Scalability and Performance Management of Internet Applications in the Cloud

We shed light on other stages where user be-
havior can contribute to this delay. In Figure 6,
we use two types of boxes to refer to two types of
stages. The dotted line boxes refer to the stages
where users can have some impact on the comple-
tion time of the stage. The solid line boxes show
stages that are completed totally by the provider
and its completion time is totally dependent on
the provider algorithms and the current demand
on the data centers.

The stages can be explained as follows:

1. The request for a new VM is initiated by
the user either manually or by a scalability
controller.

2. After receiving the request, the provider

runs an algorithm to find the best physical

host for hosting the new VM instance. Mao,

(2012) has shown that machine size, operat-

ing system, time of the day, and number of

instances have different weights of impact
on the VM'’s start up times

After finding a suitable pnysical nost, the

VM image is copied through the network.

4. Once the VM image is copied completely
to the physical host, it is run by the hypervi-
sor. Running a VM in the cloud includes:
booting the operating system, configuring
the network setup (e.g., assigning a private

(9%

Figure 6. Initializing a VM in the cloud

IP and public domain name for a VM run-
ning instance), and copying the public key
for accessing the VM in case of Linux, or
generating a random password in case of
Windows operating system.

The best practice to assure that the new
initiated VM has up to date data is to store
it in a networking storage. For instance, to
run a Web server with the last version of
html pages, at initialization time, the server
should be pointed to the repository where
a tar ball of html files can be retrieved and
extracted to the proper folder on the Web
server. The same procedures are applied for
the application and database server. This
can be completed through scripts that run
at the VM start up time. On the other hand,
customers should avoid retrieving huge
amounts of data that can delay bringing the
instance to operational mode. A long delay
could make the dynamic scalability non-
efficient as we show with the database tier
n tne next section.

Whenever a user gets the domain name
of the initiated VM, the user can access it
for configuring the hosted software. Users
should avoid installing software at VM’s
start up time, while this can delay moving
the VM to the operational mode. The best

———— - @

Retrieve the VM®
image from the

{ Find the best
; Rl e ' N placement
: inzt\;'r\\/::e | (Physical

W i / Machine)

Network Storage
to the Physical

Run the Instance
at the Hypervisor

Host

Retrieve the
necessary data
 from Network 1|
| storage |

450

|
Configure the | ! '
) hosted software | it

I AVMin :
1
1

) 1 State
\

Scalability and Performance Management of Internet Applications in the Cloud

practice is to pre-install the required software
and packages to the VM image and prepare a
script that runs automatically at the VM start
up time to do the required configurations.
These configurations may include passing
the acquired private IP (i.e., internal IP) to
another VM (e.g., the load balancer).

As seen above, a large part of the delay in VM
running in the cloud is attributed to the provider.
However, users should avoid any practices that
can delay moving initiated instance to an opera-
tional state.

5.2. Networking Overhead Impact
on Database Scalability

Database scale out is discussed in literature Igbal
et al. (2010) and Ge et al. (2008). Nevertheless,
few researchers have considered the overhead of
bringing adatabase VM to operational mode. Some
providers offer vertical scalability for relational
database (e.g., Amazon RDS, 2012) to cope with
the workload increase. Conversely, Amazon RDS
implies restarting the VM instance to apply the
new assigned capacity. In prior research (Da-
woud, 2011-b), we considered scaling database
instances (i.e., number of cores) online without
restarting the VM. The results are promising but
require further investigation to be implemented
in production environments.

In this research, we discuss scaling out database
tier horizontally by adding more slave instances
(i.e., read only instances). For this purpose, we
should calculate the time required to bring a new
slave database instance to operational mode.
In our setup, we consider the typical setup for
a scalable database in the cloud infrastructure.
Consequently, we assume that an old dump of
the whole database is stored in cloud storage (i.e.,
Amazon S3). Furthermore, an incremental backup
of the binary files is also stored periodically to
cloud storage, as described in (Dowman, 2009).

The non-compressed dump of our database is
1.1GB. To reduce the transferring time from the
networking storage to the new VM, the database
can be compressed to a lower size (i.e., 153MB).
We assume that the slave instance has a new and
up to date MySql installation. At the initialization
time of the VM, we run a script that copies the
compressed dump file from S3 storage to the VM
local storage. The dump file is extracted and used
to restore the database. Afterwards, we retrieve
all binary log files that had been uploaded to S3
during the Master database running time. Theses
logs also applied to the new database.

As an example, the time required to run a new
slave instance on m/.small instance at Amazon
EC2 can be estimated as follows:

1. Initializing a small instance in Amazon EC2:
100 seconds

2. Copying the compressed dump of database
to the new VM instance: 16 seconds

3. Extracting the database dump and importing
it to the new database: 255 seconds

4. Retrieving and applying the incremental
binary logs: 130 seconds

5. Getthelastupdates from master node, restart
the slave, and updating the load balancer with
the IP of the new slave node: 68 seconds

As shown above, initializing a relatively small
slave database instance in the cloud can be done,
at best, in 569 seconds, which can be estimated to
about 10 minutes. Our measurements are exposed
to increase if the size of the dump database was
bigger or the number of incremental binary logs
was larger. We should remember that our data-
base is considered very small compared to large
databases running in a production environment.
Large databases require longer time to initialize
a Slave VM from scratch, which raises the ques-
tion about the efficiency of scaling-out a Slave
database instances dynamically.

