280

Chapter 15

Solving Security and Availability
Challenges in Public Clouds

Maxim Schnjakin
Potsdam University, Germany

Christoph Meinel
Potsdam University, Germany

ABSTRACT

Cloud Computing as a service-on-demand architecture has grown in importance over the previous few
years. One driver of its growth is the ever-increasing amount of data that is supposed to outpace the
growth of storage capacity. The usage of cloud technology enables organizations to manage their data
with low operational expenses. However, the benefits of cloud computing come along with challenges and
open issues such as security, reliability, and the risk to become dependent on a provider for its service. In
general, a switch of a storage provider is associated with high costs of adapting new APIs and additional
charges for inbound and outbound bandwidth and requests. In this chapter, the authors present a system
that improves availability, confidentiality, and reliability of data stored in the cloud. To achieve this ob-
jective, the authors encrypt users’ data and make use of the RAID-technology principle to manage data
distribution across cloud storage providers. Further, they discuss the security functionality and present
a proof-of-concept experiment for the application to evaluate the performance and cost effectiveness of
the approach. The authors deploy the application using eight commercial cloud storage repositories in
different countries. The approach allows users to avoid vendor lock-in and reduces significantly the cost
of switching providers. They also observe that the implementation improved the perceived availability
and, in most cases, the overall performance when compared with individual cloud providers. Moreover,
the authors estimate the monetary costs to be competitive to the cost of using a single cloud provider.

INTRODUCTION puting resources as pay-as-you-go model enables

service users to convert fixed IT cost into a vari-
Cloud Computing is aconcept of utilizing comput- able cost based on actual consumption. Therefore,
ing as an on-demand service. It fosters operating numerous authors argue for the benefits of cloud
and economic efficiencies and promises to cause computing focusing on the economic value (Carr,
an unanticipated change in business. Using com- 2008), (Armbrust et al., 2010).

DOI: 10.4018/978-1-4666-6158-5.ch015

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Solving Security and Availability Challenges in Public Clouds

However, despite of the non-contentious finan-
cial advantages cloud computing raises questions
about privacy, security and reliability. Among
available cloud offerings, storage services reveal
anincreasing level of market competition. Accord-
ing to iSuppli (Burt, 2009) global cloud storage
revenue is set to rise to $5 billion in 2013, up
from $1.6 billion in 2009. One reason is the ever
increasing amount of data which is supposed to
outpace the growth of storage capacity. Currently,
it is very difficult to estimate the actual future
volume of data but there are different estimates
being published. According to IDC review (Gantz,
& Reinsel, 2009), the amount of digital informa-
tion created and replicated is estimated to surpass
3 zettabytes by the end of this year. This amount
is supposed to more than double in the next two
years. In addition, the authors estimate that today
there is 9 times more information available than
was available five years ago.

However, for a customer (service) to depend
solely on one cloud storage provider (in the fol-
lowing provider) has its limitations and risks.
In general, vendors do not provide far reaching
security guarantees regarding the data retention
(Ponemon Institute, 2011). Users have to rely
on effectiveness and experience of vendors in
dealing with security and intrusion detection
systems. For missing guarantees service users
are merely advised to encrypt sensitive content
before storing it on the cloud. Placement of data
in the cloud removes the physical control that a
data owner has over data. So there is a risk that
service provider might share corporate data with
amarketing company or use the data in a way the
client never intended.

Further, customers of a particular provider
might experience vendor lock-in. In the context
of cloud computing, it is a risk for a customer to
become dependent on a provider for its services.
Common pricing schemes foresee charging for
inbound and outbound transfer and requests in
addition to hosting the actual data. Changes in
features or pricing scheme might motivate a switch

from one storage service to another. However,
because of the data inertia, customers may not be
free to select the optimal vendor due to immense
costs associated with a switch of one provider
to another. The obvious solution is to make the
switching and data placement decisions at a finer
granularity then all or nothing. This could be
achieved by distributing corporate data among
multiple storage providers. Such an approach is
pursued by content delivery networks (forexample
in (Broberg, Buyya, & Tari, 2009), (Buyya, Yeo,
& Venugopal, 2008) and implies significant higher
storage and bandwidth costs without taking into
account the security concerns regarding the reten-
tion of data. A more economical approach, which
is presented in this paper, is to separate data into
unrecognizable slices, which are distributed to
providers - whereby only a subset of the nodes
needs to be available in order to reconstruct done
for years at the level of file systems and disks. In
our work we use RAID like techniques to over-
come the mentioned limitations of cloud storage
in the following way:

1. Security: The provider might be trustworthy,
butmalicious insiders represent a wellknown
security problem. This is a serious threat
for critical data such as medical records,
as cloud provider staff has physical access
to the hosted data. We tackle the problem
by encrypting and encoding the original
data and later by distributing the fragments
transparently across multiple providers.
This way, none of the storage vendors is in
an absolute possession of the client’s data.
Moreover, the usage of enhanced erasure
algorithms enables us to improve the storage
efficiency and thus also to reduce the total
costs of the solution.

2. Service Availability: Management of com-
puting resources as a service by a single
company implies the risk of a single point
of failure. This failure depends on many
factors such as financial difficulties (bank-

281

282

Solving Security and Availability Challenges in Public Clouds

ruptcy), software or network failure, etc.
In July 2008, for instance, Amazon storage
service S3 was down for 8 hours because of
a single bit error (The Amazon S3 Team.,
2008). Our solution addresses this issue by
storing the data on several clouds - whereby
no single entire copy of the data resides in
one location, and only a subset of providers
needs to be available in order to reconstruct
the data.

Reliability: Any technology can fail.
According to a study conducted by Kroll
Ontrack' 65 percent of businesses and other
organizations have frequently lostdatafroma
virtual environment. A number that is up by
140 percent from just last year. Admittedly,
in recent times, no spectacular outages were
observed. Nevertheless failures do occur.
For example, in October 2009 a subsidiary
of Microsoft, Danger Inc., lost the contracts,
notes, photos, etc. of a large number of us-
ers of the Sidekick service (Sarno, 2009).
We deal with the problem by using erasure
algorithms to separate data into packages,
thus enabling the application to retrieve data
correctly even if some of the providers cor-
rupt or lose the entrusted data.

Data Lock-In: By today there are no stan-
dards for APIs for data import and export
in cloud computing. This limits the por-
tability of data and applications between
providers. For the customer this means that
he cannot seamlessly move the service to
another provider if he becomes dissatisfied
with the current provider. This could be
the case if a vendor increases his fees, goes
out of business, or degrades the quality of
his provided services. As stated above, our
solution does not depend on a single service
provider. The data is balanced among several
providers taking into account user expecta-
tions regarding the price and availability of
the hosted content. Moreover, with erasure
codes we store only a fraction of the total
amount of data on each cloud provider. In

this way, switching one provider for another
costs merely a fraction of what it would be
otherwise. In recent months we conducted
an extensive experiment for our application
to evaluate the overall performance and cost
effectiveness of the approach. In the current
work we present the design of our applica-
tion and the results of the experimental
study. We show, that with an appropriate
coding configuration Cloud-RAID is able
to improve significantly the performance of
the data transmission process, whereby the
monetary costs are competitive to the cost
of using a single cloud.

ARCHITECTURE

The ground of our approach is to find a balance
between benefiting from the cloud’s nature of pay-
per-use and ensuring the security of the company’s
data. The goal is to achieve such a balance by
distributing corporate data among multiple stor-
age providers, supporting the selection process of
a cloud provider, and removing the auditing and
administrating responsibility from the customer’s
side. As mentioned above, the basic idea is not
to depend on solely one storage provider but to
spread the data across multiple providers using
redundancy to tolerate possible failures. The ap-
proach is similar to a service-oriented version of
RAID (Redundant Arrays of Inexpensive Disks).
While RAID manages sector redundancy dynami-
cally across hard drives, our approach manages
file distribution across cloud storage providers.
RAID 5, for example, stripes data across an array
of disks and maintains parity data that can be used
to restore the data in the event of disk failure. We
carry the principle of the RAID-technology to
cloud infrastructure. In order to achieve our goal
we foster the usage of erasure coding technics (see
chapter IV). This enables us to tolerate the loss of
one or more storage providers without suffering
any loss of content (Weatherspoon & Kubiatowicz
2002), (Dingledine, Freedman, & Molnar, 2000).

