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ABSTRACT

Data profiling comprises a broad range of methods to ef-
ficiently analyze a given data set. In a typical scenario,
which mirrors the capabilities of commercial data pro-
filing tools, tables of a relational database are scanned
to derive metadata, such as data types and value pat-
terns, completeness and uniqueness of columns, keys
and foreign keys, and occasionally functional dependen-
cies and association rules. Individual research projects
have proposed several additional profiling tasks, such as
the discovery of inclusion dependencies or conditional
functional dependencies.

Data profiling deserves a fresh look for two reasons:
First, the area itself is neither established nor defined in
any principled way, despite significant research activity
on individual parts in the past. Second, more and more
data beyond the traditional relational databases are be-
ing created and beg to be profiled. The article proposes
new research directions and challenges, including inter-
active and incremental profiling and profiling heteroge-
neous and non-relational data.

1. DATA PROFILING

“Data profiling is the process of eramining the
data available in an existing data source [...] and
collecting statistics and information about that
data.”! Profiling data is an important and frequent
activity of any IT professional and researcher. We
can safely assume that any reader of this article has
engaged in the activity of data profiling, at least
by eye-balling spreadsheets, database tables, XML
files, etc. Possibly more advanced techniques were
used, such as key-word-searching in data sets, sort-
ing, writing structured queries, or even using ded-
icated data profiling tools. While the importance
of data profiling is undoubtedly high, and while ef-
ficiently and effectively profiling is an enormously
difficult challenge, it has yet to be established as a
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research area in its own right. We focus our discus-
sion on relational data, the predominant format of
traditional data profiling methods, but we do regard
data profiling for other data models in a separate
section.

Data profiling encompasses a vast array of meth-
ods to examine data sets and produce metadata.
Among the simpler results are statistics, such as
the number of null values and distinct values in a
column, its data type, or the most frequent pat-
terns of its values. Metadata that are more diffi-
cult to compute usually involve multiple columns,
such as inclusion dependencies or functional depen-
dencies. More advanced techniques detect approx-
imate properties or conditional properties of the
data set at hand. To allow focus, the broad field
of data mining is deliberately omitted from the dis-
cussion here, as justified below. Obviously, all such
discovered metadata refer only to the given data
instance and cannot be used to derive with cer-
tainty schematic/semantic properties, such as pri-
mary keys or foreign key relationships. Figure 1
shows a classification of data profiling tasks. The
tasks for “single sources” correspond to state-of-the-
art in tooling and research (see Section 2), while the
tasks for “multiple sources” reflect new research di-
rections for data profiling (see Section 5).

Systematic data profiling, i.e., profiling beyond
the occasional exploratory SQL query or spread-
sheet browsing, is usually performed by dedicated
tools or components, such as IBM’s Information
Analyzer, Microsoft’s SQL Server Integration Ser-
vices (SSIS), or Informatica’s Data Explorer. Their
approaches all follow the same general procedure:
A user specifies the data to be profiled and selects
the types of metadata to be generated. Next, the
tool computes in batch the metadata using SQL
queries and/or specialized algorithms. Depending
on the volume of the data and the selected pro-
filing results, this step can last minutes to hours.
The results are usually displayed in a vast collec-
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tion of tabs, tables, charts, and other visualiza-
tions to be explored by the user. Typically, dis-
coveries can then be translated into constraints or
rules that are then enforced in a subsequent cleans-
ing/integration phase. For instance, after discover-
ing that the most frequent pattern for phone num-
bers is (ddd)ddd-dddd, this pattern can be pro-
moted to the rule that all phone numbers must
be formatted accordingly. Most cleansing tools can
then either transform differently formatted numbers
or at least mark them as violations.

Use cases for profiling. The need to profile a new
or unfamiliar set of data arises in many situations,
in general to prepare for some subsequent task.

Query optimization. Basic profiling is performed
by most database management systems to sup-
port query optimization with statistics about
tables and columns. These profiling results
can be used to estimate the selectivity of oper-
ators and ultimately the cost of a query plan.