451

Scalability and Performance Management of Internet Applications in the Cloud

5.3. Evaluation

Current implementation of scalability in Amazon
EC2 is reactive, while the trigger of scaling up or
down is a result of exceeding the pre-determined
thresholds of resources consumption. An example
for that is to run a new VM instance when the ag-
gregate CPU utilization of VMs replicas exceeds
70% as a scale out threshold. For that reason,
currentimplementation of AutoScaleManager, by
Amazon EC2, is considered a reactive controller.
The problem with this approach is that it results
in periods of under-provisioning, while running
a new VM and bringing it into the operational
mode does not happen instantly for the reasons
explained before.

Unlike database instances initialization, the
dominant delay for initializing a new instance in
case of Web and application instances is the time
required by the provider to run these instances,
while the required time for retrieving data and
configuring VM instances for both Web and ap-
plication instances are just a few seconds. Mao et
al. (2012) measured the initialization time of Linux
instance at Amazon EC2 to be 96.9 seconds in
average, while it is measured to be 44.2 seconds in
RackSpace in average. In all our simulations, we
consider it to be 60 seconds as an average value.
This value is exposed to change according to the
adopted technology by the provider. So, we keep
it as a modifiable parameter, associated with the
VM type, in our simulator.

The following run of the simulator considers
a one-minute delay to bring a VM instance into
operational mode in Web and application tier.
Alternatively, the simulator considers 10 minutes
to bring a Slave database instance to operational
mode. The other parameters are set in Table 3 on
the light of the description shown at Table 2. The
VMs capacities are equal to ml.small instance
described by (Amazon EC2,2012). The workload
is the one generated in Section 4.3.

The output when running the simulation with
parameters in Table 3 is seen in Figure 10.

SLO violation is recorded when the available
CPU capacity at any tier is lower than the aggre-
gated CPU utilization to that tier. For example, at
minute 869 of the system run time, according to
incoming requests, our simulator calculates that
the CPU utilization of the running instance at
database tier is 72%. According to scalability
policy in Table 3, whenever the CPU utilization
at database tier goes over 72%, the system should
scale out while there is a high probability to ap-
proach an increase in response time (i.e., higher
than 100 ms in our case). Scale out will not be
triggered before five evaluation periods of CPU
utilization, as set in Table 3. After triggering a
scale out, the system will go into the sequence
described in Section 5.1 and 5.2. So, with current
setting, any violation for SLO in database tier will
not be removed before 15 minutes. During these
15 minutes, we consider that the system is under-
provisioned and unable to fulfill the SLOs.

Table 3. The parameters for running the simulation that results in charts seen in Figure 7

Parameter Web tier App tier Db tier
cooldown 300 seconds after scale out or 300 seconds after scale out or 300 seconds after scale out or
down down down
adjustment 1 for scale out 1 for scale out 1 for scale out
-1 for Scale down -1 for Scale down -1 for Scale down
metric-name CPU utilization CPU utilization CPU utilization
threshold 70% for scale out 62% for scale out 72% for scale out
30% for Scale down 30% for Scale down 30% for Scale down
period 1 minute 1 minute 1 minute
evaluation-periods 5 2 5

452

Scalability and Performance Management of Internet Applications in the Cloud

Figure 7. Simulating scalability of the multi-tier system with the parameters in Table 3: (a) web tier’s
dynamic scalability simulation; (b) application tier's dynamic scalability simulation; (c) database tier’s
dynamic scalability simulation

500
450
400
350
300
250
200
150
100
50
0

- Aggregated CPU Utilization

Available CPU Capacity

0 1440 2880 4320 5760 7200 8640
Simulation time (minutes)

(a)

500
450
400
350
300
250
200
150
100

50

e Aggregated CPU Utilization

Available CPU Capacity

0 1440 2880 4320 5760 7200 8640
Simulation time (minutes)
(b)
500
450
400
350
300
250
200
150 !
100 ! n H
0 P 5 —

—

- Aggregated CPU Utilization

Available CPU Capacity

0 1440 2880 4320 5760 7200 8640
Simulation time (minutes)

(0

453

Scalability and Performance Management of Internet Applications in the Cloud

Conversely, the cost is calculated by multiply-
ing the instance price per hour (i.e., 0.08$) by the
number of running hours. Similar to most of well
know on-demand instances providers, we charge
the partial hours as full hours. The results of the
simulation are seen in Table 4.

It is important to notice that the SLO violation
for the whole system is not calculated as the sum
of the violation caused by each individual tier
while the violation periods can overlap. Multi-tier
system behaves as a network of queues (Urga-
onka, 2005-b), so the delay in one tier will influ-
ence the whole system response time. Therefore,
we consider a violation whenever any of the three
tiers violated the SLO.