Solving Security and Availability Challenges in Public Clouds

The system has a number of core components that
contain the logic and management layers required
toencapsulate the functionality of different storage
providers. Our architecture includes the following
main components:

e User Interface Module: The interface
presents the user a cohesive view on his
data and available features. Here users
can manage their data and specify require-
ments regarding the data retention (quality
of service parameters). User can upload,
view, modify or delete existing content.
Further, the user is presented with options
to specify parameters regarding security or
storage and transfer budget.

e Resource Management Module: This
system component is responsible for intel-
ligent deployment of data based on users’
requirements. The component is supported
by:

° A registry and matching service: as-
signs storage repositories based on
users requirements (for example
physical location of the service,
costs and performance expectations).
Monitors the performance of partici-
pating providers and ensures that they
are meeting the agreed SLAs.

° A resource management service:
takes operational decisions regarding
the content storage.

° A task scheduler service: has the abil-
ity to schedule the launch of opera-
tions at peak-off hours or after speci-
fied time intervals.

¢ Data Management Module: This compo-
nent handles data management on behalf
of the resource management module and is
mainly supported by:

° A data encoding service: this com-
ponent is responsible for striping and
encoding of user content.

° A data distribution service: spreads
the encoded data packages across
multiple providers. Since each stor-
age service is only accessible through
aunique API, the service utilizes stor-
age “'service connectors”, which pro-
vide an abstraction layer for the com-
munication to storage repositories.

> A security service: manages the se-
curity functionality based on a user’s
requirements (encryption, secret key
management).

Further details can be found in our previous
work (Schnjakin, & Meinel, 2011), (Schnjakin,
Alnemr, & Meinel, 2010), and (Schnjakin, Alnemr,
& Meinel, 2011).

DESIGN

Any application needs a model of storage, a model
of computation and a model of communication.
In this section we describe how we achieve the
goal of the consistent, unified view on the data
management system to the end-user. The web
portal is developed using Grails, JNI and C tech-
nologies, with a MySQL back-end to store user
accounts, current deployments, metadata, and the
capabilities and pricing of cloud storage provid-
ers. Keeping the meta data locally ensures that
no individual provider will have access to stored
data. In this way, only users that have authoriza-
tion to access the data will be granted access
to the shares of (at least) k different clouds and
will be able to reconstruct the data. Further, our
implementation makes use of AES for symmetric
encryption, SHA-1 and MDS5 for cryptographic
hashes and an improved version of Jerasure library
(Plank, Simmerman, & Schuman. 2008) for using
the Cauchy-Reed-Solomon and Liberation erasure
codes. Our system communicates with providers
via “storage connectors”, which are discussed
further in this section.

283

Solving Security and Availability Challenges in Public Clouds

Service Interface

The graphical user interface provides two major
functionalities to an end-user: data administration
and specification of requirements regarding the
data storage. Interested readers are directed to our
previous work (Schnjakin, Alnemr, & Meinel,
2010) which gives a more detailed background on
the identification of suitable cloud providers in
our approach. In short, the user interface enables
users to specify their requirements (regarding the
placement and storage of user’s data) manually in
form of options, for example:

e Budget-oriented content deployment
(based on the price model of available
providers).

e Data placement based on quality of ser-
vice parameters (for example availability,
throughput or average response time).

e Storage of data based on geographical re-
gions of the user’s choice. The restriction
of data storage to specific geographic ar-
eas can be reasonable in the case of legal
restrictions.

Table 1. Storage connector functions

Storage Repositories
Cloud Storage Providers

Cloud storage providers are modeled as a storage
entity that supports six basic operations, shown in
Table 1. We need storage services to support not
more than the aforementioned operations.

Further, the individual providers are not trusted.
This means that the entrusted data can be cor-
rupted, deleted or leaked to unauthorized parties.
This fault model encompasses both malicious at-
tacks on a provider and arbitrary data corruption
like the Sidekick case (section 1). The protocols
require n = k + m storage clouds, at most m of
which can be faulty. Present-day, our prototypical
implementation supports the following storage
repositories: Amazons S3 (in all available regions:
US west and east coast, Ireland, Singapore and
Tokyo), Box, Rackspace Cloud Files, Azure,
Google Cloud Storage and Nirvanix SND. Further
providers can be easily added.

Service Repository

At the present time, the capabilities of storage
providers are created semi-automatically based
on an analysis of corresponding SLAs which are
usually written in a plain natural language. Until

| Function | Description
create(ContainerName) creates a contamner for a new user
wnte(ContainerName, writes a data object to a user con-
ObjectName) tamner
read(ContainerName, reads the specified data object
ObjectName)
list(ContainerName) list all data objects of the contamer
delete(ContamnerName, removes the data object from the
ObjectName) container
getDigest(ContamerName, Object- | returns the hash value of the spec-
Name) ified data object

284

Solving Security and Availability Challenges in Public Clouds

now the claims stated in SLAs need to be trans-
lated into WSLA statements and updated manually
(interested readers will find more background
information in our previous work (Schnjakin,
Alnemr, & Meinel, 2010’. Subsequently the for-
malized information is imported into a database of
the system component named service repository.
The database tracks logistical details regarding the
capabilities of storage services such as their actual
pricing, SLA offered, and physical locations. With
this, the service repository represents a pool with
available storage services.

Matching

The selection of storage services for the data
distribution occurs based on user preferences
set in the user interface. After matching user re-
quirements and provider capabilities, we use the
reputation of the providers to produce the final list
of potential providers to host parts of the user’s
data. A provider’s reputation holds the details of
his historical performance plus his ratings in the
service registries and is saved in a Reputation
Object (introduced in our previous work). By
reading this object, we know a provider’s repu-
tation concerning each performance parameter
(e.g. has high response time, low price). With
this information the system creates a prioritized
list of repositories for each user. In general, the
number of storage repositories needed to ensure
data striping depends on a user’s cost expecta-
tions, availability and performance requirements.
The total number of repositories is limited by the
number of implemented storage connectors.

Data Management

Data Model

Incompliance with (Abu-Libdeh, Princehouse, &
Weatherspoon, 2010), we mimic the data model
of Amazon’s S3 by the implementation of our
encoding and distribution service. All dataobjects

Figure 1. Total time taken when Jerasure and
Cloud-RAID libraries are used to encode data
objects of varying sizes

Cloud-RAID Jerasure
—~ 12 1
g 10 -21%
£ 25%
£ 6
é a4 279
8
o 21
£
=0 , T)
(3,1] (4, 2] (10, 1]
Erasure configurations [k, m]
(a) Encoding of a 100kB data object
Cloud-RAID Jerasure
a— 1600 -
2 1400 -
8 1200~
-—
= 1000~
£
£ 800 51% +18%
S sm - 63%
s 400~
g 200
= 0 : : g
(3,1) (4, 2] (10, 1]

Erasure configurations [k, m]
(b) Encoding of a 100MB data object

are stored in containers. A container can contain
further containers.

Each container represents a flat namespace
containing keys associated with objects. An object
can be of an arbitrary size, up to 5 gigabytes (lim-
ited by the supported file size of cloud providers).
Objects must be uploaded entirely, as partial writes
are not allowed as opposed to partial reads. Our
system establishes a set of n repositories for each
data object of the user. These represent different
cloud storage repositories (see Figure 2).

