility Validation Service might be based on ontologies. This service
implements the selection, transformation and join operators.

Generalization Service This service computes an output generalized geodata set
and a SLD visualization specification from the input generalization specification and

15-16 Fall 2008 Workshop



7 SUMMARY AND FUTURE WORK

references to homogeneous geodata sources. The output geodata sets and SLD can
either be written to a set of specified storage services or kept in local storages for
direct retrieval by other services. This service implements the generalization process
operator.

GML, Metadata, SLD The visualization specification SLD must be extended for 3D
and advanced styling techniques as discussed in section 5. The metadata specification
must be extended by additional as discussed in section 5.

WMS, W3DS, WPVS These services compute output 2D images or intermediate
vector representations from input geodata sets and a SLD visualization specification.
W3DS and WPVS must be extended to support the extended SLD. These services
implement the rendering operator.

The services mentioned above can be combined to implement various concrete
processes meeting different system requirements. For instance, a process is conceiv-
able for the on-the-fly compatibility validation, integration, generalization and portrayal
of map-like 2D and 3D visual representations. A variation of this process could use
WFS and WCS as storages to cache persistently homogenized and generalized geo-
data as they are computed for later reuse. This reuse could be for speeding up the
process. As another example, a different process could completely decouple the mass
generation of persistent generalizations and on-demand rendering of visual represen-
tations utilizing the precomputed data. This reuse could be for implementing focus and
context techniques based upon the persistent storage of different generalization levels
of the same geodata [15].

7 Summary and Future Work

In this paper, we addressed the design and implementation of standards-based sys-
tems that facilitate the automatic generation of effective map-like 2D and 3D visual
representations from heterogeneous geodata in a service-oriented infrastructure. We
identified basic requirements for such systems and identified concepts and methods
that support implementing such systems and discussed their strengths and weak-
nesses.

One important insight is that in general current proposals for portrayal, .i.e, WMS,
W3DS and WPVS, do not generate effective map-like visual representations if the input
geodata comes from different sources. Generating map-like representations demands
that the complex relationships between features are made explicit, analyzed and ad-
justed in order to meet the visualization requirements.

In Section 6, we outlined the high-level design of a geovisualization pipeline for
map-like visual representations. Several areas touched are still actively researched,
in particular the automated integration of heterogeneous geodata, automated gen-
eralization and 3D generalization. Further areas for future work include formalizing

Fall 2008 Workshop 15-17



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

(a) Non-photorealistic, illustrative
visualization of 3D city models [8].

(b) Integration of labels into vir-
tual 3D environments [28].

(c) Multi-perspective views of vir-
tual 3D landscape and city mod-
els [27].

Figure 8: Examples for advanced 3D styling techniques.

the visualization requirements and transforming them into a visualization specifica-
tion and investigating and integrating advanced styling techniques for 3D portrayal into
a service-oriented geovisualization infrastructure. Examples for promising advanced
styling techniques that can be utilized for generating effective map-like visual repre-
sentations but that are not yet integrated include the following (see Figure 8): non-
photorealistic, illustrative visualization of 3D city models [8], integration of labels into
virtual 3D environments [28] and multi-perspective views of virtual 3D landscape and
city models [27].

References

[1] Open Geospatial Consortium (OGC) Homepage. URL, http://www.

opengeospatial.org/. Accessed 15.4.2008.

[2] Jaques Bertin. Grafische Semiologie. Walter de Gruyter, Berlin/New York, 1974.

[3] Dirk Burghardt, Moritz Neun, and Robert Weibel. Generalization Services on the
Web – A Classification and an Initial Prototype Implementation. In Cartography
and Geographic Information Science, volume 32, pages 257–268, 2005.

[4] Matthias Butenuth, Guido von Gösseln, Michael Tiedge, Christian Heipke, Udo
Lipeck, and Monika Sester. Integration of heterogeneous geospatial data in a
federated database. In ISPRS Journal of Photogrammetry & Remote Sensing,
volume 62, pages 328–346, 2007.

[5] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Readings in
information visualization: using vision to think. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999.

[6] Alessandro Cecconi. Integration of Cartographic Generalization and Multi-Scale
Databases for Enhanced Web Mapping. PhD thesis, University Zürich, 2003.

15-18 Fall 2008 Workshop



REFERENCES

[7] Daniel Chandler. Semiotics - the basics. Routledge Taylor&Francis Group; New
York, 2002.