Data cleansing. Probably the most typical use case
is profiling data to prepare a data cleansing
process. Profiling reveals data errors, such as
inconsistent formatting within a column, miss-

ing values, or outliers. Profiling results can
also be used to measure and monitor the gen-
eral quality of a data set, for instance by de-
termining the number of records that do not
conform to previously established constraints.

Data integration. Often the data sets to be inte-
grated are somewhat unfamiliar and the inte-
gration expert wants to explore the data sets
first: How large is it? What data types are
needed? What are the semantics of columns
and tables? Are there dependencies between
tables and among databases, etc.? The vast
abundance of (linked) open data and the de-
sire and potential to integrate them with en-
terprise data has amplified this need.

Scientific data management. The management of
data that is gathered during scientific exper-
iments or observations has created additional
motivation for efficient and effective data pro-
filing: When importing raw data, e.g., from
scientific experiments or extracted from the
Web, into a DBMS, it is often necessary and
useful to profile the data and then devise an
adequate schema.

Data analytics. Almost any statistical analysis or
data mining run is preceded by a profiling step
to help the analyst understand the data at
hand and appropriately configure tools, such
as SPSS or Weka. Pyle describes detailed steps
of analyzing and subsequently preparing data
for data mining [38].

Knowledge about data types, keys, foreign keys,
and other constraints supports data modeling and
helps keep data consistent, improves query op-
timization, and reaps all the other benefits of
structured data management. Other research ef-
forts have mentioned query formulation and index-
ing [42], scientific discovery [26], and database re-
verse engineering [35] as further motivation for data
profiling.

Time to revisit. Recent trends in the database
field have added challenges but also opportunities
for data profiling. First, under the big data um-
brella, industry and research have turned their at-
tention to data that they do not own or have not
made use of yet. Data profiling can help assess
which data might be useful and reveals the yet
unknown characteristics of such new data: before
exposing an infrastructure to Twitter’s firehose it
might be worthwhile to know about properties of
the data one is receiving; before downloading sig-
nificant parts of the linked data cloud, some prior



sense of the integration effort is needed; before aug-
menting a warehouse with text mining results an
understanding of their quality is required. Leading
researchers have recently noted “If we just have a
bunch of data sets in a repository, it is unlikely any-
one will ever be able to find, let alone reuse, any of
this data. With adequate metadata, there is some
hope, but even so, challenges will remain [...]" [4].
Second, much of the data that shall be exploited
is of non-traditional type for data profiling, i.e.,
non-relational (e.g., linked open data), non-struc-
tured (e.g., tweets and blogs), and heterogeneous
(e.g., open government data). And it is often
truly “big”, both in terms of schema, rendering
algorithms that are exponential in the number of
schema elements infeasible, and in terms of data,
rendering main-memory based methods infeasible.
Existing profiling methods are not adequate to han-
dle that kind of data: Either they do not scale well
(e.g., dependency discovery), or there simply are
no methods yet (e.g., incremental profiling, profil-
ing multiple data sets, profiling textual attributes).
Third, different and new data management archi-
tectures and frameworks have emerged, including
distributed systems, key-value stores, multi-core- or
main-memory-based servers, column-oriented lay-
outs, streaming input, etc. These new premises pro-
vide interesting opportunities as we discuss later.