285

Solving Security and Availability Challenges in Public Clouds

Figure 2. Data unit model at different abstraction levels. At a physical layer (local directory) each data
unit has a name (original file name) and the encoded k+m data packages. In the second level, Cloud-
RAID perceives data objects as generic data units in abstract clouds. Data objects are represented as
data units with the according meta information (original file name, cryptographic hash value, size, used
coding configuration parameters m and k, word size etc.). The database table “Repository Assignment”
holds the information about particular data packages and their (physical) location in the cloud. In the
third level, data objects are represented as containers in the cloud. Cloud-RAID supports various cloud
specific constructions (buckets, tree nodes, containers etc.).

Physical Data Unit Generic Databasz View Data Unit impementation
Lecal Dirscoly Working Directory FieOtject / Nivanix j\ / Box \
Orignal File Data Packages Criginal File Metadata Data Packages Folder user_x \ TreeNode user_x
" e sce Name | Hash vae § d
Nare fie_x1 | etk E}u —— = T FileCbject ’ FileOdject }
Cata Daa || Dam C e] Name Kamo
Hash vale
) v Repostory .z‘n.lm ﬁ"“‘ m | Hashvave | I
assignment D2 Oan
Dala Da dlock s fie_n! b t
11] powger X . 5| s \ / \' /
fie_i2 | orovder Y fienm| 2
T —————— { Bucket user_x i Centainer user_x
FileCbject FileOnyect }
=]]
\ Hashvaue Hash valve
Data

Encoding

Upon receiving a write request the system splits
the incoming object into k data fragments of an
equal size - called chunks. These k data packages
hold the original data. In the next step the system
adds m additional packages whose contents are
calculated from the k chunks, whereby k and m
are variable parameters (Plank, Simmerman, &
Schuman. 2008). This means, that the act of en-
coding takes the contents of k data packages and
encodes them on m coding packages. In turn, the
actof decoding takes some subset of the collection
of n = k + m total packages and from them recal-
culates the original data. Any subset of k chunks
is sufficient to reconstruct the original object of
size s (Rheaet al., 2001). The total size of all data
packets (after encoding) can be expressed with
the following equation: (s/k * k)+(s/k *m) = s

286

\ /) \!

+ (s/k *m) = s * (1 + m/k). With this, the usage
of erasure codes increases the total storage by a
factor of m/k. Summarized, the overall overhead
depends on the file size and the defined m and k
parameters for the erasure configuration. Figure
3 visualizes the performance of our application
using different erasure configurations. In our
work we make use of the Cauchy-Reed-Solomon
algorithm for two reasons. First, according to
(Plank, Simmerman, & Schuman. 2008) the al-
gorithm has a good performance characteristics
in comparison to existing codes. In their work, the
authors performed a head-to-head comparison of
numerous open-source implementations of vari-
ous coding techniques which are available to the
general public. Second, the algorithm allows free
selection of coding parameters k and m. Whereas
other algorithms restrict the choice of parameters.
Liberation Code (Plank, 2008) for example is a

Solving Security and Availability Challenges in Public Clouds

Figure 3. The average performance of the erasure algorithm with data objects of varying sizes (100kB,

500kB, IMB, 10MB and 100MB)

Encoding time
1084

= 1000 943 i
‘§’ 802

m p—
E
E o -
c
i w -
£

200 1 ——
: 6 6 8 " il a2 & 7

0 - i— -.._m__._,__-..—.n‘________,

' P OP °
P SO ¥ SO0 AP AW o 3P SIS
o “)&;\, \0’92,@'&‘\& "&;\'&\0\'@.&@"@ “\ "&\6\' o\;& $

Cloud-RAID [3:1]

specification for storage systems with n = k + 2
nodes to tolerate the failure of any two nodes (the
parameter m is fix and is equal to two). However,
the functionality of the encoding component is
based on the Jerasure library (Plank, Simmer-
man, & Schuman. 2008) which is an open C/C++
framework that supports erasure coding in storage
applications. In our implementation we were able
to improve the overall performance of the library
by more than 20%. Figure 1 summarizes the results
of 20 runs executed on test machine 1.
Competitive storage providers claim to have
SLAs ranging from 99% to 100% uptime percent-
ages for their services. Therefore choosing m = 1
to tolerate one provider outage or failure at time
will be sufficient in the majority of cases. Thus, it
makes sense to increase k and spread the packages
across more providers to lower the overhead costs.
In the next step, the distribution service makes
sure that each encoded data package is sent to a
different storage repository. In general, our system
follows a model of one thread per provider per

Cloud-RAID [4:3]

Cloud-RAID [6:1]

data package in such a way that the encryption,
decryption, and provider accesses can be executed
in parallel.

However, most erasure codes have further
parameters as for example w, which is word size
2. In addition, further parameters are required
for reassembling the data (original file size, hash
value, coding parameters, and the erasure algo-
rithm used). This metadata is stored in a MySQL
backend database after performing a successful
write request.

Data Distribution

Each storage service is integrated by the system
by means of a storage-service-connector (in the
following service-connector). These provide
an intermediate layer for the communication
between the resource management service and
storage repositories hosted by storage vendors.
This enables us to hide the complexity in dealing
with proprietary APIs of each service provider.

287

Solving Security and Availability Challenges in Public Clouds

The basic connector functionality covers opera-
tions like creation, deletion or renaming of files
and folders that are usually supported by every
storage provider.

Suchaservice-connector must be implemented
for each storage service, as each provider offers
a unique interface to its repository. As discussed
earlier in this chapter all accesses to the cloud
storage providers can be executed in parallel.
Therefore, following the encoding, the system
performs an initial encryption of the data pack-
ages based on one of the predefined algorithms
(this feature is optional).

Reassembling the Data

When the service receives a read request, the
service component fetches k from n data pack-
ages (according to the list with prioritized service
providers which can be different from the priori-
tized write list, as providers differ in upload and
download throughput as well as in cost structure)
and reassembles the data.

This is due to the fact, that in the pay-per-use
cloud models it is not economical to read all data
packages fromall clouds. Therefore, the service is
supported by aload balancer component, which is
responsible for retrieving the data units from the
most appropriate repositories. Different policies
forload balancing and data retrieving are conceiv-
able as parts of user’s data are distributed between
multiple providers. A read request can be directed
to a random data share or the physically closest
service (latency optimal approach).

Another possible approach is to fetch data from
service providers that meet certain performance
criteria (e.g response time or throughput). Finally,
there is aminimal-cost aware policy, which guides
user requests to the cheapest sources (cost optimal
approach). The latter strategy is implemented as a
default configuration in our system. Other more
sophisticated features as a mix of several complex
criteria (e.g. faults and overall performance his-

288

tory) are under development at present. However,
the read optimization has been implemented to
save time and costs.

Resource Management Service

This component tracks each user’s actual deploy-
ment and is responsible for various housekeeping
tasks:

1. The service is equipped with a MySQL
back-end database to store crucial informa-
tion needed for deploying and reassembling
of users data.

2. Further, it audits and tracks the performance
of the participated providers and ensures,
that all current deployments meet the cor-
responding requirements specified by the
user.

3. The management component is also respon-
sible for scheduling of not time-critical tasks.
Further details can be found in our previous
work (Schnjakin, Alnemr, & Meinel, 2011).

PERFORMANCE EVALUATION

In this section we present an evaluation of our
system that aims to clarify the main questions
concerning the cost, performance and availability
aspects when erasure codes are used to store data
on public clouds.

Methodology

The experiment was run on Hasso Plattner In-
stitute (HPI), which is located close to Berlin,
Germany, over a period of over 377 (24x7) hours,
in the middle of July 2012. As it spans seven
days, localized peak times (time-of-day) is expe-
rienced in each geographical region. HPI has a
high speed connectivity to an Internet backbone
(1 Gb), which ensures that our test system is not

Solving Security and Availability Challenges in Public Clouds

abottleneck during the testing. The global testbed
spans eight cloud providers in five countries on
three continents. The experiment time comprises
three rounds, with each round consisting of a set
of predefined test configurations (in the following
sequences). Table 2 provides a summary of the
conducted experiment.