[8] Jürgen Döllner, Henrik Buchholz, Marc Nienhaus, and Florian Kirsch. Illustrative
Visualization of 3D City Models. In Proceedings of Visualization and Data Analysis
2005 (Electronic Imaging 2005, SPIE Proceedings), pages 42–51, 2005.

[9] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. In The
Canadian Cartographer, volume 10, pages 112–122, 1973.

[10] M. Dunkars. Multiple representation databases for topographic information. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden, 2004.

[11] Alistair Edwardes and Dirk Burghardt. Project WebPark Report –Generalisation
Services D4.4.2. Technical report, Department of Geography, University of Zürich,
October 2003.

[12] Theodor Foerster, Dirk Burghardt, Moritz Neun, Nicolas Regnauld, Jerry Swan,
and Robert Weibel. Towards an Interoperable Web Generalisation Services
Framework – Current Work in Progress. 2008.

[13] Dietmar Grünreich. Computer-Assisted Generalisation. In Papers CERCO Car-
tography Course, Frankfurt am Main, 1985. Institut für angewandte Geodäsie.

[14] Jörg Haist, Hugo Miguel Figueiredo Ramos, and Thorsten Reitz. Symbology En-
coding for 3D GIS - An Approach to Extending 3D City Model Visualization to GIS
Visualization. In Urban Data Management Symposium, October 2007.

[15] Mark Hampe, Lars Harrie, and Monika Sester. Multiple Representation Databases
to Support Visualization on Mobile Devices. In Proceedings of the XXth ISPRS
Congress, volume B4, pages 135–140, 2004.

[16] Mark Hampe and Sebastian Intas. Extension ofthe ogc web feature service stan-
dard for multiple representation data. In W. Kainz and A. Pucher, editors, Proceed-
ings of the ISPRS Technical Commission II Symposium, volume XXXVI of ISPRS
Archives, pages 49–54, Vienna, Austria, 2006.

[17] Dieter Hildebrandt, Oliver Holschke, Philipp Offermann, and Ulrike Steffens. En-
twurf serviceorientierter Architekturen. In Wilhelm Hasselbring and Ralf Reussner,
editors, Handbuch der Software-Architektur, page 575. dpunkt Verlag, September
2008.

[18] International Cartographic Association ICA. Multilingual Dictionary of Technical
Terms in Cartography. Franz Steiner Verlag, Wiesbaden, 1973.

[19] ISO/TC 211. ISO 19115:2003 Geographic Information – Metadata, 1st edition,
May 2003.

[20] ISO/TC 211. ISO 19119:2005 Geographic Information – Services, 2005.

Fall 2008 Workshop 15-19



Towards the Automatic Generation of Effective, Map-Like Visual Representations from
Heterogeneous Geodata in a Service-Oriented Infrastructure

[21] ISO/TC 211. ISO 19139:2007 Geographic information – Metadata – XML schema
implementation, 1st edition, May 2007.

[22] Anthony Jameson. Modelling both the Context and the User. Personal and Ubiq-
uitous Computing, 5(1):29–33, February 2001.

[23] C.B. Jones and J.M. Ware. Map Generalization in the Web Age. In International
Journal of Geographical Information Science, volume 19, pages 859–870, 2005.

[24] Andreas Koch. Semantische Integration von zweidimensionalen GIS-Daten und
Digitalen Geländemodellen. PhD thesis, Fakultät für Bauingenieurwesen und
Geodäsie der Universität Hannover, 2006.

[25] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented Ar-
chitecture Best Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[26] P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhind. Geographical Infor-
mation Systems and Science. Wiley, Chichester, 2. edition, 2005.

[27] Haik Lorenz, Matthias Trapp, Markus Jobst, and Jürgen Döllner. Interactive Multi-
Perspective Views of Virtual 3D Landscape and City Models. In Proceedings of
the 11th AGILE International Conference on GI Science. SPRINGER, May 2008.

[28] Stefan Maass and Jürgen Döllner. Seamless Integration of Labels into Interactive
Virtual 3D Environments Using Parameterized Hulls. In 4th International Sympo-
sium on Computational Aesthetics in Graphics, Visualization, and Imaging, June
2008. to appear.

[29] Alan M. MacEachren and Menno-Jan Kraak. Research Challenges in Geovisual-
ization. Cartography and Geographic Information Science, 28(1):3–12, 2001.

