
Technische Berichte Nr. 83

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 7th
Ph.D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch (Hrsg.)

ISBN 978-3-86956-273-5
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 83

Christoph Meinel | Hasso Plattner | Jürgen Döllner | Mathias Weske |
Andreas Polze | Robert Hirschfeld | Felix Naumann | Holger Giese |

Patrick Baudisch (Hrsg.)

Proceedings of the 7th Ph.D. Retreat of the HPI
Research School on Service-oriented Systems

Engineering

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2014/6349/
URN urn:nbn:de:kobv:517-opus-63490
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63490

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-273-5

mailto:verlag@uni-potsdam.de

Contents

Mining Association Rules on RDF Data 1
Ziawasch Abedjan

On Enabling Context-aware Compliance Monitoring of Business
Processes at Run-time in Distributed Systems 13

Anne Baumgrass

Symbolic Representation and Constraint Reasoning in Invariant
Checking 25

Johannes Dyck

Solving Multidomain Constraints on Object Behavior 37
Tim Felgentreff

Studying the Nature of MDE Evolution — Case Studies 49
Regina Hebig

Modeling Interestingness and Serendipity in Relevance Search 59
Maximilian Jenders

Describing and Comparing Datasets on the Web of Data 69
Anja Jentzsch

Using Design Patterns to Manage the Productivity vs. Performance
Tradeoff in Hybrid Parallel Computing 79

Fahad Khalid

High-Quality Video Generation for Thin Clients — An Application
for Image-Based 3D Portrayal Services 91

Jan Klimke

Ultra Mobile Devices: using the users body as an interactive
device 101

Pedro Lopes

Fall Workshop 2013 i

Contents

Adaptive Optimizations for Data Structures in Virtual Runtime
Environments 109

Tobias Pape

Challenges and Approaches of Interaction Techniques for Multi-
Perspective Views 121

Sebastian Pasewaldt

Architectures for Highly-Available Applications with Non-HA
Infrastructure 133

Daniel Richter

Towards a Secure Multi-tenant SaaS Environment 139
Eyad Saleh

Visualization of Varying Hierarchical Data with Treemaps 149
Sebastian Schmechel

No Tools But Objects: Towards Direct Manipulation Programming
Environments 161

Marcel Taeumel

Communication-Aware and Memory-Aware VMs Consolidation 173
Ibrahim Takouna

Using Omniscient Debuggers 185
Arian Treffer

Enabling Adaptation in Cyber-Physical Systems 195
Sebastian Wätzoldt

ii Fall Workshop 2013

Mining Association Rules on RDF Data

Ziawasch Abedjan

Information Systems Group
Hasso-Plattner-Institut

ziawasch.abedjan@hpi.uni-potsdam.de

Linked Open Data brings new challenges and opportunities for the data mining
community. Its underlying data model RDF is heterogeneous and contains machine
readable semantic relations. The amount of available open data requires profiling and
integration for desired applications. One of the promising underlying techniques is
association rule mining. This report presents an overview of elaborated solutions to
improve RDF data. In particular, we revisit the concept of mining configurations. Based
on the mining configuration methodology, we describe several use cases: ontology
engineering, auto-completion, data imputation and synonym discovery.

1 Introduction

Linked Open Data (LOD) is often represented in the Resource Description Framework
(RDF) data model: a triple structure consisting of a subject, a predicate, and an object
(SPO). Each triple represents a statement or fact.

When processing RDF data, meta information, such as ontological structures and
exact range definitions of predicates, are desirable and ideally provided by a knowledge
base. However in the context of LOD, knowledge bases are often incomplete or simply
not available. Even when a knowledge base is available, we often observe triples that
violate its axioms. This inconsistency and lack of metadata impedes the utilization of
LOD. Thus, it is useful to automatically generate meta information, such as ontological
dependencies, range definitions, and topical associations of resources.

As resources can be connected through multiple predicates, co-occurring in mul-
tiple relations, frequencies and co-occurrences of statement elements become an in-
teresting object of investigation for pattern analysis methods, such as association rule
mining [6]. To mine RDF data, several questions must be answered: What should be
mined in which context, and what are the application fields for each approach. Previous
work concentrates on inductive logic programming and graph mining, or is restricted to
scenarios where domain knowledge and complete ontology structures are available.

To this end, we introduced the concept of mining configurations [2]. A mining con-
figuration specifies one element of the SPO construct as the context of rule mining (the
transaction identifiers) and another as the target of rule mining (the items and trans-
actions). For each of the possible six configuration we describe the corresponding
application fields. In particular we contribute algorithms to four applications that benefit
the usability and machine-readability of RDF data1:

1A longer version of this report has been published in the journal “Datenbankspektrum” [3].

Fall Workshop 2013 1

Mining Association Rules on RDF Data

• Predicate suggestion.

• Enrichment with missing facts.

• Data-driven ontology re-engineering.

• Query relaxation through predicate expansion.

As a proof of concept we build a profiling tool that integrates all the above mentioned
functionalities based on the previously created tool ProLOD [8].

2 Preliminaries

Our approach is based on association rule mining that is enabled by our concept of
mining configurations [2]. First, we give a brief introduction to the concept of associ-
ation rule mining. Next, we introduce our approach of mining configurations for RDF
data and outline the characteristics of each configuration.

2.1 Association rule mining

The concept of association rules has been widely studied in the context of market
basket analysis [5], however the formal definition is not restricted to any domain: Given
a set of items I = {i1, i2, . . . , im}, an association rule is an implication X→Y consisting of
the itemsets X ,Y ⊂ I with X∩Y = /0. Given a set of transactions T = {t|t ⊆ I}, association
rule mining aims at discovering rules holding two thresholds: minimum support and
minimum confidence.

Support s of a rule X → Y denotes the percentage of transactions in T that include
the union of the antecedent (left-hand-side itemset X) and consequent (right-hand-side
itemset Y) of the rule, i.e., s% of the transactions in T contain X ∪Y . The confidence
c of a rule denotes the statistical dependency of the consequent of a rule from the
antecedent. The rule X →Y has confidence c if c% of the transactions T that contain X
also contain Y . Algorithms to generate association rules decompose the problem into
two separate steps: (1) Discover all frequent itemsets, i.e., itemsets that hold minimum
support. (2) For each frequent itemset a generate rules of the form l→ a− l with l ⊂ a
that hold minimum confidence.

2.2 Mining configurations

To apply association rule mining to RDF data, it is necessary to identify the respective
item set I as well as the transaction base T and its transactions. Our mining approach
is based on the subject-predicate-object (SPO) view of RDF data.

Any part of the SPO statement can be regarded as a context, which is used for
grouping one of the two remaining parts of the statement as the target for mining. So,
a transaction is a set of target elements associated with one context element that rep-
resents the transaction id (TID). We call each of those context and target combinations

2 Fall Workshop 2013

2 Preliminaries

a configuration. Table 1 shows an overview of the six possible configurations and their
preliminarily identified use-cases. Each can be further constrained to derive more re-
fined configurations. For instance, the subjects may be restricted to be of type Person.
In the following we further elaborate the meaning of each configuration with regard to
the according target of mining.

Conf. Context Target Use case
1 Subject Predicate Schema discovery
2 Subject Object Basket analysis
3 Predicate Subject Clustering
4 Predicate Object Range discovery
5 Object Subject Topical clustering
6 Object Predicate Schema matching

Table 1: Six configurations of context and target

Mining Subjects. In the RDF model, all statements with same subject represent one
entity. Subjects with many common predicates can be considered as similar subjects.
Thus, mining subjects in the context of predicates (Conf. 3) results in rules that express
clustering or ontological affiliation of entities. For instance, in the DBpedia set we
retrieved rules between subjects that can be classified as presidents, musicians, or
athletes, such as George Washington → Lyndon B. Johnson with 92% confidence.
As rules come up when subjects share a minimum number of properties, it can be
expected that varying the support leads to clusterings and ontological concepts that
differ in granularity.

Mining subjects in the context of objects (Conf. 5), i.e., discovering subjects that
share a minimum number of object values, results in rules between entities that are
topically related. Objects are values that might be associated with subjects in different
relations. E.g., several persons may share the object Berlin in different roles like birth
or death_place or home_town. In fact, up to 50 distinct predicates in the DBpedia on-
tology infoboxes data set version 3.7 involve the city Berlin as object value. Therefore,
organizations as well as persons and instances of other types might share the same
objects, and are consequently topically related.
Mining Predicates. While subjects represent entities in RDF data, predicates repre-
sent the schema for those entities. So, mining predicates in the context of subjects
(Conf. 1) results in patterns and rules that show dependencies of schema elements
among entities and can be used for schema discovery and analysis.

Mining predicates in the context of objects (Conf. 6) aims at discovering predicates
that have a strong overlap in their value ranges. As predicates define the schema of
entities, rules within this configuration can be used for schema matching or synonym
discovery. For instance, we discovered rules between the predicates associatedBand
and associatedMusicalArtist that have a confidence of 100% in both directions.
Mining Objects. In accordance to our view of entities and schemata, objects repre-
sent the actual values that describe an entity. Thus, mining in the context of subjects
(Conf. 2) means to discover patterns between values that are associated to each other
by co-occurring for many entities. For example, the rule Buenos Aires → Argentina
with 85% confidence shows that entities associated with a capital town are probably
also associated with the corresponding country.

Fall Workshop 2013 3

Mining Association Rules on RDF Data

Rules in the context of predicates (Conf. 4) imply range discovery of predicates as
they connect values, such as numbers, countries, or cities. Exemplary rules include
1 → {2, 3} or Albania → Italy. In fact, the mining results of this configuration is very
similar to the configuration for mining subjects in the context of predicates. Regarding
the fact that subjects and objects have semantically different roles in a statement, it is
worth reasoning about the actual difference of both configurations.

In the following we exemplify the application of two configurations for mining predi-
cates. Table 2 illustrates some SPO facts extracted from DBpedia. For legibility, we
omit the complete URI representations of the resources and just give the human-
readable values. The application of Configuration 1 from Tab. 1 to our example data
set would transform the facts into three transactions, one for each distinct subject as
illustrated in Tab. 3a. In this example, the itemset {birthPlace, party, orderInOffice} is
a frequent itemset (support 66.7%), implying rules such as birthPlace → orderInOf-
fice, party and orderInOffice → birthPlace, party with 66.7% and 100% confidence,
respectively. Furthermore, we can infere negative rules, such as birthPlace→¬ born.

Subject Predicate Object
Obama birthPlace Hawaii
Obama party Democrats
Obama orderInOffice President
Merkel birthPlace Hamburg
Merkel orderInOffice Chancellor
Merkel party CDU
Brahms born Hamburg
Brahms type Musician

Table 2: Facts in SPO structure from DBpedia

TID transaction
Obama {birthPlace, party, orderInOffice}
Merkel {birthPlace, party, orderInOffice}
Brahms {born, type}

(a) Context: Subject, Target: Predicate

TID transaction
Musician {type}
Hamburg {born, birthPlace}
Hawaii {birthPlace}
President {orderInOffice}

(b) Context: Object, Target: Predicate

Table 3: Configuration examples

Configuration 6 in the context of objects would create the transactions presented in
Tab. 3b. The frequent itemsets here contain predicates that are similar in their ranges,
e.g., {born, birthPlace}. Given the negative rule in Conf. 1 and the pattern in Conf. 6,
one could conclude that both predicates born and birthPlace have synonymous mean-
ings and can be used for predicate expansion.

3 Predicate Suggestion

Suggestion of predicates or objects aims at two goals. First, the user who is creating
new facts for a certain subject might be grateful for reasonable hints. Second, system

4 Fall Workshop 2013

4 Auto-amendment of Triples

feedback might prevent the user from using inappropriate synonyms for predicates as
well as objects.
Suggestion Workflow. For suggesting predicates or objects for a user that is creating
facts for a certain subject we directly apply the Configurations 1 or 2, respectively. The
suggestion workflow for predicates requires two preprocessing steps: (1) Generate all
association rules between predicates. (2) Create an index to facilitate the retrieval of
all relevant rules for a specific suggestion situation.

When a user is inserting or editing the facts related to a specific subject, the system
is aware of all predicates that have already been inserted for the current subject. For
generating a list of suggestions, all rules that incorporate the previously inserted predi-
cates as their antecedents are retrieved. The suggestions then are all those predicates
that occurred as consequences of the retrieved rules. The ranking of the suggestions
is based on scores that are computed for each suggestion by aggregating all confi-
dence values of the retrieved rules that have the specific predicate suggestion as their
consequence. Based on the next chosen predicate the suggestion list changes again,
because the rules that contain the new predicate as their antecedent are also taken
into account.

Tables 4a and 4b show the performance of our algorithm on several datasets from
DBpedia. Here we randomly removed predicates and objects from each entity and
tried to suggest it with our algorithm. The tables display precision at x (p@x) and mean
reciprocal rank (MRR) scores, showing that indeed association rule mining is much
more suited for suggesting predicates than objects.

Type p@5 p@10 MRR at 10
Thing 0.420 0.639 0.20888
Person 0.510 0.714 0.26199
Place 0.507 0.771 0.21717
Work 0.275 0.555 0.12450
Species 0.648 0.909 0.27802

(a) Predicate suggestions

Type p@5 p@10 MRR at 10
Thing 0.050 0.055 0.03179
Person 0.027 0.028 0.02315
Place 0.069 0.069 0.06058
Work 0.015 0.015 0.01276
Species 0.440 0.541 0.22191

(b) Object suggestions

Table 4: Evaluations for 10,000 predicate/object suggestions per data set

4 Auto-amendment of Triples

We propose two different approaches to amend a dataset with new facts: user-driven
auto-amendment and data-driven auto-amendment. When creating new statements
where the user decides which subject has to be amended with new triples we speak
of user-driven auto-amendment. This approach follows our suggestion scenario from
Sec. 3. Based on a subject that is being edited, the algorithm could try to gener-
ate new facts by guessing predicate and object combinations. Our data-driven auto-
amendment approach lets the system itself choose the subjects that should be amended
with new triples. Our data-driven approach is based on the following intuitions:

1. For object rules o1→ o2 with high confidence (above 90%) the subjects occurring

Fall Workshop 2013 5

Mining Association Rules on RDF Data

with the object o1 are also likely to occur with the object o2. However 10% of the
subjects that occur with o1 violate the rule by not occurring with o2 in any fact.
Our assumption is that those facts are absent, because of missing thoroughness
during data creation. For example a user that adds Honolulu as the birthPlace
of a person assumes that the country where Honolulu lies (namely the USA) is
implicitly given.

2. A subject should not be enriched with a fact containing object o2 if on the basis of
the rules involving schema predicates, no predicate can be chosen for the con-
nection with o2. This intuition allows a softening of the earlier intuition that expects
all subjects that violate o1→ o2 should be extended with a triple containing o2.

For data-driven auto-amendment we need to generate all predicate rules, corre-
sponding to Conf. 1 from Tab. 1, and store them within a predicate-predicate rule ma-
trix. Then we generate high-confidence object rules oi→ o j in the manner of Conf. 2.
For each object rule oi → o j, all subjects that occur with the antecedent of a high-
confidence rule but not with its consequent are retrieved. These subjects may be
amended with new facts having the current object rule consequent o j as their value.
The choice for 90% as the high confidence threshold is arbitrary. The higher this thresh-
old is, the fewer new statements can be generated but higher precision is achieved.
Then the algorithm proceeds with retrieving the candidate predicates that have o j in
their range. The score for each candidate predicate is then computed in the same
manner as described for predicate suggestions based on given rules with schema
predicates as antecedents.

Note the number of new facts depends on the number of existent high-confidence
rules and their corresponding set of rule violating subjects. Using this approach on
DBpedia v3.6 we were able to generate 26,646 new facts out of which 31% where
actually included in the later version 3.7. Most of the inclusions correspond to new
facts on entities of types Artist or Animal, where the ratio was above 50%.

5 Reconciling Ontologies and Data

A common case of inconsistency is the mismatch of ontology definitions and the un-
derlying data. In particular, divergences between ontology specification and instance
data may occur in two scenarios: On the one hand, the ontology might have been de-
veloped independently and before actual data using it was published, e.g., in the case
of the “Friend of a Friend”2 ontology (FOAF). On the other hand, the ontology might
have been tailored for existing data, e.g., in the case of the DBpedia project, which
evolved extensively since its first specification, while revising existing class definitions
was sometimes neglected during this evolutionary process.

Based on an existing ontology, we identify two typical cases where the specification
differs from usage patterns: overspecification and underspecification. We refer to a cer-
tain class as being overspecified, if one or more properties are declared for this class
by the ontology, but are rarely (if ever) used for real-world data, e.g., scottishName

2http://xmlns.com/foaf/spec/

6 Fall Workshop 2013

6 Predicate Expansion

for Settlement. There are several reasons, why overspecification occurs: For ex-
ample, data providers cannot set proper values for the defined properties, e.g., a
scottishName for a non-Scottish Settlement.

A class is underspecified, when in real-world data certain properties are used fre-
quently even though they are not specified by the vocabulary. Underspecification may
occur when the class definition lacks certain properties that are commonplace in in-
stance data, e.g., genre for Band. Note that a class can simultaneously be overspec-
ified and underspecified (with regard to different properties).

Given a dataset with typed instances and a corresponding ontology, we apply fre-
quency and association rule analysis by applying Conf. 1 to identify and remedy over-
and underspecification [1]. We identified 503 removal suggestions in the DBpedia 3.6
ontology and 622 removal suggestions in the DBpedia 3.7 ontology, all with support
≤ 1%. Table 5 shows sample results of overspecification in DBpedia 3.7. Some of the
removal suggestions can be moved to a more suitable subclass as suggested in [1].

Property Class Support
scottishName Settlement 0.000%
distanceToEdinburgh Settlement 0.021%
philosophicalSchool Person 0.202%
countySeat PopulatedPlace 0.831%
anthem PopulatedPlace 0.147%
depth Place 0.723%
numberOfGraduateStudents EducationalInstitution 0.300%

Table 5: Overspecified properties for DBpedia 3.7
Table 6 illustrates the amount and quality of class property suggestions for DBpe-

dia 3.6 and 3.7 (minSupp: 1%, minConf : 70%). Overall, the majority of the suggestions
have been labeled as useful. Suggestions marked as undecided are those for which we
could not decide whether they enhance the class definition or not. This was often the
case, when a similar or synonymous property had already been defined for a class in
the ontology (e.g., for Person, Person/weight is specified, weight is suggested).
Synonym discrepancy constitutes a major problem for data consumers, as it happens
that either properties are inconsistently used or the expectation of of a user towards a
property and the ontology designer may diverge. In the next section we pick up on the
synonym discrepancy and present a solution for discovering such synonyms.

DBpedia Total Useful Not Useful Undecided
3.6 283 234 (83%) 15 34
3.7 317 268 (85%) 31 18

Table 6: Suggestion quality for DBpedia 3.6 and 3.7

6 Predicate Expansion

We already showed that some discrepancies between property usage and ontology
definitions emerge when instead of defined properties synonymous predicates are
used in the data. Some examples that we encountered during our evaluations on the
DBpedia data set where for instance city or location instead of locationCity.

Fall Workshop 2013 7

Mining Association Rules on RDF Data

Of course two synonymous predicates may have been defined deliberately for two dis-
joint purposes, but because they have been used in substitution of each other, the data
consumer has to deal with the inconsistency. We developed an approach for automat-
ically discovering predicates that have been used in substitution of each other in the
data, i.e., they have some synonymous meaning. The discovery of such dependencies
is relevant for query expansion. A user that looks for actors of a movie and intuitively
chooses the predicate starring will miss all actors where a synonymous predicate
like artist has been used. Note, we explicitly talk about synonymously used pred-
icates instead of synonym predicates. For example, predicates with more general or
specific meaning often substitute each other in the data. E.g., artist is often used
as a substitute for starring even though artist is more general than starring.

We apply Configurations 1 and 6 in the same manner as exemplified in Sec. 2. With
Configuration 1 we perform schema analysis in the context of subjects. Configuration 6
enables us to mine similar predicates in the context of objects. We also looked into the
range structure of predicates by looking at value type distributions. Despite the fact
that type definitions might not always be available we could not identify any benefit to
the range analysis approach in our experiments.

Configuration 1 enables us to do frequency analysis and rule discovery per entity.
We used this configuration already for suggesting new predicates for data creators and
generating inclusion suggestions for the ontology. Here we have to look at a different
intuition: Expansion candidates for a predicate should not co-occur with it for any en-
tity. It is more likely for entities to include only one representative of a synonymous
predicate group within their schema, e.g., either starring or artist. That is why
we look for negative correlations in Configuration 1. Negative schema correlations
might also lead to false positives, such as recordLabel and author as both occur
for different entities. While songs have the predicate recordLabel, books have the
predicate author. So a negative correlation is not a sufficient condition for a predicate
to be expanded by another. Therefore we also take the range content of predicates
into account.

Our second intuition is that as synonym predicates have a similar meaning they
also share a similar range of object values. Normally when trying to compute the value
overlap between two predicates one would look at the ratio of overlaps depending on
the total number of values of such a predicate. We apply a more efficient range content
filtering approach (RCF) based on Conf. 6 that constitutes a mining scenario where
each transaction is defined by a distinct object value. So each transaction consists of
all predicates containing the distinct object value in their range. Frequent patterns in
this configuration are sets of predicates that share a significant number of object values
in their range. Experiments showed that this approach is by magnitudes faster than the
pairwise overlap recognition approach.

Our approach works in the following way: (1) first retrieve all predicate pairs through
range content filtering, then (2) analyze their schema co-occurrences.

We performed multiple experiments on many real world data sets. Our experiments
showed that our combined approach generates less false positives the more homoge-
neous the entities in the data set are. For example, on the Magnatune dataset that
contained only music data we achieved precision values of 100% on a 0.1% support
threshold for RCF, while on the DBpedia data set the precision was around 40%. Here

8 Fall Workshop 2013

7 Related Work

the algorithm generated false positives like foundingPlace and birthPlace, be-
cause the subjects of these predicates are from very different domains while the range
of both very similar. The evidences by Configurations 1 and 6 are not enough. Table 7
shows our top 5 results on the DBpedia Work and Organisation data set [4].

DBpedia Work DBpedia Organisation
1. artist, starring city, location
2. artist, musicComposer city, hometown
3. author, writer location, hometown
4. creator, writer city, ground
5. composer, musicComposer city, locationCity

Table 7: Discovered top 5 synonym pairs on DBpedia subsets

7 Related Work

We apply existing data mining algorithms to the new domain of LOD and proposed four
different use cases on this basis. Therefore, we show an overview of related work with
regard to data mining in the semantic web as well as the most related approaches to
our presented use cases.
Mining the Semantic Web. Most research on mining the semantic web is so far in the
fields of inductive logic programming and approaches that make use of the description
logic of a knowledge base [14]. Those approaches concentrate on mining answer-
sets of queries towards a knowledge base. Based on a general reference concept,
additional logical relations are considered for refining the entries in an answer-set.
A statistical approach for mining the semantic web is proposed by Nebot et al. [18],
where a SPARQL endpoint allows the user to define targets of mining in any desired
graph context.

Looking at RDF data as graph where resources are connected via predicates as
edges, another related field of research is mining frequent subgraphs or subtrees [15].

ALEPH [17], WARMR [10], and Sherlock [19] are known systems to mine horn rules
for generating new statements. ALEPH is an ILP system based on Muggleton’s Inverse
Entailment Algorithm [17]. WARMR uses a declarative language to mine association
rules on small sets of conjunctive queries. Sherlock uses a probabilistic graphical
model to infer first order clauses from a set of facts for a given relation [19]. A recent
system for fact generation in RDF data is AMIE [13]. In a number of experiments AMIE
showed to be the most efficient and effective approach to generate new facts compared
to ALEPH [17] and WARMR [13]. Therefore, we compare our system to AMIE.
Ontology Engineering The most related work in this field is the schema induction ap-
proach by Völker et al. [20]. The authors describe how association rules can be used
to recreate axioms of the DBpedia ontology. Fleischhacker et. al. extend this approach
to discover also characteristics that are not predefined by an ontology, such as pred-
icate symmetry, asymmetry, and disjointness [12]. Our work on improving ontologies
differs as we create specific suggestions for changing the ontology of a data set by
removing or adding properties. Several works in the field on ontology engineering aim

Fall Workshop 2013 9

References

at establishing and enriching ontology specifications by using machine learning tech-
niques [9]. The authors of [16] present a semi-automatic approach for cross-domain
ontology learning. Similarly, in [21] machine learning methods are employed to refine
the definition of the Wikipedia infobox-class ontology.
Query expansion and synonym discovery Research on query expansion includes
stemming techniques, relevance feedback, and other dictionary based approaches [7].
On their technical level the approaches do not apply to our SPARQL scenario as we
do not retrieve documents but structured entities. Elbassuoni et al. have already pre-
sented a query expansion approach based on language models [11]. Our approach is
based on association rules and a more simplistic model and we were able to process
large datasets, such as DBpedia, in a few minutes.

8 Conclusion

This report gave an overview of the main contributions of my thesis. We showed our
mining configuration methodology and applied it to several use cases that detect and
can prevent inconsistency in RDF data. We showed how one configuration can be used
for predicate suggestion and ontology re-engineering. Furthermore, we introduced
approaches for triple amendment and predicate expansion, based on combining two
configurations. Currently we work on a tool that integrates all the presented uses cases
along with other basic profiling tasks.

References

[1] Ziawasch Abedjan, Johannes Lorey, and Felix Naumann. Reconciling ontologies
and the web of data. In CIKM, pages 1532–1536, 2012.

[2] Ziawasch Abedjan and Felix Naumann. Context and target configurations for min-
ing RDF data. In SMER, 2011.

[3] Ziawasch Abedjan and Felix Naumann. Improving rdf data through association
rule mining. Datenbank-Spektrum, 13(2):111–120, 2013.

[4] Ziawasch Abedjan and Felix Naumann. Synonym analysis for predicate expan-
sion. In ESWC, 2013.

[5] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In SIGMOD, pages 207–216, 1993.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Associa-
tion Rules in Large Databases. In VLDB, pages 487–499, 1994.

[7] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
1999.

10 Fall Workshop 2013

References

[8] Christoph Böhm, Felix Naumann, Ziawasch, Dandy Fenz, Toni Grütze, Daniel
Hefenbrock, Matthias Pohl, and David Sonnabend. Profiling linked open data with
ProLOD. In NTII, pages 175–178, 2010.

[9] Paul Buitelaar and Philipp Cimiano, editors. Ontology Learning and Population:
Bridging the Gap between Text and Knowledge, volume 167 of Frontiers in Artifi-
cial Intelligence and Applications. IOS Press, 2008.

[10] Luc Dehaspe and Hannu Toivonen. Discovery of frequent datalog patterns. Data
Mining anf Knowledge Discovery, 3(1):7–36, 1999.

[11] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. RDF Xpress: a flexi-
ble expressive RDF search engine. In SIGIR, 2012.

[12] Daniel Fleischhacker, Johanna Völker, and Heiner Stuckenschmidt. In OTM, vol-
ume 7566, pages 718–735. 2012.

[13] Luis Galàrraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: As-
sociation rule mining under incomplete evidence in ontological knowledge bases.
In WWW, 2013.

[14] Joanna Józefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. The role
of semantics in mining frequent patterns from knowledge bases in description
logics with rules. Theory Pract. Log. Program., 10:251–289, 2010.

[15] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In ICDM,
pages 313–320, 2001.

[16] Alexander Maedche and Steffen Staab. Ontology learning for the semantic web.
IEEE Intelligent Systems, 16:72–79, 2001.

[17] S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Spe-
cial issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[18] Victoria Nebot and Rafael Berlanga. Mining association rules from semantic web
data. In IEA/AIE, volume 2, pages 504–513, 2010.

[19] Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis. Learning
first-order horn clauses from web text. pages 1088–1098, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[20] Johanna Völker and Mathias Niepert. Statistical schema induction. In ESWC,
pages 124–138, 2011.

[21] Fei Wu and Daniel S. Weld. Automatically refining the Wikipedia infobox ontology.
In WWW, pages 635–644, 2008.

Fall Workshop 2013 11

12 Fall Workshop 2013

On Enabling Context-aware Compliance
Monitoring of Business Processes at

Run-time in Distributed Systems

Anne Baumgrass

Business Process Technologies
Hasso Plattner Institute

anne.baumgrass@hpi.uni-potsdam.de

This report summarizes my activities in the HPI Research School on Service Oriented
Systems Engineering of the last six months. I have worked in the area of Complex
Event Processing (CEP) and how this area can be of use for Business Process Man-
agement (BPM). Specifically, I investigated approaches and techniques on how events
can be used to ensure the compliant execution of business processes in an organiza-
tion.

1 Introduction

Organizations demand flexible business processes for their competitiveness. At the
same time they also demand that their business processes as well as their executions
are compliant with numerous laws, regulations and business policies in order to avoid
penalties, scandals, and loss of business reputation. As stated in [1], due to the con-
stant evolution of business processes and compliance rules, automated approaches
to reason about the adherence of process models to compliance rules, become nec-
essary. The evolution of business processes is reflected in the business process life-
cycle [15]. Specifically, as described in [9], compliance must be ideally considered
throughout all the phases of such lifecycle, giving rise to a full-coverage integrated
Business Process Management System (BPMS). Thus, adequate mechanisms for
supporting and ensuring compliance in each phase are required.

As derived from the studies presented in [5], most of the compliance approaches fo-
cus on defining rules and checking compliance at design-time based on process mod-
els, but only a few proposals face run-time compliance monitoring. In this regard, cur-
rent approaches present some shortcomings that should be addressed. Firstly, busi-
ness process compliance is not addressed from a distributed environment perspective.
However, nowadays there is an increasing trend to integrate business processes with
others that exist outside the boundaries of an organization [8]. This brings additional
complexity to managing processes across multiple enterprises and, thus, makes it
harder to ensure the compliance. Secondly, in distributed and typically service-oriented
scenarios, as well as in intra-organizational collaborations, the communication among
the parties involved is usually performed by means of events that may influence the

Fall Workshop 2013 13

On Enabling Context-aware Compliance Monitoring of Business Processes

business operations. Utilizing, transforming, and processing these events for different
purposes would be in the responsibility of a CEP engine [8] and is disregarded in most
of the existing BPMSs. There exist some run-time compliance checking approaches
based on event handling [12, 14]. However, compliance checking in such approaches
is either focusing on monitoring events and mechanisms to use these events to act in
an organization, or they are limited to the business process perspectives, both disre-
garding interesting aspects in flexible and distributed process-oriented environments
such as context and mechanisms to react to certain happenings. Thirdly, and derived
from the previous two points, current approaches hardly consider context when de-
ciding which compliance rules must be checked at every stage in business process
execution. Contrary to this, the scope is often bound to one or two business process
perspectives, typically control flow and/or time. However, a single compliance rule
commonly involves taking into account several perspectives, e.g., dependencies be-
tween activities observed in the control flow, or the presence of documents to enable
the execution of activities.

This report sketches a novel approach that processes events in order to ensure
context-aware compliance of business processes with specific rules at run-time. We
have worked with real complex distributed scenarios in the logistics domain, discovered
in the context of the FP7 EU GET Service project1. The aim of the GET Service project
is to develop a European Wide Service Platform for Green European Transportation
(GET Service) that provides transportation planners and operators with the means to
plan, re-plan, and control transportation routes efficiently and in a manner that reduces
greenhouse gas emissions. For this purpose, we identified three major challenges in
the monitoring of process-oriented complex logistics chains and described the required
features that such a monitoring system should provide, as well as related literature re-
ferring to these challenges, see P1 in Table 4. Based on these results, we define
a framework for the monitoring of complex distributed systems and the detection of
compliance violations considering all the aspects based on the use of CEP function-
ality and rule anti-patterns. This framework can meet and already fulfills parts of the
requirements desirable in a compliance management framework according to [9].

2 Running example

In BPM, several approaches have shown how to check the compliance of the control
flow, associated data objects, or resources at design-time [9]. Our approach comple-
ments these approaches by the enabling of context-aware compliance at run-time using
events. Therefore, although all other perspectives also apply for the described process
below, we focus on considering contextual information required for processing events
related to a business process that enables context-aware compliance at run-time in
distributed systems.

A simplified transportation process of a Logistics Service Provider (LSP) is shown
in Figure 1. Here, the driver gets notified to pick-up a container, to drive to a factory
where the container is loaded, and to bring the container to the harbor for shipping
offshore. For all executions of this process, the compliance rules in Table 1 have to

1http://getservice-project.eu/

14 Fall Workshop 2013

2 Running example

hold, although some of them are not applicable for all executions or may differ in their
details for each execution. On the one hand, the checking of compliance rule CR1 is
not required for goods that are not classified as dangerous goods. On the other hand,
working hours must be arranged and calculated separately for each driver, and, thus,
each business process execution. Therefore, the details to check compliance rule CR3
differ for each execution.

Figure 1: BPMN diagram of a general transportation process

Table 1: Examples of compliance rules for transportation processes
CR1 Only drivers owning security certificates can transport dangerous goods.

CR2 For cooling goods, the cold chain must not be interrupted.

CR3 Drivers shall only drive within their working hours.

The compliance rules in Table 1 are context-aware in the sense that the required
information for checking these compliance rules is not included in the business process
model itself but must be available via events and their context correlated to the business
process. The context of this example is given in Tables 2 and 3. For instance, an event
occurred that includes the loading of ’Goods1’ for ’Driver1’. Since the goods are of
type ’dangerous’ the driver needs to have a security class of ’Class2’ or higher (resp.
’Class1’). In this case no alert is thrown for the compliance rule CR1. In contrast, an
alert will be forwarded in case ’Driver3’ would try to carry ’Goods1’ or ’Goods3’.

Working hours Security
Driver1 9-17 Class1
Driver2 15-24 Class2
Driver3 9-15 -
...
DriverN 9-17 -

Table 2: Driver information

Type Security Cooling range
Goods1 dangerous Class2 -
Goods2 normal - -
Goods3 explosive Class1 1◦C to 15◦C
...
GoodsN cooling - -10◦C to -5◦C

Table 3: Goods information

Fall Workshop 2013 15

On Enabling Context-aware Compliance Monitoring of Business Processes

3 Towards Context-aware Compliance Monitoring of
Business Processes

As stated above, business process activities can be performed in different kinds of sys-
tems and across organizations. Here, we process the events produced during business
process execution for context-aware compliance monitoring of business processes. In
particular, we define a framework for business process compliance at run-time based
on the processing of events. Figure 2 depicts the life-cycle to ensure and enforce the
desired business process compliance.

Business process engine Business Process
Execution Engine

Framework for monitoring context-
aware compliance based on events

Knowledge
Base

Compliance
Monitoring & Enforcement

Process Manager

define
compliance rules

Event Cloud

present violations
as alerts,

notifications, or
compliance
instructions

check for
anti-patterns
derived from
compliance rules Ev

en
ts

2

5 3

6

Pr
oc

es
s

M
od

el
s

an
d

C
on

fig
ur

at
io

ns

Process
Repository 1 7

A
nti-pattern

4

receive
violating
events

enrich rules
with knowledge

define/refine process models
and configurations

Ev
en

ts

compliance rules
PM

violations

Figure 2: Compliance Monitoring Framework

From the experience in the areas of BPM, CEP, and business process compliance
as well as the work in the GET Service project, we define seven steps for context-aware
compliance monitoring:

1. A process manager defines a business process model (PM) as well as its config-
urations to enforce it in an organization (e.g., via (distributed) business process
execution engines). During execution, several events can be published in an
event cloud. Each event may contain information relevant for specific process
instances. The related approach to identify suitable event types for business pro-
cess models is submitted as P2 shown in Table 4.

2. The process manager also defines compliance rules, e.g., the ones shown in
Table 1. These compliance rules may be associated to one or more specific
process models and are the basis to check for violations in process execution
of these models. A compliance monitoring and enforcement (CME) component
provides mechanisms with different levels of details to the user to define such
compliance rules.

3. To check for the right events in an event cloud the CME component must be
able to automatically enrich the compliance rules with knowledge. For example,

16 Fall Workshop 2013

3 Towards Context-aware Compliance Monitoring of
Business Processes

the compliance rule CR2 defines that the cooling chain must not be disrupted,
however, from this rule it is not obvious under which degrees which goods must
be transported. While frozen meat must be cooled at -18◦C the fresh meat must
be transported at 4◦C.

4. The compliance rules enriched with knowledge are converted to anti-patterns for
checking the event cloud for violations of the process model and corresponding
compliance rules. In CEP, patterns define the sequence and the properties that
events must follow to process them, in our case for compliance monitoring. Since
we are interested in the violations of compliance rules we do not check all events
if they hold for the defined compliance rules but we check those that do not hold.
Therefore, the CME component must be able to transform compliance rules to
anti-patterns in order to check for violations. As soon as the compliance rules
(in form of anti-patterns) are transformed into a format that can be used to parse
the event cloud our CME component can check for event occurrences that match
these anti-patterns.

5. Events that match an anti-pattern represent a violation of a compliance rule and
must be forwarded by the CME component to the process manager.

6. A violation of a compliance rule must be presented in a human-readable for-
mat to the user. This can be as alerts, notifications, and in the ideal case as
instructions to prevent non-compliant behavior and to meet compliance. The lat-
ter is considered as an very relevant part of the research initiative with Bosch
Software Innovations GmbH in which we examine mechanisms for dynamically
changing process executions based on events, see P6 in Table 4. In the logistics
example, the temperature in a container may falls under a certain degree (violat-
ing CR2), then a corresponding compliance instruction could be to transship the
goods into another cooling container (as additional tasks) without disrupting the
cooling chain. In addition, notifications and instructions could also be enriched
with knowledge, e.g., to signalize where to find a working cooling container close
to the current position of the driver.

7. In case of violations against process analyst’s compliance rules she can now
decide to reconfigure the process or just the single process instance.

For implementation, we propose an event monitoring framework for business pro-
cess compliance including the following components, see Figure 3:

A process model repository contains the process models under consideration
while the event type repository contains event types. The correlation of event types
to process models is defined via process monitoring bindings [7]. This correlation is
required to process events available in an event cloud and then to identify the right
events for process monitoring. The knowledge base contains all related knowledge
of a process or an event, e.g. traffic information, container requirements, or driver’s
qualifications. For compliance checking, the query processor receives compliance
rules from an analyst and transforms them to machine-readable anti-patterns for the
pattern matcher. This transformation is also done based on a process model. After-
wards, events (correlated to a business process over their event types) are checked

Fall Workshop 2013 17

On Enabling Context-aware Compliance Monitoring of Business Processes

against defined anti-patterns. The system raises alerts in case events and the corre-
sponding context match the specific anti-pattern.

Process
 model

repository
Process model

Event type

bound to

Event type
repository

contains

Event
Event
cloud

provides

specifies

Knowledge

enriches

Knowledge
base

contains

Pattern
matcher

Alerts

produces

parse

Query
processor

Anti-pattern

contains

Compliance
rules

requires

requires

produces

receivesprovides

BPM

CEP

Contextual Information

Compliance Monitoring

Compliance Checker

enriches

GUI

requires

Figure 3: Copmliance Monitoring Components

For the example in Section 2, the analyst is the LSP watching the compliance rule
CR1, see Table 1. For this purpose, the query processor produces an anti-pattern
for the given compliance rule – based on the process model, a set of process moni-
toring bindings, and context information on driver’s certificates and carried goods (in
the container). The pattern matcher checks the events arriving in the event cloud and
alerts the LSP whenever the compiled compliance rule is not satisfied. This can be the
case whenever a driving event occurred for a container containing dangerous goods
for which the driver does not have the specific certificate to carry these kinds of goods.

4 Evaluation

Our implementation on enabling context-aware business process compliance at run-
time using events follows the eight fundamental requirements of [9]). We assume an
BPMS exists that integrates CEP functionality to detect, enrich, correlate, and pro-
cess events. As pre-processing to validate compliance, we reuse and combine existing
approaches that are able to detect events in event cloud (see, e.g., [3, 7]), to enrich
events with context (see, e.g., [16]), and to correlate these to process instances (see,
e.g., [11]). Below, each requirement is discussed for our implementation by listing its
name, a brief description, if existent its prototypical implementations using the example
in Section 2, and the challenges that still have to be tackled.

18 Fall Workshop 2013

4 Evaluation

Req. 1 – A formal language for context-aware compliance rule specification:
An compliance specification language should provide an appropriate balance of ex-
pressiveness, formal foundation, and efficient analysis.

Our approach enables this requirement by formalizing context-aware compliance
rules using an Event Pattern Language (EPL), thus relying on CEP that provides con-
tinuous and incremental processing, a low latency, meaning near real-time results,
as well as high data rates. Assuming that our context is stored in an ontology (the
knowledge base), we can even define queries to identify events according to CR1 us-
ing Semantic Complex Event Processing (SCEP) queries (to show the applicability we
used this EPL, but others are also applicable):

Listing 1: An example for a SCEP query that selects drivers who do not have the
required security class to transport dangerous goods.
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX trans: <http://example.org/transport/>
SELECT ∗ FROM DrivingStream as $event
{$event dbo:person ?driver.
$event trans:transportunit ?goods.
?driver trans:securityclass ?classdriver.
?goods trans:securityclass ?classgoods.
filter(?classdriver > ?classgoods)}

To detect events that correspond to such queries incoming events to the imple-
mentation are attached with knowledge, so event’s attributes are matched to semantic
entities and linked to external knowledge bases in order to enrich the information of
the event [16]. In the example, events that occur for drivers and goods are associated
with a security class stored in an ontology. Thus, events referring to a security class
"2" or "1" (i.e., two or lower) can be interpreted as dangerous goods and are therefore
relevant for processing and evaluating the compliance rule CR1 (cf. Listing 1).

Req. 2 – Compliance rule organization: Compliance rules can be relevant for a
single or multiple processes as well as choreographies (across enterprise boundaries
in distributed systems).

To recap, we assume that all relevant events are published in an event cloud and
are consumable by our implementation. The events in an event cloud represent the ex-
ecution of business processes. Currently, we integrated a storage for compliance rules
that are formalized as CEP pattern or as SCEP and described in P5 shown in Table
4. Furthermore, these stored rules can be changed easily, however the mechanisms
to version and propagate changes to relevant processes is still an open issue we will
work on in future work.

Req. 3 – Views on compliance rules at different abstraction levels: Both a
high-level (i.e., conceptual) view on compliance rules focusing on their semantics and
an implementation level view for compliance rule evaluation are essential.

Compliance measures are usually implemented using procedures, policies, and
controls; hard-coded compliance measures are the source of high costs for compliance-
aware organizations. As the example in Section 2 has shown, different compliance
rules can apply at different levels of abstraction. For instance, it is irrelevant how the

Fall Workshop 2013 19

On Enabling Context-aware Compliance Monitoring of Business Processes

implementation determines driver’s working hours but they have to be provided each
time for compliance checking of rule CR3. This is especially important for the reuse
of compliance rules and requires the mapping from one level to the other; e.g., if we
change the implementation underneath.

For example, to serve the mapping between different abstraction levels, we devel-
oped a model-driven approach to support the automated derivation of CEP queries
from business process models for process monitoring, details are to be found in P4
shown in Table 4. We decompose a process model that includes monitoring informa-
tion into its structural components which are then transformed to CEP queries to allow
the monitoring of business process execution based on events.

Req. 4 – Support for compliance validation: It is desirable to support the error-
prone and time-consuming validation of compliance at the process modeling level, at
run-time, in case of process changes and for change propagation to process instances.

A huge number of existing approach deal with validating the compliance with pro-
cess models and check non-compliant of executed process instances, see e.g., [13].
This report focuses on the consideration of run-time compliance that enables to avoid
non-compliant behavior during execution. To enable this function, events can be pro-
cessed to identify those events that are violating compliance rules.

The platform that is used for the compliance monitoring framework [3] is based
on CEP and may be used to validate compliant behavior of process instances while
they are running. For this purpose, we convert compliance rules to anti-patterns – to
check for violations. Thus, we assume that a compliance rule holds if we do not find any
violations. Similar to Req. 1, anti-patterns are translated to an EPL to check in the event
cloud for counterexamples. For example, a violation is immediately communicated if
based on a defined event pattern the platform detects that a driver wants to transport
dangerous goods without having the required security class, see Section 2.

In this way, EPL-based anti-patterns provide the ability to subscribe to violations of
desired executions. The influence of changes in process models on its execution and
a decision support to deal with exceptional situations are research directions of our
future work.

Req. 5 – Support of process-spanning scenarios: The scope of compliance
rules may reach across multiple processes.

According to [9], there exists a demand for mechanisms which allow to validate
and ensure compliant behavior for business processes independently and depending
on their semantic interrelation across process boundaries. As shown in Figure 3, the
framework detects non-compliant behavior based on events that are associated by their
event type to one or more process models. This allows the validation and ensuring of
compliant behavior in and between multiple business processes.

Req. 6 – Providing intelligible feedback: Helpful feedback proving an error diag-
nosis and assisting the user in applying adequate conflict avoidance is of high impor-
tance for user acceptance.

The main benefit of the compliance framework is that it can provide a perspective
on several value chains, rather than a single process instance. For the GET Service

20 Fall Workshop 2013

5 Conclusion and Future Work

project this, in turn, will enable important practical applications that are currently not
possible, or at least very hard to achieve. Till the end of the project these practical
applications will be added to the current implementations and will include (1) effortless
use of real-time information about the current status of transportation, (2) monitoring
each transportation as it passes through the entire value chain, enabling end-to-end
tracking and tracing of the transportation, and (3) real-time replacement of one or more
transportation tasks in the value chain by others.

Req. 7 – Support of flexible compliance rule handling: Compliance rules are
often not stringent, must not conflict with the need for flexible processes and therefore
they should be overwritable.

Compliance violations need not necessarily be an error but could also be intended.
For example, the driver cannot stop directly on the highway in case her working hours
are reached, she better drives to a resting station and rests there. Also possible would
be the situation in which the system notifies the driver to make a rest before the working
time is over. The latter part will be investigated in the context of predictive maintenance
in cooperation with Bosch SI (see P6 in Table 4).

Currently, the CEP platform used for implementing the compliance framework is
able to enforce two different reactions to non-compliant behavior. The notifications
about events signalizing non-compliance can be forwarded as email or solely displayed
in the user interface depending on the security level the user defines for an event pat-
tern (or anti-pattern). In future work, we plan to directly integrate one or more process
engines to also drive business process execution based on events and, thus, to not
only display this behavior but also provide possibilities to prevent non-compliant be-
havior.

Req. 8 – Support of traceability: The results of compliance checks have to be
documented.

To reconstruct past compliance checks and corresponding results they have to be
documented. This is especially valuable for violations and decisions made in the past
as they record who (over)wrote rules and for what reason. This can be the basis to
reason about future decisions that have to be made in case of violations. The open
event processing platform [3] used to implement the compliance framework is extend-
able and can, therefore, be extended to store the results and decisions of compliance
checks.

5 Conclusion and Future Work

This report presented a context-aware compliance framework for business processes
by considering events occurring in distributed systems. Outcome of the research pre-
sented in the compliance framework result in one presented and three submitted pa-
pers as well as the participation in a EU project called GET Service and the cooperation
with Bosch Software Innovations GmbH (Bosch SI), see Table 4. Based on the papers,
project results and eight common requirements for checking, monitoring, and enforcing

Fall Workshop 2013 21

References

compliant behavior in organizations, we discussed the framework and its implementa-
tions already supported and those challenges that have to be investigated in future
work.

Table 4: Current activities and project participation

P1 Towards the Enhancement of Business Process
Monitoring for Complex Logistics Chains

Presented PALS13 [4]

P2 Towards Automating the Detection of Event Sources Accepted WESOA13 [6]

P3 Enabling Semantic Complex Event Processing in the
Domain of Logistics

Accepted PASCEB13 [10]

P4 Model-driven Event Query Generation for Business
Process Monitoring

Accepted PASCEB13 [2]

P5 Aggregation services for Green European Trans-
portation (GET)

Lead work package

P6 RESEARCH INITIATIVE BOSCH SI AND HPI: Inter-
net Application Platform am Beispiel von Industrie
4.0.

Research & supervision
Bachelorproject

References

[1] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Visually specifying com-
pliance rules and explaining their violations for business processes. Journal of
Visual Languages & Computing, 22(1):30–55, 2011.

[2] Michael Backmann, Anne Baumgrass, Nico Herzberg, Andreas Meyer, and Math-
ias Weske. Model-driven Event Query Generation for Business Process Monitor-
ing. In 1st Workshop on Pervasive Analytical Service Clouds for the Enterprise
and Beyond, 2013. (accepted for publication).

[3] Susanne Bülow, Michael Backmann, Nico Herzberg, Thomas Hille, Andreas
Meyer, Benjamin Ulm, Tsun Yin Wong, and Mathias Weske. Monitoring of Busi-
ness Processes with Complex Event Processing. In BPM Workshops. Springer,
2013.

[4] Cristina Cabanillas, Anne Baumgrass, Jan Mendling, Patricia Rogetzer, and
Bruno Bellovoda. Towards the Enhancement of Business Process Monitoring for
Complex Logistics Chains. In 11th International Conference on Business Process
Management Workshop on "Process-Aware Logistics Systems". Springer, 2013.