Profiling challenges. Data profiling, even in a
traditional relational setting, is non-trivial for three
reasons: First, the results of data profiling are com-
putationally complex to discover. For instance, dis-
covering key candidates or dependencies usually in-
volves some sorting step for each considered col-
umn. Second, the discovery-aspect of the profil-
ing task demands the verification of complex con-
straints on all columns and combinations of columns
in a database. And thus also the solution-space
of uniqueness-, inclusion dependency-, or functional
dependency-discovery is exponential in the number
of attributes. Third, profiling is often performed on
data sets that may not fit into main memory.
Various tools and algorithms have tackled these
challenges in different ways. First, many rely on
the capabilities of an underlying DBMS, as many
profiling tasks can be expressed as SQL queries.
Second, many have developed innovative ways to
handle the individual challenges, for instance using
indexing schemes, parallel processing, and reusing
intermediate results. Third, several methods have
been proposed that deliver only approximate results
for various profiling tasks, for instance by profiling
samples. Finally, users are asked to narrow down

the discovery process to certain columns or tables.
For instance, there are tools that verify inclusion de-
pendencies on user-suggested pairs of columns, but
that cannot automatically check inclusion between
all pairs of columns or column sets.

The following section elaborates these traditional
data profiling tasks and gives a brief overview of
known approaches. Sections 3 — 6 are the main
contributions of this article by defining and moti-
vating new research perspectives for data profiling.
These areas include interactive profiling (users can
act upon profiling results and re-profile efficiently),
incremental profiling (profiling results are incremen-
tally updated as new data arrives), profiling hetero-
geneous data and multiple sources simultaneously,
profiling non-relational data (XML and RDF), and
profiling on different architectures (column stores,
key-value stores, etc.).

This article is not intended to be a survey of ex-
isting approaches, though there is certainly a need
for such, nor is it a formal framework for future data
profiling developments. Rather, it strives to spark
interest in this research area and to assemble a wide
range of research challenges.

2. STATE OF THE ART

While the introduction mentions current indus-
trial profiling tools, this section discusses current
research directions. In its basic form, data pro-
filing is about analyzing data values of a single
column, summarized as “traditional data profil-
ing”. More advanced techniques detect relation-
ships among columns of one or more tables, which
we discuss as “dependency detection”. Finally, we
distinguish data profiling from the broad field of
“data mining”, which we deliberately exclude from
further discussion.

Traditional data profiling. The most basic
form of data profiling is the analysis of individ-
ual columns in a given table. Typically, gener-
ated metadata comprises various counts, such as the
number of values, the number of unique values, and
the number of non-null values. These metadata are
often part of the basic statistics gathered by DBMS.
Mannino et al. give a much-cited survey on statis-
tics collection and its relationship to database opti-
mization [32]. In addition to the basic counts, the
maximum and minimum values are discovered and
the data type is derived (usually restricted to string
vs. numeric vs. date). Slightly more advanced tech-
niques create histograms of value distributions, for
instance to optimize range-queries [37], and iden-
tify typical patterns in the data values in the form



of regular expressions [40]. Data profiling tools dis-
play such results and can suggest some actions, such
as declaring a column with only unique values a key-
candidate or suggesting to enforce the most frequent
patterns.

Dependency detection. Dependencies are meta-
data that describe relationships among columns.
The difficulties are twofold: First, pairs of columns
or column-sets must be regarded, and second, the
chance existence of a dependency in the data at
hand does not imply that this dependency is mean-
ingful.

The most frequent real-world use-case is the dis-
covery of foreign keys [30,41] with the help of in-
clusion dependencies [6,33]. Current data profil-
ing tools often avoid checking all combinations of
columns, but rather ask the user to suggest a candi-
date key/foreign-key pair to verify. Another form of
dependency, which is also relevant for data quality,
is the functional dependency (FD). Again, much re-
search has been performed to automatically detect
FDs [26,45].

Both types of dependencies can be relaxed in
two ways. First, conditional dependencies need
to hold only for tuples that fulfill the condition.
Conditional inclusion dependencies (CINDs) were
proposed for data cleaning and contextual schema
matching [11]. Different aspects of CIND discov-
ery have been addressed in [5,17,22,34]. Condi-
tional functional dependencies (CFDs) were intro-
duced in [20] for data cleaning. Algorithms for dis-
covering CFDs are also proposed in [14,21]. Sec-
ond, approrimate dependencies need to hold only
for a certain percentage of the data — they are not
guaranteed to hold for the entire relation. Such de-
pendencies are often discovered using sampling [27]
or other summarization techniques [16].