[30] Robert B. McMaster and Stuart K. Shea. Generalization in Digital Cartography.
Association of American Geographers, Washington, D.C., USA, 1992.

[31] Steffen Neubauer and Alexander Zipf. Suggestions for Extending the OGC Styled
Layer Descriptor (SLD) Specification into the third Dimension - An Analysis of pos-
sible Visualization Rules for 3D City Models. In Urban Data Management Sympo-
sium, Stuttgart, Germany, October 2007.

[32] Moritz Neun, Dirk Burghardt, and Robert Weibel. Web service approaches for
providing enriched data structures to generalisation operators. In International
Journal of Geographical Information Science, volume 22, pages 133–165, 2008.

[33] Open Geospatial Consortium Inc. OGC Reference Model, Version 0.1.3, Septem-
ber 2003.

[34] Open Geospatial Consortium Inc. Web 3D Service, Version 0.3.0, February 2005.

[35] Open Geospatial Consortium Inc. Web Feature Service Implementation Sepecifi-
cation, Version 1.1.0, May 2005.

15-20 Fall 2008 Workshop



REFERENCES

[36] Open Geospatial Consortium Inc. OpenGIS Web Map Server Implementation
Specification, Version 1.3.0, March 2006.

[37] Open Geospatial Consortium Inc. Symbology Encoding Implementation Specifi-
cation, Version 1.1.0, July 2006.

[38] Open Geospatial Consortium Inc. OpenGIS Catalogue Services Specification,
Version 2.0.2, February 2007.

[39] Open Geospatial Consortium Inc. OpenGIS Geography Markup Language (GML)
Encoding Standard, Version 3.2.1, August 2007.

[40] Open Geospatial Consortium Inc. OpenGIS Web Processing Service, Version
1.0.0, June 2007.

[41] Open Geospatial Consortium Inc. Styled Layer Descriptor Profile of the Web Map
Service Implementation Specification, Version 1.1.0, June 2007.

[42] Open Geospatial Consortium Inc. Web Coverage Service (WCS) Implementation
Specification, Version 1.1.2, March 2008.

[43] Open GIS Consortium Inc. OGC Web Terrain Server, Version 0.3.2, August 2001.

[44] Ingo Petzold, Dirk Burghardt, and Matthias Bobzien. Workflow Management and
Generalisation Services. In Workshop of the ICA Commission on Map Generali-
sation and Multiple Representation, 2006.

[45] Nicolas Regnauld. Evolving from automating exsting map production systems to
produce maps on demand automatically. In Proceedings of the 10th ICA Work-
shop on Generalisation and Multiple Representation, August 2007.

[46] Heidrun Schumann and Wolfgang Müller. Visualisierung: Grundlagen und allge-
meine Methoden. Springer-Verlag, Berlin, 2000.

[47] Robert Weibel. Generalization of Spatial Data: Principles and Selected Algo-
rithms, volume 1340 of Lecture notes in computer science, chapter 5, pages 99–
152. Springer, 1997.

[48] Robert Weibel and G. Dutton. Generalising spatial data and dealing with multiple
representations. In Geographic Information Systems – Principles and Technical
Issues, volume 1, pages 125–155, 1999.

Fall 2008 Workshop 15-21



 



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
 
Band ISBN Titel Autoren / Redaktion 

    
26 
 
 

978-3-940793-
65-2 

 

The Triconnected Abstraction of Process 
Models 
 

Artem Polyvyanyy, Sergey 
Smirnov, Mathias Weske 
 

25 
 
 

978-3-940793-
46-1 

 

Space and Time Scalability of Duplicate 
Detection in Graph Data  
 

Melanie Herschel, 
Felix Naumann 
 

24 
 
 

978-3-940793-
45-4 

 

Erster Deutscher IPv6 Gipfel 
 
 

Christoph Meinel, Harald Sack, 
Justus Bross 
 

23 
 
 
 

978-3-940793-
42-3 

 
 

Proceedings of the 2nd. Ph.D. retreat of 
the HPI Research School on Service-
oriented Systems Engineering 
 

Alle Professoren des HPI 
 
 
 

22 
 

 
978-3-940793-

29-4 
Reducing the Complexity of Large EPCs 
 

Artem Polyvyanyy, Sergy 
Smirnov, Mathias Weske 

21 
 
 

978-3-940793-
17-1 

 

 
"Proceedings of the 2nd International 
Workshop on e-learning and Virtual and 
Remote Laboratories" 