[5] Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. Hints on how
to face business process compliance. In III Taller de Procesos de Negocio e
Ingeniería de Servicios (PNIS’10) in JISBD’10, volume 4, pages 26–32, 2010.

22 Fall Workshop 2013

References

[6] Nico Herzberg, Oleh Khovalko, Anne Baumgrass, and Mathias Weske. Towards
Automating the Detection of Event Sources. In 8th International Workshop on
Engineering Service-Oriented Applications, 2013. (accepted for publication).

[7] Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event Processing Plat-
form for Business Process Management. In EDOC, pages 107–116. IEEE, 2013.

[8] David Luckham. The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley, 2002.

[9] Linh Thao Ly, Stefanie Rinderle-Ma, Kevin Göser, and Peter Dadam. On enabling
integrated process compliance with semantic constraints in process management
systems. Information Systems Frontiers, 14(2):195–219, April 2012.

[10] Tobias Metzke, Andreas Rogge-Solti, Anne Baumgrass, Jan Mendling, and Math-
ias Weske. Enabling Semantic Complex Event Processing in the Domain of Lo-
gistics. In 1st Workshop on Pervasive Analytical Service Clouds for the Enterprise
and Beyond, 2013. (accepted for publication).

[11] Szabolcs Rozsnyai, Aleksander Slominski, and Geetika T. Lakshmanan. Discov-
ering event correlation rules for semi-structured business processes. In Proceed-
ings of the 5th ACM international conference on Distributed event-based system,
pages 75–86. ACM, 2011.

[12] Robert Thullner, Szabolcs Rozsnyai, Josef Schiefer, Hannes Obweger, and Martin
Suntinger. Proactive Business Process Compliance Monitoring with Event-Based
Systems. 2011 IEEE 15th International Enterprise Distributed Object Computing
Conference Workshops, pages 429–437, August 2011.

[13] Wil M. P. van der Aalst, Huub T. de Beer, and Boudewijn F. van Dongen. Process
Mining and Verification of Properties: An Approach Based on Temporal Logic.
In OTM Confederated International Conferences: CoopIS, DOA and ODBASE,
volume 3760, pages 130–147. Springer-Verlag, October 2005.

[14] Matthias Weidlich, Holger Ziekow, Jan Mendling, Oliver Günther, Mathias Weske,
and Nirmit Desai. Event-based monitoring of process execution violations. In
Business Process Management, volume 6896 of LNCS, pages 182–198. Springer
Berlin Heidelberg, 2011.

[15] Mathias Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer-Verlag Berlin Heidelberg, 2nd edition, 2012.

[16] Qunzhi Zhou, Yogesh Simmhan, and Viktor Prasanna. Towards an Inexact Se-
mantic Complex Event Processing Framework. In Proc. of the 5th ACM Interna-
tional Conference on Distributed Event-based Systems (DEBS), pages 401–402,
2011.

Fall Workshop 2013 23

24 Fall Workshop 2013

Symbolic Representation and Constraint
Reasoning in Invariant Checking

Johannes Dyck

System Analysis and Modeling Group
Hasso Plattner Institute

johannes.dyck@hpi.uni-potsdam.de

Tools for formal verification of complex systems often encounter problems of infinite
size, making solutions with explicit representations impossible. Even for finite systems,
formal verification is often infeasible when expecting an answer in reasonable time due
to exponential complexity of the underlying algorithms. This report demonstrates the
occurrence of such complexity challenges in our verification tool, which is based on
graph transformation systems and inductive invariants. As two orthogonal approaches
to such challenges, the report explains symbolic representation for negative applica-
tion conditions and constraint reasoning. Both techniques have already been seen to
significantly reduce the algorithm’s runtime for specific examples.

1 Introduction

With systems, whether software or otherwise, growing in size and complexity, auto-
mated analysis and verification become more desirable. Invariant checking, which is
described extensively in [1] and [5], is such a technique for formal verification. Based
on the specification of a system’s behavior, it can be used to verify the validity of cer-
tain properties important for the system’s safety or operability, for example safety or
liveness properties.

While classical model checking approaches achieve this goal by exhaustively gen-
erating and analyzing the system’s state space, invariant checking is only concerned
with the analysis of the system’s behavior. Instead of generating all reachable states,
the technique verifies inductive invariants. An inductive invariant is a property whose
validity before a change of the system’s state implies its validity after the change. The
verification technique is concerned with the transitions between system states rather
than the actual—and attainable—states. Since initial states of the system are not con-
sidered, a change of the system’s initial state does not invalidate the result of the
verification algorithm, once obtained.

The approach has been applied in a number of areas, including:

Model transformations and behavior preservation [8].

Consistency-preserving refactorings, where refactorings are described by transfor-
mation rules and consistency is based on well-formedness constraints of the re-
spective programming language [4].

Fall Workshop 2013 25

Symbolic Representation and Constraint Reasoning in Invariant Checking

t1: Track t2: Track

s1: Shuttle

<<delete>>
isAt

next

<<create>>
isAt

Figure 1: Graph rule

Self-adaptive systems, which (due to their nature) may conduct structural changes,
but are also required to ensure certain properties [2].

Service-oriented approaches to coordination of autonomous entities, where collab-
oration is modeled using graphs and graph transformation systems [3].

Correctness of safety-critical systems with real-time behavior, using graph trans-
formation systems with attributes and timing extensions [3].

While invariant checking with inductive invariants is capable of handling infinite sys-
tems in finite time and is not prone to state space explosion as many model checking
tools, the algorithm still contains elements with exponential complexity. This has been
known as a problem for the verification of large systems, for example extensive model
transformations as described in [8]. It is also a challenge to be addressed as part
of the intended extension of inductive invariants to k -inductive invariants (similar to the
technique described in [13,14]), taking a path of transitions into account for verification.

2 Foundations and Complexity Challenges

The invariant checking tool in question (which is explained in depth in [1, 5]) is based
on graph transformation systems, with graph transformations describing the system’s
behavior, meaning transitions between states, and graphs describing system states.
The underlying theory of graphs and graph transformation systems can be found in [6]
and [12]. Figure 1 displays a possible graph rule in an example system of shuttles and
tracks (from [3]), with nodes representing shuttles and tracks and edges representing
connections between shuttles or tracks, respectively. Red elements will be deleted
upon rule application, green elements will be created while all other elements will be
preserved. The rule causes a shuttle to move from one track to an adjacent track.

To represent multiple (and possibly infinitely many) graphs, graph patterns are used.
A simple graph pattern represents all graphs containing the pattern as a subgraph. For
example, Figure 2 shows a graph pattern, representing two shuttle being located on the
same track (cf. [1, 3]). The graph in Figure 3(a) contains—or fulfills—the pattern while
the graph in Figure 3(b) does not. Such graph patterns are used to describe forbidden

26 Fall Workshop 2013

2 Foundations and Complexity Challenges

t1: Track

s1: Shuttle

isAt isAt

s2: Shuttle

Figure 2: Graph pattern

t1: Track

s1: Shuttle

isAt isAt

s2: Shuttle

t2: Track
next

s3: Shuttle

isAt

(a) Graph fulfilling the pattern

t1: Track

s1: Shuttle

isAt isAt

s2: Shuttle

t2: Track
next

s3: Shuttle

isAt

t3: Track
next

(b) Graph not fulfilling the pattern

Figure 3: Patterns and graphs

properties which must not be encountered during system execution. They are also
a means to display violations of these properties found by the verification algorithm.
Since one graph pattern can represent infinitely many graphs, they offer a means to
analyze infinite systems in finite time.

To increase the expressive power of the specification language, graph patterns can
be enhanced by negative application conditions (see [9] or [7]). In contrast to the
common elements of graph patterns, which demand the presence of nodes and edges
of the respective types, negative application conditions require the absence of certain
nodes or edges for the pattern to be fulfilled by graphs. Figure 4 shows a graph pattern
describing two subsequent tracks, where the first track must not be occupied by a
shuttle. Since there are no other restrictions, graphs with shuttles on the second track
or with additional tracks still fulfill the graph pattern. For example, the graph in Figure
5(a) fulfills the pattern while the graph in Figure 5(b) does not.

The verification algorithm (see [1, 5] for details) of the invariant checking tool in-
cludes the combination of the graph transformation rules, specifying the system’s be-
havior, with the forbidden graph patterns, specifying states that should not occur in the
system. All pairs of rules and properties are considered and each such pair may suffer
from exponential complexity in two cases:

1. Both rule and forbidden property are merged along all possible common sub-
graphs (overlappings) between each other. With n being the number of nodes
and e being the number of edges, the number of subgraphs of a graph is at least

Fall Workshop 2013 27

Symbolic Representation and Constraint Reasoning in Invariant Checking

t1: Track

s1: Shuttle

isAt

t2: Track
next

<<negative>>

Figure 4: Pattern with negative application condition

t1: Track

s1: Shuttle

isAt

t2: Track
next

s2: Shuttle

(a) Graph fulfilling the pattern

t1: Track

s1: Shuttle

isAt

t2: Track
next

s1: Shuttle

isAt

(b) Graph not fulfilling the pattern

Figure 5: Conditions and graphs

28 Fall Workshop 2013

3 Symbolic Representation for Application Conditions

<<negative>>

(a) Merging graphs with condition

<<negative>>
<<negative>>

<<nega-
tive>>

<<nega-
tive>>

(b) Result

Figure 6: Transformation of conditions

2n and at most 2n+e. Thus, creating all possible overlappings is a problem of
exponential complexity.

2. For a specific merge between rule and property, negative application conditions
have to be transferred from the property to the merged graph. This includes the
creation of subgraphs of the negative application conditions, which results in the
same complexity as above.

The following sections explain ways to circumvent these problems.

3 Symbolic Representation for Application Conditions

When merging graph patterns—such as forbidden properties—with graph transforma-
tion rules to analyze the rule’s capability to violate a forbidden property, negative appli-
cation conditions from the graph pattern will be transferred to the new context, namely
the merged graph. Since the pattern’s negative application conditions must still be valid
after merging, it must be ensured that the elements required to be absent will not be
added in the process of merging the graphs. However, since all possible completions
of the negative application condition must be considered, the correct transformation of
a negative application condition involves the analysis of all its subgraphs.

Figure 6(a) shows an abstraction of such a transformation, with graphs represented
by the circles. To ensure that the condition is valid after the merge, all elements from
the dotted graph that may lead to the presence of elements in the negative applica-
tion condition need to be considered. Depending on the number of nodes and edges
of the negative application condition and the target graph, this transformation process
can quickly become infeasible for large conditions and will often be the major factor
determining the runtime of the invariant checking process. Figure 6(b) shows possi-
ble completions of the condition that need to be included as new negative application
conditions in the merged graph.

While it is possible to remove negative application conditions entirely, this leads
to loss of information often required in later steps of the verification process. This
procedure may then lead to false negatives, meaning that actually safe systems may
be classified as unsafe. However, it should be noted that this will never lead to an
unsafe system being labeled as safe.

Fall Workshop 2013 29

Symbolic Representation and Constraint Reasoning in Invariant Checking

<<negative>>

minimal
context

Figure 7: Partial transformation of conditions

The merging of patterns and graphs already creates a symbolic representation for
a number of graphs—possibly infinite—thus enabling the technique to handle infinite
systems. A similar procedure can be applied to the handling of negative application
conditions. Instead of transferring application conditions completely to the new context
of the merged graph, they are merely transformed to the minimal context necessary for
verification. This minimal context depends on the number of items (nodes or edges)
actually changed by the application of the graph rule in question.

The abstract example in Figure 7 illustrates this approach. While exponential com-
plexity cannot be avoided, the number of nodes and edges to be considered for sub-
graph generation will be reduced, as there are usually fewer matching counterparts
(and fewer elements altogether) in the minimal context.

More formally, negative application conditions usually rely on total graph morphisms,
which are functions describing a mapping between two graphs (see [6] and [7]). In the
case of graphs merged along a common subgraph as described above, the use of total
morphisms would require the extension of the negative application condition from one
graph pattern to all elements of the newly created graph. Instead, the symbolic repre-
sentation shown above makes use of partial morphisms (see, for example, [11]), which
do not require the extension of the condition to the complete graph.

Unfortunately, the graph patterns thusly created must often be compared with other
patterns at a later stage in the verification process. In some cases, such a comparison
still requires a transformation of negative application conditions to a greater context as
avoided by the approach described above. However, these extensions seldom take the
dimension of the transformations required without the symbolic representation of neg-
ative application conditions. More precisely, these comparisons require the extension
of conditions to the union of the graphs’ minimal contexts to be compared.

4 Constraint Reasoning

Large graph patterns are often impractical to verify, as the merge process involves the
creation of subgraphs, whose number grows exponentially with the number of nodes in
a graph. In addition, the time needed for the transformation of negative application con-
ditions can still be problematic if the symbolic representation as demonstrated above
requires a large part of the condition to be translated (which depends on the rule in

30 Fall Workshop 2013

4 Constraint Reasoning

t1: Track

s1: Shuttle

isAt isAt

s2: Shuttle

𝑝

(a) Forbidden property: ¬p

t1: Track

s1: Shuttle

isAt

<<negative>>

𝑝

𝑛

(b) Forbidden property with negative application
condition: p⇒ n

Figure 8: Forbidden properties

question). Consequently, it is desirable to avoid directly analyzing all possible overlap-
pings along common subgraphs between large patterns and rules. This is especially
important if the pattern and rule in question are similar, as this will drastically increase
the number of common subgraphs.

Usually, when checking a property’s validity for a graph transformation system, there
are other properties already verified as inductive invariants. In other cases, there ex-
ist properties whose validity is guaranteed by the topology of the system or by other
additional information available to the user or the tool. This knowledge and such in-
termediary results can then be used to conclude the validity of other properties for the
system in the form of a logical implication: If P1∧P2∧ ·· · ∧Pn ⇒ P can be shown for
verified (or guaranteed) properties P1 to Pn and the property P, the invariant check-
ing algorithm does not need to separately verify P by combining it with the system’s
transformation rules. Reasoning that the validity of a property or constraint follows from
other properties in this way avoids the possible combinatorial explosion following the
combination of large or similar patterns and rules.

In the context of the invariant checking tool, there are two types of constraints avail-
able to describe system properties: Forbidden properties and forbidden properties with
negative application conditions. While the former type only states the absence of a
certain subgraph (¬p), the latter kind demands the absence of a subgraph (p) unless
the elements specified by one of the negative application conditions are also present
(n). This is logically equivalent to an implication p⇒ n. In addition, the constraint to
be proven by the procedure also needs to have the form of a forbidden property with
negative application conditions.

Figure 8(a) shows a forbidden property without a negative application condition.
Here, the existence of two shuttles on the same track is unconditionally forbidden. With
p being the graph consisting of the track and both shuttles, this is logically described
as ¬p. Conversely, Figure 8(b) shows a forbidden property with a negative application
condition. There, the existence of a shuttle is forbidden unless it is positioned on
a track (as a shuttle without a track to stand on does not make sense). Logically,
this corresponds to: p (the shuttle) implies n (the track). The original shuttle system
example is explained in more detail in [3] and [1].

Fall Workshop 2013 31

Symbolic Representation and Constraint Reasoning in Invariant Checking

More expressive (and more general) algorithms to deal with constraint reasoning
and theorem proving can be found in [10] and [11]. The approach presented herein
is restricted to the subset of graph transformation systems and application conditions
used in the invariant checking tool. While not as expressive as other techniques, this
approach allows a number of optimizations based on certain restrictions on the formal-
ism’s expressive power.

This technique has already been successfully applied to a more complex case of
the verification of model transformations, similar to [8]. A simplified version of the
constraint reasoning process is shown in algorithm 1.

Data: Verified constraints: p′i ⇒ n′i
Data: Constraint to be proven: p⇒ n
Result: true, if the constraint can be proven; false otherwise
c = p;
while verified constraints remaining do

p′⇒ n′ = next verified constraint;
for all possible subsets p′ ⊆ c do

add n′ to c;
if n ⊆ c then

return true;
end

end
end
return false;

Algorithm 1: Constraint reasoning

Unfortunately, termination of this algorithm cannot be guaranteed. The addition
of elements to the constraint to be proven can, in theory, lead to the applicability of
other constraints, or even the same constraint. More precisely, if a constraint pi ⇒ ni
adds information ni such that pi ⊆ ni , this constraint can be used to generate context
infinitely. The identification of properties of constraints that guarantee termination is
the subject of ongoing work.

5 Conclusion and Outlook

While the use of symbolic representation for negative application conditions and con-
straint reasoning for large graph patterns has enabled the verification of problems that
have been infeasible before, their introduction opens a number of questions to be con-
sidered.

5.1 Symbolic Representation

With respect to the representation of negative application conditions by partial graph
morphisms, which avoids the necessity of completely expanding conditions, the follow-
ing aspects still need to be investigated and discussed.

32 Fall Workshop 2013

References

• Aside from specific examples, is it possible to estimate the technique’s impact
given the number and size of rules, patterns and their negative application condi-
tions?

• Is it possible to further improve performance by deferring the transformation of
negative application conditions as long as possible, for example until comparison
of graph patterns is required?

• Is it possible to avoid the transformation of negative application conditions to a
minimal context altogether when comparing graph patterns?

• If the expressiveness of the specification language for rules and properties is
increased—for example to include nested conditions (see [7])—what changes
have to be done to adjust the current technique?

• Is it possible to apply the concept of symbolic representation for negative appli-
cation conditions to symbolic representation for the application of transformation
rules and could this be exploited to handle complexity in k -induction?

Furthermore, formal justification and proof of the approach will be provided in fur-
ther publications to ensure formal correctness of the invariant checking algorithm.

5.2 Constraint Reasoning

As with symbolic representation, the introduction of constraint reasoning raises the
questions of impact analysis, changes required upon increasing expressive power and
its capabilities in the long-term goal of extending the approach to invariant checking
with k -inductive invariants. Also, future work will include a detailed formal proof. In
addition, termination of the constraint reasoning algorithm will be analyzed. While the
underlying problem is, in general, undecidable (cf. [11]), termination can probably be
guaranteed for graph patterns with specific properties. The identification and analysis
of these properties will be part of future work.

Lastly, it may be possible to combine constraint reasoning with the existing algo-
rithm for verification to exploit parallel execution of both algorithms. If the constraint
reasoning algorithm yields a positive result, the processing of the invariant checking al-
gorithm can be aborted. Conversely, if the constraint reasoning does not return a result
in acceptable time or does return a negative result, the invariant checking algorithm will
continue to analyze the respective pattern.

References

[1] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling.
Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation.
In Proc. of the 28th International Conference on Software Engineering (ICSE),
Shanghai, China. ACM Press, 0 2006.

Fall Workshop 2013 33

References

[2] Basil Becker and Holger Giese. Modeling of Correct Self-Adaptive Systems: A
Graph Transformation System Based Approach. In Proceedings of the 5th interna-
tional conference on Soft computing as transdisciplinary science and technology,
CSTST ’08, pages 508–516, New York, NY, USA, 2008. ACM.

[3] Basil Becker and Holger Giese. On Safe Service-Oriented Real-Time Coordi-
nation for Autonomous Vehicles. In In Proc. of 11th International Symposium
on Object/component/service-oriented Real-time distributed Computing (ISORC),
pages 203–210. IEEE Computer Society Press, 5 2008.

[4] Basil Becker, Leen Lambers, Johannes Dyck, Stefanie Birth, and Holger Giese.
Iterative Development of Consistency-Preserving Rule-Based Refactorings. In
Jordi Cabot and Eelco Visser, editors, Theory and Practice of Model Transfor-
mations, Fourth International Conference, ICMT 2011, Zurich, Switzerland, June
27-28, 2011. Proceedings, volume 6707 of Lecture Notes in Computer Science,
pages 123–137. Springer / Heidelberg, 0 2011.

[5] Johannes Dyck. Increasing expressive power of graph rules and conditions and
automatic verification with inductive invariants. Master’s thesis, Hasso Plattner
Institute, University of Potsdam, 2012.

[6] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of Algebraic Graph Transformation (Monographs in Theoretical Computer Sci-
ence. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[7] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Ore-
jas. M-Adhesive Transformation Systems with Nested Application Conditions,
Part 1: Parallelism, Concurrency and Amalgamation. Mathematical Structures
in Computer Science, 0 2012. to appear.

[8] Holger Giese and Leen Lambers. Towards Automatic Verification of Behavior
Preservation for Model Transformation via Invariant Checking. In Proceedings
of International Conference on Graph Transformation (ICGT’12), volume 7562 of
LNCS, pages 249–263. Springer, 2012.

[9] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae, 26:287–313, 1995.

[10] Karl-Heinz Pennemann. Resolution-like theorem proving for high-level conditions.
In Graph Transformations (ICGT’08), volume 5214 of Lecture Notes in Computer
Science, pages 289–304. Springer-Verlag, 2008.

[11] Karl-Heinz Pennemann. Development of Correct Graph Transformation Systems.
PhD thesis, Department of Computing Science, University of Oldenburg, Olden-
burg, 2009.

[12] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

34 Fall Workshop 2013

References

[13] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking Safety Proper-
ties Using Induction and a SAT-Solver. In Warren Hunt and Steven Johnson, ed-
itors, Formal Methods in Computer-Aided Design, volume 1954 of Lecture Notes
in Computer Science, pages 127–144. Springer Berlin / Heidelberg, 2000.

[14] Max Thalmaier, Minh D. Nguyen, Markus Wedler, Dominik Stoffel, Jörg Bormann,
and Wolfgang Kunz. Analyzing k-step induction to compute invariants for sat-
based property checking. In Proceedings of the 47th Design Automation Confer-
ence, DAC ’10, pages 176–181, New York, NY, USA, 2010. ACM.

Fall Workshop 2013 35

36 Fall Workshop 2013

Solving Multidomain Constraints on
Object Behavior

Tim Felgentreff

Software Architecture Group
Hasso-Plattner-Institut

tim.felgentreff@hpi.uni-potsdam.de

Constraints allow developers to specify desired properties of a system. These prop-
erties are then maintained automatically rather than with scattered checks that imper-
atively re-satisfy the constraints. This results in compact, localized code to specify
system invariants. However, despite expectations that this improves comprehensibility
and maintainability, as well as possible performance advantages, constraint program-
ming is not yet widespread, with standard imperative programming still the norm.

We propose an extension to existing imperative, object-oriented languages that uni-
fies the methods of encapsulation and abstraction for both the declarative and the
imperative paradigm. Our current research addresses integration of these different
paradigms into one another and how this integration can be useful for in a variety of
application domains.

1 Introduction

Constraint programming has a long history of research interest starting with the Sketch-
Pad [30] system. As a paradigm for general purpose programming, the CLP(R) [16]
and Kaleidoscope [19] systems provided integration of constraints with logic program-
ming and objects, respectively. A constraint here is a relation that should hold, for
example: that there be a minimum of 10 pixels horizontal space between two buttons
on a screen, that a resistor in an electrical circuit simulation obey Ohm’s Law, that a
maximum of 10 parts per hour can be produced by a machine in a factory. Constraints
are declarative: they specify what should be the case rather than how to achieve it.

Recently, there has been renewed interest in using constraints through libraries [25]
or DSLs such as the in the Mac OS X layout system [1]. Constraint programming allows
developers to precisely express desired properties of a system and have those prop-
erties be automatically maintained by the runtime. This enables concise code, while
avoiding scattered code that trigger checks and re-satisfaction of those properties.

However, existing approaches retain a number of key issues that need to be ad-
dressed if constraints in imperative programs should become more widespread:

a) The declarative and imperative paradigms should not be separate, with parallel
methods of encapsulation and abstraction, which cannot be freely mixed. This im-
pedes re-use and comprehensibility of modules, as clients can only use modules in
the paradigm for which the implementers provide the appropriate abstractions and
implementers have to be fluent in both paradigms.

Fall Workshop 2013 37

Solving Multidomain Constraints on Object Behavior

b) Performance for imperative code should be as good as in a purely imperative run-
time if the declarative features are not used.

c) Constraint solving is undecidable in the general case [24]. To provide good perfor-
mance, most solvers only work in a limited number of type domains (such as reals,
booleans, integers) and under certain restrictions (such as linearity). Without inter-
actions between the solvers, problems that span type domains cannot be solved,
limiting the generality of the approach.

In this work, we present a language – BABELSBERG – that builds on the ideas
from the Kaleidoscope system and other constraint-imperative programming (CIP) lan-
guages. We attempt to address the above issues in the following ways:

a) BABELSBERG unifies the methods of encapsulation and abstraction for both the
declarative and the imperative paradigm. In BABELSBERG, constraints restrict object
behavior by constraining the results of messages send to them. A common syntax
and a declarative semantics for imperative constructs allow programmers to add
constraints to existing object-oriented (OO) programs in incremental steps, without
having to learn a completely new paradigm.

b) The performance and semantics of purely OO code is unaffected in BABELSBERG,
as we show with our prototype implementations in state-of-the-art Ruby virtual ma-
chine (VM) [10] and on top of the Lively Kernel [18].

c) We implement an architecture for interactions between imperative execution and dif-
ferent constraint solvers for different domains that allows constraints to be declared
and solved for multidomain problems.

Thus, our current research focuses on the following questions:

• What imperative, OO constructs (such as message sends, system calls, destruc-
tive assignments, or explicit parallelization) are useful in constraint expressions
and to find a declarative semantics for them.

• Which subset of constraint solver features (such as constraint hierarchies or edit
constraints for interactive use) are required to solve a variety of problems and
what interactions between solvers are required to enable these features.

The rest of this report is structured as follows: section 2 explains the related work
using a running example, section 3 presents our work on BABELSBERG and its pro-
totypes BABELSBERG/R and BABELSBERG/JS, and section 4 presents our next steps
and concludes.

2 State of the Art

Consider a rectangle implemented as a pair of points as in Listing 1. This rectangle is
displayed in an application window which the user can resize. Suppose this rectangle
encompasses some information that we want to make sure remains visible. We want

38 Fall Workshop 2013

2 State of the Art

to make sure the area of the rectangle is never less than 100 square pixels and that its
origin is always within display bounds, i.e. positive.
class Rectangle

attr_accessor : origin , :extent

def visible?
origin .x >= 0 and origin.y >= 0

end

def area
extent.x ∗ extent.y

end
end

Listing 1: A rectangle implemented as a pair of points, with a predicate to test it starts within display
bounds and a method to calculate the area

Imperatively, we can use, for example, aspects to satisfy these constraints explicitly
whenever the rectangle changes:

class RectAspect < Aspect
def ensure_constraints(method, rect, status, ∗args)

rect . origin .x = 0 if rect . origin .x <= 0
rect . origin .y = 0 if rect . origin .y <= 0
rect .extent.x = 100.0 / rect .extent.y if rect .area <= 100

end
end

Notice that we had to transform the constraints into conditional branches and as-
signments. There are multiple solutions to these constraints, but which one is selected
is only implicit in the code. Since there is no declarative specification of an optimal
solution, it is not trivial to tell the rate the solution. If we want to add more constraints
that may possibly conflict, i.e., multiobjective optimizations, this becomes even harder.

Thus, it is usually clearer to express and satisfy the constraints explicitly. In the
remainder of this section, we compare how state of the art approaches solve con-
straints in imperative programs. We present the approaches four groups: 1. constraint
solver libraries, 2. constraint solver domain specific languages (DSLs), 3. DataFlow
and functional-reactive programming (FRP) languages, and 4. constraint-imperative
programming that combines constraints and imperative statements in one language.

2.1 Constraint Solver Libraries

There is a large number of solvers available as libraries that can be called directly
from imperative code. A few solvers of particular note in the programming language
community are Z3 [7], an SMT solver designed for theorem proving (e.g., for program
verification), and kodkod [31] for constraints over finite domains. Solvers for use in
interactive graphics systems include Cassowary [2], an incremental solver for linear
equality and inequality constraints that supports soft constraints [6] as well as hard
ones, the Aukland Layout Editor [23], which includes support for a GUI builder using
constraints, and DeltaBlue [13], a multi-way local propagation solver that also supports
hard and soft constraints.

The following code adapts the aspect-oriented solution to use the Z3 constraint
solver to solve our constraints:

Fall Workshop 2013 39

Solving Multidomain Constraints on Object Behavior

class RectAspect < Aspect
def ensure_constraints(method, rect, status, ∗args)

ctx = Z3::Context.new
ctx � Z3::Variable.new("extent_x", rect .extent.x)
ctx � Z3::Variable.new("extent_y", rect .extent.y)
ctx � Z3::Constraint.new("extent_x ∗ extent_y >= 100")
... same for origin constraint
ctx .solve
rect .extent.x = ctx ["extent_x"]
rect .extent.y = ctx ["extent_y"]

end
end

The constraint code can be clearly written in a domain the solver understands (i.e.,
reals). However, the programmer is left to write the boilerplate code to decompose
objects (breaking object encapsulation) and transform OO values into constraint vari-
ables.

2.2 Domain-specific Languages for Constraints

For specialized domains such as user interface layout, constraints are sometimes avail-
able as separate DSLs that describe relations between visible objects that can be auto-
matically maintained by the runtime. Examples of such DSLs are CSS [17], the Mac OS
X [1] layout specification language, and the Python GUI framework Enaml [9]. These
constraints are automatically re-satisfied by the runtime when imperative code changes
the user interface.

The following listing shows the Enaml specification for our problem:

enameldef Main(Window):
Container:

constraints = [
a rectangle’s area is exposed as ’content’ in Enaml
content_left >= 0, content_top >= 0,
(content_right − content_left) ∗

(content_bottom − content_top) >= 100
]

This approach allows programmers to specify constraints and avoid boilerplate code
to trigger constraint solving and has found widespread adoption, particularily through
the Mac OS X layout system. However, to use these constraints programmers use a
separate language that works only for predetermined types (i.e., graphical objects).

2.3 DataFlow Constraints and FRP

Some languages have built-in support for data flow, which allows programmers to ex-
press unidirectional constraints between objects and their parts. Examples of such
systems are Scratch [27], LivelyKernel/Webwerkstatt [18], and KScript [26].

The following code uses LivelyKernel connections to react to changes in the origin
and extent of a Rectangle.

40 Fall Workshop 2013

2 State of the Art

connect(rect, " origin " , rect , " origin " ,
function(origin , prevOrigin) {

if (this . isVisible ()) return prevOrigin;
else return origin ;

})
connect(rect, "extent" , rect , "extent" ,

function(extent, prevExtent) {
if (this .area() <= 100) return prevExtent;
else return extent;

})

Although these systems are not constraint solvers, programmers can use constraint
solvers (in the hook function passed to connect) to calculate new values. KScript already
integrates a constraint solver to use in the connection. FRP approaches provide one
answer to the question of when to trigger constraint solving and provide a convenient
imperative API, but still require the programmers and convert between OO values and
constraint variables.

2.4 Constraint-Imperative Programming

Our goal is to support a more standard imperative, OO programming style and syntactic
integration of constraint and imperative programming. With these goals, BABELSBERG
follows the work on CIP [12, 20–22] and the Kaleidoscope language. Systems related
to Kaleidoscope include Siri [15], Turtle [14], and SOUL [8]. BackTalk [29] is another
system that aims to integrate a rich set of constraint solvers with imperative languages,
but without syntactic integration.

Kaleidoscope supported standard classes and instances, and in addition, integrated
constraints with the language itself. To support this, it included built-in constraints over
primitive objects (such as floats) and constraints over user-defined objects, which were
provided by constraint constructors. For example, the + constraint for Points could be
defined using a constraint constructor a+b=c that then expanded this into constraints on
the x and y instance variables. Separately, the language also provided methods.

This is our example in CIP:

class Rectangle
constructor area = (n: Integer)

always: extent.x ∗ extent.y = n
end

constructor visible?
always: origin.x >= 0
always: origin.y >= 0

end
end

rect = Rectangle.new
always: rect.area = 100
always: rect.visible?

The above code uses constraint constructors to encapsulate the calculated prop-
erties visiblity and area so they can be used in constraints. However, to test visibility
both in constraints and in imperative code, developers have to duplicate definitions to
provide both methods and constraint constructors.

Fall Workshop 2013 41

Solving Multidomain Constraints on Object Behavior

3 BABELSBERG

BABELSBERG is an object-constraint programming (OCP) language; the term object-
constraint programming is chosen to emphasize the integration with standard object-
oriented programming ideas, in particular methods, messages, and object encapsula-
tion.

Our first prototype is an extension of the Ruby programming language [11] and is
consequently called BABELSBERG/R. To verify the applicability of our approach to other
object-oriented languages, we have additionally created a hosted implementation of
this concept on top of the JavaScript environment Lively Kernel [18].

The Ruby VM we used as a basis for BABELSBERG/R is Topaz [10], an experimental
VM built using the PyPy/RPython toolchain [28]. This has allowed us to extend the
interpreter and use RPython’s VM-generation toolchain to create a VM including a fast
just-in-time (JIT) and garbage collector.

In BABELSBERG/R, we can express the above problem using the methods already
defined for the Rectangle class:

rect = Rectangle.new
always { rect .area == 100 }
always { rect .visible? }

The first constraint says that the result returned from calling the area method should
always be greater than or equal to 100, and if, for example, another part of the program
assigns to the height of the rectangle, if necessary the width will be adjusted automati-
cally to keep the constraint satisfied. Similarly, if a negative location is assigned to the
origin, it will be moved back to keep the rectangle visible.1

By placing the constraint on the result of sending messages rather than on fields,
the system respects object encapsulation. The values returned from the message
sends in the rectangle example are both primitive types (float and boolean), but they
can also be arbitrary objects. For example, we could add a constraint on the rectangle’s
center (a computed rather than a stored value, and a point rather than a primitive type):

always { rect .center == Point.new(100,100) }

OCP keeps desirable properties from other approaches and is, for the most part,
a continuation of CIP. Table 1 shows these properties and compares OCP to the ap-
proaches presented in section section 2.

Unified Language Constructs Programs in BABELSBERG appear as ordinary OO
programs if no constraints are used, but can be easily adapted to use constraints where
it makes sense. If constraints are used, they respect encapsulation and re-use the
object-oriented method definitions. Furthermore, techniques such as inheritance and
dynamic typing operate correctly with constraints.

1There are multiple possible locations that satisfy the rect .visible? constraint; here the system will move
the origin as little as possible from the assigned location but so that the constraint is satisfied. The same
holds for the area constraint. This behavior is a result of soft “stay” constraints that specify that, if it is
necessary to change the value of a variable to satisfy other constraints, it should be changed as little as
possible. These are left implicit in this example, but can also be stated explicitly if desired.

42 Fall Workshop 2013

3 BABELSBERG

Libraries DSLs FRP CIP OCP
Unified Language Constructs # # # G#
Automatic Solving #
Linguistic Symbiosis # #
Exchangeable Solvers G# G#
Suitably Expressive Constraints G# #
Performant Pure-OO code #
Interactions between Solvers G# # # #

Table 1: Comparison of our OCP approach implemented in BABELSBERG with related work

In contrast, library and DSL based approaches separate constraints from imperative
code through a different syntax and semantics. For example, FRP and CIP languages
use propagation hooks and constraint constructors respectively to support constraints.

Automatic Solving Using libraries for constraint satisfaction allows programmers to
write code that (intentionally or unintentionally) circumvents previously asserted con-
straints. Approaches that integrate constraints at a language level do not allow such
circumvention, and attempt to re-satisfy constraints whenever they are violated during
program execution.

Linguistic Symbiosis D’Hondt et al. [8] argue that linguistic symbiosis between dif-
ferent programming paradigms is required to support the evolution of programs from
the object-oriented paradigm to a constraint-oriented solution and vice versa. DSL
and library based approaches do not support such incremental refactoring between
paradigms as well as approaches in which constraints are written in the host language.

Exchangeable Solvers Libraries provide the most flexibility for choosing different
solvers depending on programmer needs. FRP languages can, to some extent, be
combined with solver libraries to achieve a comparable flexibility. CIP languages also
provide a more controlled way for developers to use different solvers by writing con-
straint constructors that reformulate constraints using a different solver.

In BABELSBERG, all solvers use the same interface to communicate with the VM
so developers can add new solvers and replace existing ones to support new type do-
mains, or to use solvers that give better results or performance for a particular problem.

Suitably Expressive Constraints To take advantage of the constraint paradigm, the
language should allow a rich set of constraints to be written and solved. BABELSBERG
provides a number of features in this regard:

Read-only Variables A read-only variable can only be changed by other solvers up-
stream of the constraint with the read-only variable, or imperatively, but not to
satisfy the constraint in which it occurs [5].

Fall Workshop 2013 43

Solving Multidomain Constraints on Object Behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

dhrystone 50000

dhrystone 5000000

m
andelbrot 500

m
andelbrot 5000

binarytrees 14

binarytrees 17

E
x
e
c
u
ti
o
n
 t
im

e
(n

o
rm

a
liz

e
d
 a

g
a
in

s
t
u
n
m

o
d
if
ie

d
 V

M
)

>25 >3.9 >33 >10

Topaz
JRuby

Babelsberg/R

Figure 1: Metatracing VM benchmark run on an Intel i7 Quad-Core CPU with 3.4 GHz

Incremental Solving Interactive graphical applications involve repeatedly re-satisfying
the same constraints with differing inputs. A number of solvers support this effi-
ciently using so-called edit constraints.

Constraint Hierarchies Constraint hierarchies allow trading off multiple constraints to
optimize for multiple objectives [5].

Stay Constraints A desire that value remain the same if possible is represented as a
stay constraint.

Identity Constraints We can also write constraints on properties of objects such as
their identity, class, and the messages that it responds to.

Constraint Durations Constraints have durations during which they are active. Be-
sides always, which declares that its constraint remains active indefinitely, a once

constraint is activated, satisfied, and then retracted, whereas an assert−during con-
straint is active for the duration of the evaluation of its associated block.

However, more experience is needed to test whether these features suffice, and to
adjust it as needed; and as noted in section 4, an important direction will be adding
better support for debugging, explanation, and benchmarking.

Performant Pure OO Code Kaleidoscope provided a declarative semantics for as-
signment, type declaration, and subclassing. However, this declarative semantics was
also used if no actual constraints are in the program. Our implementation approach
in BABELSBERG/R uses different execution contexts for constraint construction/solving
and imperative code.

To measure OO code performance, we ran a number of tests from the metatracing
VMs experiment [3] against the unmodified Topaz Ruby VM and the JRuby VM (Fig-
ure 1). Due to its state of the art JIT, BABELSBERG/R is generally around 10% slower
than Topaz (or less than 20% including standard deviation). The only benchmark where

44 Fall Workshop 2013

4 Conclusions and Next Steps

we are doing significantly worse than Topaz is Binarytrees. Binarytrees is a strongly
recursive benchmark, which our JIT is bad at optimizing.

Interactions between Solvers We implement an architecture for cooperating solvers
that allows constraints to be declared and solved for multidomain problems [4]. All pre-
sented approaches can solve problems in multiple type domains using multiple solvers,
but interactions between those solvers are required for data flow between type do-
mains. The flexibility of using constraint libraries directly allows programmers to apply
this architecture, too, with additional boilerplate code.

4 Conclusions and Next Steps

We have presented BABELSBERG, an object constraint language that extends a stan-
dard object-oriented language to support constraints, along with an implementation as
an extension to Ruby using a state of the art virtual machine.

In contrast to other approaches, BABELSBERG unifies the constructs for encapsu-
lation and abstraction for both the declarative constraint parts of the language and the
traditional imperative parts by using only object-oriented method definitions for both
declarative and imperative code. Our implementation is integrated with an existing
object-oriented virtual machine and provides full performance for imperative evalua-
tion. It offers a selection of features from multiple constraint solvers to solve a useful
variety of problems. Although our initial implementation extended a Ruby VM, the ideas
are applicable to other dynamic object-oriented languages, as our implementation in
JavaScript without VM support shows.

This work serves as a basis for a number of questions we want to answer in fu-
ture work. One is to show that our approach is general and usable by applying the
system in a wide variety of application domains, and also to work on improving the
performance of the constraint evaluation and satisfaction. Another direction is to find
which additional solvers should be included in the library, for example a finite domain
solver or solvers that support constraints on other primitive storage types such as ar-
rays, strings, and hashes. Furthermore, we want to continue to implement a design for
cooperating solvers, to not only solve constraints in a variety of domains, but also have
data flow and features such as incremental solving between domains. Yet another di-
rection regarding solvers is to introduce an oracle that can automatically select one or
more applicable solvers for a given set of constraints. This could be a “meta-solver” that
trades off features of different solvers, such as performance or stability. Finally, another
important question is what support for debugging, explanation, and benchmarking is
required and how to provide it. Currently, if the constraint solver is unable to satisfy the
constraints, there is no indication of why this is. If the solver produces an unexpected
answer, it is unclear how this answer was arrived at. Or if one solver is slow, another
may be more appropriate for the problem.

Despite these open questions, BABELSBERG/R and BABELSBERG/JS are already
useful in existing applications.

Fall Workshop 2013 45

References

References

[1] Apple Inc. Cocoa Auto Layout Guide, September 2012.

[2] Greg J. Badros, Alan Borning, and Peter J. Stuckey. The Cassowary linear arith-
metic constraint solving algorithm. ACM Transactions on Computer-Human Inter-
action (TOCHI), 8(4):267–306, 2001.

[3] Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing on VM design
and implementation. Science of Computer Programming, 2013.

[4] Alan Borning. Architectures for cooperating constraint solvers. Technical report,
VPRI, 2012.

[5] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies.
Lisp and Symbolic Computation, 5(3):223–270, September 1992.

[6] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint hier-
archies and logic programming. In Proceedings of the Sixth International Confer-
ence on Logic Programming, pages 149–164, Lisbon, June 1989.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[8] M. D’Hondt, K. Gybels, and V. Jonckers. Seamless integration of rule-based
knowledge and object-oriented functionality with linguistic symbiosis. In Proceed-
ings of the 2004 ACM Symposium on Applied Computing, pages 1328–1335.
ACM, 2004.

[9] Enthought Inc. Enaml 0.6.3 documentation, 2013.

[10] Tim Felgentreff. Ruby Topaz. Presented at wroc_love.rb 2013, Wrocław, Poland,
March 2013.

[11] David Flanagan and Yukihiro Matsumoto. The ruby programming language.
O’Reilly, 2008.

[12] Bjorn Freeman-Benson and Alan Borning. Integrating constraints with an object-
oriented language. In Proceedings of the 1992 European Conference on Object-
Oriented Programming, pages 268–286, June 1992.

[13] Bjorn Freeman-Benson and John Maloney. The DeltaBlue algorithm: An incre-
mental constraint hierarchy solver. In Proceedings of the Eighth Annual IEEE
Phoenix Conference on Computers and Communications, Scottsdale, Arizona,
March 1989. IEEE.

[14] Martin Grabmüller and Petra Hofstedt. Turtle: A constraint imperative program-
ming language. In Research and Development in Intelligent Systems XX, pages
185–198. Springer, 2004.

46 Fall Workshop 2013

References

[15] Bruce Horn. Constraint patterns as a basis for object-oriented constraint program-
ming. In Proceedings of the 1992 ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 218–233, Vancouver, British
Columbia, October 1992.

[16] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) lan-
guage and system. ACM Transactions on Programming Languages and Systems,
14(3):339–395, July 1992.

[17] Håkon Wium Lie and Bert Bos. Cascading style sheets: Designing for the web,
1997.

[18] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld.
The lively partsbin–a cloud-based repository for collaborative development of ac-
tive web content. In System Science (HICSS), 2012 45th Hawaii International
Conference on, pages 693–701. IEEE, 2012.

[19] Gus Lopez. The Design and Implementation of Kaleidoscope, A Constraint Imper-
ative Programming Language. PhD thesis, University of Washington, Department
of Computer Science and Engineering, April 1997. Published as Department of
Computer Science and Engineering Technical Report 97-04-08.

[20] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Constraints and object
identity. In Proceedings of the 1994 European Conference on Object-Oriented
Programming, pages 260–279, July 1994.

[21] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Implementing constraint
imperative programming languages: The Kaleidoscope’93 virtual machine. In
Proceedings of the 1994 ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 259–271, October 1994.

[22] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Kaleidoscope: A con-
straint imperative programming language. In Brian Mayoh, Enn Tyugu, and
Jaan Penjam, editors, Constraint Programming. Springer-Verlag, 1994. NATO
Advanced Science Institute Series, Series F: Computer and System Sciences,
Vol. 131. Also published as UW CSE Technical Report 93-09-04.

[23] Christof Lutteroth and Gerald Weber. End-user GUI customization. In Proceed-
ings of the 9th ACM SIGCHI New Zealand Chapter’s International Conference on
Human-Computer Interaction: Design Centered HCI, pages 1–8. ACM, 2008.

[24] Kim Marriott and Peter Stuckey. Programming with Constraints: An Introduction.
MIT Press, Cambridge, Massachusetts, 1998.

[25] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. Uni-
fying execution of imperative and declarative code. In Proceedings of the 33rd
International Conference on Software Engineering, pages 511–520. ACM, 2011.

[26] Yoshiki Ohshima, Bert Freudenberg, Aran Lunzer, and Ted Kaehler. A report on
KScript and KSWorld. VPRI Research Note 2012-008, 2012.

Fall Workshop 2013 47

References

[27] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. Scratch: programming for all. Communications of the ACM,
52(11):60–67, 2009.

[28] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine construc-
tion. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 944–953. ACM, 2006.

[29] P. Roy and F. Pachet. Reifying constraint satisfaction in Smalltalk. JOOP,
10(4):43–51, 1997.

[30] Ivan Sutherland. Sketchpad: A man-machine graphical communication system.
In Proceedings of the Spring Joint Computer Conference, pages 329–346. IFIPS,
1963.

[31] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 632–647.
Springer, 2007.

48 Fall Workshop 2013

Studying the Nature of MDE Evolution –
Case Studies

Regina Hebig

System Analysis and Modeling Group
Hasso-Plattner-Institut

regina.hebig@hpi.uni-potsdam.de

In the previous retreat report it was shown that structural changes and substan-
tial structural changes occur commonly in practice. However, there is still a lack of
knowledge about structural evolution and motivations that drive structural evolution.
To address these issues, we extended our descriptive and exploratory field study to
also capture information about the evolution history of MDE settings. This report is an
extended short version of [1].

1 Study Design

Since the third study has a similar character and partly similar goals as the first
study, the design of this first study was mainly adopted. Following, it is described how
the design of the third study was adapted to fit the new needs.

1.1 Conceptual Context

The conceptual context remained mainly the same. At the start it seemed that the
topic of the evolution of MDE settings might become to an additional challenge for
the communication. Fortunately, it turned out that it is relatively easy to inquire the
evolution history by asking question like: „Did you always use tool X?“ or „How did
you develop artifact Y before transformation Z was introduced?“.

1.2 Choice of Cases

Since it was a goal to collect MDE settings from different companies, the process of
choosing case studies had to be adapted completely. First, it was a challenge to over-
come the obstacle that most companies are very cautious when it is about providing
detailed data to external researchers (as it is necessary for case studies). This problem
was approached in this study by contacting alumni students of the Hasso Plattner Insti-
tute and personal contacts in different companies. The request was accompanied with
a short description of the project and of the data that will be captured. Eventually the
contacted persons passed the request on to other projects. When the persons that are
in charge for such a project where interested in the study they answered the request.

All in all this led to responses from six projects (from five companies). Unfortu-
nately, in two companies the management did not agree with the participation due to
confidentiality reasons. However, three companies agreed to participate in the study:

Fall Workshop 2013 49

Studying the Nature of MDE Evolution – Case Studies

Capgemini (2 projects with 3 MDE settings), VCat, and Carmeq. In addition, one of
the contact persons of the first study at SAP agreed to resume the participation in the
study and helped to document the evolution history to one of the already captured MDE
settings. Finally, it was possible to document a single evolution step of an MDE setting
from Ableton. However, in this case the corresponding MDE setting was not captured
in detail.

1.3 Research method

As in the first study it was the goal to collect detailed case studies. Similarly interviews
were used.

To address the new issues the method of eliciting the MDE settings was changed.
Thereby the rounds of feedback that were performed per email were substituting with
a third interview. Further, the MDE settings were directly modeled using Software
Manufacture Models. In addition, new questions on how the MDE settings evolved
over time were included. This includes questions for motivations and triggers for the
captured evolution steps. All captured evolution steps were planned and/or performed
before they where captured for the study. As result models from different historical
versions of the MDE settings together with records from the interviews are captured.

The more direct form of communication in this adapted research method, together
with the direct use of Software Manufacture Models, and the experience the interviewer
gained during the first study, reduced the effort for elicitation of an MDE setting to five
days of work per MDE setting.

1.4 Analysis of Data

The records from the interviews were systematically sighted and coded following the
constant comparison method described in [2]. At the start a set of preformed codes
was used. These codes referred to the motivation for an evolution step, the institution
or role that triggered the evolution step, and the institution or role that implemented the
evolution step. During the sighting of the records codes were added when necessary
(e.g. for external influences on the evolution). Based on these codes it was possible to
derived several observations.

The collected quantitative data (i.e. the models) were analyzed similar to the mod-
els from the first study (except that the models already were Software Manufacture
Models). Further, the collected information about the evolution history was analyzed.
Thereby it was extracted what evolution steps happened. These evolution steps were
further categorized according to the change types presented in [1].