Finally, algorithms for the discovery of columns
and column combinations with only unique values
(which is strictly speaking a constraint and not a
dependency) have been proposed in [2,42].

To reiterate our motivation: There are various in-
dividual techniques for various individual profiling
tasks. What is lacking even for the state-of-the-art
is a unified view of data profiling as a field and a
unifying framework of its tasks.

Data mining. Rahm and Do distinguish data pro-
filing from data mining by the number of columns
that are examined: “Data profiling focusses on the
instance analysis of individual attributes. [...] Data
mining helps discover specific data patterns in large
data sets, e.g., relationships holding between sev-

eral attributes” [39]. Yet, a different distinction
is more useful to separate the different use cases:
Data profiling gathers technical metadata to sup-
port data management, while data mining and data
analytics discovers non-obvious results to support
business management. In this way, data profil-
ing results are information about columns and col-
umn sets, while data mining results are information
about rows or row sets (clustering, summarization,
association rules, etc.).

Of course such a distinction is not strict. Some
data mining technology does express information
about columns, such as feature selection methods
for sets of values within a column [7] or regression
techniques to characterize columns [13]. Yet with
the distinction above, we concentrate on data pro-
filing and put aside the broad area of data mining,
which has already received unifying treatment in
numerous text books and surveys.

3. INTERACTIVE DATA PROFILING

Data profiling research has yet hardly recognized
that data profiling is an inherently user-oriented
task. In most cases, the produced metadata is con-
sumed directly by the user or it is at least regarded
by a user before put to use in some application,
such as schema design or data cleansing. We sug-
gest the involvement of the user already during the
algorithmic part of data profiling, hence “interac-
tive profiling”.

Online profiling. Despite many optimization ef-
forts, data profiling might last longer than a user
is willing to wait in front of a screen with nothing
to look at. Online profiling shows intermediate re-
sults as they are created. However, simply hooking
the graphical interface into existing algorithms is
usually not sufficient: Data that is sorted by some
attribute or has a skewed order yields misleading in-
termediate results. Solutions might be approximate
or sampling-based methods, whose results grace-
fully improve as more computation is invested. Nat-
urally, such intermediate results do not reflect the
properties of the entire data set. Thus, some form
of confidence, along with a progress indicator, can
be shown to allow an early interpretation of the re-
sults.

Apart from entertaining users during computa-
tion, an advantage of online profiling is that the
user may abort the profiling run altogether. For in-
stance, a user might decide early on that the data
set is not interesting (or clean) enough for the task
at hand.



Profiling on queries and views. In many cases,
data profiling is performed with the purpose of
cleaning the data or the schema to some extent, for
instance, to be able to insert it into a data ware-
house or to integrate it with some other data set.
However, each cleansing step changes the data, and
thus implicitly also the metadata produced by pro-
filing. In general, after each cleansing step a new
profiling run should be performed. For instance,
only after cleaning up zip codes does the functional
dependence with the city values become apparent.
Or only after deduplication does the uniqueness of
email addresses reveal itself.

A modern profiling system should be able to al-
low users to virtually interact with the data and
re-compute profiling results. For instance, the pro-
filing system might show a 96% uniqueness for a cer-
tain column. The user might recognize that indeed
the attribute should be completely unique and is in
fact a key. Without performing the actual cleans-
ing, a user might want to virtually declare the col-
umn to be a key and re-perform profiling on this
virtually cleansed data. Only then a foreign key for
this attribute might be recognized.

In short, a user might want to act upon pro-
filing results in an ad-hoc fashion without going
through the entire cleansing and profiling loop, but
remain within the profiling tool context and per-
form cleansing and re-profiling only on a virtually
cleansed view. When satisfied, the virtual cleansing
can of course be materialized. A key enabling tech-
nology for this kind of interaction is the ability to
efficiently re-perform profiling on slightly changed
data, as discussed in the next section. In the same
manner, profiling results can be efficiently achieved
on query results: While calculating the query re-
sult, profiling results can be generated on the side,
thus showing a user not only the result itself, but
also the nature of that data. Faceted search pro-
vides similar features in that a user is presented
with cardinalities based on the chosen filters.