Another interesting observation which was
against our expectations was that the violations
caused by database tier are less than violations
by Web tier and application tier. In spite of the
fact that each scale out of database results in at
least 15 minutes of violations, the following facts
changed the results:

1. There are few scales per a day (i.e., two at
most) in database tier compared to applica-
tion and Web tier.

2. Due to parameters shown in Table 3, each
scale out in either Web tier or application
tier cannot be done in less than 6 minutes,
calculated as cooldown time. It is calculated
as one minute to provision the VM by the
provider plus five evaluation periods each
one is a minute.

To mitigate database dynamic scale out impact
on the system performance, a customer can keep
the minimum number of instances running con-

tinuously in database tier. For example, keeping
two instances reduces the violation in database
tierto 0.23%, but, increases the cost to $27.04. On
the other hand, keeping three running instances
at database tier reduces the violation to 0.0% but,
increases the cost of running database tier per a
week to $40.32. It is clear that dynamic scalability
isatrade-off between the cost and the performance.
In fact, we are not aware of any system in a pro-
duction environment who implements dynamic
scalability to database tier. Most likely, it is due
to sensitivity of this tier where any corruption or
missing of the data can be harmful for the whole
business. Furthermore, big databases can require
longer times to create read only replicas dynami-
cally. In the rest of our research, we consider that
database tier has three replica instances and has
no impact on the system performance.

6. SCALABILITY
PARAMETERS TUNING:

In the previous section, we examined scaling the
system depending on the performance thresholds
extracted in Section 3. Due to the fact that current
scalability implementation in industry is reactive
(Amazon EC2, 2012); the system shows periods
of under-provisioning with each scale out. It is
because of the overhead of initiating a VM in
the cloud. Until adopting techniques to reduce
initialization time of a VM in the cloud (Wu,
2011;Tang,201;Peng,2012), cloud infrastructure
customers have to find possible solutions that
mitigate the impact of resources initialization
overhead on the current running applications
scalability in the cloud.

Table 4. Results of the simulation described in section 5.3 for one week

Tier Web

Application

Database All (total)

Cost ($) 28.56 21.36

14.80 64.72

SLO violations (%) 1.9 24

1.39 5.29

454

Scalability and Performance Management of Internet Applications in the Cloud

6.1. Calculating Scalability
Thresholds as an
Optimization Problem

In this section, we study tuning the scalability
thresholds of an application to mitigate the impact
of resource provisioning overhead. As a start, we
should distinguish between two idioms: 1- Per-
formance threshold, which is the threshold after
which the system performance degrades dramati-
cally (i.e. SLO is violated with high probability).
2- Scalability threshold, which is the threshold
after which the system will scale up or down re-
gardless of the performance. For example, as seen
in Section 3.3, Web tier in RUBiS benchmark has
70% CPU utilization as a performance threshold,
but in this section, we try different values of scal-
ability thresholds to find the optimal cost and
performance.

In Figure 8, we assume that 70% is performance
threshold. If we pick up a scale out threshed
higher than the performance threshold by Ah, we
can increase the probability of scale out before
approaching the performance threshold. This
implies longer periods of over-provisioning and
for sure will increase the cost. The question is,
what is the best value of Ak that reduce the SLO
violation but do not increase the cost so much? It
is clear that we are dealing with multi-objective
optimization problem.

The formal definition of the problem is as
follows:

minimize G(x,y) = {Ge(x,y), Gv(x.y)}
subject to:
0 <x< 50
50 <y< 100
In fact, building mathematical model of our

optimization functions is very complex. As a
solution, we deal with them as black boxes and

Figure 8. Scalability threshold tuning

80% % i
70; . SLO violation Ah
o S S A S S S
60% . Price increment :
v v
40% A . .
2oy .- SLOviolation ...
i FRIIE P : Al
20% . Price increment :
v v

compute all representative set of Petro optimal
solutions (Ehrgott, 2005; Coello, 2007), where
Gc represents the cost and Gv represents the
SLO violation. The value of each goal function
is calculated depending on two input values x and
y, where they represent the Scale down and out
thresholds, consequently.

Since we have different parameters in the
system, we fix them all and only vary one pa-
rameter per a simulation. As an example, with
fixed scalability thresholds of application tier
(i.e., CPU utilization 62%, as a scale out, and
30%, as a Scale down thresholds) we evaluate a
range of a scale out thresholds for Web tier starts
at 60 and ends at 80. For each value we run a
complete simulation and calculated the cost and
the number of the SLO violations. To be sure
about observations consistency, we run individual
simulation for the first three day in our generated
workload described in Section 4.3. Moreover, we
tried different values of Scale down threshold
ranging between 20 and 40. So, the x-axis of all
sub-Figures 9(a) to 9(f) is the tested values for
Scale down threshold while y-axis is the tested
values for scale out threshold. The same setup is
repeated to application tier scalability parameters.
With fixed scalability thresholds of Web tier (i.e.,
CPU utilization 70%, as a scale out and 30%, as
a Scale down thresholds) we evaluate a range of
a scale out thresholds for application tier starts at
50 and ends at 70. For the Scale down threshold,

455

Scalability and Performance Management of Internet Applications in the Cloud

we tried different values ranging between 20 and
40. The result of this part of simulation is seen
in Figure 10. In all our experiments, we consider
adequate number of database instances at database
tier (i.e., three instances), which prevent any SLO
violation by database tier.