1.5 Threats to Validity

It is always difficult to draw general conclusions from a few case studies. Thus, a
broader set of data that captures more domains of software engineering and different
companies would be helpful to further substantiate the outcomes of this study. Despite
the small number of case studies, we are lucky that indeed different companies are
under study. All observations presented here are based on at least two of the case

50 Fall Workshop 2013

2 Overview on Cases Studies

studies, which is adequate for this initial stage of research on structural evolution in
practice. The data was not only captured to study evolution but also other aspects
of MDE settings in practice. It cannot be excluded that this leads to a selection bias.
However, all parts of the study were observational. Therefore, we do not expect that
capturing the MDE settings as explicit models influences our results on the captured
evolution histories.

2 Overview on Cases Studies

In context of this third study five new MDE settings were captured together with their
evolution history. In addition, the evolution history of the case study BO as well as
an evolution step of a case study from Ableton were documented. This third study
has a focus on structural evolution and which reflects in the questions that were used.
Non-structural evolution steps (e.g. language evolution) were in most cases not cap-
tured. Consequently, this data cannot be used to make quantitative statements about
distribution of structural compared to non-structural evolution steps.

In the following, an overview about the captured case studies is given and summa-
rized in tables 1 and 2.

Case
Study

Company Full Name

Cap1 Capgemini Capgemini case study 1
Cap2a Capgemini Capgemini case study 2
Cap2b Capgemini Capgemini case study 3
VCat VCat Consult-

ing GmbH
Development of TYPO3 based websites

Carmeq Carmeq GmbH Development of AUTOSAR standard docu-
ments Carmeq

Ableton Ableton AG Development of sound libraries for users of
the software Live

Table 1: Summary on captured case studies from third study

2.1 Capgemini first case study (Cap1)

The first case study (Cap1) was captured in cooperation with Capgemini1 and is used
in a project that runs since four years. In this project Capgemini builds software for a
customer. There are two interacting MDE settings involved. The first MDE setting is
used by the customer to collect requirements and create or prepare parts of the spec-
ification. The second MDE setting is applied within Capgemini to create prototypes,
generate the specification, and to implement the software. This second MDE setting
and its history were captured. The MDE setting is specific for the project, which holds
especially for the used generator. Initially, a Capgemini internal standard generator was

1http://www.capgemini.com/

Fall Workshop 2013 51

Studying the Nature of MDE Evolution – Case Studies

in use, which was soon substituted by the project specific generator. In consequence,
the generator can be flexibly changes or extended.

The case study was captured in summer 2012. Thereby, 16 activities as well as
eight historic versions of this MDE setting were documented (including the MDE setting
that was in use at the time of the interviews. Thereby, seven structural evolution steps
were identified.

2.2 Capgemini second and third case studies (Cap2a and Cap2b)

Also the second and third case studies (Cap2a and Cap2b) were captured in summer
2012 in cooperation with Capgemini. The two MDE settings are parts of the same
project. This project aims at providing two MDE settings that are used by a customer
of Capgemini. Both settings can be applied in the same customer projects. They aim
at reaching similar goals for different use cases.

MDE setting Cap2a is in use since three years. The team that developed the MDE
setting Cap2a consisted initially of one person and had the size of three to four per-
sons later on. For Cap2a 18 activities as well as six historic versions of the MDE
setting (including the MDE setting that was in use at the time of the interviews) were
documented. Thereby, five evolution steps were identified. Three of these evolution
steps are structural.

MDE setting Cap2b is in use since five years. The team that developed the MDE
setting Cap2b consisted initially of one person and grew for a short phase of ca. an
half year to the size of four to five persons. For Cap2b 27 activities as well as seven
historic versions of the MDE setting (including the MDE setting that was in use at the
time of the interviews) were documented. Thereby, six evolution steps were identified.
Five of these evolution steps are structural.

2.3 Development of TYPO3 based websites (VCat)

The fourth case study is the case study was collected in cooperation with VCat Con-
sulting GmbH2. The documented MDE setting supports development of websites that
rely on TYPO3 as underlying content management systems (CMS). Motivation for that
MDE setting was to improve productivity through automation and standardization. The
case study was captured in winter 2012/2013. At VCat the MDE setting is developed
and used since seven years (one year in its current version). For this case study 10
activities as well as three historic versions of the MDE setting were documented: the
current version, a historic version, and a version that is planned to be applied in future.
Thereby, two evolution steps were identified.

2.4 Development of AUTOSAR standard documents (Carmeq)

The fifth case study was captured in cooperation with Carmeq GmbH3. The captured
MDE setting is used to create documents of the AUTOSAR standard4, including models

2http://www.vcat.de/
3http://www.carmeq.de/
4http://www.autosar.org/

52 Fall Workshop 2013

2 Overview on Cases Studies

Table 2: Key information on captured case studies from third study
Case study Cap1 Cap2a Cap2b VCat Carmeq Ableton BO
Number of modeled
activities

16 18 27 10 25 – 19

Years in use 4 3 5 7 8 2 >2
Number of captured
evolution steps

7 5 6 2 5 1 7

and tables. The case study was captured at the start of 2013. Different versions of the
MDE setting are in use since 2004. For this case study 25 activities as well as six
historic versions of the MDE setting (including the MDE setting that was in use at the
time of the interviews) were documented. Thereby, five evolution steps were identified.

2.5 Development of sound libraries for users of the software Live
(Ableton)

The major product of Ableton AG5 is a software called Live, which provides artists and
musicians with an environment for musical compositions and productions. An important
part of the business of Ableton is the development of libraries, which provide users with
a collection of presets for instruments included in Live.

The changes that are currently applied to this development of libraries is the case
study that was captured. Thereby, the actual MDE setting of this development could
not be captured in detail. The captured evolution step was documented at the start of
2012.

2.6 Development of Business Objects for the feature package 2.0
(BO)

First, there is the MDE setting that is used to develop business objects (an SAP spe-
cific type of components that captures functionality specific to a certain business need)
for the feature package 2.0. This object of study (referred to as BO in the following)
describes an old development approach, which was used from 2004 on ca. 100 times
in nine teams. Today BO is substituted by a new development approach, through sub-
stitution of tools. Motivation for the initial introduction of BO was to enhance quality,
but also to reach transparency and a unified procedure for business object develop-
ment. For this object of study 19 activities were captured. Seven evolution steps were
collected.

2.7 Summary

As summarized in Table 2, the captured MDE settings were between two and eight
years in use. Each captured model includes between 10 and 30 activities. For each
of the different cases studies between one and seven evolution steps were captured
(overall 33 evolution steps).

5https://www.ableton.com/

Fall Workshop 2013 53

Studying the Nature of MDE Evolution – Case Studies

3 Data on Evolution

All in all, the seven case studies span 33 evolution steps. The observed structural
changes are summarized in the Tables 3, 4, and 5. In the following an overview on the
collected evolution steps is given.

The case study BO was already subject to seven substantial structural evolution
steps in a period of around six years. The MDE setting started as almost classical code
centric approach with some activities to ensure tracing between code and data model.
Later on a modeling tool was introduced followed by further tools that supported par-
tial generation of the code and eventually, one of these generation tools was adopted
company wide as standard (evolution step S1). To improve quality of behavioral imple-
mentation an interpretable modeling language was introduced in addition to the code
(evolution step S2). The introduction of an additional modeling tool was motivated by
the aim to introduce further quality assurance (evolution step S3). A next improvement
was reached by introducing a semi-automated support for data migration between the
modeling tools (evolution step S4). In order to reduce the number of tools the three
modeling tools were integrated into a single new modeling tool (evolution step S5). A
variant of the MDE setting was created to enable simple use at the cost of a reduced
set of supported features (evolution step S6). Finally, the generation functionality was
moved to this new modeling tool (evolution step S7).

For the case study Ableton, one substantial structural evolution step was captured.
In this case study a fully automated generation process is subject to refactoring (evolu-
tion step S1). As a side effect of this refactoring parts of the automated quality assur-
ance are separated from the generation process.

Table 3: Identified structural changes in evolution steps of the case studies BO, Able-
ton, and VCat (•= documented change)

SAP (BO) Ableton VCat
S1 S2 S3 S4 S5 S6 S7 S1 S1 S2

Structural Changes
[C3] change number of ar-

tifacts
• • • • • • • •

[C4] change number of
languages

• • • • • • •

[C5] change number of
manual activities

• • • • • • • •

[C6] change number of
tools

• • • • • • • • •

[C7] change number of
automated activities

• • • • • • • • • •

[C8] change order of man-
ual / automated activ-
ities

• • • • • •

54 Fall Workshop 2013

3 Data on Evolution

For the case study Cap1 seven substantial structural evolution steps from a period
of around four years are captured. The project started with a standard code gener-
ator, which was soon substituted by a project specific generator. In addition, a semi-
automated support for the export of the data between two modeling tools was added
(evolution step S1). To improve merge of the old version of the model and the version
that is result of the semi-automated export, a first version of a diff-tool was introduced
(evolution step S2). Due to changes the MDE setting of the customer the support
for the export as well as the diff-tool were taken out of operation (evolution step S3).
Further the automation of the export between the main modeling tool and the code
generator was improved (evolution step S4). Later on automated support for the imple-
mentation of a user interface based on mock-ups was introduced (evolution step S5).
A change in the development process led to a situation that modified versions of the
model are created by different teams and need to be merged. To support this merge
a second version of the diff-tool was reintroduced (evolution step S6). Finally, to ad-
dress a new need on additional documentation an additional generator was introduced
(evolution step S7).

For the case study Cap2a five evolution steps from a period of around three years
are captured. Three of the five evolution steps are structural evolution steps (and
two of them are substantial structural evolution steps). The project started with a first
generator that was substituted later on by a more flexible version (evolution step S1).
This substitution was planed from the beginning and was motivated by the need to
rapidly provide a working MDE setting to the customer. The underlying meta model
was permanently changed over the time. To create new output artifacts the generator
implementation was extended (evolution step S2). Later on a part of the generator was
reimplemented, such that independence of the formerly used implementation technol-
ogy is reached (evolution step S3). Finally, checks have been optimized over time,
such that they can be applied automatically and regular (evolution steps S4 and S5).

For the case study Cap2a six evolution steps from a period of around five years are
captured. Five of the six evolution steps are substantial structural evolution steps. The
first version of the MDE setting included a generator for the creation of a documen-
tation. To improve the usability, the generator was integrated to a modeling tool and
adapted the meta model that was already used in case study Cap2a (evolution step
S1). In order to support creation of additional resulting documents three further gen-
eration activities were embedded into the existing generator over the time (evolution
steps S2, S4, and S6). Addressing quality assurance, basic consistency checks for the
models were introduced (evolution step S3) and the introduction of further consistency
checks (following the example of case study Cap2a) is planned. Finally, the output
format had to be changed at least one time (evolution step S5).

For the case study VCat two substantial structural evolution steps from a period
of around seven years are captured. The first version of the MDE setting included a
manual task to copy and clean TYPO3 instances from old projects, such that config-
urations could be reused. To improve this process and decrease the probability that
content from old projects is preserved in the copied TYPO3 instance without notice,
an automated instantiation and configuration of new TYPO3 instances was introduced
(evolution step S1). Further the use of open source TYPO3 extensions should be im-
proved in future. For several reasons, extensions need to be adapted before they are

Fall Workshop 2013 55

Studying the Nature of MDE Evolution – Case Studies

Table 4: Identified structural changes in evolution steps of the case studies Carmeq
and Cap1 (•= documented change)

Carmeq Cap1
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6 S7

Structural
Changes
[C3] change number

of artifacts
• • • • • •

[C4] change number
of languages

• • • • •

[C5] change number
of manual activ-
ities

• • •

[C6] change number
of tools

• • • • • • • • • • •

[C7] change number
of automated
activities

• • • • • • • • •

[C8] change order of
manual / auto-
mated activities

• • • • • • • • • •

used. To support reuse of these adaption among the different projects at VCat, there
are concrete plans to introduce an internal extension repository within VCat (evolution
step S2).

For the case study Carmeq five structural evolution steps from a period of around
eight years are captured. Three of the five evolution steps are substantial structural
evolution steps. Initially, the AUTOSAR documentation was created without explicit
modeling. To deal with inconsistencies between documents, a central model of the
standardized software as well as an UML profile for AUTOSAR were introduced (evo-
lution step S1). Thereby, an automated generation of figures and tables on the basis of
the central model was introduced. Later on macros were implemented to support the
integration of figures and tables into the standard documents (evolution step S2). To
support quality assurance for the generated figures and tables the modelers started to
use diff-tools for comparison between old and new versions of the artifacts (evolution
step S3). Further, a CI server was introduced, such that the generator is executed
centrally (evolution step S4). Finally, an alternative implementation for some parts of
the generator (e.g., the automated import between two of the modeling tools) was in-
troduced (evolution step S5).

56 Fall Workshop 2013

4 Observations

Table 5: Identified structural changes in evolution steps of the case studies Cap2a and
Cap2b (•= documented change)

Cap2a Cap2b
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6

Non-Structural
Changes
[C1] exchange automated

activity
• • • • •

[C2] exchange language •
Structural Changes
[C3] change number of ar-

tifacts
• • • • • • •

[C4] change number of
languages

• • • • • • • •

[C5] change number of
manual activities

• • •

[C6] change number of
tools

• •

[C7] change number of
automated activities

• • • • •

[C8] change order of man-
ual / automated activ-
ities

• •

4 Observations

The case studies provide us with some observations on the occurrence and combi-
nation of evolution steps based on the documented data (O1 – O3). In addition, we
derived observations on motivations and drivers for structural evolution from the coded
records of the interviews (O4 – O8).

O1: Structural evolution steps are not necessarily exceptions, but can occur in
sequence several times (e.g., SAP and Capgemini case studies).

O2: Structural evolution steps are most often combinations of multiple different
structural changes (see Table 3).

O3: Substantial structural changes occur in a major part of observed structural
evolution steps. We observed change type C8 in 10 of the 15 evolution steps of our
case studies. A minor observation in that context is that just one of the occurrences of
C8 was caused by improving an existing automated activity such that a manual activity
was no longer necessary (C5). In most cases C8 was caused by the introduction of
additional automated activities (C7).

O4: Structural changes are often trade-offs, e.g. w.r.t costs and manageability. For
example, implementing a smaller new generation step is easier to manage than apply-

Fall Workshop 2013 57

References

ing a change to an existing automated activity. A further factor in such a trade-off is the
weight that is given to the different productivity dimensions. In many of the observed
cases it was decided to increase the degree of automation or tool support by adding
new automated activities instead of adapting existing automated activities like trans-
formation steps. Thus, a substantial structural change that might lead to drawbacks
for the changeability is accepted in favor of costs and manageability of the structural
evolution step.

O5: The factors involved in such trade-offs change over time. For example, costs
that can be invested in a change can differ strongly. We even captured cases where
developers implemented evolution steps in their leisure time. The weight that is given
to different productivity dimensions can also change. For example, while evolution step
S1 in the SAP case study was mainly driven by the desire to increase the degree of
automation, a priority that led to evolution step S5 was the desire to decrease cost of
ownership and complexity by decreasing the number of involved tools.

O6: Changes in an MDE setting can be driven by the need to take other MDE
settings into account (e.g., the evolution in [3] or evolution steps S3 and S5 in the
Capgemini case study). This can happen, when models or other artifacts in software
development are supplied by one company and used the other. Then changes in the
MDE setting of one company can lead to new opportunities for integration of both
settings.

O7: Some evolution steps are motivated by preceding evolution steps. They reduce
the complexity of MDE settings, which can be considered as ‘refactoring’, after several
preceding evolution steps were applied. An example of this is the introduction of the
new repository in business object development (evolution step S5 in the SAP case
study).

O8: Some evolution steps are not planned centrally, but are caused by developers
who add automation steps to ease their daily work. Examples are evolution steps S4
and S6 in the Capgemini case study as well as the solutions added for code generation
in evolution step S1 in the SAP case study.

References
[1] Regina Hebig, Holger Giese, Florian Stallmann, Andreas Seibel. On the Complex

Nature of MDE Evolution. In Proceedings of the 16th International Conference
on Model Driven Engineering Languages and Systems, MODELS 2013, Miami,
USA, 2013.

[2] Carolyn B. Seaman. Qualitative methods in empirical studies of software engi-
neering. In IEEE Transactions on Software Engineering, Vol. 25(4), pages 557–
572, IEEE Press, 1999.

[3] Franck Fleurey, Erwan Breton, Benoît Baudry, Alain Nicolas, and Jean-Marc
Jézéquel. Model-Driven Engineering for Software Migration in a Large Industrial
Context. In Gregor Engels, Bill Opdyke, Douglas Schmidt, and Frank Weil, edi-
tors, Model Driven Engineering Languages and Systems, volume 4735 of Lecture
Notes in Computer Science, pages 482–497. Springer Berlin / Heidelberg, 2007.

58 Fall Workshop 2013

Modeling Interestingness and
Serendipity in Relevance Search

Maximilian Jenders

Information Systems Group
Hasso-Plattner-Institut

maximilian.jenders@hpi.uni-potsdam.de

Popular recommendation algorithms such as Collaborative Filtering, Latent Seman-
tic Analysis, or Locality-Sensitive Hashing often operate under the assumption that
similar users like similar items and that user who like a specific item will also like sim-
ilar items (i.e., items with similar features). Therefore, these algorithms determine the
most similar users / items and then recommend the top-k, i.e., the k most similar users
or items.

While these recommender systems are hugely popular and successful, their rec-
ommendations are very similar to each other. Especially in the case of text recommen-
dation scenarios, this can lead to decreased user satisfaction, since a user will not be
interested in reading very similar texts. We therefore aim to improve traditional recom-
mender systems by providing an information-theoretic measure of interestingness and
serendipity, i.e., the discovery of relevant but unexpected content.

1 Introduction

In the modern world, the variety of products we can consume or buy is steadily in-
creasing. To make sense of all the information and help us make choices, we rely on
recommendations made by others—from personal friends and professional reviewers
to reviews written by persons unknown to us. In the digital world, recommendation
algorithms provide recommendations tailored to individual users, thereby increasingly
guiding our decisions and helping us find interesting and relevant items in a vast infor-
mation space. These personalized recommendations encompass a short list of ranked
(and therefore prioritized) items and are typically based on information of the user’s
past behavior (e.g., a purchase history) as well as information about the choices of
similar users (e.g., purchase decisions) and / or the features of similar items.

Optimizing recommender systems therefore helps suggest better items to users,
therefore increasing user satisfaction. For optimizing recommender systems in general,
but especially in text recommendation scenarios, we propose re-examining the role of
similarity metrics and accuracy-based evaluation metrics.

• Similarity Metrics: As recommendation algorithms usually predict user behavior
based on similar users or similarities between items, these similarity metrics are
applied for the generation of top-k recommendation lists. As a result, the recom-
mendations are usually very similar to the users’ past purchase or consumption

Fall Workshop 2013 59

Modeling Interestingness and Serendipity in Relevance Search

behavior. A user that listens to rock music will receive recommendations for rock
artists with similar music styles, a user reading news about just one specific topic
will be recommended articles about the same or a very similar topic.

While these kinds of recommendations certainly recommend items that a user will
most probably favor (e.g., in the case of music recommenders, rock musicians),
they are very limited in the their capabilities to help discover new, diverse things
that the user might also like (in this example, the user might also like electronic
music).

By recommending more diverse items instead of relying on the most similar items,
user satisfaction may be improved significantly.

• Evaluation Metrics: Traditionally, evaluations have been focused on accuracy-
based measures (e.g., precision, recall [5], or mean average precision [3]), typ-
ically by measuring the overlap of recommended items with the items the user
then consumed. These evaluation measures allow for a quantitative appraisal of
recommendation algorithms, yet they completely neglect the qualitative side.

Recommending similar items is relatively safe, as users tend to like things similar
to their (original) taste. A user that likes an artist’s album is very likely to like other
music from the artist as well. Finding items from a completely different topic that
a user will like is much harder, yet it allows the user to discover and acquire new
tastes, thereby increasing user satisfaction. Such riskier recommendations can
therefore add value, yet that risk is not reflected in accuracy-based evaluation
metrics, where each recommendation is worth as much as the other.

We therefore propose to focus research on algorithms that aim to find relevant,
interesting and serendipitous items. As much of the research so far has been con-
ducted in the realms of music or article recommendations, we direct our attention on
text recommendation scenarios, namely newspaper articles. Improving recommender
systems in this field can help users discover interesting facts yet unknown to them and
change their perception on current and important events. Providing users with a variety
of unexpected yet interesting articles will also increase their satisfaction.

Please note that in this report we are focusing solely on information encoded in a
document corpus and are not considering any user information, such as expressed
preferences, user interactions, and past user behavior.

2 Related Work

Related work can be classified into three categories: Discussing pitfalls and alter-
natives to accuracy-based metrics, improving diversity and novelty, and improving
serendipity in recommender systems.

2.1 Accuracy

A popoularity bias of traditional recommender systems, i.e., a tendency to excessively
recommend very popular items, has been shown in [1]. The authors introduce item-

60 Fall Workshop 2013

2 Related Work

and user-centric methods that make more novel recommendations, yet an evaluation
shows that user perceive the new methods to have lower quality than traditional Col-
laborative Filtering techniques.

Other work finds that most research has focused on increasing the accuracy of rec-
ommender systems [6]. It is contended that this focus proves hurtful to recommender
systems, as the most accurate recommendations are not always the most useful to
users. The authors argue for the focus on other evaluation measures and propose new
directions, including the introduction of serendipity as an evaluation metric.

2.2 Diversity and Novelty

Due to the use of similarity metrics, the items in top-k recommendations tend to be too
similar to each other [9]. As a mitigation technique, the authors improve the diversity of
the recommendations by measuring and improving the dissimilarity of the items in the
set of recommended items that is to be shown to the users.

Other related work presents a formal framework for the definition of novelty and
diversity metrics [8]. Novelty can be defined by how different an item is from past
experience, while diversity is expressed as a rank-sensitive average intra-list distance
between items.

A special problem arises when trying to accomodate users trying to search for dif-
ferent viewpoints on a controversial topic [4]. For such search queries, the results need
to be diverse while minimizing any bias against specific sentiments. The authors pro-
pose an opinion diversification model that relies on the relevance of documents, uses
semantic diversification to capture different arguments and also employs sentiment di-
versification to retrieve positive, negative and neutral arguments. In experiments, this
model always significantly outperformed the native ranking of opinionated web pages.

2.3 Serendipity

Serendipitiy can be defined as a measure of the degree to which recommendations
are both attractive and surprising to users [3]. An evaluation of recommender systems
not by accuracy but by coverage and serendipity has been carried out in [2]. The
authors find that very few experimental studies on serendipity have been carried out.
To capture serendipity, they focus on two aspects: unexpectedness and usefulness. All
items that are not generated by a traditional recommendation algorithm are considered
unexpected, while the usefulness of candidate items is being judged by the user. This
approach is also employed by [7].

Finally, the Auralist recommendation framework, which takes into consideration ac-
curacy, diversity, novelty, and serendipity, has been introduced in [10]. Serendipity is
measured as the surprise of recommendations and imagined as the distance between
recommended items and their expected contents. It is measured through a new Un-
serendipity metric, which uses the cosine similarity to measure the average similarity
between items in a user’s history and new recommendations. The authors evaluate
their framework with an user study on a music recommendation dataset, improving

Fall Workshop 2013 61

Modeling Interestingness and Serendipity in Relevance Search

user satisfaction. The definition of serendipity the authors use only captures the unex-
pectedness of the recommendation, yet does not assess whether the recommendation
is useful for the user, making the discovery a “happy coincidence”.

In contrast to prior work, we provide an information-theoretic approach to the task
of finding serentipitous documents without relying on traditional recommender systems
to quantify the unexpectedness of results.

3 Modeling Interestingness and Serendipity

In order to improve existing recommender systems, we want to rank documents ac-
cording to their interestingness and surprise. Interestingness itsef is hard to define,
since users can find an article interesting for a variety of reasons. It may re-affirm their
point of view, expose them to arguments opposing their point of view, introduce new
arguments, or presents intriguing facts. Serendipity on the other hand means a happy
accident, or a fortunate mistake. By using serendipity in the realm of recommender
systems, we refer to users stumbling over a recommendation that they did not expect,
yet are pleased to see. Hence, we model the serendipity of documents, assuming that
a document that is found to be serendipitous by a user will also be of interest to them.

For the purpose of text article recommendations, we therefore proceed as follows:
For a given article, we first determine a set of core documents which are very similar
to each other and will therefore be excluded from our recommendations. Secondly,
we try to determine documents which show certain characteristics of core documents
(thereby ensuring they are relevant), yet also different enough to be surprising.

3.1 Finding Core Documents

First, we assume that there is a multinomial distribution θ from which documents can
be generated. The goal is to find to approximate this distribution as closely as possible
and calculate the probability of a document being generated by this distribution.

The process of a document being generated by such a distribution can be pictured
as rolling a weighted dice with l sides a number of n times, whereas each side cor-
responds to a unique word. Each time the dice is thrown, the side that comes up
determine a word being generated by the distribution. Since the dice is weighted, dif-
ferent words can have different probabilities of being used. Through this process, we
can simulate a document with a total of n words being generated from a multinomial
distribution θ over l different (unique) words.

Once we can calculate the probability of a document being generated by θ , we can
determine the most probable documents, which add up to the core documents.

3.1.1 Simple algorithm

As stated above, we assume a multinomial distribution θ , from which documents are
generated. The algorithm in pseudo-code is as follows:

62 Fall Workshop 2013

3 Modeling Interestingness and Serendipity

Data: Documents d1...dm
Result: Set of core documents D = {d1, ...,dx} with x≤ m,

multinomial distribution θ

Input: Search query
Set D = {d1},d1: document that best matches the query;
repeat

Estimate θ based on word frequencies of all d ∈ D;
Iterate over all di /∈ D to determine argmaxdi

P(di|θ);
Add di to D;

until Change in entropy ∆H(D) is only marginal ;
Output: D1,θ

Algorithm 1: Simple algorithm to determine core documents
For a given search query, we determine the document d which best fits that query

and for which we want to find serendipitous documents. In the first step, we want to
find all other core documents for d, i.e., all other documents that are very similar to d,
or

argmax
D

P(D|θ) with {d1, ...,dx} ∈ D

A document d is made up of l different words w1, ...,wl, whereby each word wi occurs
ki times. d can therefore be expressed as

d = wk1
1 , ...,wkl

l

For each word wi, there exists a probability pi of that word being generated by the
multinomial distribution θ . We can therefore calculate the probability of a document d
being generated from θ :

P(d|θ) =
(

n
k1...kl

)
× pk1

1 × ...× pkl
l with

l

∑
i=1

ki = n

Since we start with one document d1(D = {d1}, we can use the word distributions of
d to approximate θ . We then calculate the document di with the highest probability of
being generated by θ :

argmax
di

P(di|θ) with di /∈ D

Note that the new document di may contain words that are not contained within any
document in D. Since the probability of the new, unknown word being generated would
be 0, the whole term would reach 0. Therefore, some kind of smoothing (e.g., Laplacian
smoothing) has to be used when calculating the probabilities.

Additionally, since a lot of small probabilities are being multiplied for each other,
the end result may become 0 due to the limited range of possible float values in a
computer. A practical approach is to calculate the logarithm of the probabilities (log
probabilities), which are asymptotic to the real probabilities. As probabilities p ∈ [0,1]
the log probabilities are calculated as −log(p), resulting in a non-negative real value.
The advantages are that multiplications of probabilities now become addition of log
probabilities, which are faster to calculate, and an increased numerical stability.

Fall Workshop 2013 63

Modeling Interestingness and Serendipity in Relevance Search

After argmaxdi
P(di|θ) has been found, it can be added to D = d1, ...,di and θ can be

updated using the word distributions from all d ∈ D. To determine when D includes all
core documents, we calculate the entropy H in all documents in D:

H(D) = ∑
j∈di

P(w j)I(w j) =−∑
j∈di

P(w j)log2P(w j) with di ∈ D

In each iteration, the entropy H(D) will continue to decrease because words will be
less and less surprising. As soon as the change in entropy ∆H(D) becomes negligible,
we assume that D encompasses all core documents and terminate the first step of our
algorithm.

3.1.2 Advanced Algorithm

The previous algorithm only takes into account a single distribution θ from which all
core documents can be generated. For an advanced algorithm, we model a second
multinomial distribution θ2 that captures a distribution which generates non-core doc-
uments. For each document, we can then determine whether it was more likely to be
generated from a core topic distribution ar a non-core topic distribution.

Data: Documents d1...dn (documents that are rellevant to a query
Result: Set of core documents D and parameters of multinomials θ1,θ2, with

priors π1,π2
Input: Search query
Initialize π1 = π2 = 0.5;
Set D1 = {d∗},d∗: document that best matches the query;
Set D2 = {};
Calculate θ1 from D1;
repeat

for each document di, i ∈ {1, ...,n} with di 6= d∗ do
D′1 := D1;
D′2 := D2;
D′1← D′1∪{di};
D′2← D′2∪{di};
Compute smoothed θ ′1 based on D′1;
Compute smoothed θ ′2 based on D′2;
Calculate argmax j(π j×P(di|θ ′j)) ;
Add di to D j;
Update θ j based on D j;

end
Compute P(θ1) = π1 =

1
n ∑

n
i=1 P(θ1|di);

Compute P(θ2) = π2 =
1
n ∑

n
i=1 P(θ2|di);

until logP(d1, ...,dn|θ1,θ2,π1,π2) does not change much;
Output: D1,θ1,θ2,π1,π2

Algorithm 2: Advanced algorithm to determine core documents
In the above algorithm, π1 and π2 are priors that determine the respective probabil-

ities of the distributions θ1 and θ2, of being used to generate a document. At the start,

64 Fall Workshop 2013

3 Modeling Interestingness and Serendipity

both are set to 0.5 and the initial document d∗ that matches the query best is being
used to initialize θ1.

The algorithm then iterates over all other documents di, i ∈ {1, ...,n} with di 6= d∗. A
given document di may contain words for which no probabilities are yet determined
in θ1 and θ2 based on D1,D2. Therefore, temporary Document sets D′1 and D′2 are
constructed with D′j ← D j ∪ {di} (with j ∈ {1,2}), thereby assuring that no unknown
words exist in D′j. Subsequently, smoothed multinomial distributions θ i

1 and θ i
2 can be

approximated.
Based on these smoothed distributions, we can now analyze di and determine the

distribution θ j for argmax j P(di|θ j). Accordingly, di is then added to the D j whose multi-
nomial distribution is more likely to have generated di. As D j changes, θ j is updated
based on the word distributions of all documents d ∈ D j.

After all documents have been assigned to a θ j, we recalculate the prior probabili-
ties π j for both distributions given the documents and the old distribution priors:

π j = P(θ j) =
1
n

n

∑
i=1

P(θ j|di)

P(θ j|di) =
P(di|θ j)×P(θ j)

P(di|θ1)×P(θ1)+P(di|θ2)×P(θ2)
=

P(di|θ j)×π j

P(di|θ1)×π1 +P(di|θ2)×π2

Note that π1 and π2 are normalize so that π1+π2 = 1. The above algorithm is iteratively
executed until logP(d1, ...,dn|θ1,θ2,π1,π2) is relatively stable, i.e., does not change much
after each iteration. The calculation is as follows:

logP(d1, ...,dn|θ1,θ2,π1,π2) = ∑
i

log(P(di|θ1)×P(θ1)+P(di|θ2)×P(θ2))

Keep in mind that P(θ j) = π j. All documents that are in D1 are now the core documents
that have been generated by θ1, whereas all documents in D2 are non-core documents
generated by θ2. In the next step, we can therefore look for surprising documents in
D2.

3.2 Finding Serendipitous Documents

After having determined the core documents, we now want to find documents that
are serendipitous to a user, i.e., that are surprising yet relevant and interesting. We
therefore try to find documents that have two different, contradicting characteristics:

1. On the one hand, they should be very different from core documents, thereby
increasing the surpriseness of the document and eliminating “obvious” recom-
mendations.

2. On the other hand, they should have some characteristics of core documents,
thereby affirming their relevance to the topic and therefore their interestingness
to the user.

Fall Workshop 2013 65

Modeling Interestingness and Serendipity in Relevance Search

The first condition can easily be measured using the already calculated multinomial
distribution θ for the set of core documents D. Given any candidate document d, P(d|θ)
can easily be calculated given the formulas stated above. The lower the probability of
the d being generated through θ , the greater the difference to core documents. To
measure the condition 2, we use the original θ to generate a second multinomial dis-
tribution θ red: Given the word probabilities p1, ..., pk−1, pk, pk+1, ..., pl from θ , we create
a new θ red with only the highest k word probabilities from θ (k << l). We then can
calculate P(d|θ red), which gives us information about how close the document d is to a
certain portion of the document core.

To find the document d ∈D2 that best satisfies both conditions 1 and 2, we can now
calculate

argmax
d

P(d|θ red
1)

P(d|θ1)
.

The result of this calculation is ∈ (0,∞]. The document d maximizing the formula satis-
fies conditions 1 and 2 best: It is different from the core documents, yet still maintains
a relevance to the core documents.

4 Ongoing Work

This report so far has presented an information-theoretic model for a recommender
system that suggests serendipitous items. In order to realize this goal, the following
steps are ongoing at the moment:

4.1 Evaluation

These algorithms for finding the most serendipitous documents can unfortunately not
be evaluated without human judgement. All available data sets are optimized for accu-
racy; while one is able to prove that a new algorithm recommends the items that a user
has consumed in a real-world scenario, we aim to help users discover completely new
and surprising content. Therefore, we will have to conduct experiments where humans
judge whether a recommendation is both surprising and relevant or interesting to them.
This is also the only way to show whether the detection of core documents is superior
with the advanced algorithm than with the simple one. Other algorithms from related
work can serve as a baseline as well as a traditional recommender systems.

At the time of this writing, we have not yet been able to conduct such an experi-
ment. We aim to provide users with a framework which lets them query a corpus and
evaluate the recommendations with respect to their serendipity in order to compare the
usefulness of our algorithm with the state of the art.

4.2 Data Set

To properly evaluate the algorithms, a document corpus is needed. A very interesting
use case for text recommendations is in the realm of newspaper articles: When a
user reads a document or enters a search query, it would prove beneficial to not only

66 Fall Workshop 2013

5 Conclusion And Future Work

recommend newspaper articles with similar words as the original one, but supply them
with novel, serendipitous articles which can broaden the user’s horizon.

From past experiences we have learned that automatically crawled newspaper ar-
ticles, e.g. from RSS feeds, still contain a substantial degree of clutter—for example
advertisements, user comments, links to other stories. We are therefore manually har-
vesting newspaper articles for a few different, specific news topics. Additionally, we are
looking for and evaluating clean newspaper corpora which can serve as a dataset.

4.3 Parameter Optimization

Furthermore, through experiments and user feedback, parameters can be optimized.
In the simple algorithm for finding core documents the ∆H(D) at which the iterative
algorithm is stopped may be improved, as well as the prior calculation π1 and π2 in the
advanced algorithm. When dermining the most serendipitous documents, weights for
P(d|θ red

1) and P(d|θ1) may help achieve better results.

5 Conclusion And Future Work

In this report, we presented a information-theoretic algorithm that calculates serendip-
ity in text documents. Given a start document that best fits a search query, it first
determines core documents which are very similar to a user and then retrieves the
most serendipitous documents which are not covered by the core documents. Includ-
ing serendipitous results in recommender systems can be a key factor in increasing the
quality of the recommendations and therefre improving user satisfaction.

In addition to the ongoing work that has ben outlined in the previous section, future
work encompasses the inclusion of user-based information. So far, the presented algo-
rithm makes no assumptions about the user and calculates serendipity purely based on
a start document and the available document corpus. While this would be the solution
for websites that do not know their users, typically the past user behavior is available,
i.e., the documents that have already been read by a user. User preferences can also
be constructed by the terms a user has searched for, the time a user has spent on
reading articles or the number of times the user has shared an article with friends. In-
corporating such user behavior can significantly improve the discovery of serentipitous
documents and will be addressed in future work.

References

[1] Òscar Celma and Perfecto Herrera. A New Approach to Evaluating Novel Rec-
ommendations. In Proceedings of the 2008 ACM conference on Recommender
systems, RecSys ’08, pages 179–186, New York, NY, USA, 2008. ACM Press.

[2] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond Accuracy:
Evaluating Recommender Systems by Coverage and Serendipity. In Proceedings

Fall Workshop 2013 67

References

of the fourth ACM conference on Recommender systems, RecSys ’10, pages
257–260, New York, NY, USA, 2010. ACM.

[3] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Riedl.
Evaluating collaborative filtering recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

[4] Mouna Kacimi and Johann Gamper. Diversifying search results of controversial
queries. In Proceedings of the 20th ACM international conference on Information
and knowledge management, CIKM ’11, pages 93–98. ACM, 2011.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich SchÃijtze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[6] Sean M. McNee, John Riedl, and Joseph A. Konstan. Being Accurate is Not
Enough: How Accuracy Metrics have hurt Recommender Systems. In Computer
Human Interaction, CHI ’06, pages 1097–1101, New York, NY, USA, 2006. ACM.

[7] Neha Pruthi and Chhavi Rana. Surprising discoveries by recommender systems.
In International Journal of IT, Engineering and Applied Sciences Research, vol-
ume 2, 2013.

[8] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity
metrics for recommender systems. In Proceedings of the fifth ACM conference on
Recommender systems, volume 107 of RecSys ’11, pages 109–116, New York,
NY, USA, 2011. ACM.

[9] Mi Zhang and Neil Hurley. Avoiding Monotony: Improving the Diversity of Recom-
mendation Lists. In Proceedings of the 2008 ACM conference on Recommender
systems, RecSys ’08, pages 123–130, New York, NY, USA, 2008. ACM.

[10] Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia, and Tamas Jambor.
Auralist: Introducing serendipity into music recommendation. In Proceedings of
the fifth ACM international conference on Web search and data mining, WSDM
’12, pages 13–22, New York, NY, USA, 2012. ACM.

68 Fall Workshop 2013

Describing and Comparing Datasets on
the Web of Data

Anja Jentzsch

Information Systems Group
Hasso-Plattner-Institut

anja.jentzsch@hpi.uni-potsdam.de

Over the last years, an increasing number of web sites have started to embed
structured data into HTML documents as well as to publish structured data in addition to
HTML documents directly on the Web. This trend has lead to the extension of the Web
with a global data space – the Web of Data. As the classic document Web, the Web of
Data covers a wide variety of topics ranging from data describing people, organizations
and events, over products and reviews to statistical data provided by governments as
well as research data from various scientific disciplines. In order to benefit from this
massive amount of open data, e.g. to add value to an organizations internal data, such
external data sets must be analyzed and understood already at the basic level of data
types, constraints, value patterns etc.

We present an approach for finding minimal descriptive sets of properties and ana-
lyzing the uniqueness and relevance of properties in Linked Data sets.

1 Introduction

With the growing number of Linked Open Data (LOD) sets on the Web of Data its
heterogeneity increases. Simultaneously the number of existing schemas as well as
the content and granularity of data increases and thus also diverges.

The Web of Data already comprised already roughly 900 data sources including
prominent examples, such as DBpedia, YAGO, and DBLP. A LOD dataset is usu-
ally represented in the Resource Description Framework (RDF) embodying an entity-
relationship-graph or a set of facts in triple format (subject, predicate, and object).
Algorithms and tools are needed that profile the dataset to retrieve relevant and in-
teresting meta-data analyzing the entire dataset [12]. Indeed, there are many com-
mercial tools, data sets are openly available and connected amongst each other via
identity (owl:sameAs) or other links between representations of same real-world en-
tities. Most of the RDF data sets are listed in registries as for instance at http:
//datahub.io.

However, consuming LOD is not easy, because the sources are heterogeneous,
often inconsistent, and lack often even basic metadata. One of the main reasons for
this problem is that many of the data sources, such as DBpedia [11] or YAGO [10],
have been extracted from unstructured data sets. Furthermore, knowledge bases and
their schemata usually evolve over time. Hence it is vital to thoroughly examine and
understand each data set, its structure, and its properties before usage.

Fall Workshop 2013 69

Describing and Comparing Datasets on the Web of Data

There are many commercial tools, such as IBM’s Information Analyzer, Microsoft’s
SQL Server Integration Services (SSIS), or others for profiling relational data sets.
However all of these tool were designed to profile relational data. LOD which is rep-
resented in RDF data has a very different nature and calls for specific profiling and
mining techniques.

Profiling Linked Data sets allows for finding, interlinking and integrating them by
analyzing semantic and structural heterogeneity.

Finding information data sets is an open issue on the constantly growing Web of
Data. While there are data set registries, these often have to be curated manually.
Furthermore, existing ways for describing data sets are often limited in their depth of
information. VoiD [2] and Semantic Sitemaps [4] cover basic details of the data set but
do not cover detailed information on the data set’s content like topics or distribution of
topics covered.

The Web of Linked Data is built upon the idea that data items on the Web are
connected by RDF links. Sadly, the reality on the Web shows that Linked Data sources
set some RDF links pointing at data items in related data sources, but they clearly
do not set RDF links to all data sources that provide related data1. Writing linkage
rules for unknown and large data sets is a time-consuming task. This includes finding
main classes occurring in the data set as well as finding relevant sets of properties that
define entities unambiguously.

Describing entities in an unambiguous way is also a crucial task for integrating
Linked Data sets with other data sets for e.g. the use in applications or websites. News
sites that incorporate info boxes for named entities can use a comprehensive set of
property values to describe a real-world entity to the reader.

In comparison to other data models (i.e., the relational model), RDF lacks to pro-
vide explicit schema information that precisely defines the types of entities and their
attributes. Therefore, many data sets provide ontologies that categorize entities and
define data types and semantics of properties. However, ontology information for a
Linked Data set is not always available or may be incomplete.

Our approach generates basic statistics to understand the uniqueness and rele-
vance of properties, as well as minimal unique property combinations. Having these at
hand, the user can determine possible keys for Linked Data sets or subsets.

Our approach has been implemented in ProLOD++ [1]. ProLOD++ is a web-based
tool for profiling and mining Linked Data sets. ProLOD++ comprises various traditional
data profiling tasks, adapted to the RDF data model. In addition, it features many
specific profiling results for open data, such as schema discovery for user-generated
attributes, association rule discovery to uncover synonymous properties, and unique-
ness discovery along ontology hierarchies. It is highly efficient, allowing interactive
profiling for users interested in exploring the properties and structure of yet unknown
datasets.

1http://lod-cloud.net/state/, retrieved October 2013.

70 Fall Workshop 2013

2 Related Work

2 Related Work

Equality of entities in Linked Data sets is generally defined for all entities sharing the
same URI, also across data sets.

Due to the requirement of a good URI being defined in an HTTP namespace under
ones control to make them actually dereferenceable [13], entity links across data sets
need to be established by using the owl:sameAs statement.

Many languages have a so-called ünique namesässumption: different names refer
to different things in the world. On the Web, such an assumption is not possible. For
example, the same person could be referred to in many different ways (i.e. with different
URI references), allowing each publisher to state their view on a person. For this reason
OWL does not make this assumption. Unless an explicit statement is being made that
two URI references refer to the same or to different individuals, OWL tools should in
principle assume either situation is possible.

OWL provides three constructs for stating facts about the identity of individuals:

• owl:sameAs is used to state that two URI references refer to the same individual.

• owl:differentFrom is used to state that two URI references refer to different
individuals

• owl:AllDifferent provides an idiom for stating that a list of individuals are all
different.

This has two important consequences. First of all following such an approach in a
highly dynamic and extremely rapidly growing environment such as the Web requires
the permanent search, analysis and alignment of new data. Additionally, reasoning
over owl:sameAs relations in distributed ontologies may be a complex task: the cre-
ation of owl:sameAs statements among the URIs identifying the same entity implies
the computation of the transitive closure, potentially across the whole of the Web of
Data. The transitive closure computation is known to belong to the NL computational
complexity class.

OWL 1 does not provide a means to define keys. However, keys are clearly of
vital importance to many applications in order to uniquely identify individuals of a given
class by values of (a set of) key properties. In OWL 2 [8] a collection of properties can
be assigned as a key to a class using the owl:hasKey statement. This means that
each named instance of the class is uniquely identified by the set of values. While in
OWL 2 key properties are not required to be functional or total properties, it is always
possible to separately state that a key property is functional, if desired. OWL also the
functionalProperty statement to express that a property can have at most one
value.

Though OWL allows the definition of key properties, it has not yet fully arrived on the
Web of Data. Glimm et.al. [5] found that only one data set uses the hasKey property,
while properties like owl:sameAs are already widely used on the Web of Data.

Thus, actually analyzing and profiling Linked Data sets requires manual, time con-
suming inspection or the help of tools.

Fall Workshop 2013 71

Describing and Comparing Datasets on the Web of Data

There are many commercial tools, such as IBM’s Information Analyzer, Microsoft’s
SQL Server Integration Services (SSIS), or Informatica’s Data Explorer, and some re-
search prototypes, such as [9], for profiling relational data sets. However all of these
tool were designed to profile relational data. LOD which is represented in RDF data
has a very different nature and calls for specific profiling and mining techniques. Cur-
rent tools to work on RDF data are limited to graph visualization and editing: LODlive2

is a browser-based tool to browse and search in RDF data sets. RDF Pro3 is a suite
for visual editing RDF data. LODStats [3] is a stream-based approach for gathering
comprehensive statistics about RDF data sets. Finally, RelFinder [6] is a web-based
tool to interactively discover relationships between entities on the Web of Data.

Our approach allows for finding properties that are key candidates, retrieves data
set insights and also a class hierarchy analysis without requiring the user to inspect the
data set content manually or with the help of tools.

3 Approach

Finding keys for Linked Data sets consists of finding minimal unique property combina-
tions. Furthermore, additional statistics to understand the uniqueness and relevance
of properties are helpful. These might be the number of NULL and non-NULL values
per property, the uniqueness of all the property values per property, and the number
of unique values per property. Having these values at hand, a user can determine
possible keys based on the unique property combinations.

We define the keys of Linked Data (sub-)sets as the set of properties that uniquely
identify an entity. This means that each entity of the data (sub-)set is uniquely identified
by the set of property values.

As Linked Data sets are usually sparsely populated, more statistics on the unique-
ness and thus relevance of a property are needed.

We define the uniqueness of a property as the number of unique values per number
of total values for a given property.

We define the density of a property as the ratio of non-NULL values to the number
of entities.

We call a property full key candidate if its density is 1.
We call a property key candidate if its density and uniqueness are 1.
Properties on the Web of Data can have multiple property values. E.g. the birth

place for Albert Einstein can be given as Baden-Württemberg, Ulm, and the German
Empire. We combine these property values and define the density as the sum of the
separate value densities divided by the number of property values, thus the average of
all densities.

2http://en.lodlive.it/, retrieved October 2013.
3http://www.linkeddatatools.com/rdf-pro-semantic-web, retrieved October 2013.

72 Fall Workshop 2013

4 Implementation

3.1 Uniqueness in Hierarchies

A common practice in the Linked Data community is to reuse terms from widely de-
ployed vocabularies whenever possible, in order to increase homogeneity of descrip-
tions and, consequently, easing the understanding of these descriptions. As Linked
Data sources cover a wide variety of topics, widely deployed vocabularies that cover all
aspects of these topics may not exist yet. Therefore publishers commonly also define
proprietary terms and mix these terms with the widely used ones in order to cover the
more specific aspects and to publish the complete content of a data set on the Web.
There are at least 369 different vocabularies to be found on the Web of Data4. Vocab-
ularies define classes and their relationships. Ontology classes usually are arranged
in a taxonomic (subclass–superclass) hierarchy.

Analyzing the uniqueness of properties as well as the unique property combinations
across the class hierarchy can bring insights into the data distribution inside the the
data set. It allows for finding relevant properties for each level in the class hierarchy
and see if the relevance is increasing or decreasing along the path down the hierarchy.

4 Implementation

Our approach has been implemented in ProLOD++. ProLOD++ uses our new unique
discovery technique, DUCC [7], to identify unique property combinations on clusters.
DUCC provides a scalable and efficient method for finding all unique and non-unique
column combinations in big data sets by using a novel hybrid graph traversal technique,
which traverses the lattice in combination of depth-first and random walk.

Besides the minimal unique property combinations, ProLOD++ offers a range of
statistics to understand the uniqueness and relevance of properties. The statistics
cover the number of NULL and non-NULL values per property, the uniqueness of all
the property values per property, the density of the property, as well as the number
of unique values per property. Having these values at hand, the user can deter-
mine possible keys based on the unique property combinations retrieved by DUCC
taking into consideration the usage of this property based on the number of values
(non-NULL values). For example out of the 185,081 athletes in DBpedia, only 36
have a dbpedia:espnId value, yet all of these values are unique. This defines
dbpedia:espnId as a unique property combination for athletes in DBpedia.

Furthermore, ProLOD++ can cluster entities based on a data set’s underlying ontol-
ogy. This allows the user to see the evolution of key features through hierarchical levels,
thus determining class-specific properties in unique property combinations. I.e., the
degree of uniqueness or density of dbpedia:espnId can be observed to for things,
persons, athletes, and finally football players.