For all suggestions above, new algorithms and
data structures are needed to enhance the user ex-
perience of data profiling.

4. INCREMENTAL DATA PROFILING

A data set is hardly ever fixed: Transactional
data is appended to frequently, analytics-oriented
data sets experience periodic updates (typically
daily), and large data sets available on the web
data are updated every few weeks or months. Data
profiling methods should be able to efficiently han-
dle such moving targets, in particular without re-
profiling the entire data set.

Incremental profiling. An obvious, but yet
under-examined extension to data profiling is to re-
use earlier profiling results to speed-up computation
on changed data. I.e., the profiling system is pro-
vided with a data set and with knowledge of its
delta compared to a previous version, and it has
stored any intermediate or final profiling results on
that previous version. In the simplest cases, profil-
ing metadata can be calculated associatively (e.g.,
sum, count, equi-width histograms), in some cases
some intermediate metadata can help (e.g., sum and
count for average, indexes for value patterns), and
finally in some cases a complete recalculation might
be necessary (e.g., median or clustering).

There is already some research on performing
individual profiling tasks incrementally. For in-
stance, the AD-Miner algorithm allows an incre-
mental update of functional dependency informa-
tion [19]. Fan et al. focus on the area of condi-
tional functional dependencies and also consider in-
cremental updates [20]. The area of data mining,
on the other hand, has seen much related work, for
instance on association rule mining and other data
mining applications [24].

Continuous profiling. While for incremental pro-
filing we assumed periodic updates (or periodic pro-
filing runs), a further use case is to update profiling
results while (transactional) data is created or up-
dated. If the profiling results can be expressed as
a query, and if they shall be performed only on a
temporal window of the data, this use case can be
served by data stream management systems [23].
If this is not the case, continuous profiling meth-
ods need to be developed, whose results can be dis-
played in a dashboard. Of particular importance is
to find a good tradeoff between recency, accuracy,
and resource consumption. Use cases for continu-
ous profiling include internet traffic monitoring or
the profiling of incoming search queries.

Multi-measure profiling. FEach profiling algo-
rithm has its own scheme of running through the
data and collecting or aggregating whatever infor-
mation is needed. Realizing that multiple types of
profiling metadata shall be collected, it is likely that
many of these runs can be combined. Thus, in a
manner similar to multi-query-optimization, there
is a high potential for efficiency gains, in particu-
lar wrt. I/O cost. While such potential is already
realized in commercial systems, it has not yet been
investigated for the more complex tasks that are not
covered by these tools.



S. PROFILING
DATA

While typical profiling tasks assume a single,
largely homogeneous database or even only a sin-
gle table, there are many use cases in which a com-
bined profiling of multiple, heterogeneous data sets
is needed. In particular when integrating data it is
useful to learn about the common properties of par-
ticipating data sets. From profiling one can learn
about their integrability, i.e., how well their data
and schemata fit together, and learn in advance the
properties of the integrated data set. Even profiling
a single source that stores data for multiple or many
domains, such as DBpedia or Freebase, can profit
from techniques that profile heterogeneous data.

HETEROGENEOUS

Degrees of heterogeneity. Heterogeneity in data
sets can appear at many different levels and in many
different degrees of severity. Data profiling methods
can be used to uncover these heterogeneities and
possibly provide hints on how to overcome them.