We used test files of different sizes from 100
kB up to 100MB, deployed by the dedicated test
clients. Prior to each test round the client requires
a persistent connection to the APIs of the relevant
cloud storage providers, so that requests for an
upload or download of test data can be send.
In general, providers will refuse a call for the
establishment of a new connection after several
back-to-back requests. Therefore we implemented
an API connection holder. After two hours of an
active connection the old connection is overwritten
by a new one. Further, we determine a timeout of
one second between two unsuccessful requests,
each client waits for a think time before the next
request is generated.

Machines for Experimentation
We employed three machines for experimenta-
tion. Neither is exceptionally high-end, but each

represents middle-range commodity processor,
which should be able to encode, encrypt, decrypt

Table 2. Experiment details

and decode comfortably within the I/O speed
limits of the fastest disks. These are: Windows
7 Enterprise (64bit) system with an Intel Core 2
Duo E8400 @3GHz, 4 GB installed RAM and
a 160 GB SATA Seagate Barracuda hard drive
with 7200 U/min.

Experiment Setup

Figure 4 presents the workflow of the experiment.
In general we use two machines to transfer test
data to cloud storage providers. The first machine
(the upper part of the graph) uses erasure codes.
This means, upon receiving a write request the
test system splits the incoming object into k data
fragments of an equal size - chunks . These k data
packages hold the original data. In the next step the
system adds m further packages whose contents
are calculated from the k chunks, whereby k and
m are variable parameters (Plank, Simmerman, &
Schuman. 2008). With this, the act of encoding
takes the contents of k data packages and encodes
them on m coding packages. In turn, the act of
decoding takes some subset of the collection of
n = k + m total packages and from them recalcu-
lates the original data. Any subset of k shares is
sufficient to reconstruct the original data object
(Rhea et al., 2001).

Category Description
Cloud storage provider 8
Locations Europe, USA, Asia

Total experiment time

about 13d %h (377h)

Total number of test rounds

about 3 rounds

Total number of requests (read/write) / round | 281,900

Service ume out for each request 1 sec

Test file size 100 kB - 100 MB
Codmg Method cauchy_good
Coding configuration [k.m] k=[2.4.6,10],

m=[1.2], k>=m

289

Solving Security and Availability Challenges in Public Clouds

Figure 4. Workflow of the experiment

n

In the next step, the application makes sure
that each data package is sent to adifferent storage
repository. In general, our system follows a model
of one thread per provider per data package in such
a way that the encoding, encryption, decryption,
and provider accesses can be executed in parallel.
The second machine (the lower part of the graph
in the Figure 4) uploads the entire data object to a
single provider without any modifications. As we
are interested in the direct comparison between
these two approaches, we want each data trans-
mission to start simultaneously.

Therefore we used the third machine as a
“sync-instance” running a Tomcat 7 server with
a self-written sync-servlet which controls the
workflow of the experiment.

Erasure Configuration

In our experiment we make use of the Cauchy-
Reed-Solomon algorithm for two reasons. First,
according to Plank et al. (Plank et al., 2009a) the
algorithm has a good performance characteristics
in comparison to existing codes. In their work, the
authors performed a head-to-head comparison of
numerous open-source implementations of various
coding techniques which are available to the public.
Second, the algorithm allows free selection of cod-
ing parameters k and m, whereas other algorithms
restrict the choice of parameters. Liberation Code
(Plank, 2008) for example is a specification for
storage systems with n = k +2 nodes to tolerate the

290

failure of any two nodes (whereby the parameter
m is fix and is equal to two).

In our test scenario we tested more than 2520
combinations of k and m. We will denote them
by [k,m] in the course of the chapter, whereby
the present evaluation focuses on an encoding
configuration [4,1]. Which means, that the setting
provides data availability toward one cloud failure
at the time of read or write request. Most of the
providers have SLAs with 99% and 99.9% monthly
up-time percentages. Thus, we believe that adding
enough redundancy to tolerate provider outage or
failure at a time will be sufficient in most cases.

Schemes and Metrics

The goal of our test is to evaluate the performance
of our approach. Mainly we are interested in avail-
ability of APIs, overhead caused by erasure codes
and transmission rates. Therefore, we implemented
a simple logger application to record the results
of our measurements. In total we log 34 different
events. For example, each state of the workflow
depicted in Figure 4 is captured with two log
entries (START and END).

Erasure Overhead

Due to the nature of erasure codes, each file upload
and download is associated with a certain over-
head. As discussed in before the total size of all
chunks (after encoding) can be expressed with the

Solving Security and Availability Challenges in Public Clouds

following equation: s+(s/k *m) = s * (1 + m/k),
whereby variable s is defined as the original file
size. Again, the usage of erasure codes increases
the total storage by a factor of m/k. Further, we
need to encode data prior to its upload and ac-
cordingly decode the downloaded packets into the
original file. Both operations cause an additional
computational expense.

Transmission Performance
and Throughput

We measure the throughput obtained from each
read and write request. In general the throughput is
defined as the average rate of successful message
delivery over a communication channel. In our
work we link the success of the message delivery
to the success of the delivery of the entire data
object. In ourapproach, adata object is completely
transferred, when the last data package is being
successfully transferred to the transfer destination.
This means that in case of dataupload, the transfer
is only completed, when (upon a write request)
our client receives a confirmation message in the
form of individual digest values that correspond

with the results of the local computation (this
applies for all transferred data packages). In the
event of a mismatch the system will delete the
corrupted data and initiate a re-upload procedure.
With this, the value of throughput does not only
represent the pure upload or download rate of the
particular providers, as the measured time span
includes also possible failures, latency and the
bilateral processing of get-hash calls.

Empirical Results

This section presents the results in terms of read
and write performance, as well as throughput,
response time and availability based on over
281.000 requests. Due to space constraints, we
present only some selected results from the con-
ducted experiment.

Erasure Overhead

As described in IV-B1 the erasure coding leads to
a storage overhead of factor m/k. For instance, an
[k=4, m=1]encoding results in a storage overhead
of 14 100% = 25% . In order to reduce the storage

Figure 5. The computational overhead caused by erasure with different configurations and file sizes. In
general, the overall overhead increases with growing file size regardless of the defined m and k param-

eters for the erasure configuration.

1084

__ 1000 - 943 L&,

A !

2 802 .

8 800 —

2

=

E &0 L

g 400 s

E 200 130 —
7 @ 37 34gae 2 65 ;0 B

0+ '

Cloud-RAID [3:1]

- — % :
R OO PG F DT

Cloud-RAID [4:3]

Cloud-RAID [6:1]

291

overhead, it would be advisable to define high k
and preferably low m values. For example, an en-
coding configuration [k = 10, m = I] produces a
storage overhead of % * 100% = 25%. In order to
reduce the storage overhead, it would be advisable
to define high k and preferably low m values. For
example, anencoding configuration [k=10, m=1]
produces 1/10 * 100% = 10%. Erasure causes also
a computational overhead. During the experi-

Solving Security and Availability Challenges in Public Clouds

ment we scrutinized 12 different configurations.

A selection of the results is presented in Figure
5. The figure illustrates, that the computational

expense increases with the file size regardless

of the erasure configuration. As the encoding of
a 100 MB data object takes approximately one
second, the encoding overhead can be neglected
in view of the significantly higher transmission
times. In (Schnjakin et al., 2013) we showed, that
the average performance overhead caused by data
encoding is less than 2% of the entire data transfer

process to a cloud provider.

Using encryption, we can say that the total
performance decreases as individual data pack-
ages have to be encrypted locally before moving
them to the cloud. In our experiments the costs for
encryption were less than 3% of total time which
is also negligible in view of the overall transmis-
sion performance. This point has been addressed
in our previous work (Schnjakin et al., 2013) and
(Schnjakin et al., 2013).

Transmission Performance
and Throughput

Due to space constraints the current evaluation
focuses on the Cloud-RAID configuration with k
=4 and m = 1. For performance comparison we
experimented with different combinations among
eightclouds, which are: Amazon US, Amazon EU,
Azure, Box, Google EU, Google US, Nirvanix
and Rackspace. The particular combinations are

represented in Table 3.