4http://lov.okfn.org/dataset/lov/, retrieved October 2013.

Fall Workshop 2013 73

Describing and Comparing Datasets on the Web of Data

5 Evaluation

Our approach has been evaluated using the DBpedia data set and within that the Per-
son class subcluster (see Table 1).

Class Number of Instances Number of Properties
Person 720,811 255
Athlete 185,081 127
Baseball Player 17,487 37
Basketball Player 2,605 42
Rugby Player 9,206 38
Soccer Player 81,438 33

Scientist 12,841 41

Table 1: Part of the DBpedia class taxonomy for persons.

Like other data sets, DBpedia is often sparsely populated. Figure 1 shows the
distribution of values and unique values for properties in the Person class cluster. 86 %
of the properties do only have up to 5 % values available. This stresses the need for
taking into account further details like the density value of a property when choosing
key properties.

Figure 1: Value and unique value distribution for properties of the DBpedia Person
class cluster.

74 Fall Workshop 2013

5 Evaluation

Property Values Unique values Uniqueness Density
dbpedia: bowlRecord 2 2 1 0.01
dbpedia:espnId 36 36 1.00 0.01
dbpedia:individualisedPnd 587 584 0.99 0.01
dbpedia:birthDate 371,127 74,457 0.20 0.51
dbpedia:abstract 482,511 482,478 0.99 0.67
rdfs:label 483,004 482996 0.99 0.67
rdf:type 720,812 306,804 0.43 1.00

Table 2: Value and unique value distribution, uniqueness and density for DBpedia Per-
son cluster (excerpt).

Table 2 shows an excerpt of the 256 properties for the Person cluster (covering
720,812 entities) along with the value and unique value distribution, the uniqueness
and density.

What is visible already from this excerpt are some typical characteristics of Linked
Data sets. They often contain properties with few values but a high uniqueness (nearly
1), e.g. dbpedia:individualisedPnd. A lot of the properties have a high unique-
ness but below 100 % values, e.g. rdfs:label, and dbpedia:abstract.

The density rarely reaches 0.5 and only in one of 256 properties (rdfs:label)
reaches 1.

Property value sets are of specific interest, e.g.
dbpedia:Einstein dbpedia:birthPlace dbpedia:Baden-Württemberg,

dbpedia:birthPlace dbpedia:Ulm,

dbpedia:birthPlace dbpedia:German_Empire.
We treat those as lists of elements.
By applying the adjusted version of DUCC to the data set, we can generate (min-

imal) unique property combinations for the different class clusters in DBpedia. This
allows for analyzing key candidates.

Table 3 shows the minimal unique property combinations for persons, scientists and
athletes. For choosing key properties from these possible key candidates we also need
to take the density of a property into consideration.

The unique property combinations can also highlight characteristics of specific prop-
erties. E.g. while dbpedia:spouse is not unique for all persons, it is unique for
athletes and scientists.

Furthermore, we evaluated the uniqueness in class hierarchies. Table 4 shows the
uniqueness for two DBpedia properties along the person class hierarchy.

We found that there are properties that get more specific per class level, thus their
uniqueness gets higher for subclasses (e.g. dbpedia:team). We also found proper-
ties that are generic, thus their uniqueness stays constant throughout the class hierar-
chy (e.g. dbpedia:birthDate).

Having these profiling results at hand helps users in finding minimal descriptive sets
of properties and analyzing the uniqueness and relevance of properties in Linked Data
sets.

Fall Workshop 2013 75

Describing and Comparing Datasets on the Web of Data

Person Scientist Athlete
dbpedia:careerPoints dbpedia:abstract dbpedia:birthName
dbpedia:dateOfBurial dbpedia:spouse dbpedia:espnId
dbpedia:espnId georss:point dbpedia:firstWin
dbpedia:heir rdfs:label dbpedia:individualisedPnd
dbpedia:overallRecord dbpedia:lastWin
dbpedia:restingPlacePosition dbpedia:spouse
dbpedia:runningMate georss:point
dbpedia:winsAtMajors
dbpedia:winsAtProTournaments
dbpedia:worldChampion

Table 3: Unique property combinations (minimal) for some DBpedia person class clus-
ters.

Ontology Class Uniqueness for dbpedia:team Uniqueness for dbpedia:birthDate
Person 0.31 0.20
Athlete 0.70 0.25
Soccer Player 0.91 0.31

Scientist - 0.5

Table 4: Uniqueness for DBpedia properties dbpedia:team and dbpedia:birthDate
along the class hierarchy.

6 Ongoing and Future Work

While there are a number of other interesting profiling tasks, the discovery of unique-
ness in Linked Data sets is only a specific one.

In my PhD thesis I am compiling a set of profiling tasks for Linked Data sets. These
profiling tasks are implemented using Apache Pig 5

Further ongoing work in my PhD thesis is the optimization of Linked Data profiling
tasks. The process of computing profiling metrics for large data sets can take hours to
days depending on the complexity of profiling tasks used and the size of the respective
data sets.

A number of different approaches can be chosen when trying to optimize the exe-
cution time of algorithms dealing with RDF data in general and data profiling tasks in
particular.

Algorithmic optimization: Profiling tasks that have high computational complexity
cannot be computed naively, e.g. it is infeasible to detect property co-occurrence by
considering all possible combinations of properties. Such metrics require innovative
algorithms for computing the targeted result. If such an algorithm cannot be found, then
approximation techniques (e.g. sampling) may be required. Because these algorithms
are often highly specialized for a specific (profiling) task, they usually do not benefit
other tasks. Algorithmic optimization of individual profiling tasks is not a goal; instead

5http://pig.apache.org, retrieved October 2013.

76 Fall Workshop 2013

References

the focus will be on multi-measure optimization (see below).
Parallelization: When dealing with large data sets, a good approach for improving

performance is to perform calculations in parallel when possible [12]. This can be done
on different levels: Firstly, when multiple data sets are profiled, each data set can be
profiled in parallel. Secondly, data profiling runs with multiple profiling tasks can make
use of parallelism by executing individual tasks in parallel. Thirdly, if a data profiling
algorithm allows the aggregation of profiling results for a subset of data into the overall
result, then triples can be partitioned and processed in chunks. Finally, intermediate
tasks required by a profiling algorithm, such as sorting or hashing, can be parallelized
as well. Cluster-based parallelization based on MapReduce is a reasonable choice
when working with Linked Data and thus considered essential.

Multi-Measure optimization: A data profiling run usually consists of a number of
different tasks, which all have to be computed on the same data set. Depending on the
set of data profiling tasks, different tasks may require the same preprocessing steps,
or perform similar computation steps in order to reach their respective output. If this is
the case, overall execution time can be reduced by avoiding duplicate computations.
For example, if different tasks perform similar computation steps, it may be possible
to interweave their execution and thereby reduce runtime and I/O costs. If different
tasks require similar intermediate results, these can be stored in materialized views.
Challenges herein include the identification and specification of the view structure, the
optimization of algorithms to use existing views, and the maintenance of existing views.

Based on an ongoing master’s thesis which investigates the problem of multi-measure
optimization for data profiling tasks on Linked Data, optimization strategies will be dis-
cussed and summarized in a user guide. The optimization approaches will be imple-
mented in ProLOD++. Furthemore, they are being evaluated using large Linked Data
sets such as DBpedia. The evaluation compares the effects of different optimization
strategies against each other and against the unoptimized version.

An analysis of data set characteristics and the implication for the choice of suitable
approaches will be provided.

References

[1] Ziawasch Abedjan, Toni Grütze, Anja Jentzsch, and Felix Naumann. Profiling
and Mining RDF Data with ProLOD++. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), Demo, Chicago, IL, 2014.

[2] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing Linked
Datasets - On the Design and Usage of voiD, the ’Vocabulary of Interlinked
Datasets’. In WWW 2009 Workshop: Linked Data on the Web (LDOW2009),
Madrid, Spain, 2009.

[3] Sören Auer, Jan Demter, Michael Martin, and Jens Lehmann. Lodstats – an exten-
sible framework for high-performance dataset analytics. In Annette Teije, Johanna
Völker, Siegfried Handschuh, Heiner Stuckenschmidt, Mathieu d’Acquin, Andriy
Nikolov, Nathalie Aussenac-Gilles, and Nathalie Hernandez, editors, Knowledge

Fall Workshop 2013 77

References

Engineering and Knowledge Management, volume 7603 of Lecture Notes in Com-
puter Science, pages 353–362. Springer Berlin Heidelberg, 2012.

[4] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan Decker, and Gio-
vanni Tummarello. Semantic sitemaps: Efficient and flexible access to datasets
on the semantic web. In In Proceedings of the 5th European Semantic Web Con-
ference, pages 690–704, 2008.

[5] Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL: Yet to
arrive on the Web of Data? In WWW2012 Workshop on Linked Data on the Web
(LDOW), 2012.

[6] Philipp Heim, Steffen Lohmann, and Timo Stegemann. Interactive relationship
discovery via the semantic web. In Proceedings of the 7th Extended Seman-
tic Web Conference (ESWC 2010), volume 6088 of LNCS, pages 303–317,
Berlin/Heidelberg, 2010. Springer.

[7] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and
Felix Naumann. Scalable Discovery of Unique Column Combinations. In PVLDB,
2013. Available upon request.

[8] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C
Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-primer/.

[9] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph Hellerstein, and Jeffrey
Heer. Profiler: Integrated statistical analysis and visualization for data quality
assessment. In Advanced Visual Interfaces, 2012.

[10] Gjergji Kasneci, Maya Ramanath, Fabian Suchanek, and Gerhard Weikum. The
YAGO-NAGA approach to knowledge discovery. SIGMOD Record, 37(4):41–47,
2009.

[11] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. DBpedia - A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web Journal, 2013. Under review.

[12] Felix Naumann. Data profiling revisited. SIGMOD Record, 42(4), 2013. to appear.

[13] Leo Sauermann, Richard Cyganiak, Danny Ayers, and Max Völkel. Cool URIs for
the Semantic Web. W3C Interest Group Note, W3C, December 2008. Available
online at http://www.w3.org/TR/cooluris.

78 Fall Workshop 2013

Using Design Patterns to Manage the
Productivity vs. Performance Tradeoff in

Hybrid Parallel Computing

Fahad Khalid

Operating Systems and Middleware Group
Hasso-Plattner-Institute

fahad.khalid@hpi.uni-potsdam.de

In the domain of High Performance Computing, the use of accelerator architectures
has become common place. However, the cost of developing and maintaining codes
for such architectures is very high, and implies low productivity. Therefore, employ-
ing hybrid architectures for high performance computing inherently leads one to the
performance vs. productivity tradeoff.

This report presents a novel approach for improving the performance vs. productiv-
ity tradeoff for hybrid architectures. The proposed solution is based on the premise that
not all algorithms are suitable for accelerator architectures. These algorithms, however,
can be easily implemented for CPUs. Therefore, for a given computational kernel, an
effective implementation should be distributed across the accelerator and the CPU in
such a way, that the accelerator performs only those computations that are feasible for
it, while the rest are offloaded to the CPU.

In previous work, the validity of this approach was shown for a specific problem
from the domain of Computational Biology. This report proposes the road map for
generalization of the approach. It is argued that the suitability of a computational kernel
to a specific device architecture can be analyzed in terms of a combination of design
patterns for parallel programming and other constraints such as arithmetic intensity.

1 Introduction

Hybrid computing architectures can be defined as those that in addition to the conven-
tional CPU processors, employ accelerators for performance improvement. Employing
accelerators can yield significant performance gains [11]; and consequently, hybrid ar-
chitectures are now commonly used in HPC. According to the Top500 [15] list of the
fastest super computers (published in June 2013), the top two positions are held by
super computers based on hybrid architectures.

Graphical Processing Unit (GPU) is the most commonly used general purpose ac-
celerator. Over the past few years, a multitude of computational kernels have been
ported to GPUs with successful performance results. These results, however, come
at a cost. GPUs are built on a massively parallel architecture with a large number of
compute cores. However, as compared to the CPU, each GPU core supports a rather

Fall Workshop 2013 79

Using Design Patterns to Manage the Productivity vs. Performance Tradeoff in Hybrid
Parallel Computing

simplistic feature set. Moreover, GPU caches are much smaller than that of the CPU.
Differences like these limit the types of kernels that can gain significant performance
improvement by a straight forward port to the GPU. For a large number of computational
problems, a straight forward port to the GPU does not result in substantial performance
improvement.

Even though productivity tools for GPU programming have improved markedly over
time, the range of features provided by these tools is far narrower than those available
for programming CPUs. Much of the code optimizations are are still left to the program-
mer, which increases both the development and maintenance effort. This leads to the
fact that even though it is possible to accelerate computational kernels using GPUs, it
results in a considerable reduction in productivity.

1.1 Research Question

The arguments presented above lead to the following research question:

• How can we adapt an algorithm to make effective use of the underlying hybrid
architecture, given the following constraints:

– There is a significant improvement in performance as compared to an opti-
mized CPU-only implementation

– The complexity of the implementation does not increase considerably as
compared to that of a CPU-only optimized implementation

The research question essentially points to the need for methods that make it possible
to improve the performance vs. productivity tradeoff, i.e., we need methods that make it
possible to leverage the performance potential of hybrid architectures while simplifying
the development process.

Throughout the rest of the document, the term effectiveness will be treated as a
two-dimensional artifact comprising of efficiency and productivity.

2 Existing Solutions

A major improvement in the programmability of NVIDIA GPUs was made possible by
the development of the CUDA [12] programming model. Later on, the OpenCL [6]
standard was developed in order to provide CUDA like capabilities for vendor neutral
accelerator programming. These advancements further led to the following two major
approaches for improving the effective use of hybrid architectures:

2.1 Accelerated Domain Specific Libraries

The most commonly used computational kernels are based on Linear Algebra, i.e.,
matrix and vector operations. Realizing this significance, the scientific computing and
high performance computing communities started investing into libraries for linear al-
gebra computation routines during the very early days of these fields. This resulted in

80 Fall Workshop 2013

2 Existing Solutions

the development of BLAS [1] for basic linear algebra problem, LINPACK [8] for equa-
tion solvers and EISPACK [14] for solving Eigen problems. Initially, these libraries were
available for distributed memory architectures only. However, once shared memory
computing became mainstream, packages like LAPACK [2] were developed that im-
plement previously available interfaces with data access patterns optimized for shared
memory architectures.

Following this trend, linear algebra libraries have been developed that implement
the same standard interfaces as provided by the above mentioned libraries, however,
the computations are performed on accelerator architectures. E.g., CUBLAS [13] is
built using the CUDA programming model and implements the BLAS interface for ex-
ecution on GPUs. The CULA [7] and MAGMA [16] libraries go one step further and
implement the computations that can (at least to some extent) take advantage of both
the CPU and GPU.

The basic purpose of these libraries is to provide accelerated routines for linear
algebra based computations. This hides the cumbersome implementation level details
from the application developers, and provides them with a standard interface with which
they are already familiar. Therefore, the application developers do not have to deal with
the complications that arise from programming GPUs.

2.2 Compiler based code generation

The most commonly used parallelization framework up until the 1990s was the Mes-
sage Passing Interface (MPI). MPI is used for communication between the nodes in
a distributed memory architecture. Since the most powerful computers even today
are clusters, MPI is still as popular and has become a de facto standard for high
performance computing. Today, however, each of the nodes within the cluster is a
shared memory parallel system. In order to fully utilize the resources within each of the
nodes, the code executing on an individual node utilizes some form of multi-threading.
OpenMP [3] is a standard that provides pragma based parallelization of code for shared
memory architectures. All major C/C++ compilers provide OpenMP support, and it is
the most popular programming model for shared memory architectures.

The pragma based parallelization approach used in OpenMP has recently been
adapted for generating code the executes on a GPU. The OpenACC [17] standard
defines a set of pragmas and associated routines. At the moment, the standard is
supported by only a few major C/C++ compiler vendors.

This approach makes it possible for the programmer to concentrate on the applica-
tion logic, without having to deal with the low level GPU specific code. Much of the more
complex code is generated by the compiler, which uses the pragma directives as hints
for parallelization. Even though the standard is not widely used in the mainstream HPC
community, with time, the use of OpenACC is gaining popularity. The major drawback
is that the compiler generates code for the GPU only, and is not capable of effectively
utilizing the entire hybrid architecture. Further research is needed to see how the code
generation approach can be used for effective utilization of hybrid architectures.

Fall Workshop 2013 81

Using Design Patterns to Manage the Productivity vs. Performance Tradeoff in Hybrid
Parallel Computing

2.3 Research Gap

In terms of effective utilization of the underlying hybrid architecture, each of the above
mentioned solution approaches has associated drawbacks. Following is a brief sum-
mary:

• Accelerated Libraries: The domain specific libraries mentioned above are very
useful for scientific computing. However, these serve a very specific purpose
and cannot be used as building blocks for problems in other domains. There is
room for the development of libraries that provide mechanisms for coordination
between GPUs and CPUs, and simplify the process of implementing a much
larger set of problems on hybrid architectures.

• Compiler Directives: Not all kinds of computations are suitable for GPU ar-
chitectures. Therefore, simply automating the process of code generation does
not guarantee a significant performance gain. For certain computational kernels,
even optimized GPU code result in wasted clock cycles. Therefore, it is important
that code generation is complemented with libraries that make it possible to write
cross-device optimized code.

3 Foundations

Note: From this point onward in the report, the term Host will refer to the CPU and the
term Device will refer to the accelerator. The scope of this document is limited to the
use of GPUs as accelerators. In future work, however, the methods developed will be
applicable to other accelerators such as Intel’s Xeon Phi co-processor.

In order to answer the research question presented in Section 1.1, it is argued here
that a viable solution would have to satisfy the following conditions:

1. The application must be able to utilize all available processing resources across
both the Device and the Host.

2. In order to do so effectively, it should be possible to structure the program flow
in such a way that different parts of the kernel are executed by either the Device
or the Host depending on which architecture is more suitable for that part of the
kernel.

This raises the following question:

• What characteristics of a computational kernel make it more suitable for one ar-
chitecture rather than the other?

The following Subsection will explore these characteristics, which will be used later
to compose the proposed solution.

82 Fall Workshop 2013

4 Design Patterns and Algorithm Decomposition

3.1 Important Characteristics of Computational Kernels

The Host architectures (i.e., CPUs such as Intel Core i7, Intel Xeon series etc.) are
equipped with a feature rich Instruction Set Architecture (ISA), Vector processing units,
and advanced features like branch prediction. This makes it possible for the Host to
efficiently perform all kinds of computations. The major disadvantage as compared to
Device architectures is the lack of massive parallelism.

Device architectures have the following major limitations:

• A high Degree of parallelism in a kernel is a fundamental requirement. If the
degree of parallelism is not enough, compute cycles are not fully utilized.

• Cache size is much smaller on the Device. Therefore, kernels with low arithmetic
intensity are not particularly suitable.

• Device architectures do not support branch prediction, and are bounded by a
minimum number of threads that must execute the same instruction in a single
clock cycle. Therefore, excessive control divergence in the kernel can lead to a
significant amount of wasted cycles.

It is argued in this report that Device kernels for which the processing is dominated
by one or more of the above mentioned limitations, can gain performance improvement
if the appropriate parts of the kernel are executed on the suitable architecture.

3.2 Algorithm Decomposition

An algorithm can be decomposed based on architectural features if the following con-
ditions are satisfied:

• At least two design patterns can be identified, where one pattern is suitable for
the Device architecture, and the other one is suitable for the Host architecture.
Each pattern can then be implemented as a phase of computation.

• The pipeline pattern is applicable across the two phases of computation.

4 Design Patterns and Algorithm Decomposition

The design patterns introduced by the Gang of Four [5] are considered as building
blocks for a robust object oriented design. These patterns provide abstractions from
the domain, and make it possible for design ideas to be used irrespective of the domain.
These however are not sufficient for parallel programming. In order to fill this gap,
Design Patterns for Parallel Programming [9] were explicitly proposed, and have gained
considerable popularity over the years.

The design patterns for parallel programming can be used to identify the data and
control flow in a computational kernel. This makes it possible to see whether a certain
kernel would be suitable for a given architecture. The following subsections describe
the patterns that are suitable for Device architectures, as well as those that are not
suitable for Device architectures.

Fall Workshop 2013 83

Using Design Patterns to Manage the Productivity vs. Performance Tradeoff in Hybrid
Parallel Computing

4.1 Patterns Suitable for Device Architectures

Some of the important patterns suitable for execution on the Device are:

• Map: Perhaps the simplest and most commonly used pattern that is ideal for
Device architectures. The Map pattern can be seen as a fully unrolled loop, where
each iteration of the loop is mapped to different processing unit of a massively
parallel processor. There are no dependencies between the loop iterations, which
implies that each processing unit reads input values and writes output values
that are completely independent of all other processing units. The degree of
parallelism is proportional to the number of loop iterations, which means that the
hardware utilization is maximum for a large number of iterations.

• Stencil: Similar to Map, there are no output related dependencies amongst the
processing units. This pattern is also similar to a loop that has no dependencies.
In the Stencil pattern, however, a processing unit needs access to input values
from the neighboring processing units as well. In fact, Map can be seen as a
special case of Stencil with the restriction that each processing unit only reads its
own corresponding input values.

Both these patterns map very well onto the massively parallel Device architecture.
This is because each processing unit can perform computations completely indepen-
dent of all other units. There is no need for elaborate locking and synchronization
primitives, which could potentially slow down the computation.

4.2 Patterns Suitable for Host Architectures

As mentioned in Section 3.1, the Host architecture is suitable for all computational
kernels. The only limitation is that massive parallelism is not available on these archi-
tectures. Therefore, it is not that the following are the only patterns suitable for the
Host ; these patterns are not particularly suitable for execution on the Device because
the effective utilization of the massively parallel architecture is not possible. Therefore,
it is argued that these patterns are better suited to execution on the Host.

• Reduce: This pattern is employed when a large number of values have to be
reduced to a single value. E.g., a vector of 10 values is reduced to a scalar by
summing all the elements of the vector. The pattern is more general in the sense
that it can be applied to any data type on which an associative binary operator is
defined. The most efficient method for parallel reduction follows computation in a
tree structure. For a sum reduction, it starts with all the values at the leaves, and
proceeds upwards to the root by applying the operator at each level, and halving
the number of operands. Eventually, only the final scalar value is left at the root,
which is the desired result. Figure 1 shows an example of a reduction tree with
sum as the operator.

• Scan: An example of the Scan pattern is the prefix-sum operation. In this case,
the output vector is the same size as the input vector. Therefore, the tree structure

84 Fall Workshop 2013

5 Hybrid Pipelining

Figure 1: A tree structured sum reduction [4].

consists of two sweeps: 1) Up-sweep from the leaves to the root to compute par-
tial reductions, and 2) Down-sweep from the root back to the leaves to complete
the scan.

Both the Reduce and Scan patterns share the same problem when it comes to
efficient resource utilization. The degree of parallelism varies at each step of compu-
tation. In Reduce, e.g., the number of processing units that can be used at the first
step is equal to the number of elements in the vector. For a large vector, this amounts
to maximum resource utilization. However, at each successive step, the number of
processing units required is halved; eventually leading to the point where most of the
compute resources are idle.

5 Hybrid Pipelining

If we have a computational kernel which comprises of patterns such that the kernel can
be divided into two parts where one is a pattern suitable for the Device, while the other
is a pattern suitable for the Host, each pattern can be implemented as a sub-kernel
for the corresponding architecture. However, this distribution of code across the two
architectures complicates the program control and data flow. A serial flow across the
two devices would constitute the following steps:

1. Input data is transfered from the Host to the Device

2. The Device performs computation for a suitable pattern such as Map and pro-
duces results

3. The results are transferred from the Device to the Host

4. The Host applies the post-processing pattern such as Reduce

Fall Workshop 2013 85

Using Design Patterns to Manage the Productivity vs. Performance Tradeoff in Hybrid
Parallel Computing

Figure 2: A 3-stage hybrid pipeline.

5.1 Big Data and the Pipeline Pattern

In business as well as science, the necessity to process large volumes of data is be-
coming more and more relevant with the passage of time. The above mentioned se-
quence of steps has to occur in a loop if big data processing is the objective. In order
to achieve that efficiently, the above steps are executed as the following three stages
of a software pipeline:

1. The Device kernel

2. The transfer of results from the Device to the Host

3. The post-processing Host kernel

The term Hybrid Pipeline stems from the fact that the pipeline spans two different
processors across a hybrid architecture.

The hybrid pipeline approach was initially developed to solve a particular problem in
the domain of Computational Biology. The details of the method as well as performance
results can be found in detail in [10]. The method will not be discussed in further detail
in this report.

5.2 Pipelining and Effective Utilization of Hybrid Resources

Consider the scenario where the Device stage of the pipeline implements the Map
pattern and the Host stage implements the Reduce pattern. In this case, the Device
code is very simple, since the kernel does not need to implement any special logic
except the index algebra. Also, all the Device resources are utilized efficiently since
the pattern is suitable for the architecture. Had the Reduce pattern been implemented
on the Device instead of the Host, the code would have gotten considerably complex,
and resource utilization would have been much lower than optimal.

The Host code is always much simpler to implement because of the various high
level library and compiler based tools that hide much of the complexity of the algorithm
and parallel programming details. E.g., the Reduce stage can easily be implemented
using the Intel Threading Building Blocks Parallel Reduce function.

86 Fall Workshop 2013

6 Ongoing Work

6 Ongoing Work

This report has so far presented a road map for generalizing the hybrid pipeline ap-
proach in the language of patterns for parallel programming. In order to realize the
method, the following activities are in progress:

6.1 Generic Framework for Hybrid Pipelining

The available GPU programming models such as CUDA provide only primitive support
for message passing between the Device and the Host. Moreover, there is no high
level framework available to hide the complex concurrency mechanisms required to
implement a hybrid pipeline.

A high level hybrid pipelining framework is being developed that would hide the
Device-Host communication and complex concurrency mechanisms. This would make
it possible for the application developer to implement a hybrid pipeline with minimal
development effort; thereby, significantly increasing productivity.

6.2 Empirical Evaluation of Thresholds for Computation Intensity
on the Device

The hybrid pipeline approach would yield performance only if the intensity of computa-
tion is balanced across the different stages of the pipeline. The amount of computation
in the Device kernel must be large enough so that it can balance both the time it takes
to transfer the result data from the Device to the Host, as well the computation time
for the Host kernel. If the computation time for the Host is low enough, the algorithm
distribution can result in a free computation phase, i.e., as compared to an equivalent
Device implementation, the Host processing would be completely hidden behind the
Device computation. The Host computation would only have a discernible impact on
the overall execution time during the last iteration of the pipeline. This is because the
last iteration executes in serial. Nevertheless, the total impact of the Host execution
time would be negligible.

In order to thoroughly investigate and establish the thresholds that define balanced
pipeline execution, experiments are being designed where kernels with different amounts
of computation are tested for the impact on the overall pipeline efficiency. Optimization
of several other parameters is also being considered, e.g., partition size for input data
to be processed during one iteration of the pipeline, the amount of page-locked [12]
memory to use, etc.

7 Summary and Future Work

It has been shown that looking at the problem from the point of view of design patterns
in parallel computing can lead to effective utilization of hybrid architectures. Not only

Fall Workshop 2013 87

References

does it highlight possibilities for performance improvement, it also improves program-
mer productivity. The ongoing work will result in the possibility to apply the method to
a wide array of problem domains.

For new codes, the patterns and associated constraints can be used to decide how
the algorithm can be effectively distributed across the architecture. This fits into the
existing design strategy for parallel programs. The method presented in this report is
just an added step to an established process.

For existing codes, an automated process will be introduced. A tool will be de-
veloped for the analysis of existing sources. This tool will provide recommendations
on how the algorithm should be decomposed. An automated tool will require the rep-
resentation of patterns and constraints in a formal language. Also, an efficient im-
plementation of the hybrid pipeline model will require optimization of the control flow
graph. Therefore, much mathematical formalism will be used in future work.

References

[1] Basic linear algebra subprograms (BLAS). In David A. Padua, editor, Encyclope-
dia of Parallel Computing, page 120. Springer, 2011.

[2] Edward Anderson et al. LAPACK Users’ guide, volume 9. Siam, 1999.

[3] Eduard Ayguade and Barbara Chapman. Introduction: Special issue: OpenMP.
Scientific Programming, 11(2):79–80, 2003.

[4] Guy E Blelloch. Prefix sums and their applications. In John H. Reif, editor, Syn-
thesis of Parallel Algorithms, pages 35–60. Morgan Kaufmann, 1993.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

[6] Khronos OpenCL Working Group. The OpenCL specification. Standard specifi-
cation, December 2011.

[7] John R. Humphrey, Daniel K. Price, Kyle E. Spagnoli, Aaron L. Paolini, and Eric J
Kelmelis. Cula: hybrid gpu accelerated linear algebra routines. In SPIE Defense,
Security, and Sensing, pages 770502–770502. International Society for Optics
and Photonics, 2010.

[8] Jack Dongarra et al. LINPACK “User’s Guide”. SIAM Publications, 1979.

[9] Kurt Keutzer, Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
A design pattern language for engineering (parallel) software: merging the PLPP
and OPL projects, 2010.

[10] Fahad Khalid, Zoran Nikoloski, Peter Tröger, and Andreas Polze. Heterogeneous
combinatorial candidate generation. In Felix Wolf, Bernd Mohr, and Dieter Mey,
editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in Com-
puter Science, pages 751–762. Springer Berlin Heidelberg, 2013.

88 Fall Workshop 2013

References

[11] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu
vs. cpu myth: an evaluation of throughput computing on cpu and gpu. In Proceed-
ings of the 37th annual international symposium on Computer architecture, pages
451–460. ACM, 2010.

[12] NVIDIA. CUDA C programming guide. Design Guide PG-02829-001_v5.0, Octo-
ber 2012.

[13] NVIDIA. CUBLAS Library. User Guide DU-06702-001_v5.5, July 2013.

[14] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler. Matrix Eigensystem Routines- EISPACK Guide, volume 6 of Lecture
Notes in Computer Science, Editors: G. Goos and J. Hartmanis. Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc., second edition, 1976.

[15] Erich Strohmaier. TOP500 - TOP500 supercomputer. In SC, page 18. ACM Press,
2006.

[16] Stanimire Tomov and Jack Dongarra. Matrix algebra on gpu and multicore archi-
tectures. In Proc. Workshop Electronic Structure Calculation Methods Accelera-
tors, pages 5–8, 2010.

[17] Michael Wolfe. Introduction to GPU computing with openACC. In SC’12 Tutori-
als CD-ROM: Conference on High Performance Computing Networking, Storage
and Analysis, Salt Lake City, UT, USA, November 2012. ACM SIGARCH/IEEE
Computer Society.

Fall Workshop 2013 89

90 Fall Workshop 2013

High-Quality Video Generation for Thin
Clients - An Application for Image-Based

3D Portrayal Services

Jan Klimke

Computer Graphics Systems
Hasso-Plattner-Institut

jan.klimke@hpi.uni-potsdam.de

1 Introduction

3D geodata, such as virtual 3D city models, is currently the basis for a broad range
of applications in different areas, such as city marketing or urban planning. The in-
creasing availability, volume, and quality of 3D geodata raises the complexity of 3D
visualization applications using such data. Service-based 3D portrayal approaches,
either image-based or based on geometry and texture streaming services, provide so-
lutions for interactive exploration of large 3D data sets. But, even if the challenge of
provisioning visualizations of large scale 3D models to heterogeneous hardware and
software platforms was addressed in recent years, the complexity of navigation remains
challenging for individual users. The communication of specific intentions (e.g., a pos-
itive impression of certain planning projects in an urban context) in connection with 3D
geoinformation demands for specially designed camera paths, rendering effects (e.g.,
effects for highlighting, focus and context visualization [13], or real time ambient oc-
clusion [1]), and transitions between specific sets of camera and scene configurations.
Due to this complexity in operating a visualization system for end users, production of
video presentations of large 3D models are still a usual way of communicating spa-
tial information. Still images are not well suited to communicate sufficient amounts of
spatial information since “the acquisition of spatial knowledge, essential for wayfind-
ing, is primarily based on direct environmental experience, which is usually gained via
movement“ [5]. The advantage of preproduced video presentations is its compatibil-
ity (virtually any computing platform used by end users is able to play common video
formats), the simplicity in playback (in terms of necessary hardware, software, and net-
work resources for their transmission and playback), and the assured appearance of
the 3D scene contained in the video presentation.

In recent years, several approaches have been presented for interactive presenta-
tion of 3D geodata in several scenarios, in stationary (e.g., on desktop PCs or note-
books) and also in mobile scenarios (interactive 3D visualization on hand-held devices,
such as tablet PCs or mobile phones). Nevertheless, producing distributable artifacts
for communication of 3D geodata, specifically video presentations, are currently mainly

Fall Workshop 2013 91

High-Quality Video Generation for Thin Clients - An Application for Image-Based 3D
Portrayal Services

a manual, and therefore, resource intensive task. Generation of video presentations
usually includes involves two major steps: a) creation of planned flythrough sequences
and b) post production and cutting of the assembled video presentation. An overview
over the usual process can be found in Figure 1.

Figure 1: Overview over a conventional process for generating video presentations of
3D data. There is a lot of manual work involved. The virtual camera is controlled man-
ually during video capturing for flythroughs. This makes the hole generation process
costly and hard to repeat even if there are just minor changes in settings or scene
content.

Since both of the two production steps involve high degrees of manual work, a
repeated production with only minor changes in the 3D scene (e.g., an updated city
model or a change in planning models) is an expensive task. We propose to auto-
mate the overall generation process by providing a web service that implements this
process. The service takes a video description through its interface and automatically
creates video presentations using image-based portrayal services, namely Web View
Services (WVS) [6]. The video descriptions can be stored and reused, which facilitates
to recreate videos, e.g., with equal cutting and camera path but different versions of
the underlying data. Further, if underlying services are improved (e.g., new rendering
techniques that provide an improved visual quality for 3D renderings) it is very easy
to recreate video presentations with little or no costs, since no additional manual work
for video clip recording or post production is necessary. In this way, we provide a
high-level service that is able to provide additional value for owners of 3D city model
data and proof that these Web View Services provide an important part of 3D geodata
infrastructures [2].

The remainder of this report is organized as follows. Section 2 provides an overview
over the work related work. Section 3 describes the designed system, its components,
and the current implementation status. Finally, an outlook of planned future work con-
cludes this report in Section 4.

92 Fall Workshop 2013

2 Related Work

Figure 2: Overview over an optimized process for generating video presentations of
3D data. Video descriptions are created using a dedicated client application that also
triggers the video rendering process. Descriptions can be stored and reused to auto-
matically create video presentations using, e.g., extended or updated data or improved
image-based portrayal services.

2 Related Work

Previously, we presented solutions to distribute 3D geoinformation to different devices
and platforms (focused especially on web browsers and mobile devices) in homoge-
neous quality [3, 10]. Thes systems are based on a Web View Service [6] as image-
based 3D portrayal service encapsulating processing, management, and 3D rendering
of massive amounts of 3D geodata. Thin clients query interactive these services and
provide partial reconstructions of the 3D scene on the client side. This way, users
are able to interactively explore 3D geovirtual environments, which is important to gain
understanding of the 3D information. Nevertheless, the systems introduce so far are
missing a possibility to create artifacts that can be distributed easily. Currently, the only
articfacts that can be created using these client applications are static image. For the
work presented in this paper, we utilize the technology that has been developed before
to build a video editing client that can be used to define video presentation descriptions
using a variety of client platforms.

Currently the topic of automatic, distributed generation of video presentations from
3D data has primarily been addressed in the area of medical visualization. Iserhardt-
Bauer et al. introduce a system that encapsulates rendering of datasets acquired from
CT scanners [9]. They encapsulate hardware rendering behind a service interface in
to enable users to analyze the scan data without having to have specialized, pow-
erful graphics hardware available in end user devices. Unless our approach, the do
not support composite video presentations that are assembled from different, specif-
ically user designed camera path sequences and auxiliary sequences containing text
or images. The approach supports a standardized camera path only that cannot be
customized. Further the approach is limited to the very specific data generated by CT
scans. In contrast, our approach provides an abstraction over the underlying data by
using service-based rendering for image generation. Roßler et al. extended this ap-
proach by using a conventional GPU-based PC cluster [12]. As like our architecture,
they use a kind of manager process to perform dispatching and other supporting tasks.

Fall Workshop 2013 93

High-Quality Video Generation for Thin Clients - An Application for Image-Based 3D
Portrayal Services

Further, there are several approaches that are primarily targeted at bringing high-
end graphics to low-end devices. E.g., Lamberti et al. perform remote rendering of
complex 3D objects, e.g., containing several millions of voxels or textured polygons,
and stream the result encoded as video to clients [11]. This approach leaves the con-
figuration of camera parameters to clients, which are able to adjust the camera settings
interactively. It is designed to support interactive rendering of video streams and does
not provide a service interface for definition of complex video presentations as our
approach does.

3 A Service-Based System for Automated Generation
of Video Presentations

Generating video presentations of large scale 3D datasets is a resource intensive task.
We system described in this section allows to decompose the task of video generation
into reusable service components for definition of video presentations, image gener-
ation from 3D data, and video clip generation. The system is based on Web View
Services (WVS) for image generation introduced earlier [7] that is currently in a stan-
dardization process within the Open Geospatial Consortium (OGC). Since we want the
video service to be as responsive also during the generation process for single video
presentations, we created an asynchronous process to generate video presentations.
We separated the generation process into two services components: a) A frontend
evaluating and validating service requests and b) a video rendering component that
implements the more computationally expensive task of video clip generation. In this
way, clients do not receive a video presentation as response to their service request,
but the generation status is signaled using a callback mechanism (either via email
messages or calls to a remote URL).

3.1 Service Components

There are five main components within the system (see Figure 3 for an overview of the
framework architecture):

Video Editing Client The client application provides the user interface to specify
video sequences including scene contents, camera paths, and the transitions between
them. This way, we focus the user interaction on the one tasks of defining the complete
video presentation instead of distributing it into a clip recording and a postproduction
phase. Since the representation of video presentations in terms of the service interface
(see Section 3.2 for details) does not necessarily correlate with the process of defining
such presentations, the client application is built upon a cross platform library providing
utility functions, e.g., for creating camera paths or defining transition screens. The
client is able to store the video projects in a database allowing for reproduction and
adaption of videos that have been created once.

94 Fall Workshop 2013

3 A Service-Based System for Automated Generation of Video Presentations

Figure 3: Components of the service-based system for video clip generation from 3D
city model data. A video editing client is used to determine single clips, their camera
paths (supported by 3D Camera Services) and scene content, and their interconnec-
tion. Project descriptions are stored in a database for easy altering and reproduction of
video presentations. A Video Service instance utilizes Web View Services to retrieve
single video frames and combines them to video sequences.

3D Camera Service 3D camera services are utility services in 3D geodata infras-
tructures encapsulating the complexity of 3D camera path computation in complex 3D
environments such as virtual 3D city models [10]. The Video Editing Client can utilize
such services in order to support users in defining visually appealing camera transi-
tions. A 3D camera service is able to deliver proposals for such camera paths, which
can be customized by video editors in order to fulfill their navigation intentions.

Web View Service Web View Services encapsulate image generation from 3D data.
Each service provides portrayal capabilities for a specific set of data or for a specific
spatial region. By utilizing this service-based approach for rendering of 3D geodata,
the video service can be implemented without having to deal with the complexity of
geodata visualization. Several WVS instances can be used in one video presentation,
enabling the combination of data providers, each providing its own WVS instance with
its own content. This allows to use 3D geodata for visualization purposes, without
transferring geodata, which might be confidential or their access might be subject to a
charge.

Fall Workshop 2013 95

High-Quality Video Generation for Thin Clients - An Application for Image-Based 3D
Portrayal Services

Video Service The Video Service serves as a frontend providing the service interface
described in Section 3.2 to service consumers. Requests are parsed and validated by
this component. If a valid request was issued, a job for the Video Service Worker is
created and a confirmation is sent back to the service consumer. The video service
can also implement further application logic for authentication of service consumers as
well as functionality for billing.

Since video frame generation, especially for longer running video presentations,
generates a large amount of load to underlying portrayal services. Here, a Video Ser-
vice has the possibility to schedule video generation jobs to specific low traffic hours.
Depending on the priority of the video service request, a generation task can be sched-
uled immediately or can be postponed to be processed later when enough service
capacity is available.

Video Service Worker The worker performs the video rendering from single frames
that have been previously fetched from a WVS (in case of images of a 3D scene) or
generated by the service itself (e.g., overlay screens containing text or images). For
camera paths, the camera position and orientation is interpolated for every frame from
given camera paths. If two adjacent camera path sequences exist, the service is able to
connect the two paths so that no visible jumps in camera paths are visible. Videos are
often designed to communicate certain intentions. The worker service supports this
by providing possibilities to show intermediate screen containing text and images as
well as screen overlays that are shown over 3D flythrough sequences. Such overlays
usually contain logos (e.g., for project specific logos or contractor logos). The frames or
the necessary parts of them are rendered locally by the Video Service Worker. Since
all 3D rendering techniques are implemented as web-based portrayal service, a worker
implementation does not need hardware acceleration or any special hardware setup.
This way, a Video Service Worker can be deployed easily, also as cloud-based service.

3.2 Service Interface

We define a model for describing video presentations that is used for generating through
a GetVideo request allows to specify complex composite video presentations (see
Figure 4 for an object model). A Video has certain settings that are valid for the
overall presentation: The resolution of the video and a string defining the encoding
(codec) to be used. Further there are default settings for a video presentation that
can be overwritten by single sub elements of the document (e.g., specific point defini-
tions or camera path sequences). The spatial reference system (SRS) and the default
scene contents (defined as layer in WVS interface terms) are examples for such prop-
erties. A video presentations consists of one or more video sequences, that are
single parts of the video presentation with an assigned duration. We distinguish two
types of video sequences: CameraPath sequences are flythrough video clips that are
based on a camera path, that can be defined either explicitly by providing path ge-
ometry or implicitly, e.g, by defining camera tasks like rotation around a scene object.
The other kind of sequences are Screens that either show textual content or images
for a certain duration. Sequence objects area connected by SequenceTransition

96 Fall Workshop 2013

3 A Service-Based System for Automated Generation of Video Presentations

definitions. Here, the service needs to expose the types of sequence transitions it sup-
ports. There are two types of sequence transitions: a) Image based transitions, such
as different blending techniques that can connect all types of video sequences and b)
CameraPathTransitions that interpolate camera paths in order to connect them
without having non continuous camera paths. The transitions are assigned implicitly to
sequences using correlating indices.

Figure 4: Excerpt of the object model for describing video presentations in a service
request. A video contains one or more sequences, which may either be a camera
path through a 3D scene or a screen (either an image or text). Two sequences are
connected through sequence transitions that configure the blending properties and the
interpolation between two adjacent camera paths.

3.3 State of the Work

Currently the implementation of the video generation system is work in progress. We
implemented a first version of the video generation process including a basic Video
Service and a Video Service Worker.

The next steps we are currently working on is to implement a platform independent
client library that defines a process for defining video service descriptions. Our client is
currently build for tablet PCs based on the iOS operating system. Its visualization com-
ponent is following an image based approach introduced earlier based on the WVS we
are running [3]. The base data we are currently working with is the virtual 3D city model
of the city of Berlin, which is one of the largest, highly detailed, and fully textured 3D
city models that are available world wide. At the moment, the GetCapabilties operation
of the video service is not yet implemented, so the service is not yet self descriptive.
The supported content layers are always dependent

Fall Workshop 2013 97

References

4 Conclusions and Future Work

The implementation of a video production process that supports nearly arbitrary WVS
image sources massively facilitates the generation of video presentations in the con-
text of virtual 3D city model. The amount of manual effort, especially for regeneration
of video presentations due to updated data, is reduced significantly through the au-
tomatic, repeatable generation of video presentations. Using image-based portrayal
services to encapsulate complex 3D geodata management and 3D rendering provides
a major advantage since a video service can be implemented in a generic manner us-
ing the well defined WVS interface specification, which is going to be an OGC standard
for image-based portrayal of 3D geodata.

Currently image-based styling and post processing of frames is performed sepa-
rately for each WVS that is queried for images. This can cause an inhomogeneous ap-
pearance, since the is no standard way of implementing and configuring image-based
rendering effects, such as global illumination [4]. Therefore, as proposed by Hilde-
brandt [8], image-based styling could be externalized to a separate styling service that
processes single frames using the same implementations for image-based styling for
all sources.

The client for specification of 3D video presentation descriptions offers further possi-
bilities to explore 3D interaction techniques that are specfically designed to assist users
in specifying scene contents, 3D camera paths, and sequence transitions. Further, the
client implementations as well as the video service implementation can be further gen-
eralized to configure themselves according to GetCapabilties documents delivered
by WVS instances and the other services involved in the process.

References

[1] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering. A. K. Peters,
Ltd., Natick, MA, USA, 3rd edition, 2008.

[2] J. Basanow, P. Neis, S. Neubauer, A. Schilling, and A. Zipf. Towards 3D Spa-
tial Data Infrastructures (3D-SDI) based on open standards - experiences, re-
sults and future issues. In Advances in 3D Geoinformation Systems, Lecture
Notes in Geoinformation and Cartography, pages 65–86, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[3] J. Doellner, B. Hagedorn, and J. Klimke. Server-based rendering of large 3D
scenes for mobile devices using G-buffer cube maps. In Proceedings of the 17th
International Conference on 3D Web Technology, Web3D ’12, pages 97–100,
New York, NY, USA, 2012. ACM.

[4] W. Engel, editor. GPU Pro 4: Advanced Rendering Techniques. Routledge Chap-
man & Hall, 2013.

98 Fall Workshop 2013

References

[5] N. Gale, R. G. Golledge, J. W. Pellegrino, and S. Doherty. The acquisition and
integration of route knowledge in an unfamiliar neighborhood. Journal of Environ-
mental Psychology, 10(1):3–25, March 1990.

[6] B. Hagedorn. Web view service discussion paper, Version 0.6. 0. Open Geospatial
Consortium Inc, 2010.

[7] B. Hagedorn, D. Hildebrandt, and J. Döllner. Towards Advanced and Interactive
Web Perspective View Services. In Developments in 3D Geo-Information Sci-
ences, pages 33–51, Berlin/Heidelberg, 2009. Springer.

[8] D. Hildebrandt. Towards Service-Oriented, Standards- and Image-Based Styling
of 3D Geovirtual Environments. In Proceedings of the 5th Ph.D. Retreat of the
HPI Research School on Service-oriented Systems Engineering, pages 133–147,
2010.

[9] S. Iserhardt-Bauer, P. Hastreiter, T. Ertl, K. Eberhardt, and B. Tomandl. Case
study: Medical Web Service for the Automatic 3D Documentation for Neuroradio-
logical Diagnosis. In VIS ’01 Proceedings of the conference on Visualization ’01,
pages 425–428, Washington, DC, 2001. IEEE Computer Society.

[10] J. Klimke, B. Hagedorn, and J. Doellner. A Service-Oriented Platform for Inter-
active 3D Web Mapping. In M. Jobst, editor, Service-Oriented Mapping, pages
127–139, Vienna, 2012.

[11] F. Lamberti and A. Sanna. A streaming-based solution for remote visualization of
3D graphics on mobile devices. IEEE transactions on visualization and computer
graphics, 13(2):247–60, 2007.

[12] F. Rößler, T. Wolff, S. Iserhardt-Bauer, B. Tomandl, P. Hastreiter, and T. Ertl. Dis-
tributed Video Generation on a GPU-Cluster for the Web-Based Analysis of Med-
ical Image Data. In Kevin R. Cleary and Michael I. Miga, editors, Medical Imaging
2007: Visualization and Image-Guided Procedures, pages 650903–650903–9,
March 2007.

[13] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, 3rd
revised edition, 2012.

Fall Workshop 2013 99

100 Fall Workshop 2013

Ultra Mobile Devices: using the user’s
body as an interactive device

Pedro Lopes

Human Computer Interaction Group, Prof. Patrick Baudisch
Hasso-Plattner-Institut

pedro.lopes@hpi.uni-potsdam.de

We present a new type of wearable eyes-free interactive devices that use the user’s
body itself for input and output. Going beyond recent output-only muscle interfaces, we
have created a system that reads the state of the user’s muscles using electromyog-
raphy (EMG) and at the same time actuate the same muscle using electrical muscle
stimulation (EMS). We achieve thus using time-division multiplexing with a sample hold
circuit. Based on this technology, we are creating a series of simple sub-wearable in-
put/output devices. The benefits of embodies devices include (1) the wearable form
factor without visible input or output component allows users to interact with a com-
puter system in an inconspicuous way, (2) unless used, users’ hands are free, allowing
for micro-interactions; always available, (3) Exploiting the flexibility of the user’s arm,
we can embody several specialized devices, without the need to carry multiple devices,
and (4) good affordance resulting from input and output taking place in the same unified
space, allowing us to use the same gesture language for input and output.

1 Introduction: why haptics matter?

For a long time, the key to immersion in interactive experience and games was sought
in photorealistic graphics [1]. More recently, game makers made games more immer-
sive by requiring players to physically enact the game such as with Wii and Kinect. With
graphics and user interaction now part of many games, many researchers argue that
haptics and motion are the next step towards increasing immersion and realism, i.e.,
applying the forces triggered by the game onto the player’s body during the experience.