For both simulation run, the cost is calculated
by counting the running hours multiplied by the
price of the m1.small instance running at Amazon
EC2 east coast datacenters, which is 0.08 at the
time of writing this book. It is important to note
that even the partial hours are calculated. More-
over, as we notices in Amazon EC2, wheneveritis
the time to terminate an instance for Scale down,
Amazon terminates the instance with the longer
runtime. We use the same election way in our
simulator. However, we plan to study optimizing
the cost by terminating instances that are more
close to the end of the hour.

SLO violation describes the percentage of the
time that the response time of the Internet ap-
plication (95" response time) is probably higher
than 100 milliseconds. It is calculated by finding
the number of minutes when the CPU utilization
is higher than the performance threshold to the
number of minutes per day (i.e., 1440 minutes).

From Figure 9 and Figure 10, we have the
following observations:

1. Scale Out Threshold Tuning:

a. A scale out threshold higher than
the performance threshold decreases
the cost slightly, but increases SLO
violation.

b. A scale out threshold lower than the
performance threshold increases the
cost slightly but reduces the SLO vio-
lation strongly.

c. Averylowscaleoutthreshold increases
the probability of over-provisioning
which increases the cost without re-
markable decease in SLO violation.
However, if a very low scale out thresh-
old coincides with a high Scale down
threshold the probability of oscillating

456

increases as will be shown in Figure
11.
2. Scale Down Threshold:

a. Ahigh Scale down threshold results in
a high violation of the SLO. However,
it does not result in any reduction of
the cost.

b. A very low Scale down threshold
does not show an increase in the cost
as expected in the previous section.
However, itreduces the SLO violation.

Using MOEA Framework (MOEA, 2011),
which is an open source java framework for multi-
objective optimization; we calculate the optimal
values for scale out and down thresholds. As a
multi-objective optimization problem, we have
a set of solutions. However, from our observa-
tions, we pick up the best solution provided by
the optimizer as follows:

e Forscale out, picking a value slightly lower
than the performance threshold reduces the
probability of SLO violation. For example,
setting 66 as a scale out threshold for the
Web tier and 58 as a scale out threshold
for the application tier leads to an optimal
solution.

e For the Scale down, any value less that 30
keeps the SLO violation to the lowest if
the scale out threshold is set to the optimal
value describe before.

Toevaluate scalability parameters tuning on the
system performance, we repeat the experiment in
Section 5.3, but with the optimized parameters and
acontinuous running of instances at database tier.

As seen in Table 5, with a little increase in
the total running cost (i.e., 3.81%) we achieved a
high reduction in the SLO violation (i.e., 72.29%).
We appreciate this reduction when we remember
that 1% SLO violation means that for each 100
running hour’s there is a cumulative one hour
where the response time of the system is higher
than 100 milliseconds.

Scalability and Performance Management of Internet Applications in the Cloud

Figure 9. The impact of the scalability thresholds on cost and SLO violations at web tier

o — ’ |
» | b i
% % D “*l 3 R 5 | ..
74 (5 . . y & 74 |
3 £ 3 3 ~7}
H n 551 - H ” ”
£ £ g, [L
i i - :")3
§ s %s a 5 % §ef 7 % I‘
3 i H & | : o
86F ¢ S5 ® 65 88 1 -
T l
e # h
62 T B A & L‘. 4
65 N Tiv ©
20 25 30 35 a0 2] % 0 [
Scale down thresholg Scale down tveshoic
(a) Cost (8) - First day (¢) Cost (8$) - Third day
%0
7 ; L g u $ = 7e kﬂ ®
s 5 5 | - = 1
% t] | h_". % L { e o 9
7 5 4 T0— 78 \
» . 5 } 3 3
» =

Scale out thweshold
=3
&
Scale out theeshold
I
oV
v
'S
o
Scale out tveshold
)
&
o
oL

68 68 \ \
p——————————— 2 e ~—\ \ 8 \ o
- \ » | | & ; i
82 \ 3 RS 62/)
\ b 11 {1 =
"0 2 0 3 40 n EJ % 2 2 % 0 E3 40
Scale down threshold Scale dovn threshold Scale down fye shols
(d) SLO violation (%) - First day (e) SLO violation (%) - Second day (f) SLO violation (%) - Third day
Figure 10. The impact of the scalability thresholds on cost and SLO violations at application tier
s - . =
8} a g, ,’_‘;‘ M | Yo o8pt ...
3 j J (] i 1 3 8
9 N—sd i - 7a % ; 35 . B
5 o ® 2 | ® L
£ a2} L T s 2w ad 26
9 45 1] { $
i 8t £ Y . 5 L 1 Iy i f s8f2s 28 E.
%; 2 2 % 7 s > & i a
54k 5 g 5 s 4 54 . »
ss 55 K
52 N i 52 i ° s 52 & & as 2
% = % 3 E) 35 a0 2 3 0 «:3 20 - 2 0 35 «©
Scale sown thre shold Scale down thes shold Scale dewn threshold
(a) Cost ($) - First day (b) Cost ($) - Second day (c) Cost ($) - Third day
? T E =r 0
s 15 2 ! z > sab.S | 12 £
- e 1 % i
| TS % - 3 o - AN 10 76"
- P e 10 . % ['
Bl 20 3 \ 2 Y
g ok %o e 5 Site s fe Kol ”
£ e 7 g \
] H \ \ 3 A 2
§ B b & i \ B 3; Kl % § 8
¢ \ ™ s %
54 /s, % 54 l 54 ®
1 (7 i o * $ ’; 52 s
" 0 3 © =) 3 EJ 3 @ 20 % 3)
Scale down threshold Scale down Pweshold Scale dorn tveshoid
(d) SLO violations (%) - First day (e) SLO violation (%) - Second day (f) SLO violation (%) - Third day