Figure 6. Average throughput performance in milliseconds and seconds observed on all reads and writes
executed for the [4,1] Cloud-RAID configuration (4 of 5 data packages are necessary to reconstruct the

original data, m

= 1). The Cloud-RAID bars (CR) correspond to the complete data processing cycle:

the encoding of a data object into data packages and the subsequent transmission of individual chunks

in parallel threads.

3253

3000
4.

F 2500 2168 2184 2373 2002 2822
£ 2000 e iR
£ 1500
3

000
}1 1602 615
= S00 z. l

SISy

(a) Write of a 100 kB data object

3500+

2500 2315

g3 Su

|l|

S s

*“f’

s 375 407 455

291

119 zu
o +W

\9\" o@o

Ff

(d) Read of a 100 kB data object

292

Time taken (in seconds)

Q = N oW e wn oo

4000
3500
Eamo

4

113

e’

©
o
-

(

%,

006

289 3.32

224 238 240 240 I
o

@o" @‘g‘*

'&.

4,

(b) Write of a 500 kB data object
3837

£ 2500

$2000

ixsoo
£ 1000
500

1926

ss0 922 103
484 499 562 841

235..

¥ &5

K0S

¥ ¥

(e) Read of a 500 kB data object

5.96

-
o~

Time taken (in seconds)

o

w0

~
-

cC N &8 O ®

2”zw2“2”
g zi
&

& on,..
& &
,@f‘ «*.f

(c) Wnite of a 1 MB data object

%

%,

Time taken (in seconds)
~ w - w

-
o
4
o
o
-
o
&‘

112 118 lu"”l
S

og, 0,\ “\\v s

4 & S

(f) Read of a 1 MB data object

(=3
“ m2
«,,-
%'o

R
N

Solving Security and Availability Challenges in Public Clouds

In general, we observed that utilizing Cloud-
RAID for data transfer improves the throughput
significantly when compared with cloud storages
individually. This can be explained with the fact,
that Cloud-RAID reads and writes a fraction of the
original data (more specific 14 th with [4,1] setting,
see IV-B1) from and to clouds simultaneously.

However, the total time of data transfer depends
on the throughput performance of each provider
involved into the communication process. The
throughput performance of Cloud-RAID increases
with higher performance values of cloud providers
involved into the data distribution setting.

During the performance evaluation we ob-
served, that storage providers differ extremely in
theirupload and download capabilities. Moreover,
some vendors seem to have optimized their infra-
structure for large files, while others focused more
on smaller data objects. In the following we will
clarify this point.

As we mentioned above there is a striking
difference in the up- and download capabilities
of cloud services. Except Microsoft Azure all
the tested providers are much faster in download

Table 3. Cloud-RAID setting withk = 4 AND m = |

than in upload. This applies to smaller and larger
data objects. At one extreme, with Google EU or
Google US services a write request of a 100 kB
file takes up to 19 times longer than a read request
(see Figures 6a and 6d). This behavior can also be
observed with larger data objects (although less
pronounced). Here the difference in the throughput
rate may range from4 to 5 times, with the exception
of the provider Rackspace, where an execution of
a write request is up to 49 times slower than of a
read request (e.g. an upload of a 100 MB file takes
onaverage 17,3minutes, whereas the download of
the same file is performed in less than 21 seconds,
see Figures 7b and 7d). Then again, Google US
service improves its performance clearly with
the growing size of data objects (see Figures 6a
and 7a).

The explanation for this could be that with
larger files the relatively long reaction time of
the service (due to the long distance between
our test system and the service node) has less
impact on the measuring results. Similar to the
US service Google EU performs rather mediocre
in comparison to other providers when it comes

Cloud-
RAID

Provider Setting

CR-A Amazon EU, Amazon US, Azure, Nirvanix, Rackspace

CR-B Amazon EU, Amazon US, Azure, Google EU, Rackspace

CR-C Amazon US, Azure. Google EU, Nirvanix, Rackspace

CR-D Amazon EU, Amazon US. Azure. Google EU, Nirvanix

CR-E Amazon EU, Azure, Google EU, Google US, Nirvanix

CR-F Amazon EU, Google EU, Google US, Nirvanix, Rackspace

CR-G Amazon EU. Amazon US, Azure, Google EU. Google US

CR-H Amazon EU. Amazon US, Google EU. Google US, Nirvanix

CR-I Amazon EU, Azure, Google EU, Google TS, Rackspace

CRK Amazon EU, BoxNet, Google EU, Google US, Nirvanix

CR-L Amazon EU, Amazon US, BoxNet, Google EU, Google US

CR-M

Amazon EU, Amazon US, Azure, BoxNet, Google EU

293

Solving Security and Availability Challenges in Public Clouds

Figure 7. Throughput observed in seconds on reads and writes executed for the [4,1] Cloud-RAID con-
figuration. Here again, CR bars correspond to the complete data processing cycle.

60 58.55

wv
o

»
o

304
22.27

" 14.24 15.13
7.73
3.23 3.81 662 658 .
_-*.‘-w

i @) Hp il :b & &
v_‘& oé'a% e& (& (,Q~ (\

4” o
‘;* >
»@” &

Time taken (in seconds)

s
o
I

o
"

(a) Write of a 10 MB data object

-
N

10.88

[
o
"

5.13 355

2.76 321

103 109 1231311 175

Time taken (in seconds)

o N A O 00

€ D > L6 D &
Q%&@,ﬁsé&vy@oé‘

C &
é N R \
& & v,é& 4 qf":’ vgs‘"

(c) Read of a 10 MB data object

to read speeds for data objects up to 1 MB, (see
Figures 6a and 6b). In terms of performance for
writing larger files,

Google EU becomes the clear leader and even
outperforms the fastest Cloud-RAID setting, which
consists of the five fastest providers: Amazon EU,
Azure, Google EU, Google US and Nirvanix (see
Figure 7b). Similar phenomena have been observed
by read requests. Microsoft Azure belongs to the
leading providers for reading 100 kB data objects
(see Figure 6d) and falls back by reading 100 MB
files (see Figure 7d).

Hence, the performance of Cloud-RAID differs
depending on the provider setting and file size.
It is observed that our systems achieves better
throughput values for read requests. The reason
is that the test client fetches less data from the

294

1100 - 1038
3 821
§ 800-
g
£ 537
g 500
E
E 200+ 123 135 139
o -8 2942 .
04 -

ey AP - IO
¢ & \e& o & & o&f &
) AR o‘\\c‘ N
& & & & T
(b) Write of a 100 MB data object
126 175.5
-
°
§140
£1004
§
'g' - 39.24
g 209 24.9
209363 3,65 5.47 5.93 748“.9J .
0-
* NN 2 @ >
&édﬁ«,w Q+ \,(oed,,e
FF S T F

(d) Read of a 100 MB data object

cloud (only k of n data packages) than in case of
a write request, where all n packages have to be
moved to the cloud.

As expected, we observe that the fastest read
and write settings consist of the fastest clouds.
Concerning writing 100kB data objects, the fastest
Cloud-RAID setting CR A improves the overall
throughput by an average factor of 3 (compared
to the average throughput performance of the
providers inthe current Cloud-RAID setting). For
reading 100 kB, CR-E achieves an improvement
factor of 5. In terms of performance for writing 1
MB and 10 MB objects, Cloud-RAID setting CR-D
and CR-E achieve already an average improve-
ment factor of 7. Then again, for reading 10 MB,
Cloud-RAID improves the average performance
by a factor of 13 and even outperforms the fast-

Solving Security and Availability Challenges in Public Clouds

est cloud providers (see figure 7¢). By smaller
data objects, execution of both read and write
requests is highly affected by erasure overhead,
DNS lookup and API connection establishment
time. This can lead to an unusual behavior. For
example, the transmission of a 100 kB data object
to Google US can take our system more time than
the transmission of a 500 kB or even 1 MB file
(see Figure 6a, 6b and 6¢). Hence, increasing the
size of data objects improves the overall through-
put of Cloud-RAID. Concerning read and write
speeds for 100 MB data objects, Cloud-RAID
increases the average performance by a factor of
36 for writes (despite of the erasure overhead of
25 percent) and achieves an improvement factor
of 55 for reads (see Figures 7¢ and 7d).