While some game events can be realistically rendered using one or more vibrotac-
tile actuators (e.g., driving over gravel in a racing game [3]), a much larger number of
gaming events result in directional forces, such as centrifugal forces pulling at a steer-
ing wheel or a car bumping into the railing. Such events have been simulated using
motion platforms actuated by motors and mechanics for stationary installations (such
as found in theme parks and research labs) or, for mobile situations, are simulated us-
ing robotic exoskeleton or other mechanical contraptions [7], as found in rehabilitation
and gaming exoskeletons.

Unfortunately, the size and weight of these devices tends to be proportional to what
they actuate. As a result, motion platforms not only tend to be prohibitively expensive,
large, heavy and thus stationary, limiting their use to arcades and lab environments.

Fall Workshop 2013 101

Ultra Mobile Devices: using the user’s body as an interactive device

Further, exoskeletons draw similar disadvantages because are also based on motors
and mechanical contraptions, thus are heavy and need to be installed on the user,
covering large portions the body. My research explores how to achieve similar effects
using mobile hardware, with smaller footprints.

2 Towards ultra-mobile interactive devices

We present a new type of wearable eyes-free interactive devices that use the user’s
body itself for input and output. Going beyond recent output-only muscle interfaces,
such as the possessed hand [6], we have created a system that reads the state of the
user’s muscles using electromyography (EMG) and at the same time actuate the same
muscle using electrical muscle stimulation (EMS). We achieve thus using time-division
multiplexing with a sample hold circuit. Based on this technology, we are creating a se-
ries of simple sub-wearable input/output devices. We envision these to be implemented
in the form of a wristband-shaped device that users wear invisibly at the forearm close
to the elbow that communicates with the user’s arm muscles using a set of electrodes.
Users invoke the device by performing an activation gesture, such as overextending
the hand or even posing the hand directly as the intended device. Our embodied video
player device, for example, responds by actuating the user’s muscles so as to form a
fader that moves automatically as the video plays. Users operate scrub the video back
and forward by moving the exact same muscle, and pushing it back and forth to adjust
the video play position. Users dismiss the device by performing a deactivation gesture.

The benefits of embodies devices include (1) the wearable form factor without vis-
ible input or output component allows users to interact with a computer system in
an inconspicuous way, (2) unless used, users’ hands are free, allowing for micro-
interactions; always available, (3) Exploiting the flexibility of the user’s arm, we can
embody several specialized devices, without the need to carry multiple devices, and
(4) good affordance resulting from input and output taking place in the same unified
space, allowing us to use the same gesture language for input and output.

2.1 Related Work: eyes-free mobile input is not-hands-free

To eyes-free interact with mobile technology, researchers have explored different ap-
proaches: from spatial touch exploration of the palm [2] to muscular contractions [5];
thus, accounting for hands-free situations. However, the response they get back from
the system comes through a rather unfortunate output channels, such as the visual
display on a smartphone, auditory, or through vibrotactile actuators. These channels
are not always available in mobile situations, such as crowded spaces and while walk-
ing. This means that, currently, there is a disconnection between input and output
modalities when it comes to mobile interactions.

Roudaut et. al showed how to unify the input and output channels for a touch-enable
mobile device [4]. Their prototype, Gesture Output, uses a unistroke alphabet for input
and output, the latter rendered through an actuated touchscreen that moves the user´s
finger. Unfortunately, such approach is not hands-free, since, to get an answer from

102 Fall Workshop 2013

2 Towards ultra-mobile interactive devices

the device, users need to be in contact with the mobile phone, through the actuated
surface.

In our research, we push the boundary of hands-free mobile interaction, by pur-
posely removing any external device, such as the smartphone, and instead appropri-
ating the users´ muscles as truly ubiquitous input and output devices. Therefore, the
same modality–poses–is employed for interacting with the system, or getting an answer
from the system.

2.2 Embodied Devices: on-body input and output

We present what we call embodied devices, i.e., interactive input/output devices that
communicate with the user by reading from and writing to the same muscle group.
In Figure 1: (a) the user controls presentation software. To rewinds the video (b) the
user invokes an em-bodied scrubbing device by performing an invocation gesture (here
over-extending the palm). The faded device is loaded and it responds by posing his
hand so as to reflect the current position in the video (and updates this pose in real-
time as the video advances). (c-d-e) the user now rewinds the video by actively posing
his hand so as to reflect the desired video position, here bending it backwards. In the
end, satisfied with the result, the user dis-misses the scrubbing device by performing a
dismiss gesture, here over-extending his palm again. Our device that implements the
embodied devices is typically worn invisibly under a sleeve.

Figure 1: Using the embodied device (slider) to control the playback of a video during
a presentation.

We further, by proposing a framework several embodied devices: joystick, slider
(shown in example above), combo-box, dial, and toggle. All together they provide truly
ubiquitous hands-free I/O interactions, which can take place in the most extreme mobile
conditions, such as walking or running.

Fall Workshop 2013 103

Ultra Mobile Devices: using the user’s body as an interactive device

3 The challenge of closing the I/O loop: Integrating ac-
tuation and sensing

For sensing we use an medical-grade Electromyography (EMG) circuit. For actuating
we use medical-grade EMS circuitry used in our previous publication. Given the differ-
ence in magnitude between the amplitudes of typical EMS-based actuation (between
10V to 30V) and sensing (around 1mV to 5mV), concurrent stimulation and sensing
read through the same electrode pair is not trivial. The consequence of a simultaneous
read-write is that the potential required to actuate a muscle through the skin damages
the precision differential amplifiers found in EMG sensors for reading.

Therefore to achieve concurrent muscle input and output, the proposed approach
is to switch back and forth between stimulation and sensing states. This is accom-
plished using a custom built time-division multiplexing (TDM) circuit with sample holds
per channel, based on as many channels as needed of optically isolated transistors
(commonly optocouplers) which are interleaved at 40Hz by an arduino nano microcon-
troller, minimal C code for pin switching code allows for time-wise stability. The circuit
was simulated using CircuitLab and is shown in Figure 2, with only one reading and
sensing channel for simplicity.

Figure 2: Simulated Time-domain Multiplexing circuit using CircuitLab, notice the high-
lighted capacitors for sample-hold feature (dashed rectangle).

104 Fall Workshop 2013

3 The challenge of closing the I/O loop: Integrating actuation and sensing

Given that sensing requires a smaller time-window than stimulation, we opted for
a unbalanced distribution of the time slots: stimulation is on for 80% of the period
(i.e., ns) and sensing for only 20%, as depicted on Figure 3. Furthermore, given that
voltages current dissipates over skin and muscles, we add a safety 100ns gap between
the uptime of each channel.

Figure 3: Realtime scope-view of multiplexing windows, for sensing and actuation.

3.1 Input using Electromyography

In order to achieve control over the user´s hand pose, the muscle configuration of the
hand pose must be known. We achieve this by sensing the muscle contractions with
Electromyography (EMG), and inferring the pose from a trained data model.

In order to achieve control over the user´s hand pose, we use a custom op-amp
based Electromyography sensor. To read the potential of a muscle contraction, three
electrodes are used, two at the extremities of the muscle, and the third close to a
neutral area, preferably bone. The circuit will pick up the difference in voltage from the
two electrodes attached to the muscle region, and use the electrode neat the bone as
a reference signal (the zero). The hardware design is comprised of four stages: three
operational amplifiers with differential design; and a rectifier. The gain on the rectifier
allows for a fine calibration of the sensor´s smooth coefficient at the rectification stage.
The op-amps are powered using two sources +9V and -9V (inverted). Sensor output
is sampled using a arduino nano microcontroller.

3.2 Discussion

Naturally the concept of embodied devices needs not to be restricted to the hands. The
whole body presents interesting muscle groups for rendering embodied devices. For
instance, Wagner et al. identified 18 places of interest for on-body interaction [8]. In
Figure 4 we show two designs of envisioned embodied devices for the biceps and the
feet. These additional possibilities open up interaction spaces for scenarios in which
the hands are occupied with another task.

Pursuing a whole-body exploration of embodied devices, which includes heavy
limbs, such as the whole arm or legs, requires new developments on the actuating

Fall Workshop 2013 105

Ultra Mobile Devices: using the user’s body as an interactive device

Figure 4: Additional form factors: (a) pivoting the feet up and down as an on/off switch,
and (b) a lever formed by raising the forearm through biceps flexion.

technique, since EMS-based actuation is currently limited to strong muscles with lighter
loads (fingers, hands, biceps), i.e., it is hard to control the lift of a heavy limb such as
the upper and lower leg.

4 On-going work and projects under submission

• Embodied devices: using the body for input/output (working title) , Pedro Lopes,
and Patrick Baudisch

• HapticTurk: Mobile Force Feedback Based on People (working title), Lung-Pan,
Pedro Lopes, and Patrick Baudisch

We proposed the concept of Embodied Devices–I/O devices that are shaped out
of the user’s hand muscles, using electrical muscle stimulation. With this approach,
extreme mobility is achieved because the same piece of hardware is able to render
multiple devices on the fly. Through a user study we will assess if the unification of I/O
channels reduces the translation step between input and output vocabularies.

We demonstrated how to effectively close the loop on body actuation by simultane-
ously sense and actuate the user’s muscles, using time-multiplexed electromyography
and electrical stimulation with sample hold circuitry.

As future work we are plan to explore how other parts of the body might suit for
interaction using embodied devices.

5 Acknowledgments

We would like to acknowledge our colleague Uwe Henschel for his input on analogue
circuitry.

106 Fall Workshop 2013

References

References

[1] Andreas Gaggioli and Ralf Breining. Perception and cognition in immersive virtual
reality. In Emerging Communication: Studies on New Technologies and Practices,
pages 71–86.

[2] Sean Gustafson, Christian Holz, and Patrick Baudisch. Imaginary phone: learn-
ing imaginary interfaces by transferring spatial memory from a familiar device. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology, UIST ’11, pages 283–292, New York, NY, USA, 2011. ACM.

[3] Ali Israr and Ivan Poupyrev. Tactile brush: drawing on skin with a tactile grid dis-
play. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, pages 2019–2028, New York, NY, USA, 2011. ACM.

[4] Anne Roudaut, Andreas Raus, Christoph Sterz, Max Plauth, Pedro Lopes, and
Patrick Baudisch. Gesture output: Eyes-free output: Using a force feedback touch
surface. In Proceedings of the 2013 annual conference on Human factors in com-
puting systems, CHI ’11, pages 543–552, New York, NY, USA, 2013. ACM.

[5] T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, and
James A. Landay. Enabling always-available input with muscle-computer interfaces.
In Proceedings of the 22nd annual ACM symposium on User interface software and
technology, UIST ’09, pages 167–176, New York, NY, USA, 2009. ACM.

[6] Emi Tamaki, Takashi Miyaki, and Jun Rekimoto. Possessedhand: techniques for
controlling human hands using electrical muscles stimuli. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages
543–552, New York, NY, USA, 2011. ACM.

[7] Dzmitry Tsetserukou, Katsunari Sato, and Susumu Tachi. Exointerfaces: novel
exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation.
In Proceedings of the 1st Augmented Human International Conference, AH ’10,
pages 1:1–1:6, New York, NY, USA, 2010. ACM.

[8] Julie Wagner, Mathieu Nancel, Sean G. Gustafson, Stephane Huot, and Wendy E.
Mackay. Body-centric design space for multi-surface interaction. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages
1299–1308, New York, NY, USA, 2013. ACM.

Fall Workshop 2013 107

108 Fall Workshop 2013

Adaptive Optimizations for
Data Structures in

Virtual Runtime Environments

Tobias Pape

Software Architecture Group
Hasso-Plattner-Institut

Tobias.Pape@hpi.uni-potsdam.de

Implementing data access semantics of programming languages that focus on sim-
plicity and purity often requires non-trivial compromises to achieve good performance.
While approaches exist to alleviate the penalties of certain data access semantics,
these either impact the simplicity and purity of the language design or require static
adjustments to language implementations or programs written in them. We present an
approach to improve the performances of data access dynamically at runtime that is
based on automatic, transparent data structure inlining. Initial benchmarks suggest that
our approach is a viable solution.

1 Data access: design versus performance

On of the key goals of programming language implementations is to be fast. Among
others, data access is an important part of language design and implementation that
needs attention to ensure good performance. While the design goals of languages
may include simple, consistent, and pure semantics for data access, it might not be
possible to implement them in a straight-forward way so that data access is actually fast.
Techniques such as just-in-time (JIT) compilation, method inlining, or meta-tracing are
used to speed up language implementations, however, performance gains with respect
to data access are often only achieved when either sacrificing simplicity in the language
design or correctness in the language implementation.

This is more severe the more machine model and language semantics differ. Func-
tional languages such as ML [9] or Lisp often focus on simple, pure data semantic: Lisp’s
fundamental data structure is the linked list built from a simple data structure with just a
data field and a next pointer. Long lists simply consist of many of those interlinked cells.
More complex data structures have the same basic foundation. This differs from the
common, prevalent machine model that favors contiguous memory, with rare exception
like the Lisp machines [7] that were built to follow the language and not vice versa. This
mismatch is accounted for by either changing the language, changing programs, or
implementing the language with non-trivial compromises.

We argue that it is possible and viable to retain simple and pure data access seman-
tics in a programming language and at the same time optimize data access dynamically
at runtime with less compromises necessary.

Fall Workshop 2013 109

Adaptive Optimizations for Data Structures in Virtual Runtime Environments

2 Data access in language implementations

Our approach is based on the notions of data access semantics and data access
implementation in the context of programming language implementations. This sec-
tion introduces these concepts, traditional optimization techniques and establishes our
working example.

2.1 Data access design and semantics

Language designers and implementors have to make compromises on different lev-
els to ensure consistency in language semantics and appropriate performance when
implementing those semantics.

As an example, the string data structure in Smalltalk is conceptually, merely a col-
lection of characters. Yet, in all relevant implementations, a string is not represented in
memory as a collection of character objects, but a separate structure. For an implemen-
tation the memory requirement for the intuitive collection-of-characters variant are, for
each string, an object to represent the collection and one for each individual character.
Compared to an opaque C string that merely provides collection-like semantics, but is
otherwise handled by specialized routines, the naïve variant traditionally is both slower
and more space-intensive. Hence, Smalltalk as a language [6] prefers the more efficient
variant to the more “pure” one, although purity has always been one of the key goals of
Smalltalk.

This is an instance of the “worse-is-better” approach [5], i.e., preferring implemen-
tation simplicity and performance to absolute correctness and completeness. Similar
compromises can be found in other languages that otherwise aim to be “pure” in the
above sense, e.g., in Scheme [1] and other Lisp dialects. In fact, only few languages,
if at all, support the idea of strings being actual collections of first class characters.
Generalizing this observation, language designers can

• choose pure, consistent data access semantics and accept potential performance
penalties in language implementations,

• provide specialized data access semantics for every possible case (e.g., special
semantics for strings, collections, fixed collections like arrays, objects, numbers
and so forth) thus enabling implementors to always choose the fastest implemen-
tations, or

• compromise between both and only break data access semantic purity in special
cases, e.g., for strings.

2.2 Current optimization strategies

Given data access semantics, language implementor can optimize data access in sev-
eral ways, with the most predominant ways following.

Should the semantics permit it, language implementors can provide different special-
ized data access mechanisms for different data types. The best known example from

110 Fall Workshop 2013

2 Data access in language implementations

this category might be fixed-sized arrays known from most imperative languages, e.g.,
C as a language even requires arrays fixed in size and specialized in their containing
data type. For virtual machine (VM) based languages, Java exhibits a similar behavior.

If language semantics require data access that would otherwise be slow when imple-
mented naively, language implementors can choose to present the said semantics to the
language level while pursuing a more efficient implementation hidden from the language
level. As long as no direct access to data is made, the hidden, high-performance form
can be retained and upon direct access, the semantically correct form is reified from
the hidden form and presented to the language level. An example for this behavior can
be found in the Cog Smalltalk VM [10], where the access to stack objects is done this
way. Reified data structures may introduce caching-like problems: when do the hidden
data change, when to update the language level data and so forth.

Language implementors can chose to not adhere to specified data access semantics
at all and just implement the fastest possibles way of data access. Obviously, this can
introduce incompatibilities between different implementations of the same language.

Either way, given sufficiently strict language semantics for data access, language
implementors have to sacrifice either performance or correctness.

2.3 Working example characteristics

For the rest of this paper, we use a working example to clarify our solution. As a foun-
dation, we assume an ML-like [9] language, i.e., functional with (by default) immutable
data. As with most functional languages, we assume that lists use the head–tail repre-
sentation, i.e., data access on lists is defined as:

• the first element of a list can be accessed directly (head or car1)

• the rest of the list (all but the first element) can be accessed as a list (tail or cdr)

• the rest of t the last element of a list is the empty list or nil.

This is equivalent to saying that lists are simply linked list, with the payload in the
first and the next-pointer in the second field of a two-field cell (commonly called cons
cell). Hence, a simple n-element list in our example takes the form as can be found
in Figure 1. Note that this is indeed the representation that most closely conveys the
languages semantics, but also is the most inefficient one, especially with respect to
random access.

1 2 ⊥n

Figure 1: Languages like Lisp or ML represent collections as linked cons-cells

1cell, cons, car, and cdr are the Lisp names of those concepts

Fall Workshop 2013 111

Adaptive Optimizations for Data Structures in Virtual Runtime Environments

3 Stable adaptive data structure inlining

Our approach to increase the data access performance for the scenario outlined previ-
ously is twofold. First, the combination of inlined data structures and a meta-tracing JIT
compiler eliminates operations necessary to access nested data structures; the inlining
rules are adaptive. Second, the warm-up time typically present in adaptive optimization
is mitigated by re-using profiling information of previous executions.

3.1 Data structure inlining

We combined the recognition of patterns in data structures [4] with meta-tracing just-
in-time (JIT) compilers [2] to provide a semantically correct but also fast means of data
access that works for highly nested data structures. The structure of a data structure
instance or cell (cf. section 2.3) is stored internally as its shape () and shared among
equally structured cells, as depicted in Figure 2. Often occurring patterns of nested
data structures are recognized and subsequently replaced with internal data structures
that use longer, array-based storage. Individual cells are reified upon access. The over-
head imposed by this recurring allocation is mitigated by employing a meta-tracing JIT
compiler.

1 2
⊥
n

1 2 ⊥n

pr
og
ra
m
m
in
g

la
ng
ua
ge

ru
nt
im
e

en
vi
ro
nm

en
t

Figure 2: Data Structures and shapes. Top: the language view; bottom: the default
implementation view with shapes

Without loss of generality, we consider cells to comprise storage, i.e., an indexable
piece of memory, and a shape. A shape essentially describes a (possibly nested) cell;
it comprises the abstract, structural representation of the cell a shape describes (the
cell’s structure), a mapping Index ×Shape→ Shape describing what new shape this
shape can be replaced with when a certain shape is found at a certain index in the cells
storage (the transformation rules), and profiling data built up during cell creation to
aid the creation of new transformation rules (the history).

A second type of shapes denotes that for a cell such shape describes no modifica-
tions have been made. Hence, these for these cells the language level access semantics
apply directly; we denote this by a • for every cell field in the cells structure as in Fig-
ure 2. These direct access shapes are commonly the leaves of a shapes structure tree.
Moreover, every type of cell has a default shape, a direct access shape. In Figure 2, the
default shape for a two-element cell is shown, denoted by the two •.

112 Fall Workshop 2013

3 Stable adaptive data structure inlining

3.1.1 Data structure merging

Under the assumption of immutable data (cf. section 2.3) data structures can only be
altered by creating new data structures. With this premise, our optimization technique
works by inlining cells upon their creation.

1
2

3
⊥
n1 + 2 3

⊥
n

Figure 3: When creating a new cell that should contain “1” and the list as shown, a new
cell that merges the “1” with the “2” cell and a different shape is created instead.

When a new cell is to be created, we handle the default shape s for the cell type
and the cell contents c as specified in algorithm 1. E.g., for the first cell from Figure 2,
the contents would be “1” and the rest list, and the default cell would resemble “s1”
from Figure 4. The simplified process is shown in Figure 3. We iterate over the cell
contents, and for each new child, we look up a possible new shape in the shape’s
transformation table. First, we encounter “1” at position 0. For this example, we say that
the transformation table does not contain a mapping for “1” at position 0, thus s′ will be
s and we continue with the next index.

…
2
1

m

…

…
k+1
k

⊥
n

Figure 5: The list, m
times inlined

At position 1, we find the rest list, whose shape is “s1”. In the
transformation table, the entry for “1, s1” holds a replacement
shape, “s2”. Thus, we splice the immediate cell storage of the
rest list into the current one as c′, which now has three elements.
Note that not the shape of the rest list child{shape} is changed
but rather the shape of the cell to-be-created s. To allow for
further transformations, we rewind the running index and start
over, and repeat this until no new transformations can be found.
The transformed shape and the altered storage are then used
to create a new cell. If every cell would be inlined up to the
maximum cell size m +1, the list would look like Figure 5.

Transparent child access Access to a cell’s children is reified, i. e., new objects
are created when children of cells are accessed. This technique bears similarities to
dynamic deopmitization [8], which is used in JIT compiled code to re-created original
code during debugging. In the case of the example, accessing the tail of the first element
of the list, would create a new cell with contents similar to Figure 5, however, starting at
“2” rather than at “1”.

3.1.2 Meta-tracing

While this approach on its own is suboptimal due to the numerous allocation during the
merging process and the reification step, when combined with a meta-tracing JIT com-
piler the performance is substantially better. The JIT compiler can recognize accesses

Fall Workshop 2013 113

Adaptive Optimizations for Data Structures in Virtual Runtime Environments

Input: s : Shape,c : [Cell]
i ← 0
while i < |c| do

child ← ci
s′← s{transformations}i ,child{shape} or s
if s′ 6= s then

c′←
[
c0,...,i−1,child{storage},ci+1,...,|c|

]
s← s′

// rewind over new storage:
i ← 0,c← c′

else
i ← i +1

end
end
return s,c

Algorithm 1: Merging nested cells based on shape.
merge : Shape× [Cell]→ Shape× [Cell].

s1
structure

0,
…

1,

1,

transformations

s2s1

s2 …

… … 0, n
…

1,

171,

3

history

s1

s2

…

s2

transformations
…

history
…

structure

Figure 4: Shape components: struc-
ture, transformations, and history.

to reified objects and shapes and eliminates them, as the typical reason to access a
field of a cell is to make it part of a new one, hence, the reified objects themselves are
only short-lived.

…
n-1
n

k

…

2
…
m

⊥
1

Figure 6: Reversed list

For the example list, a recursive implementation of list re-
versal (with accumulator) traditionally needs n allocations, one
for each cell of the reversed list. This number initially is higher
with inlining, 2n, due to reification. With the tracing JIT com-
piler, fewer than n allocations are necessary, as the short-lived
allocations are eliminated and the new list can be directly cre-
ated in its inlined form (cf. Figure 6). Therefore, with an inlining
depth of m, cells of size m can be handled in one step with
only one allocation, and the number of allocations would be
m/n.

3.1.3 Shape recognition

While it is possible to provide the transformation rules for the merging process ahead
of time, such rules would be static and possibly not fit for all workloads or applica-
tions. To tackle this problem, we record profiling data of how often what shapes are
encountered during cell creation. E.g., in the shape “s1” in Figure 4 has this profiling
information as its “history” property. In this case, we 17 times encountered a cell with
shape “s1” at position 1 and three times a cell with shape “s2” and so forth. When the
number of encounters reaches a threshold, we derive a new shape that reflects this
often-encountered structure. E.g., for the 17 times a cell with “s1” was found at position
1, a new shape is created with a structure similar to that of “s2” in Figure 4; it is nested
in position 1. For “s1”, a new transformation rule is added, to reflect the transition to the
new shape, (1, “s1”→“s2”) in this case.

114 Fall Workshop 2013

3 Stable adaptive data structure inlining

The effect of this recognition step is, the more often a certain structure is used, the
deeper the merging can be and, hence, the higher the possible speed-up can be. To
not create unbeknown large cells, we bound the merging depth with a threshold.

3.2 Stability for sustainable performance

The shape recognition approach shares a characteristic with typical optimizing JIT com-
pilers. They collect profiling data during un-optimized execution that serve as reasoning
base for creating optimized code. This is often called the learning phase.

3.2.1 Warm-up times

Collecting the profiling data takes time, especially because profiling happens during
un-optimized execution. This warm-up time is more severe in our shape recognition
approach, as new shapes and transformations between shapes can only happen in-
crementally. It is not possible to go from an un-inlined cell to a three-times inlined cell
in one step in the first run; there are several transformations from an un-inlined to a
one-time inlined cell necessary to actually create a two-times inlined cell in the first
place. This is, however, intentional: to not clutter the transformation table of a shape
with too many transformations, these transformations are only created after a certain
number of observing a shape, which is recorded in the shapes history (cf. Figure 4). This
threshold has also to be reached for every subsequent shape observation, to create a
new one describing a more inlined cell.

The meta-tracing JIT compiler does not help either, in this case, as it is explicitly
disabled during the learning phase; the JIT compiler would trace operations that are not
meant to be present once a stable base of transformation rules exists.

3.2.2 Cross-run profiling data

To minimize warm-up times, we introduced a persistent cache for our profiling data and,
moreover, the transition rules derived from them. These data are work-load-specific and,
hence, are typically only used once. The structure of our profiling data and transition
rules cope for that. The worst that could happen if cached data from a previous execution
is used for a non-fitting work-load is that no optimizations are applicable and the runtime
has to re-do the learning phase and warm-up its profiling data. I.e., the execution for the
non-fitting work-load would act as if no persistent profiling data was present whatsoever.

If, however, the work-load fits that of a previous run close enough, the profiling
data and, more important, the transformation rules can be used right away. This effect
can be seen in 7(b), where all warm-up that is present in 7(a) (thin lines, low number
of observations) is gone. There are fewer intermediate shapes and fewer branches,
indicating a higher performance.

Re-using profiling and transformation data leads to increasingly stable performance
for similar work-loads, since more optimized data structures can be used directly after
start-up. Note that the recognition mechanism is not, in fact, disabled when profiling and

Fall Workshop 2013 115

Adaptive Optimizations for Data Structures in Virtual Runtime Environments

Lreverse.cons2{|, |}

Cnil

1

Lr_acc.cons2{|, |}.nil0{}

1

Ccons..nil0{}

1

Lr_acc.cons2{|, cons2{|, cons2{|, |}}}.cons2{|, |}

1

Ccons..cons2{|, |}

3322

Lr_acc.cons2{|, cons2{|, |}}.cons2{|, cons2{|, |}}

3328

Lr_acc.cons2{|, cons2{|, cons2{|, |}}}.cons2{|, cons2{|, |}}

5

Ccons..cons2{|, cons2{|, |}}

3328

Lr_acc.cons2{|, |}.cons2{|, cons2{|, cons2{|, |}}}

3317

Lr_acc.cons2{|, cons2{|, cons2{|, |}}}.cons2{|, cons2{|, cons2{|, |}}}

6

Lr_acc.cons2{|, cons2{|, |}}.cons2{|, cons2{|, cons2{|, |}}}

10

Ccons..cons2{|, cons2{|, cons2{|, |}}}

3317

3321

Lr_acc.cons2{|, cons2{|, |}}.cons2{|, |}

11

Lr_acc.nil0{}.cons2{|, |}

1

6

11

5

10

(a) With warm-up; no cached data

Lreverse.cons2{|, |}

Cnil

1

Lr_acc.cons2{|, |}.nil0{}

1

Ccons..nil0{}

1

Lr_acc.cons2{|, cons2{|, cons2{|, |}}}.cons2{|, |}

1

Ccons..cons2{|, |}

3333

Lr_acc.cons2{|, cons2{|, |}}.cons2{|, cons2{|, |}}

3333

Ccons..cons2{|, cons2{|, |}}

3333

Lr_acc.cons2{|, |}.cons2{|, cons2{|, cons2{|, |}}}

3333

Ccons..cons2{|, cons2{|, cons2{|, |}}}

3333

3332

Lr_acc.nil0{}.cons2{|, |}

1

(b) No warm-up; with cached data

Figure 7: Transitions between observed shapes during the execution of reversing a
10 000 element list. The stronger the arrow, the more observations. The shapes are
denoted as “nameN{sub-shape. . . }” with N being the number of fields in a described
cell; direct access shapes are denoted as “|”.

transformation data are re-used but rather is invoked less often. When a no-fitting work-
load is executed, the recognition mechanism updates the profiling and transformation
data accordingly. These new learned data are also persisted at the end of execution.

4 Preliminary results

To evaluate our approach, we implemented a prototypical runtime that uses the data
structure inlining and profile data caching approaches. This section provides the proto-
type’s characteristics and the results of a mirco-benchmark.

4.1 Prototype characteristics

We implemented an execution environment based on a strict λ -calculus that has ML-like
semantics. Data is represented as constructors, i.e., generalized cons-cells with an
arbitrary number of fields and a tag for type identification. Behavior is specified using
λ functions with simple pattern matching based on constructor structure. All data is
immutable. However, there is no language to speak of, yet. The prototype is built using
the RPython toolchain of the Pypy project [2] with its meta-tracing JIT compiler.

4.2 Setup and Results

As a micro-benchmark, we chose a simple list reversal, matching the description in
section 3.1.2. We profiled the timings of reversing lists of different sizes under no

116 Fall Workshop 2013

4 Preliminary results

optimization, with pre-defined transformation rules (cf. section 3.1.1), and with automatic
recognition of transformation rules (cf. section 3.1.3). Second, this experiment was
repeated once without and once with cross-run profiling data (cf. section 3.2.2). We
had our prototype reveres lists of up to 100 million elements. The runtime of the first
experiment part is given in Figure 8.

All benchmarks were run on a 64 bit Linux version 3.2 on a multi-core, 2.0 GHz
Intel Xeon E5-2650 processor with 16 GB of RAM available. Since all runs were done
un-parallelized, the number of cores (four) was irrelevant to the experiment. The machine
was dedicated to the benchmarks.

As thresholds for the recognition algorithm indicated in section 3.1.3, we chose a
maximum cell size of seven fields and require at least 23 occurrences of a shape before
new shapes are created.

0.05
0.07
0.10.1

0.2
0.3

0.5
0.7

11

2
3

5
7

1010

20
30

0 10
million

20
million

30
million

40
million

50
million

60
million

70
million

80
million

90
million

100
million

Problem size

R
u

n
ti
m

e
 (

s
)

lo
g

1
0

Optimization

Recognition

Inlining only

None

Figure 8: Runtime results for reversing list of different lengths. Configurations as indi-
cated. The data points were smoothed using local regression [3]; the semi-transparent
areas are based on standard deviation of each data point. Note the logarithmic scale.

The results for the cross-run optimizations, however, only show minor improvements.

4.3 Discussion

The benchmark results indicate a systematic speed-up of our inlining approach com-
pared with the un-optimized case. Improvements range from 0.6 times to an order of
magnitude faster. The speed-up even increases with increasing problem size. Both inlin-
ing variants, without and with automatic shape recognition, experience these speed-up
rates.

Comparing the two inlining variants, the differences in runtime are minor, with the
automatic shape recognition variant experiencing a higher speed-up rate with increasing
problem size. This indicates that our automatically recognized transition rules match
those that were hand-crafted and created specifically for this benchmark. Therefore, our
recognition approach seems to be a viable optimization basis.

Fall Workshop 2013 117

References

During the experiment, we also noticed that the memory demand of the non-optimized
variant was significantly greater than for the optimized variant, with a peek of 9500 MB
for the 100 million element test run. Future experiments will include more thorough
memory measurements.

5 Related work

Our inlining approach is related to earlier work, mainly concerned with memory saving
for statically typed functional languages. During the 1990’s, several approaches for
inlining lists in ML were proposed, with Shao, Reppy, and Appel [11] being pioneers in
so far as they provided a formally verifiable approach. For the special case of object
inlining, Wimmer [12] presented recent work, that is targeted at the Java language

These approaches work at the language level and not, like our approach, on the
language implementation level. This typically requires programs to be prepared, e.g., by
re-compiling or rewriting. Our approach does not require any language-level preparation.
In fact, while the traditional approaches rely on ahead-of-time compilation, we optimize
the programs at runtime only with JIT compilation. This allows for more workload-specific
optimizations.

The shape-recording approach is related to the hash-consing approach, a popular
optimization technique in functional languages, with recent results by Filliâtre and Con-
chon [4] for ML-like languages. The idea of hash-consing is to cache similarly structured
data structures after they are no longer needed to avoid the allocation of new structures.
This is a different intent, but the basic idea to optimize on the data’s structure is similar.
Note that hash-consing, too, is a language-level optimization.

6 Conclusion and outlook

Our approach to data optimization can improve the performance of data access while
retaining simple, consistent language semantics. We observed speed-ups up to an
order of magnitude at best. The difference between the approach with pre-defined
transition rules and automatically derived transition rules is minor which suggests that
the automatic recognition is a viable way to generate workload-specific optimizations.

The improvements of the cross-run optimizations are still minor.
Evaluation up until now only includes micro-benchmarks for selected data structures.

We plan to conduct micro-benchmarks for different, more heterogenous data structures
as well as equip an ML implementation with our optimization to test it under more
realistic conditions.

References

[1] Norman I. Adams, IV, David H. Bartley, Gary Brooks, R. Kent Dybvig, Daniel Paul
Friedman, Robert Halstead, Chris Hanson, Christopher Thomas Haynes, Eugene
Kohlbecker, Don Oxley, Kent M. Pitman, Guillermo Juan Rozas, Guy Lewis Steele,

118 Fall Workshop 2013

References

Jr., Gerald Jay Sussman, Mitchell Wand, and Harold Abelson. Revised5 report on
the algorithmic language scheme. SIGPLAN Not., 33:26–76, September 1998.

[2] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, pages 18–25, New York, NY, USA,
2009. ACM.

[3] William S Cleveland, Eric Grosse, and William M Shyu. Local regression models.
Statistical models in S, pages 309–376, 1992.

[4] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-consing.
In Proceedings of the 2006 Workshop on ML, ML ’06, pages 12–19, New York, NY,
USA, 2006. ACM.

[5] Richard P Gabriel. Lisp: Good news, bad news, how to win big. AI Expert,
6(6):30–39, 1991.

[6] Adele Goldberg and David Robson. Smalltalk-80: the language and its implemen-
tation. Addison-Wesley Longman, Boston, MA, USA, 1983.

[7] Richard D. Greenblatt, Thomas F. Knight, John T. Holloway, and David A. Moon. A
lisp machine. SIGIR Forum, 15(2):137–138, March 1980.

[8] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with
dynamic deoptimization. SIGPLAN Not., 27(7):32–43, July 1992.

[9] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML, revised edition. MIT Press, 1997.

[10] Eliot Miranda. Under cover contexts and the big frame-up. Online, Septem-
ber 14 2009. http://www.mirandabanda.org/cogblog/2009/01/
14/under-cover-contexts-and-the-big-frame-up/ (accessed
2012-02-29).

[11] Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling lists. SIGPLAN Lisp
Pointers, VII(3):185–195, July 1994.

[12] Christian Wimmer. Automatic object inlining in a Java virtual machine. PhD thesis,
University of California, 2008.

Fall Workshop 2013 119

120 Fall Workshop 2013

Challenges and Approaches of
Interaction Techniques for
Multi-Perspective Views

Sebastian Pasewaldt

Computer Graphics Systems Group
Hasso-Plattner-Institut

sebastian.pasewaldt@hpi.uni-potsdam.de

This paper discusses challenges and approaches of interaction and navigation
techniques for multi-perspective views (MPVs) in the context of 3D geovirtual envi-
ronments. In contrast to single-perspective views, MPVs seamlessly combine multiple
views from different perspectives in one image to reduce occlusion and visual clutter
while providing additional context information. Current 3D geovirtual environments of-
ten provide a single-perspective view and corresponding interaction techniques, which
are based on ray-casting. Applying ray-casting interaction techniques to MPVs intro-
duces a number of technical challenges. We exemplary show how existing interaction
techniques can be adapted to be applicable to multi-perspective city panoramas. Fur-
ther, we introduce interaction techniques that enable a fast and directed exploration of
virtual 3D building models based on a multi-perspective detail+overview prototype.

1 Introduction

Current interactive 3D geovirtual environments (3D GeoVEs, e.g., Google Earth) mostly
rely on single-perspective views because they emulate the human’s optical system and
perception. These single-perspective views have a number of drawbacks, such as oc-
clusion, perspective distortion, and visual clutter, which complicate the communication
of geoinformation. To reduce occlusion and increase screen-space utilization, land-
scape artists seamlessly combine multiple perspective views in one image. Recent
advances in computer graphics hardware, in particular the programmable graphics
pipeline, facilitate the implementation of interactive MPVs (Fig. 1 e.g., [9] and [10]).

MPVs can be generated (1) by deforming the geometric representation (the 3D
scene) [10], (2) by modifying the projection of the virtual camera [6], or (3) by com-
bining multiple images using a multiple center-of-projection camera model [12]. To
achieve interactive frame rates, these modification are applied during image synthesis
using programmable shaders of computer graphics hardware, i.e., the MPVs are gen-
erated on a per-frame basis, while the underlying geometric representation remains
unchanged.

Fall Workshop 2013 121

Challenges and Approaches of Interaction Techniques for Multi-Perspective Views

Figure 1: Example of a city panorama [10]. The virtual 3D city model is bended towards
the user to increase screen-space utilization and reduce occlusion. To reduce the
visual complexity, different level-of-abstraction of the virtual city model are seamlessly
blended.

Current interaction techniques often rely on ray-casting [13] (Fig. 2): A ray R =
(O,D) that originates from the mouse-position and is perpendicular to the viewplane
is cast into the 3D scene. The ray is projected into the coordinate system of the 3D
scene, yielding it’s origin O and direction D. A list of intersections points I= {I0, . . . , In}
of R with the 3D scene’s objects is computed, by traversing the complete 3D scene
and calculating the individual intersections. Generally, the first intersection I0 of R with
the 3D scene determines the object, which should be interacted with, or the position,
where the camera should be placed at. Since the current image does not depict a
view of the original 3D scene, but a modified multi-perspective image, the ray-casting
must not be executed on the original scene in order to yield correct intersections. For
example, a selection of an object in the upper parts of the MPV results in a ray that
runs above the scene and thus yields no intersections.

In this paper we propose an image-based approach for interacting with city panora-
mas using G-Buffers [14]. Beside the color image, additional images that encode
vertex, normal and object identifier information, are generated during image synthe-
sis. Instead of ray-casts, the G-Buffer is sampled at the mouse position to determine
the object and it’s position under the mouse cursor. We present how existing MPV,
such as city panoramas [10], can be adapted to be used with image-based interac-
tion and navigation techniques. Further, we demonstrate how G-Buffer information
can be used to implement fast and directed navigation techniques for multi-perspective
detail+overview visualization of virtual 3D building models.

122 Fall Workshop 2013

2 The Interaction Process

Figure 2: A ray R = (O,D) is cast perpendicular to the viewplane into the 3D scene.
The intersection I = {I0, . . . , In} of the ray with the scene determines the objects that
should be interacted with.

2 The Interaction Process

Interaction is an important aspect of information systems, such as 3D GeoVEs, be-
cause it enables the analysis, exploration and management of data, which would oth-
erwise be hidden in the data set. The interaction process can be subdivided into three
system components (Fig. 3): (A) the user, (B) the information system and (C) the user-
interface. In the following, the interaction process is illustrated based on an uni-modal
process model, i.e., only one output and input channel exists for the communication of
the user with the system. The user interface of the 3D GeoVE presents geoinformation
via an output channel (1.) (e.g., a display). The output information (2.) include a visual
representation of geoinformation (the 3D geovisualization) and user-interface elements
(e.g., buttons). To support a user (3.) to process the output information, cognitive ca-
pabilities, such as pre-attentive perception and pattern recognition, can be taken into
consideration for the design of 3D geovisualization techniques. Based on the extracted
information and the current task, a user may want to modify the visualization. Utilizing
input devices (e.g., mouse or keyboard), the user emits interaction inputs (4.) via the
input channel (5.). The information system (6.) processes the interaction input and
updates its internal state (e.g., modifies the position of the virtual camera).

Interaction techniques are algorithms that process the interaction input (4.) and up-
date the information system (6.). An update of the information system includes actions
directly influencing the visualization process, such as the filtering of data, the modifi-
cation of data mapping and the configuration of the rendering process. For example, a
user can drill-down the information by filtering the raw data or by adjusting the mapping
of data to visual variables. Further, a user can modify the current view, for example by
changing the virtual camera. Thus, interaction techniques enable a user to move and
navigate through the 3D GeoVE.

Fall Workshop 2013 123

Challenges and Approaches of Interaction Techniques for Multi-Perspective Views

Figure 3: The interaction process is a feedback loop, where a user interacts with a
information system utilizing a user interface. To change the presented information (2),
which are provided by an output channel (1), a user provides interaction input (4) using
an input channel (5). The input is processed by the information system and the output
channel is updated.

Navigation is the "aggregate task of wayfinding and motion" [4]. Wayfinding is the
cognitive element of navigation, i.e., it does not involve movement of any kind but only
tactical and strategic parts that guides the movement. In the following, interaction
techniques that enable a movement through the 3D GeoVE (i.e., an update of the
virtual camera), are called navigation techniques.

Navigation techniques can be categorized into basic and assisting techniques. Ba-
sic techniques allow a user to directly manipulate the six degrees-of-freedom of the
virtual camera, and thus an unconstrained movement. For example, orbit-navigation
techniques map interaction inputs of the mouse to a camera rotation around a pivot
point. This unconstrained movement can frequently lead to confusing and disorienting
situations, since staying oriented in the virtual environment, i.e., relating elements of
the 3D GeoVE to a known spatial context, is a non-trivial task [2]. Assisting camera-
interaction techniques try to cope with this challenge by reducing the virtual camera’s
degrees-of-freedom. Further, they can prevent collisions of a user with parts of the
virtual environment and can also adapt the movement speed of the virtual camera [8].

In addition to optimizing navigation techniques to assist a user during a task, the
reduction of necessary interactions can improve a user’s performance. This can be
achieved by a task-specific design of the output information (2). For example, in the
context of navigation systems for 3D virtual city models, city panoramas are a promis-
ing approach [10]. By displaying additional context information and reducing occlusion,
more task-relevant geoinformation are presented, which otherwise would only be vis-
ible after multiple user interactions. To ease the exploration of thematic information

124 Fall Workshop 2013

3 City Panoramas

mapped to 3D virtual building models, multi-perspective building panoramas can be
used [11] in addition to a perspective 3D view. The building panorama provides an
overview and, thus, eases the processing of output information (3.) (e.g., by assist-
ing the user to identify patterns in thematic data). Further, the building panorama can
be used to implement direct navigation techniques such as the point-and-click naviga-
tion technique. A single click on a point-of-interest in the panorama places the virtual
camera directly over the point-of-interest. This reduces the number of necessary inter-
actions significantly, because panning and rotating are replaced by a single click.

The following sections do not focus on the design of MPVs for 3D GeoVEs, but on
how existing ray-cast based interaction and navigation techniques can be adjusted in
order to be applicable for MPVs (Section 3). For detailed information on the design
process and implementation of MPVs, we refer to [10,11]. Further, this paper demon-
strates the potential of building panoramas to implement directed navigation techniques
(Section 4).

3 City Panoramas

The presented city panoramas are based on the multi-scale, multi-perspective visual-
ization technique of Pasewaldt et al. [10]. The virtual 3D city model is bended towards
the user to reduce occlusion, perspective distortion, and visual clutter while increase
screen-space usage (Fig. 1). The panorama is generated by deforming (i.e., translat-
ing and rotating) every vertex of the scene’s geometry based on a parametric curve.
Due to the geometric complexity of the scene (e.g., millions of vertices), a CPU-based
implementation of this compute-intensive process could result in non-interactive frame
rates. Instead, the scene is deformed on a per-frame basis during image synthesis, us-
ing programmable computation units (e.g., vertex shaders) of the graphics card, while
the original scene remains unchanged.

Due to the differences between the original and the per-frame deformation of the 3D
scene geometry, ray-casting interaction techniques are not applicable. A ray that is cast
into the deformed parts of the multi-perspective image (Fig. 4A) would yield no inter-
sections, since the intersection computation is executed on the CPU using the original
(undeformed) 3D scene (Fig. 4B). A possible approache to cope with this challenge
is (1) to deform the 3D scene for every ray-cast or (2) to deform the ray as well. The
first approach often results in latencies during interaction for complex scenes, since
the compute-intensive deformation process must be executed in order to implement
the ray-casting. The deformation of the ray is also not applicable because of the math-
ematics properties of the projection/deformation (e.g., no inverse function is defined).
Further, the combination of multiple level-of-abstractions [5] during runtime introduces
another challenge: It is unclear which level-of-abstraction is currently displayed under
the mouse cursor.

To cope with this challenges, image-based navigation techniques [8] can be used,
which uses G-Buffers to determine the object or pivot point, which should be interacted
with. Instead of casting a ray into a 3D scene, the ray is cast into a 2-dimensional
image-based representation of the 3D scene to compute intersections. The G-Buffer
is generated during image synthesis, by rendering the deformed 3D scene into vertex,

Fall Workshop 2013 125

Challenges and Approaches of Interaction Techniques for Multi-Perspective Views

Figure 4: Since ray-casting is performed on the undeformed scene (B), a ray cast of
the user that should yield an intersection I1 with a building in the deformed scene (A),
does not result in any intersection.

normal and object-ID images. As a result, the G-Buffer contains the deformed multi-
perspective image and ray-casting yields a correct result.

For city panoramas, the image-based navigation technique of McCrae et al. [8]
has been adapted. It enables navigation with 3D scenes of any size, i.e., from in-
door scenes to virtual globes, by modulating the movement speed based on distance
information and avoiding collisions. The distance information is sampled from an omni-
directional cube map with depth information. In order to combine McCrae’s navigation
technique with the city panoramas, the following modifications have to be implemented:
(1) the vertex shader that is responsible for the deformation of the MPVs is also applied
for the cube-map rendering; (2) the G-Buffer information of the MPV has to be made
available for the navigation technique.

4 Building Panoramas

Building panoramas are MPVs that arrange building façades side-by-side in one im-
age [11]. They offer an overview of the complete virtual 3D building model and they
further reduce perspective distortion by depicting each façade with an orthographic
projection. The building panorama (top) complements a 3D perspective view (bottom)
in a detail+overview prototype for the interactive exploration of thematic information
(e.g., heat transfer or solar insolation) of virtual 3D building models (Fig. 6). The multi-
perspective overview facilitates the identification and comparison of patterns and the
3D view enables a detailed exploration. Both viewports are linked bi-directional us-
ing G-Buffer information, i.e., interactions in the overview are propagated to the detail
view and vice versa. Thus, the multi-perspective building panorama does not only of-
fer an overview, but also enables the implementation of fast and directed interaction
techniques.

126 Fall Workshop 2013

4 Building Panoramas

Figure 5: The vertex image of the G-Buffer is used to determine the look-to vector Vto
of the virtual camera. The look-from vector Vf rom is computed by translating Vto along
the normal vector N, which is extracted from the normal image.

We suggest the following navigation techniques:
(1) Point-and-Click interaction: Clicking on a point-of-interest in the overview directly
places the 3D view on this point of interest. Compared to a combination of multiple
zooming, panning and rotation, the point-and-click interaction reduces the number of
interactions to a single click. Further, it is more precise, since users have to control
only two degrees of freedom in the 2D image instead of six in the 3D scene.
(2) Hover-interaction: Instead of clicking in the overview, a hovering of the mouse
continuously updates the virtual camera of the 3D view. As with the point-and-click
interaction the camera’s viewing direction is perpendicular to the building façade, to
reduce perspective distortion. The hover-interaction technique enables an exploration
of the building model similar to the Hovercam of Khan et al. [7].

The placement of the virtual camera, i.e., the look-from vector (Vf rom) and the look-
to vector (Vto), is calculated based on G-Buffer information (Fig. 5). Vto is a position on
the façade and can be extracted by sampling the vertex image. To place the camera
perpendicular to the virtual 3D building model, the normal N is sampled from the vertex
image. The final look-from vector is computed by translating Vto along N.

Fall Workshop 2013 127

Challenges and Approaches of Interaction Techniques for Multi-Perspective Views

Figure 6: Detail+overview prototype for the exploration of virtual 3D building models
[11]. The 2D multi-perspective view (top) offers overview and is used for direct and fast
interaction with the 3D detail view (bottom).

We experienced that the user can get lost in the 3D scene at a high zoom level of
the 3D view, since the mental mapping between the 3D view and the 2D overview can
hardly be established due to missing context information. To cope with this challenge, a
G-Buffer based highlighting of the 3D view frustum in the building panorama has been
implemented.

5 Discussions

The representation of the 3D scene geometry by G-Buffers enables the implementation
of image-based interaction techniques for MPVs. One drawback of the G-Buffers is that
they are only a 2-dimensional representation of the 3D scene. Due to occlusion, they
only contain parts of the scene and as a result, a ray cast into the image always yield at
most one intersection. Interaction techniques, such as a selection of all scene objects
along a ray cannot be implemented. One approach to cope with this challenge, is to
use A-Buffers [3]. These buffers do not only include the "visible" geometric information
of the frontmost object, but also all occluded objects.