Heterogeneity is traditionally divided into syn-
tactic heterogeneity, structural heterogeneity, and
semantic heterogeneity [36]. Discovering syntactic
heterogeneity, in the context of data profiling, is
precisely what traditional profiling aims at, e.g.,
finding inconsistent formatting. Next, structural
heterogeneity appears in the form of unmatched
schemata and differently structured information.
Such problems are only partly addressed by tradi-
tional profiling, e.g., by discovery schema informa-
tion, such as types, keys, or foreign keys. Finally, se-
mantic heterogeneity addresses the underlying and
possibly mismatched meaning of the data. For data
profiling we interpret it as the discovery of seman-
tical overlap of the data and their domain(s).

Data profiling for integration. Our focus here is
on profiling tasks to discover structural and seman-
tic heterogeneity, arguing that structural profiling
seeks information about the schema and semantic
profiling seeks information about the data. Both
serve to assess the integrability of data sets, and
thus also indicate the necessary integration effort,
which is vital to project planning. The integration
effort might be expressed in terms of similarity, but
also in terms of man-months or in terms of which
tools are needed.

An important issue in integrated information
systems, irrelevant for single databases, is the
schematic similarity, i.e., the degree to which their
schemata complement each other and the degree to
which they overlap. There is an obvious relation
to schema matching techniques, which aim at auto-

matically finding correspondences between schema
elements [18]. Already Smith et al. have recognized
that schema matching techniques often play the role
of profiling tools [43]: Rather than using them to
derive schema mappings and perform data trans-
formation, they play roles that have a more infor-
mative character, such as assessment of project fea-
sibility or the identification of integration targets.
However, the mere matching of schema elements
might not suffice as a profiling-for-integration re-
sult: Additional information on the structure of the
values of the matching columns can provide further
details about the integration difficulty.

After determining schematic overlap, a next step
is to determine data overlap, i.e., the (estimated)
number of real-world objects that are represented
in both data sets, or that are represented multiple
times in a single data set. Such multiple represen-
tations are typically identified using entity match-
ing methods (aka. record linkage, entity resolution,
duplicate detection, and many other names) [15].
However, estimating the number of matches with-
out actually performing the matching on the entire
data set is an open problem. If used to determine
the integration effort, it is additionally important
to know how diverse such matching records are rep-
resented, i.e., how difficult it is to devise good sim-
ilarity measures and find appropriate thresholds.

Topical profiling. When profiling yet unknown
data from a large pool of sources, it is necessary to
recognize the topic or domain covered by the source.
One recently proposed use case for such source
discovery is situational BI where warehouse data
is complemented with data from openly available
sources [3,31]. Examples for such sources are the
set of linked open data sources (linkeddata.org)
or tables gleaned from the web: “Data on the Web
reflects every topic in existence, and topic bound-
aries are not always clear.” [12]

Topical profiling should be able to match a data
set to a given set of topics or domains. Given two
data sets, it should be able to determine topical
overlap between them. There is already initial work
on topical profiling for traditional databases in the
iDisc system [44], which matches tables to topics or
clusters them by topic, and for web data [8], which
discovers frequent patterns of concepts and aggre-
gates them to topics.

6. DATA PROFILING ON OTHER AR-
CHITECTURES

Most current data profiling methods and tools
assume data to be stored in relational form on a



single-node database. However, much interesting
data nowadays resides in data stores of different
architecture and in various (non-relational) mod-
els and formats. If these architectures are more
amenable to data profiling tasks, they might even
warrant copying data for the purpose of profiling.

Storage architectures. Of all modern hardware
architectures, columnar storage seems the most
promising for many data profiling tasks, which of-
ten are inherently column-oriented: Analyzing in-
dividual columns for patterns, data types, unique-
ness, etc. involves reading only the data of that col-
umn and thus matches precisely the sweet-spot of
columns stores [1]. This advantage may dwindle
when analyzing column-combinations, for instance
to discover functional dependencies, but even then
one can avoid reading entire rows of data.