457

Scalability and Performance Management of Internet Applications in the Cloud

6.2. Bad Threshold Values

Looking for lower violation of SLO, customer
may select a very low scale out threshold value.
Figure 11 shows how a very low scale out value
leads to an oscillating in the number of the pro-
visioned instances (i.e., available CPU capacity),
which leads to a short but chargeable runs of VMs
instances. This explains the early increase of the
cost seen in Figures 10(a) to 10(c) for scale out
threshold 51% and Scale down threshold 30%.
In fact, what also increases the probability of
the oscillating is the workload itself. For instance,
we see in Figure 11 that most of the oscillating is
when the aggregated CPU utilization is oscillating
around 51%. What happens in this case is the
following: when the CPU utilization is a little
higher than the scale out threshold (e.g., 53%);
the system will scale out to two instances. At this
time, the CPU utilization per an instance will be
(53/2 = 26.5) which satisfies the Scale down
policy while (26.5% is less than 30%).
Similarly, for Web tier, we observe many pe-
riods of aggregated CPU utilization oscillating
around 66%, which makes selecting close scale
out and Scale down thresholds (e.g., 66%, as scale
out threshold, and 33%, as Scale down threshold)
a bad choice, as seen in Figures 9(a) to 9(c). One
solution is to increase the cooldown parameter
described in Table 3. However, a big cooldown
value delays the system response to the spikes
in workload and may result in longer periods of
under-provisioning (i.e., SLO violation).

According to our observations, we can define
some scalability threshold values that should be
avoided:

e A very low scale out that increases the cost
dramatically without a remarkable reduc-
tion in SLO violation.

e A very high Scale down threshold that in-
creases both the cost and the SLO violation.

e A scale out or down thresholds (i.e., scale_
threshold) that satisfy the following rela-
tion for long periods of the monitored met-
ric (e.g., aggregated CPU utilization):

mean(aggregated CPU utilization) = n * scale_
threshold,

where 7 is a positive integer

6.3. Scalability Step Size
Impact on Performance

At cloud infrastructure, customers can determine
the scale out and Scale down step size (i.e., ad-
Jjustment in Table 2). So, instead of scaling out
by adding one VM instance per a step, provider
allows the customer to determine the scale step
size either up or down.

This can be a way to reduce the SLO viola-
tion caused by resources initialization overhead.
To evaluate the scale out step size impact on the
system performance we repeat last simulation of
Web tier but with different values of adjustment

Table 5. Results of tuning scalability parameters of the simulation described in section 5.3 for one week

Tier Web Application Database All (total)
Without tuning Cost ($) 28.56 21.36 40.32 90.24
SLO violations (%) 1.92 240 0 4.15
With tuning Cost ($) 29.84 23.52 40.32 93.68
SLO violations (%) 0.66 0.51 0 1.15

458

Scalability and Performance Management of Internet Applications in the Cloud

Figure 11. The impact of bad values of scalability parameters’ on the performance of the application tier

450 4—
400 -

~— Aggregated CPU Utilization

Available CPU Capacity

350
300
250
200

150
300 -4ty
50

0 A e S s

0 360 720

1080 1440 1800 2160 2520 2880 3240 3600 3960

Simulation time (minutes)

parameter. From experiments, we noticed that a
fast Scale down has a severe impact on the SLO
violation. So, we only examined different values
for the scale out step size (i.e., adjustment).

Because Figure 9(a) and Figure 9(d) already
present Web tier scale out with one VM per scale
(i.e., adjustment = 1), we only repeat the Web tier
simulation with values two, three, and four. The
cost and SLO violation of each case are depicted
in Figure 12. The result shows no big reduction
in SLO violation, however, we notice increase
in the cost. For example, in Figure 12, threshold
values 66, as scale out threshold, and 30, as Scale
down threshold show no big reduction in SLO
violation. However, in figures 12(a), 12(b), and
12(c) we can recognize an increase in the cost
compared to Figure 9(a).

To analyze the results, we plot the system
scalability for each scale step size in Figure 13.
When we scale out with one VM step size, we
can recognize four scales out, in addition to the
first scale out at simulation start up time. These
periods of the system running time are recorded
as violation of the SLO.