128 Fall Workshop 2013

6 Conclusions & Future Work

A second drawback are the additional rendering overhead and memory require-
ments to generate the G-Buffers. Using multiple render targets (MRT [15]) the render-
ing overhead can be significantly reduced, since no additional rendering passes must
be executed. Further, G-Buffer are often a byproduct of today’s image-based post pro-
cessing techniques, such as screen-based ambient occlusion [1], which are used to
increase depth perception.

The proposed navigation techniques for the building panorama are a promising
approach for the interactive exploration of virtual 3D building models, since they reduce
the number of necessary interactions to move to a point-of-interest. Nevertheless, user
tests will have to proof, whether this reduces the task completion time.

6 Conclusions & Future Work

Multi-perspective views are novel and promising visualization techniques to commu-
nicate 3D geoinformation. Due to the design and implementation of MPVs, ray-cast
based interaction techniques are often not applicable. We presented how G-Buffer in-
formation of today’s 3D geovisualization techniques can be used for the implementation
of image-based navigation and interaction techniques. Further, we outlined the poten-
tials of building panoramas to facilitate the implementation of navigation techniques for
a detail+overview visualization system.

Effective interactions and navigation techniques are one approach to optimize the
interaction process and thus decrease a user’s task completion time. An orthogonal
approach is to reduce the number of necessary interactions. This can be achieved
by a user- and task-specific design of the information presentation, i.e., visualization
technique. For example, the exploratory visualization of virtual 3D building models
requires a user, to generate an overview of the data set before a detailed analysis
can be performed. Since a single-perspective view frequently is used, large parts of
a virtual 3D building model are occluded. As a result, a user has to needs a series of
pan, rotation and zoom operations to adjust the virtual camera to get an overview. This
is a time-consuming and tedious task. Using the proposed multi-perspective building
panorama to provide an overview of all building façades in one image could supersede
these interactions.

Up to this point, these are theoretically considerations. Currently, we are preparing
a series of user studies to prove that our concepts are suitable for building and city
panoramas. Beside the task-completion time, a crucial part of these studies are eye-
tracking tests, since they can be used to gain insights into the perception of a user.
Based on the insights, the design of MPVs will be adjusted.

Fall Workshop 2013 129

References

References

[1] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space horizon-based
ambient occlusion. In ACM SIGGRAPH’08 talks, SIGGRAPH ’08, 2008. ACM.

[2] Henrik Buchholz, Johannes Bohnet, and Jürgen Döllner. Smart and Physically-
Based Navigation in 3D Geovirtual Environments. In Proc. IEEE IV, pages 629–
635. IEEE Computer Society Press, 2005.

[3] Loren Carpenter. The A-buffer, an antialiased hidden surface method. ACM SIG-
GRAPH’84, 18(3):103–108, ACM, 1984.

[4] Rudolph P. Darken and Barry Peterson. Spatial Orientation, Wayfinding, and Rep-
resentation. In Handbook of Virtual Environments: Design, Implementation, and
Applications, pages 493–518, 2001.

[5] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. Abstract representations for
interactive visualization of virtual 3D city models. Computers, Environment and
Urban Systems, 33(5):375–387, 2009.

[6] Peter M. Hall, John Collomosse, Yi-Zhe Song, Peiyi Shen, and Chuan Li. RT-
cams: A New Perspective on Nonphotorealistic Rendering from Photographs.
IEEE Trans. Vis. Graph., 13(5):966–979, IEEE, 2007.

[7] Azam Khan, Ben Komalo, Jos Stam, George Fitzmaurice, and Gordon Kurten-
bach. HoverCam: interactive 3D navigation for proximal object inspection. In
Proc. I3D, pages 73–80. ACM, 2005.

[8] James McCrae, Igor Mordatch, Michael Glueck, and Azam Khan. Multiscale 3D
navigation. In Symposium on Interactive 3D Graphics, I3D ’09, pages 7–14. ACM,
2009.

[9] Sebastian Möser, Patrick Degener, Roland Wahl, and Reinhard Klein. Context
Aware Terrain Visualization for Wayfinding and Navigation. Computer Graphics
Forum, 27(7):1853–1860, 2008.

[10] Sebastian Pasewaldt, Matthias Trapp, and Jürgen Döllner. Multiscale Visualization
of 3D Geovirtual Environments Using View-Dependent Multi-Perspective Views.
Journal of WSCG, 19(3):111–118, 2011.

[11] Sebastian Pasewaldt, Matthias Trapp, and Jürgen Döllner. Multi-Perspective De-
tail+Overview Visualization for 3D Building Exploration. In Wen Tang Silvester
Czanner, editor, Proceedings of 11th Theory and Practice of Computer Graph-
ics 2013 Conference (TP.CG.2013), pages 57–64. The Eurographics Association,
2013.

[12] Voicu Popescu, Paul Rosen, and Nicoletta Adamo-Villani. The graph camera.
ACM Trans. Graph., 28(5):1, ACM, 2009.

130 Fall Workshop 2013

References

[13] Scott Roth. Ray Casting for Modeling Solids. Computer Graphics and Image
Processing, 18(2):109–144, 1982.

[14] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D
shapes. ACM SIGGRAPH’90, 24(4):197–206, ACM, 1990.

[15] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 2.0). The Khronos Group Inc., 2004.

Fall Workshop 2013 131

132 Fall Workshop 2013

Architectures for Highly-Available
Applications with Non-HA Infrastructure

Daniel Richter

Operating Systems and Middleware Group
Hasso-Plattner-Institut

daniel.richter@hpi.uni-potsdam.de

Next-generation data centers rely less on resilient infrastructure such as power sup-
ply, cooling, storage, or processors than previous generations. The availability of appli-
cations running with such infrastructure should be ensured by an appropriate architec-
ture of these applications. DB Systel as a project partner wants to develop applications
for next-generations data centers and needs recommendations for those architectures.

1 Introduction

One of the main concerns of IT operations is business continuity—companies rely on
the availability of their information systems to run their operations. Today’s data centers
achieve this availability with the help of reliable infrastructure or platforms. Reliable in-
frastructure means for example the use of redundant hardware like multiple power sup-
plies, RAID storage systems, or specialized hardware architectures like VAX. Because
of great expenses for those hardware, there is the intention to make future software-
intensive systems high-available with the help of software and middleware rather than
with the help of hardware and platform. [7]

One mean to make applications more reliable and available is to make it fault tol-
erant. The phases of fault tolerance [8] are—after a latent fault was activated and
became an error—error detection and error processing. Error processing consists of
error recovery or error mitigation and can be solved using the following patterns: [9]

• Reconfiguration: Change the functional structure (add, remove or replace com-
ponents), or change the internal processing configuration (so the external func-
tionality remains the same) [1] [6] [10]

• Retry: Use redundancy in time (execute the same action again later), space (use
different instances of services) or information (use an other data presentation)

• Repair: Remove the fault that causes the error (what in most cases requires
manual action)

Those error detection and processing methods can be applied on different levels of
abstraction. The following enumerations shows some examples:

Fall Workshop 2013 133

Highly-Available Applications with Non-HA Infrastructure

Figure 1: Levels of Error Processing

• Infrastructure: Usually, high-availability at infrastructure level is achieved by us-
ing specialized hardware and redundancy (in space). Examples are arrays of
independent disks, network cards, power supply, etc. Those solutions generally
cause high expenses.

• Platform: A popular way to make a platform high-available is to use replication.
So the a hypervisor is able to replicate or migrate virtual machines. It is possible
to run two virtual machines in fail-over configurations such as active-active or
active-passive. In case of an error (at infrastructure level) the whole platform can
be restored on or migrated to other infrastructure. Challenges at this level are
to detect possible (future) error states [12] and restore/migrate a virtual machine
without long downtime. [14] [5] [11]

• Application: Timely, spatial, and informational redundancy is also used on this
level and it depends on the specific application, what methods are used. For
example clustered databases are made high-available by using multiple hosts—
usually the challenge is to keep the different nodes in sync so all data remains
consistent.

• User: Sometimes errors only can be handled manually by human intervention. In
this case you either need power users or experts that know how to get a broken
system back to work or manuals are given.

Objective of our current work is to investigate if it is possible to make applications
high-available at application and middleware level without having reliable infrastructure
or platforms.

2 Challenges

The most effective way to make applications fault tolerant and high-available without
having reliable infrastructure is to many redundant application instances with different
hardware instances. So defective hardware will only harm a little part of the whole

134 Fall Workshop 2013

2 Challenges

Figure 2: Bottlenecks in HA architectures

software system that can be easily replaced by other ones. One key point is to eliminate
as much components that form any kind of bottlenecks. Another challenge is self-
awareness of application instances, so the can act self-adaptive. [13] [4]

2.1 Shared Data

Although cluster databases already exist, some of them have disadvantages. To achieve
high-availability, usually spatial redundancy is used. Data is replicated over multiply
hosts. But according to the CAP theorem [3] [2] any shared data within distributed sys-
tems only can have two out of the following three attributes: Consistency, availability
and tolerance to network partitions tolerance.

• Consistency and availability—tends to network partition intolerance

• Availability and network partition tolerance—tends to inconsistency

• Consistency and network partition tolerance—tends to unavailability

Today’s database management systems focus on strong consistency. So either they
loose availability (to gain network partition tolerance) or they loose network partition tol-
erance (to gain availability). Because network partition tolerance is important to make
applications really scalable and parallelizable—so multiple instances are independent
and a database can not became the bottleneck—the question is whether there is an
actually need for (immediate) consistency.

Because immediate consistency often is not needed, one approach is to investi-
gate the possibility to use NoSQL databases [15] where data is basically available and
eventual consistency.

2.2 Load Balancing and Session Handling

Another shared component is the load balancer. It needs to be analyzed whether
the load balancer can become a bottleneck—particular in context of intercontinental
distributed applications—and how possible unavailability can be solved.

Fall Workshop 2013 135

References

3 Conclusion and Future Work

To achieve high-availability without reliable infrastructure only on application and mid-
dleware layer is difficult intention. For the next steps, we plan to setup a test environ-
ment with different kinds of applications provided by our project partner Deutsche Bahn
Systel GmbH. After that, we first want to evaluate whether there are any architectural
patterns that can applied to existing or new applications so you can save expensive
infrastructure or make applications more available with little effort.

References

[1] Shane Brennan, Serena Fritsch, Yu Liu, Ashley Sterritt, Jorge Fox, Éamonn Linehan, Cor-
mac Driver, René Meier, Vinny Cahill, William Harrison, and Siobhán Clarke. A framework
for flexible and dependable service-oriented embedded systems. In Antonio Casimiro,
Rogério de Lemos, and Cristina Gacek, editors, Architecting Dependable Systems VII,
number 6420 in Lecture Notes in Computer Science, pages 123–145. Springer Berlin Hei-
delberg, January 2010.

[2] Eric Brewer. CAP twelve years later: How the "Rules" have changed. 45(2):23–29, 2012.

[3] Eric A. Brewer. Towards robust distributed systems. In PODC, page 7, 2000.

[4] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper
Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo
Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vin-
cenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek,
Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo
Tivoli, Danny Weyns, and Jon Whittle. Software engineering for self-adaptive systems: A
research roadmap. In Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inver-
ardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems, number
5525 in Lecture Notes in Computer Science, pages 1–26. Springer Berlin Heidelberg,
January 2009.

[5] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceed-
ings of the 2nd conference on Symposium on Networked Systems Design & Implementa-
tion - Volume 2, NSDI’05, page 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[6] Marco Eugênio Madeira Di Beneditto and Cláudia Maria Lima Werner. A declarative ap-
proach for software compositional reconfiguration. In Proceedings of the 11th International
Workshop on Adaptive and Reflective Middleware, ARM ’12, page 7:1–7:6, New York, NY,
USA, 2012. ACM.

[7] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Towards a next generation data center architecture: scalability and commoditization. In
Proceedings of the ACM workshop on Programmable routers for extensible services of
tomorrow, PRESTO ’08, page 57–62, New York, NY, USA, 2008. ACM.

[8] Robert Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007.

136 Fall Workshop 2013

References

[9] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. Com-
posing adaptive software. 37(7):56–64, 2004.

[10] Arun Mukhija and Martin Glinz. Runtime adaptation of applications through dynamic re-
composition of components. In Michael Beigl and Paul Lukowicz, editors, Systems As-
pects in Organic and Pervasive Computing - ARCS 2005, number 3432 in Lecture Notes
in Computer Science, pages 124–138. Springer Berlin Heidelberg, January 2005.

[11] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual
machines. 2005.

[12] Andreas Polze, Peter Tröger, and Felix Salfner. Timely virtual machine migra-
tion for pro-active fault tolerance. In 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, vol-
ume 0, pages 234–243, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[13] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research
challenges. 4(2):14:1–14:42, May 2009.

[14] Felix Salfner, Peter Tröger, and Matthias Richly. Dependable estimation of downtime for
virtual machine live migration. 5(1 and 2):70–88, June 2012.

[15] Michael Stonebraker. SQL databases v. NoSQL databases. 53(4):10–11, April 2010.

Fall Workshop 2013 137

138 Fall Workshop 2013

Towards a Secure Multi-tenant SaaS
Environment

Eyad Saleh

Internet Technologies and Systems

Hasso-Plattner-Institut

eyad.saleh@hpi.uni-potsdam.de

In this report, I summarize my research activities during the past two years in the
area of Software-as-a-Service (SaaS) and multi-tenancy. Then, I discuss the research
direction that I will follow in the next year and highlight the research questions that will
be addressed in my thesis. Finally, I will close with the current industry cooperation
and my next steps.

1 Introduction

In my first technical report [1], I selected multi-tenancy and Software-as-a-Service
(SaaS) as my research area and introduced several challenges in SaaS and multi-
tenancy, such as software migration to the cloud. In the next reports [2] [3], I discussed
some of the challenges mentioned in the first report in more details, in particular, soft-
ware customization and data privacy and security, I discussed the related work and
existing approaches, then I introduced our approaches that resulted in a number of
publications [4] [5] [6].

In this report, I explain the research direction that I will follow in the upcoming year
and highlight the research questions that will be addressed in my thesis.

2 Problem Statement

Software-as-a-Service (SaaS) has been growing rapidly over the last years and seems
to be a promising software delivery model [7]. SaaS offers several advantages to both
service providers and users, such as the reduction of Total Cost of Ownership (TCO),
better scalability, and better resource utilization. On the other hand, users can use
the service anywhere and anytime, and benefit from cost reduction by following the
pay-as-you-go model [8].

However, users are still concerned about the security and privacy of their data.
Improper disclosure of information causes privacy issues. Due to the nature of SaaS
and the cloud in general, where the data and the computation are beyond the control of
the user, data privacy and security become a vital factor in this new paradigm. Several
research studies [9–11] reported that security and privacy are cited as the biggest
concerns in adopting cloud computing. Additionally, in multi-tenant SaaS applications,

Fall Workshop 2013 139

Towards a Secure Multi-tenant SaaS Environment

the tenants become more concerned about the confidentiality of their data since several
tenants are co-located onto a shared infrastructure.

In response to those concerns, my thesis investigate several approaches to se-
cure multi-tenant SaaS environments. We already developed SignedQuery, which is a
technique that prevent one tenant from accessing others’ data. An extnsion to Signed-

Query as well as another approach that targets HANA and column-store databases is
currently being investigated with SAP. We also plan to study different encryption tech-
niques to trade-off between security and performance; and to come-up with a practical
solution that can be used by the SaaS vendors. Finally, we will also consider other
approaches than encryption such as secure tenant-placement (STP), where a secure-
aware tenant-placement algorithm will be developed.

3 Research Questions

I aim in my thesis to answer one main question: How To Secure Multi-tenant SaaS
Environments? to answer this question, I argue that we need to investigate the fol-
lowing research problems.

Data Confidentiality: Data confidentiality is considered one of main concerns for
organizations in utilizing cloud computing. By adopting the cloud computing model, the
data of the company will be beyond their control, and hence, they need to ensure that
their data is safe, and no one can tamper with or get access to.

Security Isolation: In multi-tenant SaaS environments, several tenants are consol-
idated into one database instance. A compromise to a server or a bug in the software
may lead to data leakage or data being accessed by other parties. Therefore, strong
security isolation between tenants is necessary.

Tenant Placement: Researchers study the tenant placement problem from a work-
load perspective to optimize the performance and decrease the cost. We would like to
consider a new parameter to the formula, that is security. We will investigate the pos-
sibility of developing a security-aware placement algorithm that minimizes the threats
of placing several tenants on the same physical host. We believe that this problem is
integrated with security-isolation mentioned above.

In particular, we need to address the following research questions:

A) How to protect the tenant’s assets in terms of data confidentiality?

B) How to ensure that tenants cannot access other tenants’ data?

C) How to securely place the tenant in the infrastructure?

140 Fall Workshop 2013

4 Threat Model

4 Threat Model

The main objective of my thesis is securing multi-tenant applications built for the SaaS
industry. We argue that we can achieve this by addressing the questions in the previous
section.

In our work, we assume that the software provider (SaaS vendor) is trustworthy,
while the infrastructure provider (IaaS provider) is not necessarily. We consider hard-
ware compromise either from inside or outside the boundaries of the provider. How-
ever, we assume that the IaaS provider is protecting his assets using all possible physi-
cal security measures ranging from hardware to software techniques, such as cameras,
firewalls, intrusion-detection, and intrusion-prevention systems (IDS/IPS).

The threat model assumes that an attacker/adversary with a root access to the
DBMS server is able to get access to or temper with others’ data. Thus, protecting
the data on the DBMS server even if an attacker has a root access to it is one of the
goals of my thesis. We also assume that several tenants are sharing a single database
instance, and hence security-isolation between tenants becomes a key issue in our
work.

The contribution of the thesis is proposed to protect the confidentiality of the users’
data and ensure that no one can access it except the legitimate tenant.

5 State of the Art

Protecting users’ data is an essential task in current systems. Researchers investigate
new ways and develop solutions to maximize the confidentiality of users’ data. We
discuss below the efforts and approaches that researchers have developed to protect
the data.

5.1 Encrypted Databases

Data encryption is a common approach to protect the confidentiality of user’s data dur-
ing transmission and storage [31] [32]. The challenge of processing encrypted data is
the main obstacle in adopting this model. However, it has been shown that performing
certain tasks on encrypted data such as search is applicable [12–17] [22] [24] [25]. On
the other hand and in reference to arbitrary computation, a fully homomorphic encryp-
tion scheme has been introduced by [18] as a result of joint efforts between Stanford
and IBM. This scheme supports computation over encrypted data. However, we be-
lieve that such a technique is still in the early stages of development, would require
huge extra cost, and support only limited functionality.

Another promising approach is Silverline [27] that supports keeping the data at the
server-side confidential by encryption in away that is transparent to the application and
being able to have some functionality on it as well. Silveline proposed to dynamically
analyse the application to determine which parts of the data can be functionally en-
cryptable; it assumes that any data that is never interpreted or manipulated by the

Fall Workshop 2013 141

Towards a Secure Multi-tenant SaaS Environment

application is encryptable. For instance, a SELECT query in a Human-Resource Man-
agement Application (HRM) that looks for all records matching the employeeID ’Jan’
is not required to interpret the actual string ’Jan’ and can execute the query if it would
be encrypted. As for key-management, it divides the users into groups, and assigns
a single encryption key to this group, facilitates encryption and information sharing at
the same time. While Silveline seems to be valid and practical, the main drawback is
that it requires analysis of the application and the data to determine which parts can be
encrypted, also a repetition of this process will be required whenever a change to the
application or upgrade is taking place. Also, major part of the data will still be stored in
plain-text, thus privacy and data compromise issues still open.

A recent approach CryptDB [19] has been introduced by colleagues in MIT. The
idea is to execute SQL over encrypted data using a collection of SQL-aware encryp-
tion schemes. I discussed this approach with SAP engineers during my stay in Rot,
and we believe that this solution might be applicable for small websites such as mes-
sage forums or conference review applications (These were actually the use cases of
CryptDB), but will not work for enterprise applications or real multi-tenant SaaS ap-
plications. Moreover, CryptDB doesn’t support Stored Procedures as they mentioned
in the paper (where the SQL code is integrated into the DBMS itself) and this is the
current standard in developing enterprise applications.

5.2 Privacy-Preserving Techniques

Social networks is considered an interesting area to study the impact of security and
privacy issues on. FlyByNight [20] and Persona [21] are mainly designed to work with
social networks, such as Facebook. They propose to store an encrypted version of the
messages on Facebook’s servers in away that is transparent to Facebook functionality.
Thus, users will continue to use Facebook as usual while maximizing the level of their
privacy. The main issue with such approaches is that they require the application
to be rewritten to support encryption/decryption techniques. Also they are designed
specifically for social networks and cannot be applied to other domains.

5.3 Secure Execusion Environment

Trusted cloud computing platform (TCCP) has been proposed by [23]. The idea is to
provide a closed-box execution environment for the consumers, guaranteeing that the
cloud provider cannot tamper with the users data. Moreover, it allows the consumers
to remotely check whether the server is running a TCCP implementation or not. The
main limitation of this approach is the major change that the infrastructure provider has
to accommodate since they need to adopt TCCP first.

5.4 Tenant-Oriented Security Requirement

A tenant-oriented security-management architecture called TOSSMA has been pro-
posed by Almorsy et al. [28]. TOSSMA enables SaaS providers to use it on the
platform-level to serve several applications. Also, it allows the tenants to define and

142 Fall Workshop 2013

6 Contributions

customize the security requirement they need without (re)engineering the existing ap-
plications or write security integration code. Further, it allows the tenants to define the
security requirement on different levels, such as component, class, or method. The
main difference to our work is that TOSSMA is mainly targeted to securing the re-
sources at the SaaS-side in general, and focus on the application code more than the
data itself.

5.5 Information Disassociation

Another approach can be referred to as information disassociation [26], where the in-
formation is separated into parts, these parts are stored in geographically-distributed
locations. Therefore, any party involved cannot benefit from the data it hosts. Cloud-
RAID [29] [30] is the work of our colleague Maxim Schnjakin in our chair. His main
idea is to split the data into chunks and distribute it on several providers in away that
enhance the security of the data while minimizing the cost.

Based on the above discussion, we believe that data confidentiality and security-
isolation in multi-tenant SaaS environments are still open issues that need to be ad-
dressed, and that would be our mission in the next years.

6 Contributions

We describe in this section the contributions we have so far in reference to the research
questions mentioned in Section 3. First, We introduce SignedQuery [4], a mechanism
designed to enhance the security isolation between tenants by preventing any tenant
from accidentally or maliciously accessing other tenants’ data. Second, We present
HPISecure [5], a software prototype designed to secure the data stored on the cloud
that allows the user to store an encrypted version of his data on the cloud without
breaking the functionality of the application.

6.1 SignedQuery

We propose the usage of a signature to sign the tenant’s request, so the server can
recognize the requesting tenant and ensure that the data to be accessed is belonging
to this tenant. SignedRequest uses a custom HTTP scheme based on a keyed Hash

Message Authentication Code (keyed-HMAC) for authentication. To create the signa-
ture, we concatenate selected elements of the HTTP request to form a string. Then,
we use the tenant’s key (provided by the SaaS provider) to create the HMAC of that
string. This HMAC is the signature used to authenticate the request. Finally, we add
the signature to the request as a parameter of the headers section.

When the system (server-side) receives a request, it checks whether the request
contains a signature or not. If the signature is not present in the request, we assume
that it comes from illegal source and drop the request followed by sending an error
message to the requester explaining that the signature is not present in the request.

Fall Workshop 2013 143

Towards a Secure Multi-tenant SaaS Environment

Figure 1: Signature Creation and Validation Process

If the signature is present, the process of validating the request starts, by fetching the
tenant’s secret key, and uses it to compute the signature of the received request the
same way the tenant did. Then, we compare the signature we just calculated with
the one present in the request, if they match, we conclude that the signature comes
from the tenant who have access to the secret key, and therefore consider it as the
authorized tenant to whom the key has been issued. If the two signatures do not
match, the request is dropped and an invalid-signature error message is sent to the
requester (tenant).

We implemented SignedQuery on top of Fiddler [33] as an HTTP proxy installed
on the client and server machines, where the Request/Response objects of the HTTP
protocol are intercepted, signature is authenticated, and proceed further according to
the validity of the signature.

6.2 HPISecure

We propose an end-to-end encryption approach using public-key cryptography to se-
cure the data. The focus of our approach is the documents-based applications, such
as Google Docs.

Currently, there are several applications that offer securing the content on the cloud
by utilizing cryptographic techniques [34] [35]. However, such applications limit the
user to use his personal computer whenever he needs to access his data, because the
application, the encryption/decryption keys, as well as other information is stored on
his machine along with the application. And hence, he can not use other computers
to access his data, which violates the basic concept behind the cloud (access your
date anywhere and anytime). Therefore, our approach overcomes this limitation by

144 Fall Workshop 2013

6 Contributions

introducing the concept of the Facilitator as shown in Figure 2.

HPISecure

Database

Encryption
Manager

Keys
Manager HTTP Parser

Algorithms
Manager

Exceptions
Handler

Controller

Server

Client

Distribution
Manager

Facilitator

Figure 2: HPISecure Architecture

The Facilitator here could be the company that the user works for, it could be an-
other cloud provider, or it could be a USB device. The idea of the Facilitator is simple,
we need to alleviate the client machine from storing the cryptographic keys and other
related data, and move this stuff to the facilitator. In this case, the client machine will
be transparent to our approach, i.e., the user can use any computer to securely access
his data, not only the machine that he used for the first time.

If the user works for a company, the Facilitator would be the internal web server
of the company, where HPISecure will be installed. When the client try to create/save
his data on the cloud for the first time, the request will be routed through the com-
pany’s internal server, where the request will be intercepted, the data will be encrypt
according to the preferences configured in HPISecure for this user, then proceed with
the request to store the data securely in the cloud. For the upcoming requests when
the user browse his data, the request for fetching the data will be also routed through
the company’s internal server, when the encrypted data retrieved, it will be intercepted,
decrypted according to the user preferences by HPISecure, then sent to the user ma-
chine.

Individuals can use the same concept, but the Facilitator in this case refers to a
third-party cloud provider, where the keys and related information will be stored. The
same process mentioned earlier will be applied here. Finally, if the user doesn’t belong
to an organization (i.e., individual) and does not prefer to use third-party providers,
the USB device is the choice. Using the USB device allows the user to store the
cryptographic keys, configuration files, and any related information on a USB device,
whenever he needs to use a new computer, all he requires is installing HPISecure, plug
the USB, retrieve the keys and configuration files, then securely send/receive his data.

Fall Workshop 2013 145

References

7 Teaching and Industry Cooperation

I participated in teaching during the last semester by conducting a master seminar
in the topic of SaaS and multi-tenancy. Further, I had a visit to SAP Labs in Shang-
hai where I met with BusinessOne engineers and discuss the architecture of the new
version of the application (OnDemand). BusinessOne OnDemand is currently being
re-designed to be completely web-based and will work with row-store databases such
as SQL Server as well as HANA.

I am finalizing this report while I am setting in SAP, Rot office, since I have a visit
in the period of Oct 7–14th where I meet with Business ByDesign architects and engi-
neers to discuss their security aspects and practices of multi-tenancy. In addition, I am
working with our colleague Jan Schaffner from SAP on a project regarding the security
of columns-store databases.

Furthermore, I will have a chain of visits to SAP Certified Cloud Providers in Europe,
including Versino in Czech Republic, ZUTOM in Slovakia, and T-Systems in Hungary.
These visits will be mainly to have an on-site view of the current deployment and usage
of SAP BusineeOne, to discuss application and data security mechanisms in place, and
to investigate open challenges and possible research cooperation.

8 Summary and Future Work

In this report, I summarized my work in the area of SaaS and multi-tenancy in the past
two years. Then, I discussed the state of the art along with the problem statement and
the research questions that will be addressed in my thesis. Further, I highlighted our
contributions that have been published so far. In my next steps, I will focus on data-
confidentiality and the secure-tenant placement challenges. Worth to mention that the
next phase of our work will be in cooperation with SAP.

References

[1] Eyad Saleh. Multi-tenans SaaS: Challenges and Approaches. Technical report,
Hasso-Plattner-Institut, Potsdam, Germany, April 2012.

[2] Eyad Saleh. Migrating Traditional Web Applications into Multi-Tenant SaaS. Tech-
nical report, Hasso-Plattner-Institut, Potsdam, Germany, Oct 2012.

[3] Eyad Saleh. Protecting Users Data in Multi-tenant SaaS Environments. Technical
report, Hasso-Plattner-Institut, Potsdam, Germany, April 2013.

[4] Eyad Saleh, Ibrahim Takouna, and Christoph Meinel: SignedQuery: Protecting

Users Data in Multi-tenant SaaS Environments. IEEE ICACCI, Mysore, India,
2013.

[5] Eyad Saleh and Christoph Meinel: HPISecure: Towards Data Confidentiality in

Cloud Applications. C4BIE workshop, IEEE CCGrid, Delft, Netherlands, 2013.

146 Fall Workshop 2013

References

[6] Eyad Saleh, Nuhad Shaabani, and Christoph Meinel: A Framework for Migrating

Traditional Web Applications Into Multi-Tenant SaaS. INFOCOMP, Venice, Italy,
2012.

[7] A. Konary, S. Graham, and L. Seymour: The future of software licensing: Software

licensing under siege. International Data Corporation, White Paper, 2004.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, and M. Zaharia: Above the Clouds: A Berkeley View of

Cloud Computing. Technical Report, University of California, Berkeley, USA, 2009.

[9] Future of Cloud Computing Survey. "http://finance.yahoo.com/news/2013-future-
cloud-computing-survey-110000960.html". North Bridge. 2013 [retrieved: Oct,
2013]

[10] Survery: Cloud Computing "No Hype", But Fear of Security and Cloud
Slowing Adoption. "http://www.circleid.com/posts/20090226_cloud_computing_
hype_security". Kelton Research. 2009 [retrieved: Oct, 2013]

[11] Security is Chief Obstacle to Cloud Computing Adoption.
"http://www.darkreading.com/perimeter/security-is-chief-obstacle-to-cloud-
comp/221901195". Launchpad Europe. 2009 [retrieved: Oct, 2013]

[12] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi: Searchable Encryption Revisited: Consistency

Properties, Relation to Anonymous IBE, and Extensions. Journal of Cryptology,
Vol. 21, pp. 350–391. 2008.

[13] D. Boneh and B. Waters: Conjunctive, Subset, and Range Queries on Encrypted

Data. Theory of Cryptography, Lecture Notes in Computer Science, Springer, pp.
535–554. 2007.

[14] Y. Chang and M. Mitzenmacher: Privacy Preserving Keyword Searches on Re-

mote Encrypted Data. Applied Cryptography and Network Security, Lecture Notes
in Computer Science, Springer, pp. 442–455. 2005.

[15] P. Golle, J. Staddon, and B. Waters: Secure Conjunction Keyword Searches Over

Encrypted Data. Applied Cryptography and Network Security, Lecture Notes in
Computer Science, Springer, pp. 31–45. 2004.

[16] E. Shi: Evaluating Predicates Over Encrypted Data. PhD Thesis, Carnegie Mellon
University, 2008.

[17] D. Song, D. Wagner, and A. Perrig: Practical Techniques for Searches on En-

crypted Data. IEEE Symposium on Security and Privacy, Berkeley, USA, 2000.

[18] C. Gentry: A fully homomorphic encryption scheme. PhD thesis, Stanford, 2009.

[19] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan: CryptDB: Pro-

tecting Confidentiality with Encrypted Query Processing. In 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, 2011.

Fall Workshop 2013 147

References

[20] M. M. Lucas and N. Borisov: Flybynight: mitigating the privacy risks of social

networking. In Proc. of ACM WPES, Virginia, USA, 2008.

[21] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Strain: Persona: An

online social network with user-defined privacy. In Proc. of ACM SIGCOMM,
Barcelona, Spain, 2009.

[22] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano: Public key encryption

with keyword search. In proc. of Eurocrypt, Interlaken, Switzerland, 2004.

[23] N. Santos, K. P. Gummadi, and R. Rodrigues: Towards trusted cloud computing.
In Proc. of HotCloud, San Diego, USA, 2009.

[24] H. Haclgümüs, B. Lyer, C. Li, and S. Mehrotra: Executing SQL over encrypted data

in the database-service-provider model. In Proc. of ACM SIGMOD, Wisconsin,
USA, 2002.

[25] H. Wang and L. V.S. Lakshmanan: Efficient secure query evaluation over en-

crypted XML databases. In Proc. of VLDB, Seoul, Korea, 2006.

[26] K. Zhang, Y. Shi, Q. Li, and J. Bian: Data Privacy Preserving Mechanism based

on Tenant Customization for SaaS. In Proc. IEEE MINES, Wuhan, China, 2009.

[27] K. P. N. Puttaswamy, C. Kruegel, and B. Y. Zhao: Silverline: toward data confiden-

tiality in storage-intensive cloud applications. In Proc. of ACM SOCC, Cascais,
Portugal, 2011.

[28] M. Almorsy, J. Grundy, and A. S. Ibrahim: TOSSMA: A Tenant-Oriented SaaS

Security Management Architecture. In Proc. of IEEE Cloud, Hawaii, USA, 2012.

[29] M. Schnjakin, R. Alnemr, and C. Meinel: A Security and High-Availability Layer for

Cloud Storage. CISE 2010, Hong Kong, China, 2010.

[30] M. Schnjakin and C. Meinel: Implementation of Cloud-RAID: A Secure and Reli-

able Storage above the Clouds. GPC 2010, Seoul, Korea, 2013.

[31] C. Wang, Q. Wang, K. Ren, and W. Lou: Ensuring data storage security in cloud

computing. In Proc. IWQoS 09, Charleston, South Carolina, USA, 2009.

[32] A. Saha: Computing on encrypted data. In Proc. ICISS 2008, Hyderabad, India,
2008.

[33] Fiddler website. [Online]. Available: http://www.fiddler2.com [retrieved: Oct, 2013]

[34] BoxCryptor website. [Online]. Available: http://www.boxcryptor.com [retrieved:
April, 2013]

[35] TrueCrypt website. [Online]. Available: http://www.truecrypt.org [retrieved: April,
2013]

148 Fall Workshop 2013

Visualization of Varying Hierarchical Data
with Treemaps

Sebastian Schmechel

Computer Graphics Systems Group
Hasso-Plattner-Institut

sebastian.schmechel@hpi.uni-potsdam.de

Space-restricted techniques for visualizing hierarchies generally achieve high scal-
ability and readability (e.g., tree maps, bundle views, sunburst). However, the visualiza-
tion layout directly depends on the hierarchy, that is, small changes to the hierarchy can
cause wide-ranging changes to the layout. For this reason, it is difficult to use these
techniques to compare similar variants of a hierarchy because users are confronted
with layouts that do not expose the expected similarity. Voronoi treemaps appear to be
promising candidates to overcome this limitation. However, existing Voronoi treemap
algorithms do not provide deterministic layouts or assume a fixed hierarchy. In this
paper we present an extended layout algorithm for Voronoi treemaps that provides a
high degree of layout similiarity for varying hierarchies, such as software-system hi-
erarchies. The implementation uses a deterministic initial-distribution approach that
reduces the variation in node positioning even if changes in the underlying hierarchy
data occur. Compared to existing layout algorithms, our algorithm achieves lower error
rates with respect to node areas in the case of weighted Voronoi diagrams, which we
show in a comparative study.

1 Introduction

Space-restricted visualization of hierarchical data has been a well investigated re-
search field for the last decades. Although most of the existing techniques perform
well with respect to scalability, readability, and the aspect ratio of the items (i.e., the
graphical representation of hierarchy nodes), the stability of the layout represents a
major challenge. If the depiction of similar hierarchies (e.g., varying hierarchies) does
not expose similar layouts, the usability is substantially restricted. Users need to ana-
lyze and correlate the visualization results to compare the hierarchy visualization and
to detect changes (e.g., new, deleted, or moved hierarchy components).

We use the term layout stability to describe a layout algorithm’s ‘tolerance’ against
changes in varying input hierarchy-data with respect to the arrangement and layout
of resulting visual representations. In our case, we consider a layout algorithm to be
stable, if small changes to the input hierarchy may cause only local changes to the lay-
out of the resulting visualization. Layout stability is considered essential for effectively
and efficiently performing visual analysis tasks such as comparing hierarchies and at-
tributes of such hierarchies’ nodes, and tracking changes to hierarchies over time [2,7].

Fall Workshop 2013 149

Visualization of Varying Hierarchical Data with Treemaps

A key reason for this fact is that users explore visual representations and create their
own mental maps [5]. Such maps significantly aid their orientation in the visualized
information space by providing a reference system similar to road maps in the physical
world. As with navigation in the physical world, such map is useless if changes to the
input data result in items not being placed as expected. Thus, users can only use their
mental map if the context – the spatial position of hierarchy nodes – is more or less
stable, i.e., within some small frame of placement error. Otherwise, a new mental map
has to be constructed. For example, in software visualization, large sequences of ver-
sioned module hierarchies (e.g., source-code trees) demand for a degree of coherence
in corresponding visual representations to facilitate comprehension of the underlying
software evolution.

2 Varying Hierarchical Datasets

There exists a wide range of varying hierarchical datasets. To illustrate this diversity,
we pick two examples, illustrating a set of change operations that induce the variation
of the datasets, before we define a formal model of the datasets that we consider in
this paper.

File-Systems on Hard disks Files on a hard disk are structured strongly hierarchical
(excluding links) using folders. In addition to this parent-child-relationship meta infor-
mation on files, e.g., the attributes size and modification date, exist. A folder’s size
is then the aggregation of the sizes of all files contained in such folder. Furthermore,
a file system can be modified by editing files, and through it modifying their file size
(operation changeAttribute), deleting files as well as folders, and adding new files or
folders.

Tree of Life The tree of life shows a hierarchical structure of different organisms (the
tree’s leafs) grouped by species. As in the file-system example, attributes exist for
the leafs. A typical attribute here is an organism’s population. Analogous to the file
system, these attributes change over time, too (changeAttribute). Organism or even
species become extinct (delete) while others evolve (add).

A Formal Model We define a formal model for varying hierarchical dataset H =
(N,E), which contains a set of nodes N = {n0, ...,ni} and a set of versioned edges
E= {E0, ...,E j} as follows:

E = {k0, ...,k j} k = (np,nc) (1)

k in E are considered as edges between nodes described by a tuple of nodes (a parent
np and a child node nc) with the following properties: (a) Only one tuple exists in E
where np = null and through this the child of that np is considered as root node. (b)
Every child node has only one unique parent node. (c) There are no (transitive) cycles
in E.

150 Fall Workshop 2013

3 Visualization of Varying Hierarchical Datasets with Voronoi Treemaps

Create Voronoi treemap

Calculate
Power Diagram

AdaptPositionsWeights AdaptWeights
Calculate

Power Diagram
Calculate

 Power Diagram

Create random
distribution

Create deterministic
stable distribution

break

Improve distribution

done

a.) b.) c.) d.)

Figure 1: Process of computing a Voronoi treemap with weighted sites.

Hence, a tuple T = (N,Ei ∈ E) defines one variant of our hierarchical dataset. We
say that subsequent variants of such tuples are similar to each other, i.e., ∀i∈[0, j−1] :
Tj ∼ Tj+1. We further define a function uid : N×E→N that yields a unique identifier per
path p : N×E→ N× ...×N such that:

∀ni,n j∈N,E∈E : p(ni,E) 6= p(n j,E)⇔ (2)
uid(ni,E) 6= uid(n j,E)

Here, p(n,E) returns the path from node n to the root node nr defined by E. Note that
each variant E ∈ E can define a different path p for a node n ∈ N. In other words, our
data model considers nodes that are moved in H as different nodes and they will have
more than one unique identifier uid. Last, there exists a set of functions attri : N×E→R
returning numerical attributes per node n ∈ N and versioned edges E.

3 Visualization of Varying Hierarchical Datasets with
Voronoi Treemaps

Voronoi treemaps appear to be promising candidates to increase layout stability for
visualizing varying hierarchies [1]. Due to the way Voronoi diagrams are constructed,
changes in the input data (a point distribution) typically only induce locally constrained
changes to the output. One of the main disadvantages of existing layout algorithms for
Voronoi treemaps [1, 6] consists in using a random initial distribution, which can result
in essentially different depictions of similar hierarchies. We present an approach for
deterministically computing an initial point distribution as input for the Voronoi Treemap
computation stage instead of the random initial distribution used by Nocaj and Bran-
des (see Fig. 1a). As the distribution algorithm is tolerant against changes in the input
hierarchy, we ensure that hierarchy nodes are position-stable in the resulting layout,
and achieve a high degree of layout stability for varying hierarchies. Further, our ap-
proach reduces the error of achieved target areas for weighted Voronoi treemaps. For
it, we show three optimizations to the latest algorithm: (see Fig. 1b) a less restrictive
but holding criteria for the prevention of empty cells, (see Fig. 1c) a different calcula-
tion for increasing and decreasing the cell sizes through the iterative process, and (see
Fig. 1d) a more precise break condition.

Fall Workshop 2013 151

Visualization of Varying Hierarchical Data with Treemaps

c=6

c=6

(a)

(c)
(d)(b)

Regular

Target

Polygon

Polygon

Incircle

Figure 2: Workflow for computing a deterministic initial site distribution within a target
polygon (left). (a) A regular polygon with the same number of vertices as the target
polygon is created. (b) Sites are distributed by our deterministic approach into a unit
circle and (c) transformed into the incircle of a regular polygon. (d) The regular poly-
gon and the sites distributed within are transformed into the target polygon by using
Wachspress coordinates.

3.1 A Stable Initial Distribution

Nocaj and Brandes construction of Voronoi cells is deterministic – except that they start
with nondeterministic initial positions for the Voronoi sites. To achieve stability, we thus
need to find a method that is able to create deterministic initial positions. That is, our
approach has to fulfill the following requirements:

• The initial-distribution algorithm for the Voronoi sites has to be deterministic.

• If change operations such as add or delete occur to a parent node, they should
not affect positions of its children already positioned in an earlier evolution step.

• The placement of sites relative to each other has to be stable, even if polygon’s
shape of their parent has changed.

• changeAttribute operations on nodes should only cause small changes in the
resulting layout.

Voronoi treemaps allow for using arbitrary shapes as root item, within which any sub-
sequent direct and indirect child items are contained. For each created shape that
represents a child node, the algorithm can further be applied recursively to this node’s
children.

We start with a target polygon having a given number of vertices (corners c) that
represent the root item in which a set of Voronoi sites (S) should be distributed. Next,
we calculate a regular polygon with the same number of corners (Fig. 2a). Given
a set of nodes (S), which are assumed to have a uniquely identifier, we are able to
define consistent Cartesian coordinates in a unit square for each node. In our case,

152 Fall Workshop 2013

3 Visualization of Varying Hierarchical Datasets with Voronoi Treemaps

we compute such unique identifier (uid) as a hash << x,y>> (an integer) from a node’s
path p. We then encode the first and last half of this hash with x ∈ [0..1] and y ∈ [0..1].
Next, these two coordinates are transformed into the incircle of the regular polygon
(Fig. 2b and 2c) by calculating polar coordinates (see Equations in (3)).

apothem = cos
(

π

k

)
<<x,y>>= hash
φ = 360 · x
r = apothem ·√y

(3)

As a last step, we compute Wachspress coordinates for the regular polygon and the
sites distributed within. They then describe the sites position inside a convex polygon
as weighted terms of the polygon’s vertices. By using the vertices’ weights, each point
of the distributed sites is transformed into the target polygon (Fig. 2d) [4]. Since it
is guaranteed both that the target polygons in Voronoi treemaps are convex at any
time, and that the incircle and Wachspress coordinates are well defined for convex
polygons, the whole workflow effectively ensures that the distributed points are always
placed inside the respective target polygon.

As an additional benefit, we do not need to recompute the Wachspress coordinates’
weights of a polygon if the target polygon’s vertices change their position slightly while
the polygon itself keeps its dimension. This can happen, e.g., when changes occur in
the item’s occur. It thereby allows for a fast recalculation of the target distribution. The
Wachspress coordinates only need to be recomputed if the number of vertices of the
target polygon increase or decrease.

3.2 Optimized Layout Computation

After the initial distribution, the actual Voronoi treemap is computed (Fig. 1 b, c, d).
Although the original algorithm [6] describes a rather fast way for computing Voronoi
treemaps, we identified several optimizations for achieving more precise results with
respect to the size of target area size of created Voronoi cells. These optimizations
concern the functions used in the iterative positioning process (Fig. 1 b, c) as well as
the break condition (Fig. 1 d) that decides weather a distribution is sufficiently precise.

3.2.1 Precision of Target-Area Size

As the initial positioning of the Voronoi sites does not necessarily reflect the targeted
weights, Nocaj and Brandes propose an iterative optimization based on Lloyd’s algo-
rithm. Lloyd’s algorithm, also known as Voronoi relaxation, in its original form is used to
calculate Voronoi diagrams where the sites’ location coincide with the centroids of its
Voronoi cell [3]. Nocaj and Brandes use power diagrams to iteratively adapt the sites’
weights and positions during each iteration. For it, the current areas (current size of a
cell) of the cells are iteratively adapted towards the target areas (cell size that should

Fall Workshop 2013 153

Visualization of Varying Hierarchical Data with Treemaps

(a) Approach of Nocaj and Brandes (b) Our Approach

Figure 3: Errors in target-area size shown by color (red = too big, white = correct, blue
= too small), i.e., color encodes how much the actual size of a target area deviates
from its expected size (given by the respective attribute value mapped to area size).
Comparison between the results from the algorithm of Nocaj and Brandes (left) and our
approach (right). In comparison to Nocaj and Brandes, our optimizations yield higher
precision with respect to the error in target-area size.

be achieved). That is, they loop through the functions AdaptPositionsWeights and
AdaptPositions until a break condition is satisfied. As pointed out by Nocaj and
Brandes, empty cells have to be prevented during the iterative optimization of weights
and positions: A centroid is required for optimizing the a site’s position, but cannot be
computed for empty cells. Such a site’s empty cell can emerge if the site is encircled
by a circle defined by the weight of another site. Consequently, empty cells can be
avoided by limiting the site’s weights such that the constraint in Equation 4 is satisfied.

∀s, t ∈ S,s 6= t : ||s− t||> max(
√

ws,
√

wt) (4)

However, Nocaj and Brandes propose a criterion that is too strong in several cases.
They limit a site’s weight to the distance of the cell that it belongs to. This often results
in many cells being too small and thus – counterintuitively – especially cells that should
be very small are far too large. We propose a weaker limit for a site’s weight as follows:
A site’s weight in AdaptPositionsWeights is limited to the minimum distance to
any other site, just like Nocaj and Brandes did in AdaptWeights. In most cases, this
criterion is weaker, but it always satisfies the constraint in Equation 4. Our Algorithm 2
uses the same method to determine the distance to the nearest neighbor as proposed
by Nocaj and Brandes in Algorithm 1. The distances can be calculated by means of
a Voronoi diagram in O(n logn). To overcome the problem of oscillating site locations,
fadapt is limited to 1± ρ if its first derivative (increasing/decreasing the weight) starts
oscillating as described in Algorithm 3. Note that even though the distance is described

154 Fall Workshop 2013

3 Visualization of Varying Hierarchical Datasets with Voronoi Treemaps

in Algorithm 2 and 3 as being the distance between two sites, it can also be computed
as twice the distance to the cell from a site. It is not necessary to know which site is
the nearest neighbor. Also note that most distances can be calculated as the squared
distances which does not require calculating any square roots. The effects of our
optimizations are shown in Fig. 3 and are evaluated and discussed in detail in Section
3.3.

Algorithm 1: Two methods used to adapt the positions and weights in an iterative
optimization algorithm proposed by Nocaj and Brandes.
1 AdaptPositionsWeights(p,Vs,S,W)
2 foreach site s ∈ S do
3 a← centroid(Vs)
4 distanceBorder← minx∈Vs

||x− s||
5 ws← (min(

√
ws,distanceBorder))2

6 AdaptWeights(p,Vs,S,W)
7 NN← Nearestneighbor(S)
8 foreach site s ∈ S do
9 Acurrent← A(Vs) /* current area */

10 Atarget← A(Ω) · v(s)
v(p) /* target area */

11 fadapt←
Atarget
Acurrent

12 wnew←
√

ws · fadapt
13 wmax← ||s−NNS||
14 ws← (min(wnew,wmax))

2

15 ws← max(ws,ε)

Algorithm 2: Optimized version of AdaptPositionsWeights with less-
restrictive empty cell prevention.
1 AdaptPositionsWeights(p,V (S),S,W)
2 foreach site s ∈ S do
3 a← centroid(Vs)

4 NN← Nearestneighbor(S)
5 foreach site s ∈ S do
6 wmax← ||s−NNS||
7 ws← (min(ws),wmax))

2

3.2.2 Break Condition

The iterative optimization to calculate Voronoi diagrams where the cells have a target
area requires a break condition (see Fig. 1d) that is defines when the iterative optimiza-
tion has finished. Nocaj and Brandes propose to cancel the optimization process when

Fall Workshop 2013 155

Visualization of Varying Hierarchical Data with Treemaps

Algorithm 3: Optimized version of AdaptWeights that prevents “oscillation”.
1 fs← initialize with zeros
2 AdaptWeights(p,Vs,S,W)
3 NN← Nearestneighbor(S)
4 foreach site s ∈ S do
5 Acurrent← A(Vs)

6 Atarget← A(Ω) · v(s)
v(p)

7 fadapt←
Atarget
Acurrent

8 if fss 6= 0 and sgn(fadapt−1) 6= sgn(fss−1) then
9 fadapt←min(1+ρ,max(fadapt,1−ρ))

10 wnew←
√

ws · fadapt
11 wmax← ||s−NNS||
12 ws← (min(wnew,wmax))

2

13 ws← max(ws,ε)
14 fss← fadapt

the sum of area errors is below a certain threshold. They define the area error as the
difference between the current area and target area of a Voronoi cell. Furthermore the
maximum number of iterations is limited.