Bernhard Rabe, Andreas Rasche 
 
 

20 
 
 

 
978-3-940793-

02-7 
 

STG Decomposition: Avoiding Irreducible 
CSC Conflicts by Internal Communication 
 

Dominic Wist, Ralf Wollowski 
 
 

 
19 
 
 

978-3-939469-
95-7 

 

 
A quantitative evaluation of the enhanced 
Topic-based Vector Space Model 
 

 
Artem Polyvyanyy, Dominik 
Kuropka 
 

 
18 
 
 
 

978-3-939469-
58-2 

 
 

Proceedings of the Fall 2006 Workshop of 
the HPI Research School on Service-
Oriented Systems Engineering 
 

Benjamin Hagedorn, Michael 
Schöbel, Matthias Uflacker, 
Flavius Copaciu, Nikola Milanovic 
 

17 
 
 

3-939469-52-1 / 
978-3-939469-

52-0 

Visualizing Movement Dynamics in Virtual 
Urban Environments 
 

Marc Nienhaus, Bruce Gooch, 
Jürgen Döllner 
 

 
16 
 
 
 
 
 

3-939469-35-1 / 
978-3-939469-

35-3 
 
 
 

Fundamentals of Service-Oriented 
Engineering 
 
 
 
 

Andreas Polze, Stefan 
Hüttenrauch, Uwe Kylau, Martin 
Grund, Tobias Queck, Anna 
Ploskonos, Torben Schreiter, 
Martin Breest, Sören Haubrock, 
Paul Bouché 
 

15 
 
 
 

3-939469-34-3 / 
978-3-939469-

34-6 
 

Concepts and Technology of SAP Web 
Application Server and Service Oriented 
Architecture Products 
 

Bernhard Gröne,  Peter Tabeling, 
Konrad Hübner 
 
 

14 
 
 
 
 
 

3-939469-23-8 / 
978-3-939469-

23-0 
 
 
 

Aspektorientierte Programmierung  – 
Überblick über Techniken und Werkzeuge 
 
 
 
 

Janin Jeske, Bastian Brehmer, 
Falko Menge, Stefan 
Hüttenrauch, Christian Adam, 
Benjamin Schüler, Wolfgang 
Schult,  Andreas Rasche, 
Andreas Polze 
 

 
13 
 
 
 

3-939469-13-0 / 
978-3-939469-

13-1 
 

A Virtual Machine Architecture for 
Creating IT-Security Labs 
 
 

Ji Hu, Dirk Cordel, Christoph 
Meinel 

 
 

 



 



ISBN 978-3-940793-81-2
ISSN 1613-5652


	Title page
	Imprint

	Contents
	Extending the WPVS Visualization and Interaction Capabilities (Benjamin Hagedorn)
	1 Introduction
	2 3D Portrayal Services
	2.1 Relevance of 3D Portrayal
	2.2 The OGC Portrayal Model
	2.3 The Web 3D Service
	2.4 The Web Perspective View Service
	2.5 Comparison of WPVS and W3DS

	3 WPVS Extension Requirements
	3.1 Relevant 3D Portrayal Functionalities
	3.2 General Requirements for WPVS-Based Portrayal
	3.3 Limitations of the WPVS

	4 Suggestions for Extending the WPVS
	4.1 Enhanced Styling for 3D Portrayal and WPVS
	4.2 Cartographic Geovisualizations
	4.3 3D Annotations
	4.4 Object Information
	4.5 Analysis Functionality
	4.6 Convenient Camera Specifications
	4.7 Smart Navigation
	4.8 Single Object Inspection

	5 Conclusion and Future Work
	References
	A Application Scenarios for 3D Portrayal

	Optimizing Virtualization Concepts in (Guest-) Operating Systems (Michael Schöbel)
	1 Introduction
	2 Optimizing virtualized systems
	2.1 Memory management
	2.2 IO / device management
	2.3 CPU time management

	3 Towards self-optimizing virtualized systems
	4 Summary and conclusion
	References

	Implementation of a Service Platform to Evaluate Virtual Team Communication (Matthias Uflacker)
	1 Introduction
	2 Resource-oriented Team Communication Networks
	2.1 Network Foundations
	2.2 Network Ontologies
	2.2.1 Graphical Representation of RDF/OWL Ontologies
	2.2.2 System-specific Concept Model
	2.2.3 Web and Wiki Resources
	2.2.4 Email