In Figure 13(b) the scale step size is increased
to two VM instances per scale, which reduced the

total SLO violation periods to two. We can rec-
ognize periods of over provisioning that explain
the increase in the cost seen in Figure 12(b). In
Figures 13(c) and 13(d), the step size is increased
to three and four, respectively. However, we notice
the same number of SLO violations, but extra
periods of over-provisioning. This explains why
we cannot recognize a real decrease in SLO vio-
lation in Figure 12(e) and 12(f), but an increase
in the total cost due to over-provisioning.

7. CONCLUSION AND
FUTURE WORK

Inthisresearch, we described the main components
that enable scalability in the cloud infrastruc-
ture. We studied tuning scalability components’
parameters to mitigate the impact of resources
provisioning overhead in the cloud. Our research
provides techniques that help IaaS customers, as
well as PaaS and SaaS providers, to optimize the
cost and performance of their scalable applica-
tions, and consequently maximize the profit. The
analysis depends on measurements from physi-
cal environment fed to our developed simulation

459

Scalability and Performance Management of Internet Applications in the Cloud

Figure 12. The impact of the scale out step size on the cost and the SLO violation at web tier for the
first day

3 T N L 1
. % o X N\ .l " v "" [_ ~——_ P
oo D A Ly §
" e “L e s i) —\,.‘69—\1
1] FYED SRR USRS T LH 1 B i \l\,\/\/:: * T4ty . — &1
% np 2 . Sy e L % 214 . / § 72 p> { N
E i~ o, 0l 2 e £ e o
3 : 3 [a7 %o : 2 7 s
£ % £ 63 %68 . ~HEE B
& % 8] @
6 8 ?° ’ sho 78 e 75 " oe} % e e as @
75 b a e P 9
E = up - sap & <
< % 88 -
62k v A2 . 82 > 62 . S ° o
& ’ 18 > 5020 -
0 5 30 3 40] 2% 30 35 @ %) 3% 40
Scale down threshold Scale down threshold Scale dove: threshold
(a) Cost (8) - Two instances (b) Cost (8) - Three instances (¢) Cost ($) - Four instances
= 2 ' 2 il \ e v
3 . 7 | B
% -‘53 8| 78 $ aA)
%) % 7% \ % .
" H L) 3
£ % 10 ‘: " K * 1: by
e & a) A 2 N ") 12 14
% n W\ e “ HE WK
£ ~——io~ ¥ £ ~ N e
g 0 . 12 g 0 g mx ~\ ¥H\\\ ~a
§ 5 p S \ % w0 § 68 B
65 \ Y e ™\ 1 88/ Ny
8 l\ / 5) 9 84 ﬁ
€2 \ [T 82 /
2% 5 30 3% 40 20 25 30 3% 40 u20 % 3 35 40
Scale donn threshold Scale down threshold Scale down threshold
(d) SLO violation (%) - Two instances (e) SLO violation (%) - Three instances (f) SLO violation (%) - Four instances

Figure 13. Scale out step size impact on cost and SLO violations at web tier

600 m"{"’éﬁ’;::‘gsw" — e ——————— 600 - ———Aggregated CPU Utilization e e
550 — 550 _ ==Available CPU Capacity : o o
500 - — - - — - 500 NSRRI S-S =S = =
450 -~ 450 -
400 -+ 400
350 350
300 - ; 300
250 + 250 oo
200 - 200 -
150 -, 150 -
100 100
SO -+~ 50 F
04 s i R i - 0 -
0 360 720 1080 0 360 720 1080
Simulation time (minutes) Simulation time (minutes)
(a) One VM (b) Two VMs
500 - Aggregated CPU Utilization 600 . ———Aggregated CPU Utilization
550 . ———Available CPU Capacity -
500 -
4as0 -
400 -
350
300
250 4
200
150
3 100
s 50
0 720 1080 0 360 720 1080
Simulation time (minutes) Simulation time (minutes)
(c) Three VMs (d) Four VMs

460

Scalability and Performance Management of Internet Applications in the Cloud

environment (i.e., ScaleSim). The novelty of our
research lies in the fact that without modifying
current scalability architectures, we success to
achieve 72% reduction in SLO violation with a
slight increase in the cost.

In our immediate future work, we study reduc-
ing SLO violation by replacing current reactive
implementation of scalability with proactive
scalability algorithms. Furthermore, we study
monitoring window size’s impact on the scalability
performance. We are looking for dynamic and
automatic optimization of scalability parameters.
Currently, our experiments depend on RUBiS
benchmark; we are looking for generalizing our
observation using variety of applications from
production environment.

REFERENCES

Agrawal, D., El Abbadi, A., Das, S., & Elmore,
A.J.(2011). Database scalability, elasticity, and
autonomy in the cloud. In Proceedings of the 1 6th
international conference on Database systems for
advanced applications. Berlin: Springer-Verlag.

Amazon, R. D. S. (2012). Amazon relational
database service. Retrieved April 2, 2013 from
http://aws.amazon.com/rds/

Amazon EC2. (2012). Amazon elastic compute
cloud. Retrieved April 2, 2013 from http://aws.
amazon.com/ec2/

Arlitt, M., & Jin, T. (1999). Workload character-
ization of the 1998 world cup web site. HP Labs
Technical Reports. Retrieved April 2, 2013 from
http://www.hpl.hp.com/techreports/1999/HPL-
1999-35R 1.html

AutoScaling. (2012). Auto scaling command line
tool. Retrieved April 2, 2013 from http://aws.
amazon.com/developertools/2535

Calheiros, R. N., Ranjan, R., Beloglazov, A., De
Rose, C. A. F., & Buyya, R. (2011). CloudSim: A
toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource
provisioning algorithms. Software, Practice &
Experience, 41(1), 23-50. doi:10.1002/spe.995.