As data profiling includes many different tasks
on many tables and columns, a promising research
avenue is the use of many cores, GPUs, or dis-
tributed environments for parallelization. Paral-
lelization can occur at different levels: A compre-
hensive profiling run might distribute individual, in-
dependent profiling tasks to different nodes (task
parallelism). Another approach is to partition data
for a single profiling task (data parallelism). As
most profiling tasks are not associative, in the sense
that profiling results for subsets of column-values
cannot be aggregated to overall results, horizontal
partitioning is usually not useful or at least raises
some coordination overhead. For instance, unique-
ness within each partition of a column does not
imply uniqueness of the entire column, but com-
municating the sets of distinct values is sufficient.
Finally, task parallelism can again be applied to
finer-grained tasks, such as sorting or hashing, that
form the basic building blocks of many profiling al-
gorithms.

Further challenges arise when performing data
profiling on key-value stores: Typically, the val-
ues contain some structured data, without enforced
schemata. Thus, even defining the expected results
on such “soft schema” values is a challenge, and a
first step must involve schema profiling as described
in Section 5.

To systematically evaluate different methods and
architectures for the various data profiling tasks, a
corresponding data profiling benchmark is needed.
It must define (i) a set of tasks, (ii) data on which
the tasks shall be executed, and (iii) measures to
evaluate efficiency. For (i) the first (single-source)
subtree of Figure 1 can serve as an initial set of
tasks. Arguably, the most difficult part of establish-

ing a benchmark is to (ii) provide data that closely
mirrors real-world situations. Given a schema and
a set of constraints (uniqueness, data types, FDs,
INDs, patterns, etc.) it is not trivial to create a
valid database instance. If in addition some dirt-
iness, i.e., violations to constraints, are to be in-
serted, or if conditional dependencies are needed,
the task becomes even more daunting. The mea-
sures for (iii) need to be carefully selected, in par-
ticular if they are to go beyond traditional mea-
sures of response time and cost efficiency and in-
clude the evaluation of approximate results. Fi-
nally, the benchmark should be able to evaluate not
only entire profiling systems but also methods for
individual tasks.

Types of data. Data comes not only in relational
form, but also in tree or graph shapes, such as XML
and RDF data. A first step is to adapt traditional
profiling tasks to those models. An example is Pro-
LOD, which profiles linked open data delivered as
RDF triples [10]. A further challenge arises from
the sheer size of many RDF data sets, so profiling
computation must be distributed [9]. In addition,
such data models demand new, data model-specific
profiling tasks, such as maximum tree depth or av-
erage node-degree.

Structured data is often intermingled with un-
structured, textual data, for instance in product in-
formation or user profiles on the web. The field
of linguistics knows various measures to character-
ize a text from simple measures, such as average
sentence length, to complex measures, such as vo-
cabulary richness [25] as visualized in [29]. Thus,
data profiling might be extended to text profiling
and possibly to methods that jointly profile both
data and text. A discussion on the large area of
text mining is omitted, for the same reasons data
mining was omitted from this article.

7. AN OUTLOOK

This article points out the potentials and the
needs of modern data profiling — there is yet much
principled research to do. A planned first step is
to develop a general framework for data profiling,
which classifies and formalizes profiling tasks, shows
its amenability for a range of use cases, and provides
a means to compare various techniques both in their
abilities and their efficiency.

At the same time, this article shall serve as a “call
to arms” for database researchers to develop more
efficient and more advanced profiling techniques, in
particular for the fast growing areas of “big data”
and “linked data”, both of which have attracted



great interest by industry, but both of which have
proven that data is difficult to grasp and use effec-
tively. Data profiling can bridge this gap by show-
ing what the data sets are about, how well they fit
the data environment at hand, and what steps are
needed to make use of them.

Several research areas were deliberately omitted

in this article, in particular data mining and text
mining, as reasoned above, but also data visual-
ization: Because data profiling targets users, ef-
fectively visualizing the profiling results is of ut-
most importance. A suggestion for such a visual
data profiling tool is the Profiler system [28]. A
strong cooperation between the database commu-
nity, which produces the data and metadata to be
visualized, and the visualization community, which
enables users to understand and make use of the
data, is needed.
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