There is also an observed connection between
the throughput rate and the size of data objects.
Charts 6a to 6f show results from performance
tests on smaller files (up to 1 MB). Microsoft
Azure and Amazon EU achieve the best results in
terms of write requests. When writing 10 MB or
100MB data objects Amazon EU falls back on the
fourth place (see Figures 7b and 7d). Form these
observations, we come to the following conclu-
sions. The overall performance of Cloud-RAID
is not only dependent on the selection of k and m
values, but also on the throughput performance
of the particular storage providers. Cloud-RAID
increases the overall transmission performance
compared to the slower providers. Beyond that
we are able to estimate, that the more providers
are involved into the data distribution process,
the less weight slower providers carry in terms of
overall throughput performance. The underlying
reason is again the size of individual data pack-
ages, which decrease with the growing number
of k data packages (see chapter IV-B1).

Observations and Economic
Consequences

Finally, based on the measured observations, we
determine users benefits from using our system.
In order to assert the feasibility of our application

we have to examine the cost structure of cloud
storage services. Vendors differ in pricing scheme
and performance characteristics. Some providers
charge a flat monthly fee, others negotiate con-
tracts with individual clients. However, in general
pricing depends on the amount of data stored
and bandwidth consumed in transfers. Higher
consumption results in increased costs.

As illustrated in Tables 4 and 5 providers also
charge per API request (such as read, write, get-
hash, list etc.) in addition to bandwidth and stor-
age. The usage of erasure codes increases the total
number of such requests, as we divide each data
object into chunks and stripe them over multiple
cloud vendors. The upload and download of data
takes on average two requests. Considering this,
our systemneeds (4+1)2 = 10requests for asingle
data upload with a [4, 1] coding configuration.
The download requires only 4 2 = 8 requests, as
merely 4 packets have to be received to rebuild
the original data. Thus, erasure [k,m] increases
the number of requests by a factor of k + m for
upload and k for download.

Consequently, the usage of erasure codes in-
creases the total cost compared to a direct upload
or download of data due to the caused storage and
API request overhead. Tables 4 and 5 summarize
the cost in US Dollars of executing 10,000 reads
and 10,000 writes with our system considering 5
dataunit sizes: 100kB, 500kB, 1 MB, 10 MB and
100 MB. We observe, that the usage of erasure
is not significantly more expensive than using a
single provider. In some cases the costs can be
even reduced.

SECURITY

Although erasure algorithms perform a series of
coding operations on data, they do not provide
far reaching security functionality. There may
be enough data in the encoded fragments that
useful content (a username and a password or
a social security number for example) could
be reassembled. The only protection measure

295

Solving Security and Availability Challenges in Public Clouds

Table 4. Costs in dollars for 10,000 reads

Provider Filesize in kB
100 | 300 | 1024 | 10240 | 102300
CR-B 015 [055 | 107 | 1021 | 10161
CR-G 016 [052 | 099 [9.28 9225
CR-I 015 | 055 | 107 | 1021 | 10161
CR [6.1] 361 | 412 | 478 | 1650 | 13369
Azure 011 [053 | 108 | 10.74 | 10742
Amazon/Google |[0.13 | 059 | 1.19 | 1174 | 11721
Rackspace 017 [086 | 1.76 | 1758 | 175.78
Nirvanix 414 [472] 546 | 1865 | 15048

! The setting CR [6.1] consist of nearly all providers involved
i the test setung: Amazon EU, Amazon US, Azure, Boxnet,
Google EU. Nirvanix, Rackspace.

Table 5. Costs in dollars for 10,000 writes

Pronidec Filesize in kB
100 | 500 [1024 | 10240 | 102400
CR-B 012 1012 | 012 | 012 0.12
CR-G 016 | 016 | 0.16 | 0.16 0.16
CR-I 012 1012 | 012 | 0.12 0.12
CR [6.1] 814 | 820 | 829 | 975 2440
Azure 000 | 000 [000 | 000 0.00
Amazon/Google || 002 | 002 | 002 002 002
Rackspace 000 | 000 | 000 | 0.00 0.00
Nirvamx 410 | 448 | 498 | 1377 | 101.66

provided through erasure coding is the logical
and physical segregation of the data packages, as
these are distributed between different providers.
Thus, we implemented a security service which
enables users of our application to encrypt indi-
vidual data packages prior to their transmission
to cloud providers.

The encryption algorithm depends on the
user’s security requirements specified in the user
interface. In general, our implementation makes
use of the AES-128 and AES-256 algorithms for
data encryption. On top of this, we use SHA-1

296

and MDS5 cryptographic hash functions to test
the integrity of cloud-stored data.

Encryption

Concerning the security strategy, it is important
to determine the point when the encryption oc-
curs and who holds the keys to decrypt the data.
In general, we performed two sets of experiments
with different erasure configurations - one for
initial encryption prior to the encoding step and
another vise versa.

Solving Security and Availability Challenges in Public Clouds

Figures 9 shows the results of 100 runs (per
machine) executed in a random order. The test
encompasses the complete data processing cycle:
the encoding of a data object, its subsequent
encryption, its decryption and finally the decod-
ing step. We observe, that the processing order
(encode encrypt vs. encrypt encode) does not
really matter with the dual-core processor. This
applies despite the fact that the usage of erasure
algorithms causes an additional storage overhead.
With regard to erasure configuration there is
another factor of importance: whether the sum
of the configuration attributes k and m is odd or
even (see erasure configurations [4,1] and [4,2] as
well as [10,1] and [10,2] in Figure 9). This has an
impact on the parallel processing (encryption of
the data) in the following step. However, the test
with a quad-core processor provides the expected
results: first, the encoding of smaller data objects
causes a significant higher I/O overhead and
second, the encryption of larger files (executed
in parallel threads) after an initial encoding step
is more efficient than the opposite. With this, we
made a decision to encrypt data after its being
encoded into n coding packages.

Key Possession

Another important part when developing an en-
cryption strategy is key the possession. The only
encryption option for most of the available cloud
solutions is that the keys are managed by the cloud
storage providers, which is convenient to the user
(the provider can assist with data restoration for
example) but it entails a certain amount of risk.
On one hand there are laws and policies that allow
government agencies easier access to data on a
cloud than on a private server. For example, in the
USA the Stored Communication Act enables the
FBIto access data without getting a warrant or the
owner’s consent. Furthermore, closed subpoenas
may prohibit providers to inform their custom-
ers that data has been given to the government.
On another hand there is always the chance of a

disgruntled employee circumventing security and
using the data in a way the user never indented.

In order to provide the user 100% control over
the encryption process, we store the keys locally
so that no third party is able to access and read the
secured data. This, however also creates a single
source of failure and means that the backup of the
keys and metadata required for reassembling the
data is in the responsibility of the user. However,
the mitigation of this issue is part of our future
work and analysis.

Observations

To assess the impact of encryption and encoding
on the overall performance of the data transmis-
sion process we performed a further experiment
on our dual-core test machine. We utilized the
system to transfer some data to a set of randomly
selected providers. The results represented in
Figure 8 capture the end-to-end transmission
performance of our application with files of vary-
ing sizes (1IMB and 10MB). Compared with the
results presented in the Figure 9 we conclude that
in the case of significantly higher transmission
rates, encryption can be added with no noticeable
performance impact.