Candea, G., Kawamoto, S., Fujiki, Y., Fried-
man, G., & Fox, A. (2004). Microreboot --- A
technique for cheap recovery. In Proceedings of
the 6th conference on Symposium on Opearting
Systems Design & Implementation. Berkeley, CA:
USENIX Association.

Cecchet, E., Marguerite, J., & Zwaenepoel, W.
(2002). Performance and scalability of EJB appli-
cations. SIGPLAN Notifications, 37(11), 246-261.
doi:10.1145/583854.582443.

Chieu, T.C.,Mohindra, A., & Karve, A. A.(2011).
Scalability and performance of web applications
in a compute cloud. In Proceedings of the IEEE

International Conference on E-Business Engineer-
ing, (pp. 317-323). IEEE.

CloudWatch. (2012). Amazon CloudWatch. Re-
trieved April 2, 2013 from http://aws.amazon.
com/cloudwatch/

CloudWatch Command Line. (2012). Amazon
CloudWatch command line tool. Retrieved April

2, 2013 from http://aws.amazon.com/developer-
tools/2534

Coello, C. A., Lamont, G. B., & Van Veldhuisen,
D. A.(2007). Evolutionary algorithms for solving
multi-objective problems. Berlin: Springer.

Curino, C., Jones, E., Zhang, Y., & Madden, S.
(2010). Schism: A workload-driven approach to
database replication and partitioning. In Proceed-
ings of VLDB Endowowment. VLDB.

Dawoud, W., Takouna, 1., & Meinel, C. (2011a).
Elastic VM for cloud resources provisioning
optimization. In Proceedings of the First Inter-
national Conference on Advances in Computing
and Communications (ACC 2011), (vol. 190, pp.
431-445). Springer.

461

Scalability and Performance Management of Internet Applications in the Cloud

Dawoud, W., Takouna, 1., & Meinel, C. (2011b).
Elastic virtual machine for fine-grained cloud
resource provisioning. In Proceedings of the
4th International Conference on Recent Trends
of Computing, Communication & Information
Technologies (ObCom 2011). Springer.

Dawoud, W., Takouna, I., & Meinel, C. (2012).
Dynamic scalability and contention prediction
in public infrastructure using internet applica-
tion profiling. In Proceedings of the 4th IEEE
International Conference on Cloud Computing
Technology and Science. Taipei, Taiwan: IEEE.

Dowman, P. (2009). Backing up your MySQL da-
tabase to S3. Retrieved April 2, 2013 from http://
pauldowman.com/2009/02/08/mysql-s3-backup/

Dubey, A., Mehrotra, R., Abdelwahed, S., &
Tantawi, A. (2009). Performance modeling of
distributed multi-tier enterprise systems. ACM
SIGMETRICS Performance Evaluation Review,
37(2), 9. doi:10.1145/1639562.1639566.

Ehrgott, M. (2005). Multicriteria optimization.
Berlin: Springer.

ELB APIs. (2012). Elastic load balancing API
tools. Retrieved April 2, 2013 from http://aws.
amazon.com/developertools/2536

Faban.(2012).Retrieved April 2,2013 fromhttp:/
java.net/projects/faban/

Framework, M. O. E. A. (2011). Version 1.17.
Retrieved April 1, 2013 from http://www.moea-
framework.org/

Ge, Y., Wang, C., Shen, X., & Young, H. (2008).
A database scale-out solution for emerging write-
intensive commercial workloads. SIGOPS Operat-
ing Systems Review, 42(1).

GoGrid. (2012). Retrieved April 2, 2013 from
http://www.gogrid.com/

462

Heo, 1., Zhu, X., Padala, P., & Wang, Z. (2009).
Memory overbooking and dynamic control of Xen
virtual machines in consolidated environments. In
Proceedings of the 11th IFIP/IEEE international
conference on Symposium on Integrated Network
Management (IM’09). IEEE Press.

Igbal, W., Dailey, M. N., & Carrera, D. (2010).
SLA-driven dynamic resource management for
multi-tier web applicationsin acloud. In Proceed-
ings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Comput-
ing. IEEE.

Igbal, W., Dailey, M. N., & Carrera, D. (2011).
Black-box approach to capacity identification for
multi-tier applications hosted on virtualized plat-
forms. In Proceedings of the 2011 International

Conference on Cloud and Service Computing
(CSC ‘11). IEEE Computer Society.

Jayasinghe, D., Malkowski, S., Wang, Q., Li, J.,
Xiong, P., & Calton, Pu. (2011). Variations in
performance and scalability when migrating n-tier
applications to different clouds. In Proceedings of
the IEEE 4th International Conference on Cloud
Computing. IEEE.