Unfortunately the area error often does not converge to zero and the minimum error
that is reached in a reasonable number of iterations highly depends on the number of
sites and the target areas of the Voronoi cells. Consequently, the threshold is often
reached after only a few iterations or not reached at all and the maximum number of
iterations is reached. In the first case more iterations would reduce the sum of area
errors. In the second case fewer iterations would probably not imply a much higher
sum of area errors.

We propose a threshold for the difference between the maximum area error of dif-
ferent iterations which could be seen as the sloope of the maximum area error. More
formally, the optimization process if canceled when ediff < threshold. ediff is defined in
Equation 5 where e−l is the maximum error l iterations ago and e0 is the maximum
error in the current iteration.

ediff = max(e−l,e l
2
)− e0 (5)

A disadvantage of this method is that the area error of the resulting Voronoi diagram
does not have an upper bound. However, we know that more iterations would probably
not reduce the area error.

3.3 Comparative Evaluation

To evaluate the optimizations of our approach (AlgOA) (presented in Section 3.2) in
comparison to the algorithms of Nocaj and Brandes (AlgNB) [6], we tested both algo-
rithms distributing different numbers of sites within the same parent polygon. For it,

156 Fall Workshop 2013

3 Visualization of Varying Hierarchical Datasets with Voronoi Treemaps

0
0,002
0,004
0,006
0,008

0,01
0,012
0,014
0,016
0,018

0,02
0,022
0,024
0,026
0,028

0,03
0,032
0,034
0,036
0,038

0,04
0,042
0,044
0,046
0,048

Noc+Bran Our Approach Noc+Bran Our Approach Noc+Bran Our Approach

Max_ERROR

10 Sites 250 Sites 50 Sites

(a) Maximum target error rates

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

0,19

0,2

0,21

0,22

0,23

0,24

Noc+Bran Our Approach Noc+Bran Our Approach Noc+Bran Our Approach

Sum_ERROR

10 Sites 250 Sites 50 Sites

(b) Sum of all node target error rates

Figure 4: Results of the maximum target error rate (a) and the sum of all target error
rates (b) evaluated by a comparative study between [6] and our optimization approach
to improve the precision of the target areas for different numbers of sites (10, 50, 250)
with randomized weights distributed in their parent node.

we computed distributions of 10, 50 and 250 sites with random polygon weights with
1000 iterations per distribution. To achieve comparable results we use the same seed
to compute the weights for each run. The dependent variables of our study are: Time
needed to compute the distribution within 1000 iterations, maximum error of the target
sizes and the sum of target-size errors errors. Table 1 shows the evaluation setup with
(in)dependent variables in detail.

Seed Alg Time Max Err Sum Err
s1 AlgOA t1 errmax1 errsum1

s1 AlgNB t2 errmax2 errsum2

s2 AlgOA t3 errmax3 errsum3

s2 AlgNB t4 errmax4 errsum4

...
sn AlgOA t2n−1 errmax2n−1 errsum2n−1

sn AlgNB t2n errmax2n errsum2n

Table 1: Dependent and independent variables for the comparative study (example for
10 sites).

The mean computation time of AlgOA compared to AlgNB shows equal results with
each number of sites (Table 2 shows the mean computation times in detail), our algo-
rithms shows better error rates in both, the maximum area error and the sum of area
errors for every number of distributed sites (shown in Fig. 4 a,b).
We have presented an extension to an existing layout algorithm for Voronoi treemaps
by using a deterministic initial distribution for the Voronoi sites. Since the resulting lay-
outs are stable with respect to varying input hierarchies and varying size of items, this
enables the use of Voronoi treemaps for comparing hierarchy variants. Such datasets

Fall Workshop 2013 157

References

Number Of Sites Alg Mean Time
10 AlgOA 355 ms
10 AlgNB 353 ms
50 AlgOA 1686 ms
50 AlgNB 1701 ms
250 AlgOA 8937 ms
250 AlgNB 8914 ms

Table 2: Mean computation times for the comparative evaluation. The computation
times of our algorithm are equal compared to the ones of Nocaj and Brandes.

emerge, e.g., from versioned source-code trees of software systems. Fig. 5 shows an
example of such a varying hierarchy, depicting the cc project from the Chromium Git
repository (branch: master) over several revisions (annotated with the commit-hashes).
Our comparison of target-error rates further show that we achieve a lower target-error
rate than existing layout algorithms. We conclude that the resulting layout represents
attributes of the input data more accurately than previous techniques.

References

[1] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the
visualization of software metrics. In Proceedings of the 2005 ACM symposium on
Software visualization, pages 165–172. ACM, 2005.

[2] Stuart K Card, Bongwon Sun, Bryan A Pendleton, Jeffrey Heer, and John W Bod-
nar. Time tree: Exploring time changing hierarchies. In Visual Analytics Science
And Technology, 2006 IEEE Symposium On, pages 3–10. IEEE, 2006.

[3] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations:
Applications and algorithms. SIAM review, 41(4):637–676, 1999.

[4] Michael S Floater, Kai Hormann, and Géza Kós. A general construction of barycen-
tric coordinates over convex polygons. advances in computational mathematics,
24(1-4):311–331, 2006.

[5] Robert M. Kitchin. Cognitive maps: What are they and why study them? Journal
of Environmental Psychology, 14(1):1 – 19, 1994.

[6] Arlind Nocaj and Ulrik Brandes. Computing voronoi treemaps: Faster, simpler, and
resolution-independent. In Computer Graphics Forum, volume 31, pages 855–864.
Wiley Online Library, 2012.

[7] Arlind Nocaj and Ulrik Brandes. Organizing search results with a reference map.
Visualization and Computer Graphics, IEEE Transactions on, 18(12):2546–2555,
2012.

158 Fall Workshop 2013

References

Hash: c28df4c Hash: c9f0d06 Hash: d293572 Hash: b38864d

Hash: 045098d Hash: 3d8ab9f Hash: 41512b0 Hash: f826b5f

Hash: a9f0cfd Hash: a4a08d0 Hash: 953e094 Hash: 22898ed

Figure 5: Visualization of the hierarchical folder structure (with about 500 nodes) of
12 revisions from the cc project of the Chromium Git repository (master). The area of
the cells is mapped to the corresponding file size of the represented node. The nodes’
unique identifier – created from the paths to the root node – is shown as color. Although
several changes (operations: changeAttribute in 169 files, 5 files added, 2 files deleted)
in the data are made, the layout appears as stable and through it memorable over all
revisions. Between two depictions of a revision a difference mask is shown. Stable
areas are represented by black pixels, while white pixels indicate layout differences.

Fall Workshop 2013 159

160 Fall Workshop 2013

No Tools But Objects:
Towards Direct Manipulation
Programming Environments

Marcel Taeumel

Software Architecture Group
Hasso-Plattner-Institut

marcel.taeumel@hpi.uni-potsdam.de

Direct manipulation user interfaces provide promising virtues that should reduce
users’ cognitive efforts. For programming tools, however, the three main principles
about representations, actions, and feedback are difficult to implement upfront because
the interfaces’ suitability varies among task domains. Even in a single domain, the
repertoire of tasks grows with the software system and so does the interpretational
gap towards the tool interface, which often only supports plain programming language
concepts. Unfortunately, tools are rarely adapted to close this gap because the cost-
benefit ratio is unattractive for unplanned situations.

Our approach is to make programming tool behavior better accessible and adapt-
able. For data browsers, we propose a query mechanism that encourages program-
mers to apply modifications and accommodate domain-specific needs in situ.

1 Introduction

Programmers usually build complex software systems with the goal to fulfill customers’
requirements and fix inadvertent bugs. However, programmers rarely modify the one
important software system they use day-by-day: their own programming environment.
They rather keep on struggling with common problems such as information overload
or difficulties in information access than accommodating domain-specific scenarios in
situ [9] [6]. We argue that the cost-benefit ratio for adapting programming tools is
often unattractive. For example, try answering the following questions for your environ-
ment: Which lines of code are responsible for creating the first column in your class
browser? How do you restore the current situation after adaption? Are the sources of
your package browser available at all? Transparency is a real issue here; this makes
tool adaption often not feasible. But why do programming tools need to be adapted for
domain-specific problems anyway? Is there no perfect programming environment?

Programmers benefit from integrated programming tools, which reduce cognitive
effort and thus reduce the time to complete tasks [7]. When considering cognition,
we know from the field of usability engineering that direct manipulation [4, 15] serves
as a valuable conceptual framework for designing efficient graphical user interfaces.
The basic assumption is that the commitment of fewer cognitive resources results in

Fall Workshop 2013 161

No Tools But Objects

a feeling of directness. In principle, tools having direct manipulation interfaces should
offer (1) a continuous representation of task-related objects and actions, (2) a simple
mechanism to invoke those actions, and (3) immediate feedback plus a way to reverse
inadvertent results. Which objects and which actions are relevant for programmers?

Basically, all programming activities involve exploring and modifying an extensive
information space where numerous objects are connected via multiple relationships.
For this, programming tools provide views on subsets of this space to support focusing
on information that is relevant for a given task. Having this, for example, class browsers
communicate with code editors or debuggers visualize call stacks while directly talking
to object explorers nearby. Considering the programming language concepts in use,
is it possible to build a programming environment that minimizes cognitive effort when
creating software for all possible domains?

The sensation of directness is always relative [4]. There are many factors such as
people, task, and domain, which influence the value of a given tool at any given point in
time. Thus, there cannot be one programming environment that fits all. One prominent
example is the recurrent problem of crosscutting concerns [18]: Several corresponding
software artifacts are spread across the dominant system decomposition (e.g. methods
in the class hierarchy) but tools only support views on the dominant language repre-
sentation (e.g. class outlines and file listings). Hence, there have to be either ways
to express a spread concern more concisely [5] or—as in our case—mechanisms that
support tool adaption in situ to create appropriate views that efficiently exploit screen
real estate.

We argue that it is possible to leverage current software browsing tools by making
adaption-while-using an essential part of their conceptual model1. We want to better
implement direct manipulation principles (i.e. representations, actions, feedback) to
reduce cognitive effort when adapting the tools in use and thus when building complex
software systems for customers. We believe that if the cost-benefit ratio for adaption is
more attractive, programmers will modify tools more often and thus save time in their
daily programming activities.

In section 2, we explain to which degree traditional programming environments suc-
ceed to implement direct manipulation principles and extract unsolved issues. Then,
section 3 gives a brief overview of related research projects that already tried to allevi-
ate these issues. As the main part of this report, section 4 describes our approaches
in more detail. For validation purposes, section 5 then explains our experience with
our research programming environment VIVIDE in use and sketches open hypotheses.
Finally, we conclude this report in section 6 and give a brief outlook on next steps.

2 Background

Direct manipulation principles can be found in many graphical user interfaces these
days including traditional programming environments such as Eclipse2 and Squeak3.

1We refer to the definition of Norman [10, p. 189]
2http://www.eclipse.org, multi-language programming environment
3http://www.squeak.org, portable open source Smalltalk implementation

162 Fall Workshop 2013

2 Background

The virtues of direct manipulation [4] are encouraging: Novices can learn functionality
quickly, experts can even create new operations, immediate feedback plus reversibility
allows for simply changing the direction of activity if needed while starting to predict the
interface’s responses. As a result, the cognitive effort is reduced because programmers
can directly map their intentions to tool interactions thus quickly making progress in
their current activities.

This section explains current implementations of direct manipulation principles found
in traditional programming environments. Additionally, we sketch our solution ideas for
open problems, which will be described in detail in section 4.

2.1 Representation

“Continuous representation of the objects and actions of interest
with meaningful visual metaphors.” —Shneiderman [15]

In the field of object-oriented programming, meaningful metaphors are needed for
abstract domain concepts, which may have no representation in the real world. For
this, programming tools already provide meaningful representations from an informa-
tion visualization perspective [14]: (1) neat lists of objects to grasp structure and extent
of system parts and (2) powerful text input fields (e.g. code editors, REPLs, search
fields supporting regular expressions) to express thoughts in the programming lan-
guage of your choice. These views can be arranged in overlapping windows (Squeak)
or side-by-side in a tiled layout (Eclipse).

However, the predefined set of views has to be reused for any kind of domain-
specific task regardless of whether the amount of visible information is appropriate or
not. The whole workflow is tool-centric and not object-centric as it should be. This
discussion leads to verb-noun vs. noun-verb interaction styles [13, pp. 59]. We argue
that programmers naturally think about nouns (artifacts) in the first place and then
about what to do (tools) with them.

Our idea is to support programmers to work with software artifacts in a more direct
fashion. Once they collected a set of relevant artifacts, it should be possible to describe
the information need in place instead of having to switch to another tool and retrieve
the artifacts there again.

2.2 Actions

“Physical actions or presses of labeled buttons, instead of complex syntax.”
—Shneiderman [15]

Programming environments invoke actions, like other GUI applications, via buttons,
tool bars, and pop-up menus, which are embedded in tool views. From a programmers’
perspective, this simplifies communication and navigation between various tools such
as code editor, declaration browser, or debugger.

However, the tools fail to support creating new (browsing) actions without losing
the current task focus. For example, modifying columns in browsers is rather difficult

Fall Workshop 2013 163

No Tools But Objects

and thus unattractive in domain-specific, unplanned situations. This affects especially
the problem of crosscutting concerns [18] where new domain- and task-specific views
would be necessary for efficient navigation and understanding of the problem at hand.
Regular search mechanisms—even with reusable results—are often not appropriate.

Our idea is to reveal the recipes that are responsible for selecting and rendering
the objects on screen. We want to support programmers to map any scriptable object
transformation to new browsing views, which can be reused later on. They should
be able to simply locate and adapt the corresponding source code without having to
suspend the current activity for too long.

2.3 Feedback

“Rapid, incremental, reversible actions whose effects on the objects
of interest are visible immediately.” —Shneiderman [15]

Programming environments update tool views on data model changes automati-
cally. Changes in object editors, e.g. source code editors, can often be easily undone.
Thus, the effect of changes is made visible and reversible. For longer lasting opera-
tions such as searching or compiling, environments provide progress indications and
show time-to-complete estimations.

However, tools fail to provide generic mechanisms for model change notification and
progress indication if new domain-specific views are introduced to the environment.

Our idea is to reveal the reasons why browser windows update at all and to allow for
modifying those reasons. Additionally, a generic progress indication mechanism should
free programmers from blowing up their object transformation scripts unnecessarily.

3 Related Work

Representing source code artifacts efficiently on screen has been researched for sev-
eral years. A recent example by Bragdon et al. [1] is called Code Bubbles—a graphical
interface for Eclipse that arranges compact bubbles representing source code arti-
facts on a scrollable, two-dimensional canvas. There is a similar implementation for
Visual Studio called Debugger Canvas [3], which is optimized for debugging tasks.
Considering Smalltalk being strongly related to our approach, Olivero et al. [11] cre-
ated Gaucho—a graphical interface for the Pharo4 environment that arranges source
code artifacts in nestable containers called pampas’. Similar to our approach, these
prototypes provide flexible containers and layouts to focus on task-related artifacts.

We argue that the flexibility of browsing actions in programming tools depends on
the expressiveness of queries. For example, SOUL [2] is a logic program query lan-
guage that allows programmers to verify assumptions on programs. Implementations
can display the results as intentional views [8] thus being able to show, for example, all
artifacts of one crosscutting concern on the screen. These queries can be reused sim-
ilar to saved searches in common email clients or database-oriented applications. In

4http://pharo-project.org, portable open source Smalltalk implementation

164 Fall Workshop 2013

4 Our Research Programming Environment

contrast, our approach does not introduce an additional scripting language but makes
use of the dynamic programming language Smalltalk, which programmers use anyway
to write their code in this environment.

Immediate feedback and reversibility of actions is a resource-intensive problem for
programming environments. There are approaches that update important caches au-
tomatically on code changes such as Steinert et al. [17] executes tests in background.
Reversibility, however, is more of a conceptual problem: Which actions should be
tracked, grouped, and reverted? Steinert et al. [16] develop CoExist—a tool that contin-
uously keeps track of any tiny source code modification to free programmers of thinking
about possible risks upfront while allowing for going back at any time. Our approach
introduces a new way to provide unanticipated progress feedback for long running op-
erations that block the main event loop without having programmers to introduce hooks
into their queries.

4 Our Research Programming Environment

In this section, we explain the status quo of our programming environment VIVIDE,
which implements several ideas of direct manipulation interfaces applied to the domain
of programming. Due to space constraints, we sketch basic ideas only.

A

B

C

D

Figure 1: Our environment VIVIDE allows programmers to work with all kinds of soft-
ware artifacts side-by-side. Object editors (A) represent detailed, editable views for
single objects such as methods. Scriptable views (B) support exploring object rela-
tionships as needed. Programmers can modify underlying queries (C) to adapt views
directly. In-place queries (D) provide immediate access to related objects.

Fall Workshop 2013 165

No Tools But Objects

Figure 2: Object views consist of multiple independent windows each having two sides:
input and output. The input side stores a user-selected list of editable single-object
views. The output side shows a multi-object list view that is generated by a query
evaluated on the input. Data flows between windows via propagating selections or
drag-and-drop.

4.1 Representing Nouns Before Verbs

We argue that programmers naturally reason about relevant software artifacts in the
first place and then about what to do with them. Thus, our prototype (Figure 1) favors an
noun-verb interaction style [13, pp. 59] and unifies the concept of object views meaning
that there actually is no tool in the traditional sense5. This supports programmers
to follow up on any clue when reasoning about software artifacts—not the tools are
focused but objects and relationships. Given several task-related objects, they can
choose from a set of queries to reveal interesting (static or dynamic) relationships such
as the methods of a class or possible arguments for a method. Having this different
point of view, programmers do not have to look for appropriate tools that hopefully
provide the desired information but rather to think directly about the information itself.
We believe that this removes one level of indirection, which will reduce the cognitive
effort.

The windows in VIVIDE (Figure 2) have two sides: input and output. The input side
is an extensional list, which is filled manually by the programmer who collects objects of
interest while browsing the system. The output side is an intentional list, which is filled
when evaluating a user-defined query. Having this, all kinds of common browsers can
be created—even debuggers where the input is a list of stack frames and the output is
a view on the objects of the particular system state.

5The definition of the term “tool” is diverse. We mean traditional tools such as class browser, file
browser, or SVN browser.

166 Fall Workshop 2013

4 Our Research Programming Environment

A

B

C

Figure 3: Feedback for long running operations (A): A watchdog supervises the main
event loop of the programming environment, analyses its call stack frequently, and
extracts progress information (B) from recurring stack frames. Responsible windows
will be highlighted (C) to pinpoint work of hidden ones.

4.2 Object Queries as Adaptable Browsing Actions

We argue that programmers who are focused on the task at hand can easily pinpoint
problems in their tool views meaning information overload or need. With our proto-
type, programmers can simply reveal the recipe that is used to produce any particular
view (Figure 1 C). Having this, they can adapt those recipes directly and see the result
immediately without losing sight of the objects of interest. There is no need to dive into
a tools sources to alter its behavior; programmers can stay focused on their current
activity while adapting the views. We call these recipes object queries.

An object query consists of a linked list of steps where each step has a definition,
which is a piece of source code. Thus, steps and definitions are unit of adaption and
reuse. Steps can either transform objects (including select, sort, and group) or extract
several properties to be displayed in object views. Both kinds of steps can interleave
thus giving programmers the chance to describe more advanced views such as het-
erogeneous trees. When a query is being evaluated, objects are “flowing” through the
steps while data model nodes are being generated at each consecutive list of property
steps. This means that there has to be at least one (default) property step for a query.
In contrast to traditional linked lists, one cycle is possible to allow for recursively de-
scribing data models of dynamic size. Having many lists of those query steps, any step
in a list can be used as entry point and thus serve as a query of its own.

4.3 Unanticipated Progress Feedback

We want to support programmers to focus on the current programming activity. Thus,
we provided a simple way to adapt object browsers if necessary by means of query
steps and definitions as described above. However, there are two important questions

Fall Workshop 2013 167

No Tools But Objects

that need to be answered to fulfill the third direct manipulation principle about immedi-
ate feedback: (1) When to reevaluate queries to propagate object changes? (2) How
to handle long running queries? The first question is answered with additional source
code for each query definition that is intended to subscribe to an observer mechanism.
We argue that this place is good to decide when the outcome of an object transforma-
tion might change. False-positives would decrease tool performance, false-negatives
could be mitigated with manual query reevaluation.

In the scripting world6, programmers write pieces of source code that are “good
enough” for a particular purpose. Reusing those scripts under different conditions can
result in unexpected long response times and—as in our case where reusing queries all
the time—thus leading to an unresponsive user interface. We argue that programmers
take more time and produce less readable scripts when having to consider progress
indication. Our approach (Figure 3) is to let a feedback thread observe the main appli-
cation thread by taking frequent7 call stack samples. Within these samples, recurring
stack frames are mapped to tasks with current progress according to previously de-
fined strategies. Having this, the operation description is independent of the progress
description and the performance overhead is independent from the operation duration.
It scales up: The overhead is inversely proportional to the CPU speed because the
call stack analysis needs always the same amount of CPU cycles for a given setup of
strategies.

5 Evaluation

As for now, the most valuable feedback about applicability has been collected by using
VIVIDE to modify itself and implement new features as needed since January 2013.
Additionally, we conducted two pilot case studies: Several computer science students
had the possibility to accomplish software projects within VIVIDE in an undergraduate
lecture and a graduate seminar. Our goal was to collect insights from programmers
who are not directly involved in this research project.

In this section, we explain the experimental conditions and results, which cannot be
generalized but serve as starting point for further studies.

5.1 Method

At first, participants got a brief tutorial to learn about the basic concepts and functions
of the tool. We allowed questions and gave support throughout the whole period,
which was from the beginning of April to the end of July 2013. VIVIDE provides an
integrated feedback mechanism, which gives users a way to supply questions, ideas,
problems, or praise with a single button click. Thus, we were able to provide direct
support. Nevertheless, participants could decide to stop using VIVIDE at anytime if

6We assume that code is executed in the main event loop and that concurrency is not an option
because the result is important for the user to continue work.

7We choose a frequency of 4 Hz as a trade-off between analysis overhead and perceived respon-
siveness.

168 Fall Workshop 2013

5 Evaluation

they wanted to. After completing their tasks, we provided a simple questionnaire for
debriefing purposes:

1. Did you use VIVIDE for programming? (yes/no)
2. Why did you do so? (free text)
3. Did you create custom queries? (yes/no)
4. If you did, which ones? (free text)

5.2 Participants and Task

There were 68 undergraduate students in the lecture and 18 graduate students in the
seminar. All of them were familiar with the Squeak/Smalltalk environment and thus
knew about how to use the standard toolset. None of them did use VIVIDE before. In
both cases, students had to work on new software projects in teams of three to four.

5.3 Results

Only 50 out of 86 responded to our questionnaire. From this, we know that at least 19
students tried to use VIVIDE for their projects. However, 12 of them stopped using it
after a while mainly because the standard toolset seemed to be better suited for their
projects and there was no interest in learning a new tool.

Students fully ignored it because: “normales Squeak hat ausgereicht / keine lust
wieder neues UI einzulernen” (Plain Squeak was good enough. Didn’t feel like learn-
ing new UI), “Angst vor neuem :P” (Afraid of new things), “bei gemstone, seaside,
gemtools, pharo und so weiter, brauchte ich nicht auch noch eine neue IDE” (So much
new libraries to learn. Did not want to learn a new IDE as well). It seems that some
students did not want to pose additional risks to project outcome by trying out a new
research prototype that may impede progress.

Students stopped using it because: “Die Performance war unter Ubuntu [...] mis-
erabel [...]” (It was unusable slow with Linux), “Der Bug [...] ließ anfänglich kein an-
genehmes Arbeiten dazu. Danach habe ich aufgehört vivide zu nutzen.” (There was a
bug that impeded our workflow. Then we stopped using VIVIDE). Thus, we got valuable
information about serious bugs and showstoppers.

Students kept on using it because: “Vor allem wegen der kleinen, flexiblen Fen-
ster. Die Andockfunktion ist effizient nutzbar.” (Mainly because of the small, flexible
windows. The docking function is efficient). There was one team of undergraduates
that used VIVIDE throughout their project because its topic naturally fitted: “Im Rah-
men des Projekts Expert Knowledge Mining. Queries sind eine gute Sache, um erste
Codesnippets auszuprobieren, die Listen liefern sollen.” (For our project Expert Knowl-
edge Mining. Queries are well suited to try out first code snippets that should produce
lists of objects). This supports our main assumption that programmers can better focus
on their current activities while browsing domain-specific object relationships.

The feedback mechanism was used 20 times by 9 different students. There were
students that kept on using VIVIDE until the project end but never submitted any feed-
back report. There were 4 questions, 3 ideas, 12 problems, and no praise. Each report

Fall Workshop 2013 169

References

had the current screenshot attached, which allowed us to understand the concern more
quickly. In the end, we could solve all problems, answer all questions and got valuable
information about where to improve our programming environment.

5.4 Hypotheses

Our experience during the last twelve months revealed several hypotheses, which we
are going to prove either by experimentation or literature studies:

Correctness All domain-specific browsing tasks can be accomplished with queries.
Practicability If programmers can easily see which rules produce a particular view,

they will adapt those rules to accommodate domain-specific scenarios.
Impact If programmers can work with task- and domain-specific views, they will need

less time to accomplish programming tasks because of the reduced cognitive
effort.

6 Conclusion and Next Steps

Our VIVIDE programming environment got into a useful and usable state, where we
are able to fully replace all standard tools that are not for refactoring or version control.
Programmers can perform important programming activities such as code creation,
modification, navigation, and debugging with the help of over 80 queries, which are
distributed among 30 different object types. In the regular setup, we cover three differ-
ent domains: the Smalltalk standard library, test-driven run-time analysis [12], and the
query system itself.

VIVIDE shows that, using our approach, tools can take advantage of additional infor-
mation to be derived from dynamic programming systems such as Squeak/Smalltalk.
As for browsers, there can be a user interface that allows programmers to modify its
views in situ. There is no need to switch to a different code editor for this purpose since
code can be entered and evaluated everywhere.

For the next steps, we are going to validate the hypotheses as described above,
think about how queries can support program modification in addition to browsing, and
explore the applicability of VIVIDE to further domains outside Squeak.

References

[1] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J..
LaViola Jr. Code Bubbles: A Working Set-based Interface for Code Understanding
and Maintenance. In Proceedings of the 28th International Conference on Human
Factors in Computing Systems, pages 2503–2512. ACM, 2010.

[2] Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. The SOUL
Tool Suite for Querying Programs in Symbiosis with Eclipse. In Proceedings of the

170 Fall Workshop 2013

References

9th International Conference on Principles and Practice of Programming in Java,
pages 71–80. ACM, 2011.

[3] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P.
Reiss. Debugger Canvas: Industrial Experience with the Code Bubbles Paradigm.
In Proceedings of the 2012 International Conference on Software Engineering,
pages 1064–1073. IEEE Press, 2012.

[4] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct Manipulation
Interfaces. Human-Computer Interaction, 1(4):311–338, 1985.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
Springer, 1997.

[6] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information Needs in Collocated
Software Development Teams. In Proceedings of the 29th International Confer-
ence on Software Engineering, pages 344–353. ACM/IEEE, 2007.

[7] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Information
During Software Maintenance Tasks. IEEE Transactions on Software Engineering,
32(12):971–987, December 2006.

[8] Kim Mens, Bernard Poll, and Sebastián González. Using Intentional Source-Code
Views to Aid Software Maintenance. In Proceedings of the 19th International
Conference on Software Maintenance, pages 169–178. IEEE, 2003.

[9] Yoshiro Miyata and Donald A. Norman. Psychological Issues in Support of Multi-
ple Activities. User Centered System Design, pages 265–284, 1986.

[10] Donald A. Norman. The Design of Everyday Things. Basic Books, 1988.

[11] Fernando Olivero, Michele Lanza, Marco D’Ambros, and Romain Robbes. En-
abling Program Comprehension through a Visual Object-focused Development
Environment. In Proceedings of the Symposium on Visual Languages and
Human-Centric Computing, pages 127–134. IEEE, 2011.

[12] Michael Perscheid, Bastian Steinert, Robert Hirschfeld, Felix Geller, and Michael
Haupt. Immediacy through Interactivity: Online Analysis of Run-time Behavior.
In Proceedings of the 17th Working Conference on Reverse Engineering, pages
77–86. IEEE, 2010.

[13] Jef Raskin. The Humane Interface: New Directions for Designing Interactive Sys-
tems. Addison-Wesley Professional, 2000.

[14] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualizations. In Proceedings of the Symposium on Visual Languages,
pages 336–343. IEEE, 1996.

Fall Workshop 2013 171

References

[15] Ben Shneiderman and Catherine Plaisant. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Addison-Wesley, 5th edition,
2009.

[16] Bastian Steinert, Damien Cassou, and Robert Hirschfeld. CoExist: Overcoming
Aversion to Change. In Proceedings of the 8th symposium on Dynamic languages,
pages 107–118. ACM, 2012.

[17] Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke, and Robert
Hirschfeld. Debugging into Examples: Leveraging Tests for Program Comprehen-
sion. Testing of Software and Communication Systems, pages 235–240, 2009.

[18] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton Jr. N Degrees
of Separation: Multi-dimensional Separation of Concerns. In Proceedings of the
21st International Conference on Software Engineering, pages 107–119. ACM,
1999.

172 Fall Workshop 2013

Communication-Aware and
Memory-Aware VMs Consolidation

Ibrahim Takouna

Internet-technologies and Systems

Hasso-Plattner-Institute

ibrahim.takouna@hpi.uni-potsdam.de

This report presents two of my recent research contributions. First, it presents
communication-aware VMs consolidation for communicative VMs that host parallel
or dependent jobs. Second, it presents memory-aware VMs consolidation for non-
communicative VMs that host independent jobs. Finally, it depicts my thesis contribu-
tions and next steps.

1 Communication-Aware

Consolidating parallel applications based on server resources (e.g., CPU or memory)
might can be inefficient, causing a very significant degradation in the performance of
the parallel applications. Walker compared the performance of NPB MPI using Amazon
EC2 and the National Center for Supercomputing Applications (NCSA) [1]. The result
showed that the programs CG, FT, IS, IU, and MG had greater than 200% performance
degradation. We conjecture this to the random placement of these applications. For
instance, Figure 1 shows the mapping between jobs and servers for 10 parallel applica-
tions, where each has four jobs. In this example, the VMs are scheduled based on CPU
without considering the correlations among VMs. It is clear that not all VMs that belong
to a single application are scheduled on the same server. For instance, each VM of
App2 are placed into different server where VMs 1 and 3 are placed on Server 1, and
VMs 4 and 5 are placed on Server 5. This placement causes high performance degra-
dation for parallel applications and also inefficient network utilization. There is little
research on communication-aware load balancing schemes for parallel applications in
virtualized data centers. For instance, Qin et al proposed a communication-aware tech-
nique for enhancing the performance of communication-intensive applications through
an efficient utilization for the network in non-virtualized cluster environments [2].

1.1 Methodology

Our goal is to achieve an efficient scheduling for communicative VMs and minimize en-
ergy consumption by servers and network components. Usually, the approaches that
are not communication-aware can cause a random placement of the VMs. This might
improve the resource utilization at the server level but worsen the network bandwidth

Fall Workshop 2013 173

Communication-Aware and Memory-Aware VMs Consolidation

1

2

3

4

5

1 2 3 4

S
er

ve
r i

d

VM id

App1 App2 App3 App4 App5
App6 App7 App8 App9 App10

Figure 1: CPU based placement approach

Server Server

Migration Manager (MM)

1

5

1

3 2 4

6

Network

Figure 2: The proposed approach: Peer VMs Aggregation

utilization at the switch level and the performance of these VMs. Our approach is to ag-
gregate the communicative VMs exchanging traffic between each others to be placed
in the same server. This assists in localizing the traffic and minimizing the commu-
nication delay among communicative VMs. To this end, we developed the Peer VMs
Aggregation (PVA) approach, which is presented in algorithm 1. Our approach requires
VMs to be involved with the Migration Manager (MM) to determine the communication
patterns among VMs.

Our approach is built based on the following issues. The jobs in virtualized environ-
ments are executed on VMs. A VM can easily determine the VMs that communicate
with it, but the VM is not capable of determining the communication pattern of the whole
application. Determining the communication pattern is the role of the Migration Man-
ager. Furthermore, we consider that the VMs communicate with one another through
a shared network. However, when VMs are scheduled on the same server, they can

174 Fall Workshop 2013

1 Communication-Aware

communicate through a shared memory. Importantly, the servers always have enough
free resource capacity for using migration (e.g., 10% to 20% of CPU).

Algorithm 1: Peer VMs Aggregation (PVA)

1 Initialization
Each VMi has communication with other peer VMs
sending a request with its peer VMs for Migration
Manager (MM), VmsRequests.add(VMi, peer_VMs)

While (VmsRequests is not empty) do
2 MM Sorts VMs in descending order based on the

the number of in/out traffic flows from the VM’s
server to its peer VMs’ servers

3 MM Selects the first ranked VM to be migrated
to the destination server (Server2) of the peer VMs

4 MM Checks the suitability of the destination server
If is suitable
MM Migrates the VM from the source (Server1)
into destination (Server2)

Else
5 MM Migrates a VM from the source (Server1)

to the destination (Server2) whereas this VM
is not one of the VM’s peers and is suitable
to be hosted by the source (Server1)

6 MM Migrates the VM from the
source (Server1) to destination (Server2)

Now, we discuss our approach. The communicative VMs initially send requests to
the MM. The request for migration contains a list of peer VMs of the requesting VM.
For example, these VMs, VM1_0, VM1_1, VM1_2, and VM1_3, belong to an application
where VMi_ j indicates VM j of application i. Thus, the request of VM1_3 contains VM1_0,
VM1_1, and VM1_2. Similarly, the request of VM2_3, which belongs to another applica-
tion, contains VM2_0, VM2_1, and VM2_2. The MM is responsible for four procedures:
Sort, Select, Check, and Migrate. Importantly, MM performs these procedures itera-
tively on servers until it the algorithm converges. The convergence of the algorithm
means that all VMs belong to the same application are scheduled on the same server.
We next illustrate each procedure.

• Sort: MM sorts the VMs, in descending order based on a number of the in/out
traffic flows, after compiling these requests to discover the communication pat-
terns and determining the current placement of these VMs on the servers. As
VMs have no knowledge of whether they are hosted on the same server, MM
determines that and ignores the requests of VMs scheduled on the same server.

• Select: MM selects the top ranked VM to be migrated to the destination server
that contains its peer VM. For instance, the selected VM (i.e., VM 1_3, which
is hosted in the server Server1) has very mutual communication with other VMs

Fall Workshop 2013 175

Communication-Aware and Memory-Aware VMs Consolidation

(i.e., VM1_0, VM1_1, and VM1_2, which are hosted Server2). Thus, the selected
destination server is Server2.

• Check: MM checks the suitability of the destination server in terms of CPU, mem-
ory, and network, as the resource demand of a VM is become known at the run
time.

• Migrate: MM directly migrates the selected VM If the destination server is suit-
able. Otherwise, MM tries to migrate a VM (i.e., VM 2_3) from the destination
server (Server2) to make room for the selected VM (VM 1_3) to be placed in the
same server (Server2) of its peer VMs. However, the selected VM (i.e., VM 2_3)
should be also suitable to be migrated to Server2. In this example, VM 1_3 is mi-
grated from (Server1) to (Server2) and VM 2_3 is migrated from Server1 to Server2,
simultaneously. However, if there is no VM to be moved from the destination
server, MM can place the selected VM on a server shared the same edge switch
with the server of its peer VMs.

Core

Aggregate

Edge

Server 1Gbps 10 Gbps 100Gbps

Figure 3: The simulated data center

1.2 Evaluation

To evaluate our approach, we generated 200 different parallel applications of NPB
benchmark, inducing BT, SP, IS, CG, LU, and MG. The parallel application generated
four jobs whereas each was executed in a VM. Each job required 1000 MIPS. The ideal
execution time of the jobs is 1000 seconds. We also simulated the communication
pattern of these applications. The total number of servers in our simulation was 128
servers. The simulated server model is HP ProLiant DL380 G7 (3.07 GHz, Intel X5675
processor with 6 Cores) and its memory-bus bandwidth is 40 GB/s. We considered
that the total capacity of the server was 9000 MIPS and each server could host at
maximum 8 VMs to keep CPU resource for migration overhead. Seeking simplicity,
we assumed that all jobs were similar in their start time and length. We simulated the
memory demand of these jobs. We simulated the placement of the 800 VMs (i.e., jobs)

176 Fall Workshop 2013

1 Communication-Aware

based on CPU utilization random fashion. This is considered as the initial placement of
the VMs where the CPU based approach is unaware of communication pattern among
VMs. We then simulated our proposed approach, which can discover the patterns and
online rearrange the places of the VMs using migration.

During the simulation, we measured the following metrics: performance degrada-
tion, the VMs placement, memory-bus utilization for each server, network utilization for
each link, number of migrations, energy consumption of servers and switches. Using
these metrics, we can evaluate the efficiency and the effectiveness of our approach in
comparison to the CPU based placement.

1.2.1 VMs placement

Figure 4 shows the distribution of VMs on the servers comparing our approach and
CPU based placement approach. In Figure 4, the x-axis represents the VM index of
a specific application, and the y-axis represents the server index, which hosts the VM.
Figure 4 clearly shows a uniform shape. This means that our approach aggregates
all the VMs belongs to an application into the same server. Contrarily, CPU based
placement shows a random placement of VMs due to the lack of awareness about
the communication among VMs. Thus, our approach, PVA, is capable of achieving a
perfect placement after determining the communication pattern of communicative VMs.

1.2.2 Network utilization

Figure 5 shows the average network utilization of the main links, which connect the
switches together. For instance, the link C0-A0 represents the link between the core
switch with id = 0 and the aggregate switch with id = 0 as shown in Figure 3, which
depicts the data center network architecture. Importantly, the average utilization of the
link (C0-A0) significantly decreases using our approach compared to the CPU based
placement approach. This is because the link (C0-A0) aggregates the traffic of the
servers (1 to 32) as shown in Figure 3 and our algorithm quickly rearranges the VMs
in these servers after some time of the simulation. However, the average utilization
of the link (C0-A2) is almost the same using both approaches because our algorithm
converges when the VMs placed into servers (65 to 96) almost finish executing their
jobs. Our approach reduces the average utilization of the network by 25% where the
average utilization for all links of the network is 27% by using our approach while it
is 36% by using CPU based placement. Our approach outperforms the CPU based
placement in terms of reducing the network utilization. As our approach moves the
communication between VMs from shared network to shared memory by aggregating
the communicative VMs into the same server.

1.2.3 Number of migrations

As we exploited migration, we calculated the number of migrations for each VM. Figure
6 depicts the inverse CDF of the number of migrations for each VM. It shows that 30%
of VMs were migrated at least once, and only 5% of VMs were migrated more than 4

Fall Workshop 2013 177

Communication-Aware and Memory-Aware VMs Consolidation

times. Algorithm convergence depends on the randomization of VMs, the number of
VMs, how many parallel migration can be performed.

(a) CPU-based

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(b) Our approach (PVA)

Figure 4: The place of VMs into servers: CPU based vs. our approach placement

0
10
20
30
40
50
60
70

Li
nk

 u
til

iz
at

io
n

Links id

Our approach Based on CPU

Figure 5: The average utilization of the links between switches

2 Memory-Aware

Our goal is to improve performance of the overall system by consolidating VMs effi-
ciently based on memory-access demand. To this end, we propose a memory-access-
pattern-aware consolidation approach exploiting the heterogeneity of the applications
memory access and demand. We implemented our approach into CloudSim simula-
tor, which is well known for simulating VM consolidation and energy consumption. To
evaluate our approach, we simulated the access and demand of 8 programs of NPB-
OMP benchmark suite based on real measurement from [3]. We also emulated the
shared memory-bus of a server as RR-FCFS scheduling algorithm. To compare the

178 Fall Workshop 2013

2 Memory-Aware

results, we measured the performance of the application when it is run alone, CPU
based consolidation, and our approach. The results show that we can achieve bal-
ance in memory-bus utilization and improve of the system compared to CPU-based
consolidation.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 2 3 4 5 6 7 8

In
ve

rs
e

C
D

F

Number of migrations for each VM

Figure 6: The CDF of the number of migrations for each VM

2.1 Methodology

Memory-bus access unaware VM consolidation can cause high system degradation.
Unfortunately, the demand of memory-bus access of an application is determined on-
line. We exploit live migration to balance memory-bus utilization among the running
servers. Thus, we present Memory-bus Load Balancing Algorithm 2. MLB algorithm
takes hosts of cluster and a numerical value Al pha, which specifies the intensity of bal-
ancing as input and returns the migration map, which contains VMs to be migrated and
the destination host. MLB algorithm selects a host that it’s memory-bus is highly utilized
(i.e., maxHost) and a host that has the lowest memory-bus’ utilization (i.e., minHost).
Then, it compares the variation of the VMs’ access demand of the hosts using Wilcoxon
unpaired test. Based on the P.value of Wilcoxon test and Al pha, MLB algorithm decides
whether migrate VMs or not. If P.value less than Al pha, MLB algorithm selects a VM
with highest memory access from the host with high memory-bus utilization and a VM
with lowest memory access from the host with low memory-bus utilization. Then, it
swaps their placement and adds them to migration map to be migrated. The maxHost
changes each iteration of i to get the next maxHost.

2.2 Evaluation

To evaluate our proposed approach, we conducted several simulations. We study the
performance of our approach against the default placement of VMs based on CPU
utilization. The evaluation includes the memory-bus utilization, the performance degra-
dation, the average latency in each server, energy consumption, and the number of mi-
grations. We simulate 100 VMs where each VM runs one of NPB benchmarks. These
VMs are hosted in 13 hosts. Furthermore, we use different values of Al pha where a
low value (i.e., Al pha = 0.1) represents low balanced and a high value (i.e.,Al pha = 0.8)
represents high balanced.

Fall Workshop 2013 179

Communication-Aware and Memory-Aware VMs Consolidation

Algorithm 2: Memory-bus Load Balancing (MLB)

Input: clusterHostList, Alpha
Output: migrationMap

1 l ←clusterHostList.size()/2 , migrationMap←null
2 for i ← 0 to l do
3 maxHost←descendingOrderMemBwHost().get(i)
4 minHost←ascendingOrderMemBwHost().get(0)
5 P.value←Wilcoxon(maxHost.vmList(),minHost.vmList())
6 if P.Value < Al pha then

/* maxVM and minVM must not be in migration */
7 maxVm←maxHost.findMaxMemBwUtilizedVm()
8 minVm←minHost.findMinMemBwUtilizedVm() /* The swap function

sets the new mapping of the VMs */
9 migrationMap.add(swap(maxVm , minVm))

10 if migrationMap!=null then
11 return migrationMap

/* In case the for loop ends without finding suitable VMs
to be swapped, the algorithm returns null */

12 return migrationMap

2.2.1 Memory-bus utilization

Figure 4 shows the VMs mapping into servers and shows stacked memory-bus de-
mand for servers. It includes CPU-based approach and our approach with different
values of Al pha. Figure 4-(a) shows stacked memory-bus demand of CPU-based ap-
proach. The memory-bus of servers 5 and 6 are highly utilized because these servers
hosts memory-intensive benchmark (i.e., IS). The stacked memory-bus demand of
servers 5 and 6 is more than 14000MB. This placement causes high degradation
of performance in these servers. On the other hand, Figure 4-(a) shows a very low
memory-bus utilization of servers 1 and 2. It is clear that not considering memory-bus
demand causes unbalance of server’s memory-bus and degradation in performance of
the system.

Figure 4-(b) shows the result of our algorithm with Al pha = 0.1. It clearly shows the
difference between our algorithm and CPU-based. In this case, the stacked memory-
bus demand of all servers does not exceed 8500 MB. Figures 4-(c), (d), and (e) depicts
the results of our algorithm with higher value of Al pha, which means higher balancing
of memory-bus. Our algorithm with Al pha = 0.4,0.6,and0.8 allows the stacked memory-
bus demand to not exceed 8000MB. However, Our algorithm with Al pha = 0.6 can be
considered as the best. Importantly, reducing the memory-bus frequency (i.e., DVFS of
memory)can be applied after our algorithm to reduce energy consumption by memory
sub-system.

180 Fall Workshop 2013

3 Thesis contributions

(a) CPU-based

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13

S
ta

ck
ed

 m
em

or
y

b.
w.

 d
em

an
d

(M
B

)

Server index

(b) MBL-Alpha= 0.1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13

S
ta

ck
ed

 m
em

or
y

b.
w.

 d
em

an
d

(M
B

)

Server index

(c) MBL-Alpha= 0.4

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13

S
ta

ck
ed

 m
em

or
y

b.
w.

 d
em

an
d

(M
B

)

Server index

(d) MBL-Alpha= 0.6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13

S
ta

ck
ed

 m
em

or
y

b.
w.

 d
em

an
d

(M
B

)

Server index

(e) MBL-Alpha= 0.8

Figure 7: VMs placement: CPU based vs. our approach

2.2.2 Performance degradation

Figure 8 depicts CDF of performance degradation. For instance, we can find that 60%
of VMs experienced performance degradation from 15% and over by using CPU-based
approach. On the other hand, by using our algorithm, only 40% of VMs experienced
performance degradation from 15% and over. Thus, our algorithm outperforms the
CPU-based algorithm.

3 Thesis contributions

My thesis targets two categories of VMs: independent/non-communicative VMs and
dependent/communicative VMs as shown in Figure 9. Here is a short summary for
each contribution.

1. A proactive robust optimization for energy management to mitigate undesirable

Fall Workshop 2013 181

Communication-Aware and Memory-Aware VMs Consolidation

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25 30 40

C
D

F

Performance degradation

CPU-based MLB-Alpha=0.1 MLB-Alpha=0.4
MLB-Alpha=0.6 MLB-Alpha=0.8

Figure 8: Cumulative distribution function (CDF) of performance degradation for CPU-
based approach and our approach (MLB)

changes in the power-state of the hosts by which increases in the hosts’ availabil-
ity for hosting new VMs and reliability against a system failure during power-state
change [4].

2. A robust dynamic VM consolidation for efficient energy and performance man-
agement to achieve equilibrium between energy and performance trade-off. Our
approach reduces the number of VMs migration, which increases the energy
consumption by network infrastructure and SLA’s violations, and the number of
power-state change by 74.8% and 38%, respectively [5].

3. Energy-efficient scheduling of HPC VMs using Host and VM Dynamic configu-
ration to assuage the trade-offs between energy and acceptance ratio of jobs
where our approach reduces energy by 20% for executing jobs and increases the
system utilization by 45% compared to pure DVFS approach [6] [7].

4. Communication-aware and energy-efficient scheduling for parallel applications to
enable dynamic discovery of communication patterns and reschedule VMs based
on the determined communication patterns using VM migration. The result shows
that our proposed approach reduces the average of the network’s utilization by
25% and achieves energy savings of about 60% by reducing the number of active
switches and higher VM performance compared to CPU-based placement [8] [9].

5. Energy and performance efficient scheduling of independent VMs by exploiting
memory demand heterogeneity. Our approach reactively redistributes the jobs
according their utilization of memory-bus using VM migration to improve the per-
formance of the overall system [10].

6. Cooperative approach for thermal-aware and energy-efficient scheduling of HPC
VMs involving host power-state change, thermal model of data centers, and
scheduling policies.

182 Fall Workshop 2013

4 Next Steps

4 Next Steps

• Thermal and energy cooperative management: During my visit to Chinese
Academy of Science data center, I obtained real traces of thermal and energy. By
using these traces, we can build accurate models of thermal and energy of the
data center. I had preliminary results during my visit there for building 3D thermal
model for data center to achieve thermal-aware VMs placement. Furthermore,
we can cooperate thermal awareness and energy management with resource
management scheduling policy (e.g., IBM Platform LSF) to decide which hosts
should be turned off.

• Thesis writing: I am planning to start writing my thesis in December 2013 af-
ter conducting more experiments and achieving results for thermal and energy
cooperative management.