RELATED WORK

The main idea underlying our approach is to pro-
vide RAID technique at the cloud storage level.
In (Bowers et al., 2009) the authors introduce the
HAIL (High-Availability Integrity Layer) system,
which utilizes RAID-like methods to manage re-
mote file integrity and availability across a collec-
tion of servers or independent storage services. The
system makes use of challenge-response protocols
for retrievability (POR) (Ateniese et al., 2007)
and proofs of data possession (PDP) (Ateniese
et al., 2007) and unifies these two approaches. In
comparison to our work, HAIL requires storage
providers to run some code whereas our system

297

Solving Security and Availability Challenges in Public Clouds

Figure 8. Time taken for the encoding and upload of data objects with Cloud-RAID. The encoding step
requires not more than 0,5% of the entire data upload process. The data packages were sent to the fol-
lowing providers: Google US, Amazon EU, Amazon (US-west-1), Nirvanix, Azure and Google EU.

16000 -
? Samts Sves s R
E +— MEncode Uplaad =i ot ———— VL
c 12000
-
o
X 8000 Aol R
©
ey
)
il ‘
0
1MB | 10 MB |
Cloud RAID [4,2)
HMEncode 47 ms=0,3% 15ms =0,37%
Upload 15615 ms = 99,7 % 4042 ms= 99,63 %

deals with cloud storage repositories as they are.
Further, HAIL does not provide confidentiality
guarantees for stored data.

In (Dabek et al., 2001) Dabek et al. use RAID-
like techniques to ensure the availability and du-
rability of data in distributed systems. In contrast
to the mentioned approaches our system focuses
on the economic problems of cloud computing
described in chapter 1. Further, in (Abu-Libdeh,
Princehouse, & Weatherspoon, 2010) authors
introduce RACS, a proxy that spreads the stor-
age load over several providers. This approach
is similar to our work as it also employs erasure
code techniques to reduce overhead while still
benefiting from higher availability and durability
of RAID-like systems. Our concept goes beyond
a simple distribution of users’ content.

RACS lacks sophisticated capabilities such as
intelligent file placement based on users’ require-
ments or automatic replication. In addition to it,

298

the RACS system does not try to solve security
issues of cloud storage, but focuses more on vendor
lock-in. Therefore, the system is not able to detect
any data corruption or confidentiality violations.

The future of distributed computing has been a
subject of interest for various researchers in recent
years. The authors in (Buyya, Yeo, & Venugopal,
2008) propose an architecture for market-oriented
allocation of resources within clouds. They
discuss some existing cloud platforms from the
market-oriented perspective and present a vision
for creating a global cloud exchange for trading
services. The authors consider cloud storage as a
low-cost alternative to dedicated Content Delivery
Networks (CNDs).

There are more similar approaches dealing
with high availability of data trough its distribu-
tion among several cloud providers. DepSky-A
(Bessanietal.,2011) protocol improves availabil-
ity and integrity of cloud-stored data by replicating

Solving Security and Availability Challenges in Public Clouds

Figure 9. Total time taken when encryption occurs either before or after the encoding step. Tests were
executed on a dual-core/quad-core CPU. The bars correspond to the complete data processing cycle: the
encoding of a data object into data packages, the subsequent encryption of individual chunks in parallel
threads, the decryption of data packages and finally the reassembling of the data in the decoding step. The
opposite order encompasses the following operations: encryption, encoding, decoding and decryption.

encode encrypt M encrypt encode

BEBEEE

Time taken (in milliseconds)
w
o

-
}

(41 [42]

(6,1 [62] [101] [10,2] [(10,3]
Erasure configurations [k,m] with a 128kB data object
(a) Processing of a 128kB data object on a dual-core CPU

encode encrypt ¥ encrypt encode
10000 -

§ § 8§ 8

i

Time taken (in milliseconds)

[

[41] [42] [61] [62) [10,1) [102] [10,3)
Erasure configurations [k, m] with a 100MB data object

(¢) Processing of a 100MB data object on a dual-core CPU

it on cloud providers using quorum techniques.
This work has two main limitations. First, a data
unit of size S consumes 7 x S storage capacity of
the system and costs on average n times more than
if was stored on a single cloud. Second, the protocol
does not provide any confidentiality guaranties, as
it stores the data in clear text. In their later work
the authors present DepSky-CA, which solves the
mentioned problems by the encryption of the data
and optimization of the write and read process.
However, the monetary costs of using the system
is still twice the cost of using a single cloud. On
top of this, DepSky does not provide any means
or metrics for user centric data placement. In fact,
our approach enables cloud storage users to place

encode encrypt M encrypt encode

g

140 -

1l

[41] [42] [61] [6,2] (10,1 [10,2] [103]
Erasure configurations [k,m] with a 128kB data object
(b) Processing of a 126kB data object on 2 quad-core CPU

Time taken (in milliseconds)
— -
N
o
L

o8 8888

4500 - encode encrypt M encrypt encode
4000 + . W

3500 -
3000
2500
2000
1500
1000 -

Time taken (in milliseconds)

Q4 -
(41] [42] [61] (62] (101) [10.2) o=
Erasure configurations [k, m] with 2 100MB data sy

(d) Processmg of a 100MB data object on 2 quad-com CFL

their data on the cloud based om their security
policies as well as quality of serwice expectations
and budget preferences.

CONCLUSION

In this chapter we outlimed somme general problems
of cloud computing sech as secunity, service avail-
ability and a general msk Sor 2 customer to become
dependent on 2 serwise peowider. In the course
of the paper we dessamsarated how our system
deals with the messiomed concerns. In a nutshell.
we stripe usess” @i acwoss multiple providess
while integratimg sl each storage provider via

Solving Security and Availability Challenges in Public Clouds

appropriate service-connectors. These connectors
provide an abstraction layer to hide the complexity
and differences in the usage of storage services.

The main focus of the paper is an extensive
evaluation of our application. From the results
obtained, we conclude that our approach improves
availability at costs similar to using a single com-
mercial cloud storage provider (instead of 100%
and more when full content replication is used).
We use erasure code techniques for striping data
across multiple providers. The experiment proved,
that given the speed of current disks and CPUs,
the libraries used are fast enough to provide good
performance - whereby the overall performance
depends on the throughput performance of the
particular storage providers. The throughput
performance of Cloud-RAID increases with the
selection of providers with higher throughput
performance values. Hence, with an appropriate
coding configuration Cloud-RAID is able to im-
prove significantly the data transmission process
when compared with cloud storages individually.

Further, performance tests showed that our
systemis best utilized fordeployment of large files.
Utilization of our system for storing of smaller
data objects is subject to further test and analysis.
In the long term, our approach might foster the
provision of new and even more favorable cloud
storage services. Today, storage providers surely
use RAID like methods to increase the reliability
of the entrusted data to their customers. The proce-
dure causes costs which are covered by providers
price structure. With our approach, the on-site
backups might become redundant, as users data
is distributed among dozens of storage services.
Furthermore, we enable users of cloud storage
services to control the availability and physical
segregation of the data by themselves. However,
additional storage offerings are expected to be-
come available in the next few years. Due to the
flexible and adaptable nature of our approach, we
are able to support any changes in existing storage
services as well as incorporating support for new
providers as they appear.

300

FUTURE WORK

Our performance testing revealed that some ven-
dors have optimized their systems for large data
objects and high upload performance, while others
have focused on smaller files and better download
throughput. We will use these observations to
optimize read and write performance of our ap-
plication. During our experiment we also observed
that the reaction time of read and get-hash requests
may vary from provider to provider at different
times of day. This behavior might be related to
the usage of different consistency models and is
subject of further analysis.

In addition, we are also planing to implement
more service connectors and thus to integrate addi-
tional storage services. Any extra storage resource
improves the performance and responsiveness of
our system for end-users.

REFERENCES

Abu-Libdeh, H., Princehouse, L., & Weather-
spoon, H. (2010). Racs: A case for cloud storage
diversity. Paper presented at SoCC’10. New
York, NY.