Jung, G.,Joshi, K. R., Hiltunen, M. A., Schlichting,
R. D., & Pu, C. (2008). Generating adaptation
policies for multi-tier applications in consoli-
dated server environments. IEEE. doi:10.1109/
ICAC.2008.21.

Li, J., Wang, Q., Jayasinghe, D., Malkowski,
S., Xiong, P., & Pu, C. ... Kawaba, M. (2012).
Profit-based experimental analysis of IaaS cloud
performance: impact of software resource allo-
cation. In Proceedings of the 2012 IEEE Ninth
International Conference on Services Computing
(SCC “12). IEEE Computer Society.

Mao, M., & Humphrey, M. (2012). A performance
study on the VM startup time in the cloud. In
Proceedings of IEEE 5th International Confer-
ence on Cloud Computing (Cloud 2012). IEEE.

Scalability and Performance Management of Internet Applications in the Cloud

Menascé, D. (2002). Load testing of web sites.
IEEE Internet Computing, 6(4). doi:10.1109/
MIC.2002.1020328.

Miller, R. (2008). A look inside Wikipedia’s in-
frastructure. Retrieved April 2, 2013 from http://
www.datacenterknowledge.com/archives/2008/

Jun/24/a_look_inside_wikipedias_infrastructure.
html

Nielsen, J. (1993). Usability engineering. San
Francisco, CA: Morgan Kaufmann Publishers Inc..

Olio. (2012). Retrieved April 2, 2013 from http://
incubator.apache.org/olio/

Peng, C., Kim, M., Zhang, Z., & Lei, H. (2012).
VDN: Virtual machine image distribution network
for cloud data centers. In Proceedings of the 31th
IEEE International Conference on Computer
Communications (INFOCOM 2012). Orlando,
FL: IEEE.

Rackspace. (2012). Retrieved April 2, 2013 from
http://www.rackspace.com/

RightScale. (2012). Retrieved April 2, 2013 from
http://www.rightscale.com/

Route 53. (2012). Retrieved April 2, 2013 from
http://aws.amazon.com/route53/

Scalr.(2012). Retrieved April 2,2013 from http://
code.google.com/p/scalr/

Sobel, W., Subramanyam, S., Sucharitakul, A.,
Nguyen, J., Wong, H., Klepchukov, A., ... Pat-
terson, D. (2008). Cloudstone: Multi-platform,
multi-language benchmark and measurement
tools for web 2.0.

Tang,C.(2011). FVD: A high-performance virtual
machine image format for cloud. In Proceedings
of the 2011 USENIX Conference on USENIX An-
nual Technical Conference. USENIX.

Urgaonka, B. (2005). Dynamic resource manage-
ment in Internet hosting platforms. Electronic
Doctoral Dissertations for UMass Amherst. Paper
AAI3193951. Retrieved from http://scholarworks.
umass.edu/dissertations/AAI3193951

Urgaonkar, B., Pacifici, G., Shenoy, P, Spreitzer,
M., & Tantawi, A. (2005). An analytical model for
multi-tier Internet services and its applications.
SIGMETRICS Performance Evaluation Review,
33(1),291-302. doi:10.1145/1071690.1064252.

Van Baaren, E. (2009). WikiBench: A distributed,
wikipedia based web application benchmark.
(Master Thesis). VU University, Amsterdam,
The Netherlands.

Windows Azure. (2012). Retrieved April 2, 2013
from http://www.windowsazure.com/

Wu, X., Shen, Z., & Lin, Y. (2011). Jump-start
cloud: efficient deployment framework for large-
scale cloud applications, In Proceedings of the 7th
International Conference on Distributed Comput-
ing and Internet Technology ICDCIT 11.1CDCIT.

Zhang, Q., Cherkasova, L., & Smirni, E. (2007).
A regression-based analytic model for dynamic
resource provisioning of multi-tier applications.
In Proceedings of the Fourth International Con-

ference on Autonomic Computing. Washington,
DC: IEEE Computer Society.

KEY TERMS AND DEFINITIONS

Scale Out: To scale out (scale horizontally)
is to add more nodes to the system. An example
might be adding more Web instances to Web tier.

Scale Up: To scale up (scale vertically) is to
add resources to the same node in a system. An
example might be to add more physical memory
(i.e., RAM) to a database node.

463

Scalability and Performance Management of Internet Applications in the Cloud

Scale Down: To Scale down is to release some
acquired resources. If the resources acquired by
scale out, Scale down means releasing some nodes.
If the resources acquired by scale up, Scale down
means removing some of the node’s resources.

Scalable Architecture: It is architecture
enables rapid, automated, self-balanced, and
transparent scalability to the users of the system.

Service Level Agreement (SLA): SLA is an
agreement outlining a specific service commit-
ment made between contract parties — a service
provider and its customer. The agreementdescribes

464

the overall service, support details, financial
aspects of service delivery, penalties, terms and
conditions, and performance metrics that govern
service delivery.

Service Level Objective (SLO): SLO is spe-
cific measurable characteristic of the SLA such as
availability, throughput, response time, or quality.
An example of response time as an objective is:
“95% of the requests to an Internet application
should be answered in less than 100 milliseconds
measured over 24 hours.”