	2.3 Rule-based Inference of Node Relationships
	2.4 Resource Orientation

	3 Platform Implementation
	4 Application
	5 Related Work
	6 Conclusion & Next Steps
	References

	Modelling Security Configurations for Service-oriented Architectures (Michael Menzel)
	1 Introduction
	2 Enterprise Security
	2.1 Authentication, Authorisation, Trust
	2.2 Data Confidentiality and Data Integrity
	2.3 System Integrity and Availability
	2.4 Auditing

	3 SecureBPMN – Modelling Security in BPMN
	3.1 Evaluating Assets
	3.2 Modelling Trust
	3.3 Expressing Security Intentions
	3.4 Expressing Auditing Requirements

	4 Translating Security /Security Pattern
	4.1 Domain-independent Security Model
	4.2 Security Pattern

	5 Modell-driven Generation of Security Policies
	6 Related Work
	7 Conclusion
	7.1 Future Work

	References

	A Flexible Live Inspection Framework (Alexander Schmidt)
	1 The KStruct Framework
	1.1 KStruct Architecture
	1.2 KStruct Access
	1.3 Synchronization

	2 KStruct – The Bigger Picture
	2.1 System Model
	2.2 Implementation
	2.3 Summary

	3 Microsoft Internship
	3.1 The Easy Pager Project
	3.2 Sharing WRK Related Content
	3.3 Summary

	4 Conclusion
	References

	Active Information Graphs (Hagen Overdick)
	1 Introduction
	2 Processes
	3 Getting Things Done
	4 Requirements for an IT-based BPM supporting GTD
	5 Resource Orientation
	6 Active Information Graphs
	6.1 Performance considerations
	6.2 Replication of projects

	7 Related work
	8 Conclusion and Outlook
	References

	FMC-QE - Hierarchies, Transformations and Rules (Stephan Kluth)
	1 Introduction
	2 FMC-QE
	3 Hierarchical Modeling and Aggregation in Quantitative Models
	3.1 Decomposability
	3.2 Norton’s theorem
	3.3 Formal Hierarchies and Combination of Models
	3.4 Aggregation and Hierarchies in Time Augmented Petri Nets
	3.5 Forced Traffic Flow Law
	3.6 FMC-QE

	4 Model Transformations
	4.1 While Loop
	4.2 Feed Backward Loop
	4.3 Open Questions

	5 Modeling Rules
	5.1 Multiplex
	5.2 Multiclass
	5.3 Open Questions

	6 Conclusions and Outlook
	References

	Identity Management for Cross-Organizational SOA (Ivonne Thomas)
	1 Motivation
	1.1 New Challenges for Identity and Access Management in SOA

	2 Sharing Identity Information for Access Control: The Concept of Identity Federation
	2.1 Example for Identity Federation: OpenID
	2.2 The Concept of Identity Federation
	2.3 Existing solutions
	2.3.1 OpenID
	2.3.2 CardSpace
	2.3.3 Liberty Alliance
	2.3.4 WS-Federation
	2.3.5 SAML

	2.4 Limitations

	3 Layered Trust Model
	3.1 The Concept of Organizational Trust
	3.2 The Concept of Identity Trust
	3.3 Comparison

	4 Trust in Identity Federations
	4.1 Organizational Trust
	4.1.1 Using Federations to establish Trust
	4.1.2 Describing Trust Relations and Trust Requirements as Trust Patterns
	4.1.3 Using Reputation to assess Organizational Trust

	4.2 Identity Trust
	4.2.1 Further Classification


	5 Conclusion and Future Work
	References

	Taking Trust Management to the next level: Analysis and Formalization (Rehab AlNemr)
	Abstract
	1 Introduction
	2 Context-aware Reputation-based Framework
	3 Identity Management
	3.1 Managing digital identity
	3.2 Implementing digital identity management
	3.3 Identity management architectures

	4 Model’s Use case and discussion
	4.1 Transferring Reputation Object: A use case
	4.2 Framework Strength points
	4.2.1 Benefits of using Reputation Object
	4.2.2 Benefits of using RRTMs


	5 Analysis and Formalization of the model
	5.1 Reputation Systems Categorized
	5.2 Previous and Existing Reputation Tools and Systems
	5.3 Knowledge base and the base constructs of relationships