Armbrust, M., Fox, A., Griffith, R., Jo-
seph, A. D., Katz, R., & Konwinski, A. et al.
(2010, April). A view of cloud computing.
Communications of the ACM, 53(4), 50-58.
doi:10.1145/1721654.1721672

Ateniese, G., Burns, R., Curtmola, R., Herring, J.,
Kissner, L., Peterson, Z., & Song, D. (2007). Prov-
able data possession at untrusted stores. Paper
presented at the 14th ACM CCS. New York, NY.

Bessani, A., Correia, M., Quaresma, B., Andre,
F., & Sousa, P. (2011). Depsky: Dependable and
secure storage in a cloud-of-clouds. In Proceed-
ings of the Sixth Conference on Computer Systems,
(pp- 31-46). New York, NY: ACM.

Solving Security and Availability Challenges in Public Clouds

Bowers, K. D., Juels, A., & Oprea, A. (2009).
Hail: A high availability and integrity layer for
cloud storage. Paper presented at CCS’09. New
York, NY.

Broberg,J.,Buyya,R., & Tari, Z.(2009). Creating
a ‘cloud storage’ mashup for high performance,
low cost content delivery. Paper presented at
Service-Oriented Computing. New York, NY.

Burt, J. (2009). Future for cloud computing looks
good, report says. Academic Press.

Buyya, R., Yeo, C.-S., & Venugopal, S. (2008).
Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as comput-
ing utilities. In Proceedings of the 10th IEEE
International Conference on High Performance
Computing and Communications. IEEE.

Carr, N. (2008). The Big Switch. Norton.

Dabek, F., Kaashoek, M. F., Karger, D., Morris,
R., & Stoica, I. (2001). Wide-area cooperative
storage with cfs. Paper presented at ACM SOSP.
New York, NY.

Dingledine, R., Freedman, M., & Molnar, D.
(2000). The freehaven project: Distributed
anonymous storage service. Paper presented at
the Workshop on Design Issues in Anonymity
and Unobservability. New York, NY.

Gantz, J., & Reinsel, D. (2009). Extracting value
from chaos. Academic Press.

Plank, J. S. (2008). The raid-6 liberation codes.
In Proceedings of the 6th USENIX Conference

on File and Storage Technologies. Berkeley, CA:
USENIX Association.

Plank, J. S., Luo, J., Schuman, C. D., Xu, L., &
Wilcox-O’Hearn, Z. (2009a). A performance
evaluation and examination of open-source era-
sure coding libraries for storage. In Proceedings
of the 7th conference on File and storage tech-
nologies, (pp. 253-265). Berkeley, CA: USENIX
Association.

Plank, J. S., Simmerman, S., & Schuman, C. D.
(2008). Jerasure: A library in C/C++ facilitating
erasure coding for storageapplications - Version
1.2 (Technical Report CS-08-627). University of
Tennessee.

Ponemon Institute. (2011). Security of cloud
computing providers study. Author.

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao,
B., Weatherspoon, H., & Kubiatowicz, J. (2001,
September). Maintenance free global storage in
ocean store. I[EEE Internet Computing.

Sarno, D. (2009, October). Microsoft says lost
sidekick data will be restored to users. Los An-
geles Times.

Schnjakin, M., Alnemr, R., & Meinel, C. (2010).
Contract-based cloud architecture. In Proceedings
of the second international workshop on Cloud
data management, (pp. 33-40). New York, NY:
ACM.

Schnjakin, M., Alnemr, R., & Meinel, C.(2011). A
security and high-availability layer for cloud stor-
age. In Proceedings of WebInformation Systems
Engineering (LNCS) (vol. 6724, pp. 449-462).
Springer.

Schnjakin, M., Goderbauer, M., Krueger, M., &
Meinel, C. (2013). Cloud storage and it-security.
In Proceedings of the 13th Dessscher IT-Sicher-
heitskongress (Sicherheit 2013} Academic Press.

Schnjakin, M., Korsch, D., Schoenberg, M., &
Meinel, C. (2013). Implementation of a secure
and reliable storage abowe the uatrusted clouds.
In Proceedings of Compuser Science & Education
(ICCSE), (pp. 347-353) IOCSE.

Schnjakin, M. & Memmel € (2011). Platform for

a secure storage-mfrastrwcture in the cloud. In
Proceedings ofthe 123 Dewtscher IT-Sicherhe-

itskongress (Sicheshes 2011). Academic Press.

The Amazon S3 Team (2008). Amazon s3 avail-
ability event: Judy 20 2008. Author.

301

Solving Security and Availability Challenges in Public Clouds

Weatherspoon, H. & Kubiatowicz, J. (2002).
Erasure coding vs. replication: A quantitative
comparison. IPTPS.

ADDITIONAL READING

Dimitrios Zissis and Dimitrios Lekkas. (2012).
Addressing cloud computing security issues.
Future Gener. Comput. Syst. 28, 3 (March 2012),
583-592. DOI=10.1016/j.future.2010.12.006

Krutz, R. L., & Vines, R. D. (2010). Cloud Se-
curity: A Comprehensive Guide to Secure Cloud
Computing. Wiley Publishing.

Madhan Kumar Srinivasan, K. Sarukesi, Paul
Rodrigues, M. Sai Manoj, and P. Revathy. (2012).
State-of-the-art cloud computing security taxono-
mies: a classification of security challenges in the
presentcloud computing environment. In Proceed-
ings of the International Conference on Advances
in Computing, Communications and Informatics
(ICACCI “12). ACM, New York, NY, USA, 470-
476.DOI=doi:10.1145/2345396.2345474 http://
doi.acm.org/10.1145/2345396.2345474

Perez-Botero, D., Szefer, J., & Lee, R. B. (2013).
Characterizing hypervisor vulnerabilities in cloud
computing servers. In Proceedings of the 2013
international workshop on Security in cloud
computing (Cloud Computing ‘13). ACM, New
York, NY, USA, 3-10.

S. Subashini and V. Kavitha. (2011). Review:
A survey on security issues in service delivery
models of cloud computing. J. Netw. Comput.
Appl.34,1(January2011),1-11.DOI=10.1016/j.
jnca.2010.07.006 http://dx.doi.org/10.1016/].
jnca.2010.07.006

302

KEY TERMS AND DEFINITIONS

Availability of Cloud Services: Model of
cloud computing where resource availability is
considered to be a strong constraint.

Cloud Computing Security: Model of cloud
computing where security policies are designed
and implemented to enforce protection of cloud
resources both in soft and hardware form.

Cloud Computing: Describes a variety of
computing concepts that involve a large number
of computers connected through a real-time com-
munication network such as the Internet. (Abu-
Libdeh, Princehouse, & Weatherspoon, 2010). It
is very similar to the concept of utility computing.
In science, cloud computing is a synonym for dis-
tributed computing over a network, and means the
ability to run a program or application on many
connected computers at the same time.

Cloud Storage: Is a model of networked en-
terprise storage where data is stored in virtualized
pools of storage which are generally hosted by
third parties. Hosting companies operate large data
centers, and people who require their data to be
hosted buy or lease storage capacity from them.

Infrastructure as a Service: Offers cloud
computing resources as an infrastructural service
to external services requiring infrasture to run.

Reliability of Cloud Services: Fault tolerant
model of cloud computing where resource reli-
ability in terms of service delivery is considered
to be a strong constraint.

Storage as a Service: Model of cloud com-
puting where the storage resource availability is
considered to be a strong constraint.

ENDNOTES

. http://www.krollontrack.com/resource-

library/case-studies/

	CCF12112014_00018
	CCF12112014_00019
	CCF12112014_00020
	CCF12112014_00021
	CCF12112014_00022
	CCF12112014_00023
	CCF12112014_00024
	CCF12112014_00025
	CCF12112014_00026
	CCF12112014_00027
	CCF12112014_00028
	CCF12112014_00029
	CCF12112014_00030
	CCF12112014_00031
	CCF12112014_00032
	CCF12112014_00033
	CCF12112014_00034
	CCF12112014_00035
	CCF12112014_00036
	CCF12112014_00037
	CCF12112014_00038
	CCF12112014_00039
	CCF12112014_00040