Energy Thermal-
Aware

Communicati
on -Aware

Proactive
Management

Robust VMs
Consolidation

DVFS/VM
Dynamic

configuration

Memory-
Aware

Figure 9: Thesis contributions

References

[1] Edward Walker. Benchmarking Amazon EC2 for high-performance scientific com-
puting. Usenix Login. 33(5):18-23, 2008.

[2] Xiao Qin, Hong Jiang, Manzanares, Adam Manzanares, Xiaojun Ruan, and Shu
Yin. Communication-Aware Load Balancing for Parallel Applications on Clusters.
IEEE Transactions on Computers. 59(1):42–52, 2010.

[3] Uday Kiran Medisetty, Vicenc Beltran, David Carrera, Marc Gonzalez,
Jordi Torres, and Eduard Ayguad. Efficient HPC application placement in

Fall Workshop 2013 183

References

Virtualized Clusters using low level hardware monitoring. [Online]. Avail-
able:http://www.udaykiranm.com/hpcvirt.pdf. [retrieved: Apr, 2013].

[4] Ibrahim Takouna, Kai Sachs, and Christoph Meinel. Multiperiod Robust Proactive
Energy Management in Virtualized Data Centers. Computing Journal Springer,
2013. (Under review)

[5] Ibrahim Takouna, Kai Sachs, and Christoph Meinel. Robust Dynamic Virtual Ma-
chine Consolidation for Efficient Energy and Performance Management in Virtual-
ized Data Centers. In Proceedings of Fifth ACM/SPEC International Conference

on Performance Engineering, (ICPE). 2014. (Under review)
[6] Ibrahim Takouna, Wessam Dawoud, and Christoph Meinel. Energy Efficient

Scheduling of HPC Jobs on Virtualized Clusters using Host and VM Dynamic
Configuration. ACM SIGOPS Operating Systems Review. 46(2):19–27, 2012.

[7] Ibrahim Takouna, Wessam Dawoud, and Christoph Meinel. Accurate Multicore
Processor Power Models for Power-Aware Resource Management. In Proceed-
ings of IEEE Ninth International Conference on Dependable, Autonomic and Se-

cure Computing. Sydney, Australia, pp. 419–426, 2011.
[8] Ibrahim Takouna, Roberto Rojas-Cessa, Kai Sachs, and Christoph Meinel.

Communication-Aware and Energy-Efficient Scheduling for Parallel Applications
in Virtualized Data Centers. In Proceedings of 6th IEEE/ACM International Con-

ference on Utility and Cloud Computing (UCC). Dresden, Germany, 2013.
[9] Ibrahim Takouna, Wessam Dawoud, and Christoph Meinel. Analysis and Simula-

tion of HPC Applications in Virtualized Data Centers. In Proceedings of IEEE In-

ternational Conference on Green Computing and Communications (GreenCom).
pp. 498–507, 2012.

[10] Ibrahim Takouna, Wessam Dawoud, and Christoph Meinel. Energy and Perfor-
mance Efficient Scheduling of Independent VMs in Virtualized Data Center by
Exploiting VMs’ Memory Demand Heterogeneity. In Proceedings of GCM’2013

in conjunction with 6th IEEE/ACM International Conference on Utility and Cloud

Computing (UCC). Dresden, Germany, 2013.

184 Fall Workshop 2013

Using Omniscient Debuggers

Arian Treffer

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut

arian.treffer@hpi.uni-potsdam.de

This paper presents how Omniscient Debuggers allow the advanced navigation of
a program execution, which greatly improves the time required to find the source of a
failure.

1 Introduction

A large part of developing software consists of finding and removing bugs in existing
code. For this, the debugger is considered an important tool. By improving the usability
of debuggers, we hope to reduce the time developers need to find bugs, which leaves
more time for fixing them.

This leads to the following research questions:

• Which additional operations should a debugger provide to allow the most efficient
navigation of a program execution?

• How can the program state be visualized to help the developer to identify impor-
tant values?

• How can a repository of valid execution traces be used to find errors?

2 Foundation

This section introduces basic terminology and describes a typical debug session, which
will be used as a running example throughout the paper.

2.1 Stages of a bug

In a running program, a bug goes through three stages.
A fault is a defect in the source code. A fault does not necessarily correspond to

a single location, but can be spread over multiple lines or even files. For instance, it
could be debated whether the fault is that a method is called with a null argument, or
that the method is not able to handle it.

When faulty code is executed, an error can occur when the fault causes a part of
the program’s state to become invalid. Depending on the fault, no error might occur
in some situations, which are often also the most common ones. Furthermore, the

Fall Workshop 2013 185

Using Omniscient Debuggers

error can also disappear when the deviation from the valid state did not impact further
execution and the invalid value is overwritten or cleaned up at some point. On the
other hand, an error may also grow when it affects other, possibly fault-free, parts of
the system, according to the garbage-in-garbage-out principle.

Finally, the error can cause a failure if it affects the observable behavior of the
system. The most obvious failures are crashes or error messages, but the display of
wrong values or incorrect communication with other systems are failures, too. When a
failure is not detected and handled, real-world damage can follow.

2.2 Finding faults with a debugger

Very often, it is only through a failure that the existence of a fault is brought to attention.
Thus, the developer tasked with finding the fault will first try to reproduce the failure by
finding the circumstances under which it occurs.

Then, assuming she is not able to immediately guess the fault, she tries to find the
error by examining the program state as the failure happens, using a debugger. Once
the error is identified, its source has to be found, which may lie in the same method
(e.g., for a variable), but might as well be in an entirely different part of the system (e.g.,
for a field that is changed in many places). There are two ways to find the source. For
both, the debug session has to be restarted.

Firstly, the developer can set a breakpoint at a candidate location. This allows to
examine the program state right as the error occurs. However, this approach is not
feasible if there are many candidate locations.

Secondly, a breakpoint can be set before the error occurs. Then, the program is
stepped through at a high level, skipping methods that are unlikely to produce the
error. This approach works better when there are many candidate locations, but less
so when they are spread over a longer stretch of time.

Using either approach, the source if the error is eventually found. If it is another
error in the program’s state, the process has to be repeated until the actual fault is
found.

This process can be greatly speeded up with educated guesses based on a good
understanding of the code. However, it usually takes several iterations of debugging to
get to the fault.

Frequent restarts of the debug session can consume a large amount of time. Break-
points can be hit multiple times before the point of interest is reached, which requires
high concentration from the developer, as she carefully steps through the program.
Each restart of the debugger breaks the flow of the actual activity, hunting errors, and
consumes valuable short-term memory of the developer.

Furthermore, the process assumes that the developer is able to spot erroneous
values. However, the error may not always be obvious, as it might depend on other
values whether a given value is valid or not. The developer might not even be aware of
these dependencies.

186 Fall Workshop 2013

3 Related Work

3 Related Work

Backwards and omniscient debuggers have been implemented by Lieberman and Henry
[4], Lewis [3], Hofer et al. [2], Pothier et al. [10], and Lienhard et al. [5]. However, these
works focused more on the efficiency of the implementation and less on the usability
of the debugger.

Daikon is a widely-used application for invariant detection [1] and serves as a foun-
dation for ongoing research [7]. While it is not interactive, like a debugger, the same
algorithms can be applied in our context. The work of Perscheid et al. [8] focuses more
directly on finding faults by tracing automated tests.

4 Omniscient Debugging

A Backwards Debugger is a debugger that allows to step not only forwards, but also
backwards in the execution. As an extension, an Omniscient Debugger is a debugger
that knows every state of the program, in the past and future of the current point in
time.

Working backwards debuggers have been implemented for several programming
languages [2–5]. Many of them internally work like omniscient debuggers, but do not
reveal this to the user.

4.1 Modeling the execution trace

Debuggers are a special kind of runtime analysis tools. Basically, there are two ways
to implement a runtime analysis.

A live analysis evaluates the program as it is executed; as soon as, or even before,
the program terminated, the result of the analysis is available. Common debuggers
typically fall into this category.

A post-mortem analysis first records aspects of the programs execution and then
analyses the recorded data. Sometimes, this approach has the advantage that multiple
analyses may be run iteratively, without having to re-execute the program. This disad-
vantage of this approach is that, depending on the granularity of the recorded data, it
requires much more memory.

Backwards debuggers can be implement with both the live and the post-mortem
approach. In the scenario described above, where the debug session begins at the
occurrence of a failure, it does not make much of a difference. In other use cases,
however, the look-ahead that is possible with the post-mortem approach can make the
difference between a backwards and an omniscient debugger.

Many strategies have been proposed to reduce the amount of data that has to be
captured to allow a replay of the execution. However, since we aim for an omniscient
approach, we will record almost everything.

Figure 1 shows how the execution trace is modeled. The trace model consists of
two parts.

Fall Workshop 2013 187

Using Omniscient Debuggers

Event
+ step
+ line

Call
-> instance
+ step

1..*

0..1 call

ValueEvent
-> instance
-> value

Exit
-> value
+ return

FieldEvent
-> fieldException-

Event
-> instance

ArrayEvent
+ index

Object
+ id

1..* value/
instance

Throw

Catch

Type
+ id
+ name
+ file

VariablePut
-> value

Field
+ id
+ name
-> type

Method
+ id
+ name
+ signature
-> returnType

Variable
+ id
+ name
-> type

FieldPut

FieldGet

ArrayPut

ArrayGet

1 declaring-
Type

1 method

0..*

0..*

0..*

type

0..*

field

0..*

method

0..*

variable

0..*

Figure 1: Trace Model

The static part describes the application’s code on a high level. Classes, fields,
methods, and variables are represented with enough properties to find them in the
code base, so that they can be referenced from the actual trace data.

The dynamic part identifies all objects that occurred during the execution and con-
tains events that happened with these objects. Every event is identified and ordered by
a step number and contained in a parent method call (except for the root call).

The program flow is described with call events, which reference the method and the
instance on which it was called, and their respective exit events which provide the result
value and indicate whether the method terminated via return or exception. Additional
program flow is provided by exception throw and catch events.

Value events indicate changes and side-effects of the program state. Represented
are field and array reads and writes, as well as variable changes. This way, the state
of an object or the variable assignments at a certain point in time can be easily derived
from the latest respective set events.

Based on this model, it is possible to develop a debugger that can revert and replay
the execution of a program and provide snapshots of the state at any point in time.

4.2 Advanced navigation

As described above, a recurring task is to find the source of a value. It seems obvious
how a backwards debugger can improve the time required to find the source of an error.

Restarting the debug session becomes virtually unnecessary. Once an error is
identified, the developer can step backwards to its source. If a method call is stepped
over by accident (in either direction), the operation can be easily reverted.

188 Fall Workshop 2013

4 Omniscient Debugging

Nevertheless, this may still require stepping (backwards) through large parts of the
application. An omniscient debugger, on the other hand, immediately knows where the
value was set.

Figure 2: Variables View in Eclipse

Figure 2 shows the variable view of Eclipse’s debugging perspective, which is typ-
ically used to spot erroneous values. With the omniscient debugger extension, the
developer can directly jump back in time to the assignment of a value simply by double
clicking it. This changes the debugging process as follows:

The developer finds the value and double-clicks to jump to its source. She finds that
the value is build from three other values, using a formula that seems to be correct.
However, she is not sure which of the input values is erroneous. Thus, she bookmarks
the current point-in-time and begins to investigate the first value, again by double-
clicking it.

Once she stepped around through the value’s creation, she is certain that this value
is valid and uses the bookmark to return back to the future. Then she begins to inves-
tigate the second value. When she realizes that it is invalid, this process is repeated
until the fault is reached.

As the example shows, another important task is to determine whether a value is
valid by examining how it is produced. Here, the omniscient debugger can assist in
multiple ways.

Firstly, instead of showing just the current stack trace, the omniscient debugger can
provide a tree of previous and subsequent invocations (cf. figure 3). Especially after
jumping backwards, the developer may have to regain orientation, where this additional
context can be helpful.

Secondly, the debugger can show the history of a variable, or even an entire object
(cf. figure 4). Mostly, this is helpful when a value is created in a loop or if an object is
changed in multiple, different parts of the application over a longer stretch of time.

Finally, the debugger knows whether a given value is used again or at all. By
greying out variables and fields that are not accessed again (at least not before their
values are changed), the program state that has to be examined by the developer is
effectively reduced.

Fall Workshop 2013 189

Using Omniscient Debuggers

Figure 3: Call Tree

Figure 4: Variable History

5 Hyper Debugging

Texts, by their nature, are one-dimensional strings of characters. A hypertext is a text
that contains references to other locations in both other texts and itself. Thus, com-
bined hypertexts form a multi-dimensional structure where each individual text gains
additional value from the texts it references. This makes it both easier and more inter-
esting to investigate a complex body of information [6].

A program trace is a one-dimensional sequence of events (or multiple interleaved
sequences in multi-threaded applications, but still basically linear). Likewise, a hyper
debugger is a debugger that is able to link events in the current execution to events of
other execution traces.

190 Fall Workshop 2013

5 Hyper Debugging

5.1 Trace repositories

Figure 1 has shown how a single execution trace is modeled. To store multiple traces
of an application, each event has to be associated with a trace id. The static part of the
model remains unchanged.

As a source for valid execution traces, automated tests come to mind. An extensive
test suite is a representative show case for the expected behavior of the application and
can be used for many helpful analyses [8]. Another advantage is that the repository can
be easily rebuild when parts of the code base changed. However, tests for exceptional
cases should be removed from the repository.

It is often discussed in literature that program traces are to large to be handled
efficiently [5, 10]. This applies even more to repositories of many traces. However, we
expect that this problem will be solved by the ongoing decrease of memory cost and
modern main-memory data structures [9].

5.2 Detecting Invariants

Execution traces can be used to detect invariants or assumptions in the code. The
quality of the detected invariants for a given piece of code rises with the number and
variety of its invocations [1].

The main problem of regular invariant detection is that the number of potential in-
variants grows with the size of the code base. Fortunately, in our scenario we are only
interested in invariants for the current context, i.e., the variables of a single method or
the fields for a single object.

By detecting invariants for a small context in real-time, it is possible to detect poten-
tially invalid values in the current program state, helping the developer to estimate the
extent of the current error. Figure 5 shows how the variable view was extended to show
the violation of invariants. Additionally, the confidence (derived from the number of ex-
emplary invocations in the repository) is shown. A mouse-over shows the invariants
that were violated.

Figure 5: A potentially invalid value

In the best case, this feature helps the developer to quickly identify incorrect values
which makes it easier to find the underlying fault. In the worst case, this analysis
produces too many false positives, which hopefully encourages the developer to write
more and better automated tests.

Fall Workshop 2013 191

References

6 Future Work

The improved navigation features of the omniscient debugger have yet to be validated
with a user study. Further research might show better ways to visualize values in the
program and their dependencies and changes over time.

The repository of test traces can be used even outside a debug session to help
the developer with relevant information while she is writing code. Future work can
investigate how relevant information can be found and shown to the developer.

References

[1] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. Science of Computer Programming, 69(1):35–45,
2007.

[2] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and implemen-
tation of a backward-in-time debugger. NODe 2006, pages 17–32, 2006.

[3] Bil Lewis. Debugging backwards in time. Computing Research Repository,
cs.SE/0310016, 2003.

[4] Henry Lieberman. Reversible object-oriented interpreters. In ECOOP’ 87 Euro-
pean Conference on Object-Oriented Programming, volume 276 of Lecture Notes
in Computer Science, pages 11–19. Springer Berlin/Heidelberg, 1987.

[5] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. Practical object-oriented
back-in-time debugging. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented
Programming, number 5142 in Lecture Notes in Computer Science, pages 592–
615. Springer Berlin Heidelberg, January 2008.

[6] Randall Munroe. Tab explosion. http://xkcd.com/609/, 2009. Accessed on October
10th, 2013.

[7] Saeed Parsa, Behrouz Minaei, Mojtaba Daryabari, and Hamid Parvin. New effi-
cient techniques for dynamic detection of likely invariants. In Adaptive and Nat-
ural Computing Algorithms, number 6593 in Lecture Notes in Computer Science,
pages 381–390. Springer Berlin Heidelberg, January 2011.

[8] Michael Perscheid, Michael Haupt, Robert Hirschfeld, and Hidehiko Masuhara.
Test-driven fault navigation for debugging reproducible failures. Computer Soft-
ware, 29(3):188–211, 2012.

[9] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, 2011.

192 Fall Workshop 2013

References

[10] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient debugging.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, page 535–552, New York,
NY, USA, 2007. ACM.

Fall Workshop 2013 193

194 Fall Workshop 2013

Enabling Adaptation in Cyber-Physical
Systems

Sebastian Wätzoldt

Systems Analysis and Modeling Group
Hasso Plattner Institute

sebastian.waetzoldt@hpi.uni-potsdam.de

This report contains preliminary research results concerning an adaptable software
layer for cyber-physical systems (CPS). It introduces a component model and an ap-
proach to enable reflection capabilities of the software system using special monitor
and effector ports. Furthermore, first ideas of realizing the new port concepts are
shown with the help of a complex example from our CPS laboratory.

1 Introduction

Many of todays system must be highly adaptable to react on changing requirements
and environmental conditions. Often, these kind of systems cannot be stopped and
updated for economical or safety reasons. Especially, safety-critical systems as em-
bedded and (networked) cyber-physical systems (CPS) [1,3,5,9], reaching from small
medical devices to complex cars, plans and trains up to intelligent, distributed traffic
management systems or smart factories, must fulfill high expectations on reliability and
predictability to operate in an potentially open environment and interact with humans.
Usually, feedback loops are used to monitor the physical parts of the system and react
according to the current situation.

Following the external adaptation approach from Salehie et. al. [8] and therefore
a clear decoupling of adaptation and business logic has several benefits. On the one
hand, the adaptation engine can be independently developed and maintained. This
decrease complexity and enables an easy distribution on different computational nodes
of these two parts. On the other hand, the adaptation engine has to use well defined
interaction points/interfaces of the business logic that usually leads to a better overall
system design and a reduced error rate. Furthermore, it enables the protection of
intellectual property (IP) treating the specific business logic as black boxes.

The basic interaction of adaptation engine and adaptable software system is de-
picted in Figure 1. The adaptation engine on top contains different activities accord-
ing to the approach from Kephart and Chess [4] from the autonomic computing do-
main, namely, Monitor, Analyze, Plan and Execute around a common Knowledge base
(MAPE-K). The feedback loops interacts with the system only via sensing in the mon-
itor activity and effecting during the execute activity using well-defined interfaces. As
knowledge representation, we use different kinds of runtime models as for example
requirement, context or system models. The MAPE activities are specified in the EU-
REMA modeling language from Vogel [10].

Fall Workshop 2013 195

Enabling Adaptation in Cyber-Physical Systems

Analyze Plan

Monitor Execute

M@RT
requirements context system

Adaptable Software System

Adaptation Engine

sensing effecting

Figure 1: MAPE-K adaptation loop in the adaptation engine and interaction with the
adaptable software system.

A problem for embedded and cyber-physical systems using the external adapta-
tion approach can be the interaction between adaptation engine and system logic (see
lower part in Figure 1). Key challenges are a missing reflective, dynamic framework as
OSGI or the Java reflection API capabilities for dynamic object manipulation (create,
delete, link) at runtime. Furthermore, we have to consider resource limitations (mem-
ory, energy or CPU power) and timing constraints. The adaptation engine cannot sim-
ply interact with the running system without potential violations of these constraints. For
CPS the questions are: How can the software provide reflective characteristics with-
out introducing much overhead and still protecting implementation details (IP)? How
can the interaction between adaptation engine and software system still guarantee no
constraints violations?

In this paper, we try to answer these questions and introduce a component model
that enables the interaction between adaptation engine and embedded real-time sys-
tem. This model can be handled by the adaptation engine as first class entity at run-
time. Furthermore, we show a concept of enabling reflective behavior in the CPS
architecture, which is part of our component model, too. As a result, we enable static
and dynamic reconfiguration on different layers in the CPS. We evaluate our approach
by introducing an example from our CPS laboratory1, where three autonomous robots
run in a distributed factory simulation.

The rest of the paper is structures as follows: We discuss related work in Section 2.
Section 3 introduces a running example, our component model and the basic concepts
of the reflective ports as well as the realization of these concepts. Finally, we discuss
future work and conclude in Section 4.

1www.cpslab.de

196 Fall Workshop 2013

2 Related Work

2 Related Work

In this paper, we enable adaptation for CPS introducing different communication pat-
tern. Therefore, we touch a number of existing work concerning modeling adaptation
of systems as well as using and handling runtime models. In the following paragraphs,
we describe some of these ideas and how they influence our work.

Oreizy et al. [7] describes a set of architectural runtime changes such as component
addition, removal and replacement and a very basic component model. Furthermore,
an approach to describe, use and manipulate the static architecture during runtime us-
ing an ADL is introduced. However, the approach does not describe the consequences
of changing the system architecture taking timing constraints and adaptation on differ-
ent abstraction level into account. We adopt the described architectural changes and
show how they applied in our approach.

The idea of decoupling adaptation and business logic is described in [8]. Kephart
and Chess [4] provide a more detailed description of the adaptation engine from the au-
tonomic computing domain in form of an adaptation loop with the four activities Monitor,
Analyze, Plan and Execute around a common Knowledge base (MAPE-K loop). More-
over, Vogel et. al [11] describe the role of the knowledge base in more detail and
provide a categorization of runtime models. Furthermore, Vogel introduces the EU-
REMA modeling language in [10] for specifying MAPE-K loops. We follow the idea of
decoupling the adaptation and business logic and use the modeling language of Vogel
to describe the adaptation logic of our running example. However, all mentioned ap-
proaches do not describe the interaction of adaptation engine and adaptable software
system in more detail. We fill this gap by providing specific interaction pattern and a
mapping of them to an implementation skeleton.

Becker et al. [2] present an approach for static reconfiguration in embedded sys-
tems using the AUTOSAR2 standard from the automotive domain that switches be-
tween different system configurations at runtime if necessary. This approach is appro-
priate for hard real-time systems because all configurations are deployed in the system
during development time (a reconfiguration is more or less a simple switch between
components). They do not consider an interaction with an adaptation engine. We
extend this approach considering less timing predictable (soft real-time) parts of the
system and an interaction with an existing adaptation engine.

3 Reflective CPS Architecture

Enabling reflective capabilities in our CPS architecture, we will focus on the bottom
adaptable software system layer in Figure 1. In [10], this layer is treated as black box
Software Module at the lowest layer by modeling adaptation activities.

We claim that the adaptation of a CPS is different to non safety-critical systems,
which leads to the following additional considerations. At first, sensing and effecting
the system by the MAPE-K loop should not violate timing constraints. Therefore, a
black box view without any information about the system can not work. We structure

2http://www.autosar.org/

Fall Workshop 2013 197

Enabling Adaptation in Cyber-Physical Systems

the software layer into two logical parts and we enable the modeling of additional ma-
nipulation possibilities. Typically we can identify special software entities as for example
sensors and actuators in a CPS with different manipulation characteristics. If we model
the interaction of these entities taking timing constraints and manipulation possibilities
into account and handle the information as first class entities at runtime, we enable fur-
ther investigations at the adaptable software as well as the adaptation engine level. For
example, we can use model checking techniques to proof whether all constraints still
hold after a planning step of a new system configuration. Furthermore, we can identify
interaction pattern between different functional parts of our software architecture.

Providing some architectural information about the system and modeling it in form
of interconnected components is state of the art in robotic, automotive, CPS and other
embedded, safety-critical systems. Therefore, we develop a component model that can
be used to provide some more information about adaptation capabilities of the underly-
ing software. Benefits for breaking the black box view of the adaptable software are the
identification of communication pattern between components and a clear realization of
reflective behavior on different abstraction levels without timing constraint violation.

In the following subsections, we introduce a running example for this paper that is
also used in the implementation section later on. Afterwards, we explain our compo-
nent metamodel. Finally, we describe the realization of reflective properties.

3.1 Example

Packaging Area
(AP)

30 qm

Stock
Delivery Area

(ASD)

21 qm

D

RP

Sorting Area
(AS)

25 qm
RS

RSt

 Stock
 (St)

Packaging
Room

Sorting
 Room

Stock
 Room

Delivery
Room

door

puck

puck
dispenser

Charging
Point

C
ha

rg
in

g
P

oi
ntDoor Control

Unit

Robotino
robot

Band-
Conveyor

band-
conveyor

Figure 2: Factory automation robot scenario.

Figure 2 shows a structural sketch of our CPS laboratory simulation environment.
Three autonomous robots have to transport pucks between different rooms to fulfill
an overall task. Additional constraints (e.g., saving energy, maximize throughput), a
changing environment (e.g., doors can be closed or opened, robots may fail, obstacles)
and a different set of sensors and actuators on each robot lead to a complex scenario
that must be highly dynamic at runtime.

198 Fall Workshop 2013

3 Reflective CPS Architecture

For the sake of simplicity, we describe only a part of one robot’s software architec-
ture. Furthermore, we omit collaboration details between the robots in this paper. So in
our example, the robot must move around (for puck transportation), load its battery be-
fore it becomes exhausted and calculate a path through obstacles and different rooms.
Additionally, a single adaptation loop optimizes the throughput of puck transportation
as well as the power consumption of the battery.

In the context of CPS, we have to deal with timing constraints in the functional part
of the system. Therefore, we logically separate the adaptable software layer into two
parts. At first, the core software system, as it is depicted at the bottom in Figure 3, in-
cludes all functional parts that fulfill hard real-time constraints. Second, the extension
part contains the non and soft real-time behavior of the software system. This separa-
tion is a pure logical grouping of the system that is not visible in the metamodel in the
next Section 3.2, but potentially has total different characteristics in terms of dynamic
and static adaptation capabilities.

A
da

pt
ab

le
 S

of
tw

ar
e

Sy
st

em <<SWC>>
Routing

<<Sensor>>
IR Distance

<<Sensor>>
Bumper

<<SWC>>
Move Logic

<<Actuator>>
Wheels

<<Actuator>>
Wlan Adapter

<<SWC>>
Sensor Fusion

<<Sensor>>
Laser Scanner

<<Sensor>>
GPS

<<SWC>>
Map Builder

<<ReflectionModel>>
Architecture Model

<<Sensor>>
Battery

<<ReflectionModel>>
Goal Model

<<SWC>>
Map Exchange

A
da

pt
at

io
n

En
gi

ne
H

ar
d

R
ea

l-T
im

e
Sy

st
em

So
ft

R
ea

l-T
im

e
Sy

st
em

D
is

ta
nc

eD
at

a

SensorModeSensorData

WlanMode

B
at

te
ry

Le
ve

l

Waypoints

Map

<<ReflectionModel>>
<<ChangeModel>>
Configuration Model

<<MonitoringModel>>
Monitor Ports

<<EvaluationModel>>
Rules

<<ExecutionModel>>
Effector Ports

<<Monitor>>
Update

moni-
tored

<<Analyze>>
Check system efficiency

OK

optimize

<<Plan>>
Optimize system planned

<<Execute>>
Effect done

Figure 3: Example: Adaptable software system of one robot with adaptation engine.

At the bottom of the adaptable software layer (see Figure 3), we have three sensor
components to detect obstacles at a short distance (one infrared sensor array and a
bumper) and to get the current energy level of the battery. The sensor data is analyzed

Fall Workshop 2013 199

Enabling Adaptation in Cyber-Physical Systems

by a sensor fusion component and used afterwards to calculate moving commands,
which are sent to the wheel actuator of the robot. Additionally, the robot has a wireless
communication actuator sending messages to other robots or a main station. At the
extensional layer, the robot can use advanced sensors for localization or scanning the
environment. Additional components can create a map representation of the environ-
ment, can calculate optimized routes through the scenario or send the internal map to
other laboratory participants.

Each component has an implementation that is split up in so-called functional units.
These units are mapped to tasks for execution, which can be handled by a scheduler
of an arbitrary real-time operating system. We do not look inside the specific imple-
mentation of these units for protecting IP.

On top of the adaptable software, the adaptation engine is realized by one MAPE-K
loop that optimizes the robot behavior in terms on throughput (how much puck trans-
portation tasks are processed in a certain time slot) and battery lifetime. At first, the
monitor activity of the loop senses the current architectural situation of the robot and
updates it in a corresponding runtime model. The activity uses special reflective inter-
action points of the robot system to retrieve these information. According to the current
situation, an analyze activity has an overview about constraints and current goals and
checks whether they are fulfilled or not. Additionally, it determines with the help of a rule
set if the efficiency of the system can be optimized. If all constraints are fulfilled and no
optimization is necessary, the adaptation loop will stop. Otherwise, a planning activity
tries with the help of a configuration runtime model to improve the robot behavior. At
the end, an execution activity reads the planned changes from the runtime model and
forces them to the running software system. For more information concerning syntax
and execution semantic of the MAPE activities as well as runtime models see [10].

In summary, we have a self-, context- and requirement-aware adaptive system.

3.2 Model for CCPS

In the following, we describe our metamodel of an adaptive component-based cyber-
physical system (CCPS) with real-time constraints. We define only those properties, we
will need for component interaction at the adaptable software level and for specifying
the monitoring as well as effecting activity by the adaptation engine.

We cover two major parts of a CPS architecture (cf. Figure 4). First, we describe
the static structure in form of components and its interconnections. Each component
consists of different functional units (FU) that implement the behavior of the system,
internal data (e.g., shared variables) and ports to communicate with other components.
A component can exchange data via ports if an outgoing port is connected to an In-port
with the same interface.

With respect to the execution of the functional units within the component structure,
we map these units to a set of tasks in the second part of our architecture modeling.
The task set is handled by the scheduler of the real-time operating system. We do not
require a special scheduling strategy or operating system, because this is very specific
for different problem domains. However, the scheduler should support priorities for
tasks as well as a periodic and/or triggered execution start mechanism. Each functional

200 Fall Workshop 2013

3 Reflective CPS Architecture

{com
plete, disjoint}

Architecture

name : String

Component

0 .. *

name : String

Port

0 .. * 1 .. *

name : String
priority : Integer
period : Integer

Task

0 .. *

1 .. *
{ordered}

10 .. *
connect

In Out

Internal Data
Element

0 .. *

name : String
bcrt : Integer
wcrt : Integer

Functional Unit

Sensor

SWC

Actuator

Reflective
Functional Unit

Black Box
Functional Unit

Normal Port

Monitor Effector

Reflective Port

readFrom

writeTo

manipulate

name : String

Interface 1

{complete,
disjoint}

{complete,
disjoint}

readFrom

writeTo

Figure 4: Metamodel for the adaptive component-based cyber-physical system.

Fall Workshop 2013 201

Enabling Adaptation in Cyber-Physical Systems

unit of one task is executed after the other according to the ordered position in the
mapping.

Because FUs encapsulate and hide implementation details for protecting IP, we
must know the response time properties for each FU given by the best-case response
time (bcrt) and worst-case response time (wcrt) attributes for analyzing component in-
teraction inside the adaptable software layer and for the realization of data exchange
with the adaptation engine later on. The response time of a FU is the time from en-
abling it in the task until it finishes its execution. Because we abstract from a specific
scheduling algorithm, the response time can be greater than the execution time due to
task preemption. In that time span, a FU can read and write data to assigned ports at
any point in time. The bcrt is always smaller or equal to the wcrt. On the one hand,
specifying these two timing properties is very minimalistic compared to a full white box
view of the system enabling adaptation and data exchange. Furthermore, we can map
these information to formal models to simulating or model checking the system as we
do it in [6]. On the other hand, it must be done for most embedded, safety-critical sys-
tem anyway guaranteeing hard and soft timing deadlines. If for one FU the wcrt = ∞

(unknown), the corresponding wcrt of the task is ∞ as well and can only realize soft
real-time constraints. If a component contains only FUs with wcrt = ∞, it can be placed
at the logical soft real-time layer in the adaptable software system (cf. Figure 3).

We distinguish three special kinds of components, namely sensor, software com-
ponent and actuator.

• A sensor is a component that has only outgoing ports. It is the software rep-
resentation of a hardware sensor in the CPS. It can retrieve, convert, filter and
aggregate real (analog) data and provide it to other software components.

• A software component contains the functional behavior of the CPS. It can receive
data from sensors. The data is processed internally and can cause control data
that is sent to actuator components.

• An actuator is a component that has only incoming ports. It is the software rep-
resentation of a corresponding hardware actuator part. It derives as well as con-
verts input data into hardware specific control values.

In our component model, we abstract from the real hardware using sensor and
actuator components. Furthermore, we make no assumption about the deployment of
tasks to more than one execution nodes. If we have multiple or distributed processor
nodes, the operating system or the scheduler must fulfill our requirements concerning
task execution with different priorities and triggers.

3.3 Interaction Pattern

We distinguish two cases for component interaction. First, components communicate
and exchange data via ports inside the adaptable software layer. Second, the underly-
ing adaptable system provides reflective interaction points for monitoring and effecting
by the adaptation engine. In this report, we discusses the last case in detail in the
following.

202 Fall Workshop 2013

3 Reflective CPS Architecture

The adaptation engine must have monitoring and affecting interaction points with
the running software system. For this reason, we introduce reflective ports provided
by a component (cf. Figure 4). We distinguish Monitor and Effector ports. The former
provides information for the adaptation engine, the latter receives control values (data)
that have a direct impact on the internal behavior of the component. Figure 5 shows an
example for each component type. Sensor components normally encapsulate a HW
sensor part and therefore, they can have only monitoring ports. In this example, the
infrared sensor provides its distance values. The same line of argument holds for the
actuator components that manages a corresponding HW part and can only have effec-
tor ports. The Wlan actuator can be switched on or off from outside (e.g., for saving
energy). A software component may have both or an arbitrary subset of both reflec-
tive port types. In our example, the sensor fusion component provides more complex
(aggregated) information about obstacles and the current mode merging the sensor
data. Additionally, the internal mode can be effected from outside that changes the
sensor evaluation algorithm (e.g., robust and safe versus a fast incomplete evaluation
of sensor data).

It must be noted that the reflective ports can not only be used by the adaptation
engine. Other components may use these ports, too. However, components inside the
reflective software layer (cf. Figure 3) should use normal ports for communication and
data exchange due minimizing the overhead of reflective port realization.

<<Sensor>>
IR Distance

DistanceData

<<SWC>>
Sensor Fusion

SensorData SensorMode

<<Actuator>>
Wlan Adapter

WlanMode

Monitor port Effector port

distanceFront : Float
distanceRear : Float
distanceRight : Float
distanceLeft : Float

<<Interface>>
DistanceData

mode : {on, off}

<<Interface>>
WlanModeobstacles : Position[]

mode : {safe, fast}

<<Interface>>
SensorData

mode : {safe, fast}

<<Interface>>
SensorMode

Figure 5: Reflective port example with interface specification for a sensor, software and
actuator component.

According to our metamodel, each component must have at least one functional unit
that represents its (black box) implementation. If we want to add reflective capabilities
for a component, we have to decouple this functionality from the normal execution logic
ensuring that we do not violate existing timing constraints of the system. In addition,
we execute the reflective part with a lower priority only if we have enough execution
time left.

Figure 6 illustrates the basic idea adding a monitor (I) or effecting (II) port to a com-
ponent. In both cases, we have to add a (reflective) internal data element (R_Data),
which contains the accessible runtime information and an extra reflective functional unit
(R_FU), which reads/writes the data from/to the reflective port. In the first case (moni-

Fall Workshop 2013 203

Enabling Adaptation in Cyber-Physical Systems

tor port), at least one functional unit updates the internal data element. The additional
R_FU checks during execution whether the R_Data element is completely updated. It
provides the data to the reflective port, where it can be read from outside or triggers
the listener directly. Reading and writing the internal R_Data can be seen as atomic
operation. Our framework ensures that multiple functional units can update the data as
well as the reflective functional unit can check if it is complete and a new value.

In the second case (effector port), the reflective part updates an extra internal data
element with incoming control values. The normal functional unit independently pro-
cesses the data (if available) in its next execution cycle.

FU

R_FU

R_Data

FU

R_FU

R_Data

I) II)

Figure 6: Implementation of the reflective port concept. I) Monitor port II) Effector port.

In our design of adding reflective capabilities, we strictly separate the normal be-
havior from the reflective part for the following reasons. First, we minimal disturb the
normal execution branches of the component. We reduce the overhead of adding re-
flective properties to an additional write on an internal data element (a simple variable
in most cases) by the functional units in the I) monitor case, which can be add to the
end of the execution of these units or an additional read (e.g., at the beginning of nor-
mal execution) in the II) effector case. Second, we can map the normal and reflective
functionality to different tasks for system execution. If the reflective task runs with a
lower priority, it can be simply interrupted by the important (real-time) behavior of the
system. As a result, it can take several cycles until the values are propagated or ef-
fect the system. Our assumption is that there are enough unused time slots executing
the lower prioritized reflective task. Of course, you can map the normal and reflective
functional units on the same task or choose the same priority for different tasks, but
this may lead to unexpected (timing) behavior of the system execution. Third, we are
able to simply add or remove the reflective part at runtime during system execution in
the most cases and therefore, we can react to new situations and changing system
requirements. Fourth, we can easily combine the monitor and effector port within on
software component.

4 Conclusion and Future Work

In this report, we have shown a component model for enabling reflective properties for
the adaptable software layer by explicitly modeling monitor and effector ports. More-
over, we discuss a concrete realization of this port concept. As future work, we will
generate from the component model different code fragments that realize all neces-
sary interactions. This generated code must be integrated in our existing toolchain

204 Fall Workshop 2013

References

(cf. [12]). Furthermore, we want to investigate communication dependencies between
components that have different timing constraints.

References

[1] Acatech. Cyber-Physical Systems: Driving force for innovation in mobility, health,
energy and production. Technical Report POSITION PAPER, December 2011.

[2] Basil Becker, Stefan Neumann, Martin Schenk, Arian Treffer, and Holger Giese.
Model-Based Extension of AUTOSAR for Architectural Online Reconfiguration. In
Sudipto Ghosh, editor, Models in Software Engineering, Workshops and Sym-
posia at MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports and
Revised Selected Papers, volume 6002 of Lecture Notes in Computer Science
(LNCS), pages 83–97. Springer-Verlag, 2010.

[3] Holger Giese, Bernhard Rumpe, Bernhard Schätz, and Janos Sztipanovits. Sci-
ence and Engineering of Cyber-Physical Systems (Dagstuhl Seminar 11441).
Dagstuhl Reports, 1(11):1–22, 2012.

[4] Jeffrey O. Kephart and David Chess. The Vision of Autonomic Computing. Com-
puter, 36(1):41–50, January 2003.

[5] Edward A. Lee. Cyber Physical Systems: Design Challenges. Technical Report
UCB/EECS-2008-8, EECS Department, University of California, Berkeley, Jan-
uary 2008.

[6] Stefan Neumann, Norman Kluge, and Sebastian Wätzoldt. Automatic transforma-
tion of abstract autosar architectures to timed automata. In Proceedings of the 5th
International Workshop on Model Based Architecting and Construction of Embed-
ded Systems, ACES-MB ’12, pages 55–60, New York, NY, USA, 2012. ACM.

[7] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based
runtime software evolution. In ICSE ’98: Proceedings of the 20th international con-
ference on Software engineering, pages 177–186, Washington, DC, USA, 1998.
IEEE Computer Society.

[8] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

[9] Mark-Oliver Stehr, Carolyn Talcott, John Rushby, Patrick Lincoln, Minyoung Kim,
Steven Cheung, and Andy Poggio. Fractionated Software for Networked Cyber-
Physical Systems: Research Directions and Long-Term Vision. In Gul Agha,
Olivier Danvy, and José Meseguer, editors, Formal Modeling: Actors, Open Sys-
tems, Biological Systems, volume 7000 of Lecture Notes in Computer Science,
pages 110–143. Springer Berlin / Heidelberg, 2011.

Fall Workshop 2013 205

References

[10] Thomas Vogel and Holger Giese. Model-Driven Engineering of Adaptation En-
gines for Self-Adaptive Software: Executable Runtime Megamodels. Technical
Report 66, Hasso Plattner Institute at the University of Potsdam, Germany, April
2013.

[11] Thomas Vogel, Andreas Seibel, and Holger Giese. The Role of Models and Meg-
amodels at Runtime. In Juergen Dingel and Arnor Solberg, editors, Models in
Software Engineering, Workshops and Symposia at MODELS 2010, Oslo, Nor-
way, October 3-8, 2010, Reports and Revised Selected Papers, volume 6627 of
Lecture Notes in Computer Science (LNCS), pages 224–238. Springer-Verlag,
May 2011.

[12] Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese. Integrated
software development for embedded robotic systems. In Itsuki Noda, Noriaki
Ando, Davide Brugali, and James Kuffner, editors, Proceedings of the 3rd Inter-
national Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), volume 7628 of Lecture Notes in Computer Science, pages
335–348. Springer Berlin Heidelberg, 10 2012.

206 Fall Workshop 2013

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

82

978-3-86956-
266-7

Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Tobias Pape, Arian Treffer,
Robert Hirschfeld

81 978-3-86956-
265-0

Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

80 978-3-86956-
264-3

openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-
259-9

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-
258-2

Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

77 978-3-86956-
257-5

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

76 978-3-86956-
256-8

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

Technische Berichte Nr. 83

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 7th
Ph.D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch (Hrsg.)

ISBN 978-3-86956-273-5
ISSN 1613-5652

	Title
	Imprint

	Contents
	Mining Association Rules on RDF Data
	1 Introduction
	2 Preliminaries
	2.1 Association rule mining
	2.2 Mining configurations

	3 Predicate Suggestion
	4 Auto-amendment of Triples
	5 Reconciling Ontologies and Data
	6 Predicate Expansion
	7 Related Work
	8 Conclusion
	References

	On Enabling Context-aware Compliance Monitoring of Business Processes at Run-time in Distributed Systems
	1 Introduction
	2 Running example
	3 Towards Context-aware Compliance Monitoring of Business Processes
	4 Evaluation
	5 Conclusion and Future Work
	References

	Symbolic Representation and Constraint Reasoning in Invariant Checking
	1 Introduction
	2 Foundations and Complexity Challenges
	3 Symbolic Representation for Application Conditions
	4 Constraint Reasoning
	5 Conclusion and Outlook
	5.1 Symbolic Representation
	5.2 Constraint Reasoning

	References

	Solving Multidomain Constraints on Object Behavior
	1 Introduction
	2 State of the Art
	2.1 Constraint Solver Libraries
	2.2 Domain-specific Languages for Constraints
	2.3 DataFlow Constraints and FRP
	2.4 Constraint-Imperative Programming

	3 BABELSBERG
	4 Conclusions and Next Steps
	References

	Studying the Nature of MDE Evolution – Case Studies
	1 Study Design
	1.1 Conceptual Context
	1.2 Choice of Cases
	1.3 Research method
	1.4 Analysis of Data
	1.5 Threats to Validity

	2 Overview on Cases Studies
	2.1 Capgemini first case study (Cap1)
	2.2 Capgemini second and third case studies (Cap2a and Cap2b)
	2.3 Development of TYPO3 based websites (VCat)
	2.4 Development of AUTOSAR standard documents (Carmeq)
	2.5 Development of sound libraries for users of the software Live (Ableton)
	2.6 Development of Business Objects for the feature package 2.0 (BO)
	2.7 Summary

	3 Data on Evolution
	4 Observations
	References

	Modeling Interestingness and Serendipity in Relevance Search
	1 Introduction
	2 Related Work
	2.1 Accuracy
	2.2 Diversity and Novelty
	2.3 Serendipity

	3 Modeling Interestingness and Serendipity
	3.1 Finding Core Documents
	3.1.1 Simple algorithm
	3.1.2 Advanced Algorithm

	3.2 Finding Serendipitous Documents

	4 Ongoing Work
	4.1 Evaluation
	4.2 Data Set
	4.3 Parameter Optimization

	5 Conclusion And Future Work
	References

	Describing and Comparing Datasets on the Web of Data
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Uniqueness in Hierarchies

	4 Implementation
	5 Evaluation
	6 Ongoing and Future Work
	References

	Using Design Patterns to Manage the Productivity vs. Performance Tradeoff in Hybrid Parallel Computing
	1 Introduction
	1.1 Research Question

	2 Existing Solutions
	2.1 Accelerated Domain Specific Libraries
	2.2 Compiler based code generation
	2.3 Research Gap

	3 Foundations
	3.1 Important Characteristics of Computational Kernels
	3.2 Algorithm Decomposition

	4 Design Patterns and Algorithm Decomposition
	4.1 Patterns Suitable for Device Architectures
	4.2 Patterns Suitable for Host Architectures

	5 Hybrid Pipelining
	5.1 Big Data and the Pipeline Pattern
	5.2 Pipelining and Effective Utilization of Hybrid Resources

	6 Ongoing Work
	6.1 Generic Framework for Hybrid Pipelining
	6.2 Empirical Evaluation of Thresholds for Computation Intensity on the Device

	7 Summary and Future Work
	References

	High-Quality Video Generation for Thin Clients - An Application for Image-Based 3D Portrayal Services
	1 Introduction
	2 Related Work
	3 A Service-Based System for Automated Generation of Video Presentations
	3.1 Service Components
	3.2 Service Interface
	3.3 State of the Work

	4 Conclusions and Future Work
	References

	Ultra Mobile Devices: using the user’s body as an interactive device
	1 Introduction: why haptics matter?
	2 Towards ultra-mobile interactive devices
	2.1 Related Work: eyes-free mobile input is not-hands-free
	2.2 Embodied Devices: on-body input and output

	3 The challenge of closing the I/O loop: Integrating actuationand sensing
	3.1 Input using Electromyography
	3.2 Discussion

	4 On-going work and projects under submission
	5 Acknowledgments
	References

	Adaptive Optimizations for Data Structures in Virtual Runtime Environments
	1 Data access: design versus performance
	2 Data access in language implementations
	2.1 Data access design and semantics
	2.2 Current optimization strategies
	2.3 Working example characteristics

	3 Stable adaptive data structure inlining
	3.1 Data structure inlining
	3.1.1 Data structure merging
	3.1.2 Meta-tracing
	3.1.3 Shape recognition

	3.2 Stability for sustainable performance
	3.2.1 Warm-up times
	3.2.2 Cross-run profiling data

	4 Preliminary results
	4.1 Prototype characteristics
	4.2 Setup and Results
	4.3 Discussion

	5 Related work
	6 Conclusion and outlook
	References

	Challenges and Approaches of Interaction Techniques for Multi-Perspective Views
	1 Introduction
	2 The Interaction Process
	3 City Panoramas
	4 Building Panoramas
	5 Discussions
	6 Conclusions & Future Work
	References

	Architectures for Highly-Available Applications with Non-HA Infrastructure
	1 Introduction
	2 Challenges
	2.1 Shared Data
	2.2 Load Balancing and Session Handling

	3 Conclusion and Future Work
	References

	Towards a Secure Multi-tenant SaaS Environment
	1 Introduction
	2 Problem Statement
	3 Research Questions
	4 Threat Model
	5 State of the Art
	5.1 Encrypted Databases
	5.2 Privacy-Preserving Techniques
	5.3 Secure Execusion Environment
	5.4 Tenant-Oriented Security Requirement
	5.5 Information Disassociation

	6 Contributions
	6.1 SignedQuery
	6.2 HPISecure

	7 Teaching and Industry Cooperation
	8 Summary and Future Work
	References

	Visualization of Varying Hierarchical Data with Treemaps
	1 Introduction
	2 Varying Hierarchical Datasets
	3 Visualization of Varying Hierarchical Datasets with Voronoi Treemaps
	3.1 A Stable Initial Distribution
	3.2 Optimized Layout Computation
	3.2.1 Precision of Target-Area Size
	3.2.2 Break Condition

	3.3 Comparative Evaluation

	References

	No Tools But Objects: Towards Direct Manipulation Programming Environments
	1 Introduction
	2 Background
	2.1 Representation
	2.2 Actions
	2.3 Feedback

	3 Related Work
	4 Our Research Programming Environment
	4.1 Representing Nouns Before Verbs
	4.2 Object Queries as Adaptable Browsing Actions
	4.3 Unanticipated Progress Feedback

	5 Evaluation
	5.1 Method
	5.2 Participants and Task
	5.3 Results
	5.4 Hypotheses

	6 Conclusion and Next Steps
	References

	Communication-Aware and Memory-Aware VMs Consolidation
	1 Communication-Aware
	1.1 Methodology
	1.2 Evaluation
	1.2.1 VMs placement
	1.2.2 Network utilization
	1.2.3 Number of migrations

	2 Memory-Aware
	2.1 Methodology
	2.2 Evaluation
	2.2.1 Memory-bus utilization
	2.2.2 Performance degradation

	3 Thesis contributions
	4 Next Steps
	References

	Using Omniscient Debuggers
	1 Introduction
	2 Foundation
	2.1 Stages of a bug
	2.2 Finding faults with a debugger

	3 Related Work
	4 Omniscient Debugging
	4.1 Modeling the execution trace
	4.2 Advanced navigation

	5 Hyper Debugging
	5.1 Trace repositories
	5.2 Detecting Invariants

	6 Future Work
	References

	Enabling Adaptation in Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Reflective CPS Architecture
	3.1 Example
	3.2 Model for CCPS
	3.3 Interaction Pattern

	4 Conclusion and Future Work
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