	6 Trust Management and Identity Management
	7 Conclusion
	References

	Automated Service Composition for Minimal Goals (Harald Meyer)
	1 Introduction
	2 Motivating Scenario: Online Shopping
	3 Automated Service Composition using Heuristic Search
	3.1 Search Strategies with Heuristics
	3.2 Heuristics: Distance Estimation

	4 Heuristic Search using Overachievement Estimation
	4.1 Preference of Minimal Overachievement
	4.2 Preference of Composition Size
	4.3 Achieving Better Overachievement Score Estimations

	5 Related Work
	6 Summary
	7 Project Report: SOA Governance using Tagging
	7.1 Scenario
	7.2 Use Cases
	7.3 Implementation

	References

	Business Process Model Abstraction and Flexible Process Graph : Fall 2008 Workshop (Artem Polyvyanyy)
	1 Business Process Model Abstraction
	1.1 Process Model Abstraction
	1.1.1 Fundamentals
	1.1.2 Abstraction Scenarios
	1.1.3 Abstraction Criteria

	1.2 Abstraction Slider
	1.2.1 Slider Concept

	1.3 Abstraction Slider Examples
	1.4 Process Model Transformation
	1.4.1 Elimination and Aggregation
	1.4.2 Transformation Requirements


	2 Flexible Process Graph
	2.1 Foundations
	2.1.1 Process Instantiation
	2.1.2 Activity Firing
	2.1.3 Activity Enabling
	2.1.4 Process Termination

	2.2 From Formalism to Real World Business Processes
	2.2.1 Process Roles
	2.2.2 Modeling Parallelism

	2.3 Flexible Business Process Scenario

	3 Conclusions
	Acknowledgments
	References
	Publications

	Context : JContext-oriented Programming for Java (Malte Appeltauer)
	1 Introduction
	2 Context-oriented Programming for Java
	2.1 Overview
	2.2 ContextJ*
	2.3 ContextLogicAJ

	3 ContextJ
	3.1 Language Features
	3.2 Modularization
	3.3 Dynamic Composition

	4 The ContextJ Compiler
	4.1 Layer-aware Method Invocation in Java
	4.2 Compiler Implementation

	5 An Application of ContextJ
	5.1 Sharing Context Data
	5.2 Implementation using ContextJ

	6 Summary and Future Work
	References

	Modeling and Verification of Self-adaptive Service-oriented Systems (Basil Becker)
	1 Introduction
	2 State of the Art
	3 Modeling
	4 Invariant Checking
	4.1 Formal Model
	4.2 Untimed Case
	4.3 Timed Case

	5 Incremental Invariant Checking
	6 Implementation & Evaluation
	7 Modeling of correct self-adaptive systems
	8 Requirements
	9 Modeling Self-Adaptation
	9.1 Layers
	9.2 Representative Models
	9.3 Discussion

	10 Correctness
	10.1 Simulation
	10.2 Formal Verification

	11 Conclusion and Future Work
	Own Work
	References

	On a Model for a Service Database (Mohammed AbuJarour)
	1 Introduction: Service Brokers vs. DBMS
	2 The Problem: The Rising Complexity of Services
	3 Related Work: Service Brokers
	4 Approach: A DBMS-based Service Broker
	5 Implementation Issues: Service Management
	6 Conclusion: Service Management with DBMS
	References

	Towards the Automatic Generation of Effective, Map-Like Visual Representations from Heterogeneous Geodata in a Service-Oriented Infrastructure (Dieter Hildebrandt)
	1 Introduction
	2 Generating Effective Map-Like Visual Representations
	2.1 Requirements for Visual Representations
	2.2 Map-Like Visual Representations and Generalization

	3 State of the Art in Service-Oriented Geovisualization Systems
	3.1 OGC Standards
	3.1.1 Information Management
	3.1.2 Generic Processing
	3.1.3 Portrayal Processing

	3.2 Proposals for OGC Extensions and Supporting Concepts
	3.2.1 Information Management
	3.2.2 Generalization Processing
	3.2.3 Portrayal Processing


	4 Analysis of the Geovisualization Pipeline
	4.1 Visualization Requirements
	4.2 Operators

	5 Discussion of the State of the Art of Service-Based Geovisualization
	5.1 Information Management
	5.2 Generalization Processing
	5.3 Portrayal Processing

	6 Design of a Configurable Service-Based Geovisualization Pipeline
	7 Summary and Future Work
	References

	Aktuelle Technische Berichtedes Hasso-Plattner-Instituts



