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short-running simple requests
access small portion of the data

fetch several columns of a record
lookup, insert, delete, update

deposit money to a customer’s account,
lookup information about a product,

looking up a tweet, …

long-running complex requests
access lots of data

fetch a few columns of a record
SQL queries, map-reduce jobs, 

machine learning, graph analytics, …

customers who are most likely to get 
mortgages next year,

item sold the most last year in each 
department of a store grouped by months, …
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transaction vs. analytical processing

 primary applications for databases
 required functionality & optimizations differ

OLTP OLAP



evolution of general-purpose CPU
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core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

faster & more-complex 
cores over time

similar speed & complexity in a core,
more cores over time

… the hardware we run transactions on



types of hardware parallelism
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core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

why do we need this?



single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

registers

ARCHIVAL STORAGE (tape)

NVMe SSD

hard disk
also

persistent

registers

1 cycle

~4 cycles

~10 cycles

~30-60 cycles

~100-200 cycles
or 60ns

~10 µsec

~100sec

~5m
s



types of hardware parallelism
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core

multithreading
threads share

execution cycles
on the same core

instruction & data parallelism
hardware does this automatically

implicit/vertical parallelism

core

goal: minimize stall time due to cache/memory accesses
overlapping access latency for one item with other work

why?
we don’t want cores 
to stay idle waiting 
for instruction/data 

accesses!
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single-core – access latency to storage
core

L1-I L1-D

MAIN MEMORY (DRAM)

L2

L3 / LLC (last-level cache)

PERSISTENT STORAGE (hard disk, ssd)

registers~4 cycles

in practice

as if there is no penalty

possible stalls

stalls

stalls = 



types of hardware parallelism
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core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

why do we have this?

implicit/vertical parallelism explicit/horizontal parallelism

core

multicores
multiple threads run in

parallel on different cores
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“… the observation that the number of 
transistors in a dense integrated circuit

doubles approximately every two years.”

“ … as transistors get smaller their power 
density stays constant, so that the power use 

stays in proportion with area: both voltage and 
current scale (downward) with length.”

wording courtesy of Wikipedia

Moore’s law

Dennard scaling

for Moore’s law to be practical 
you need Dennard scaling!



commodity CPU evolution
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core core core core

core core core corecore

2005

multicore CPUs multisocket
multicore CPUs

single-core CPUs

Dennard scaling doesn’t hold anymore
switching to multicores kept Moore’s Law alive



types of hardware parallelism
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core core core core

core core core core

single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

core

multicores
multiple threads run in

parallel on different cores



types of hardware parallelism
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single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

multisocket multicores
multiple processors/CPUs

in one machine

core



types of hardware parallelism
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single-core
instruction & data parallelism
simultaneous multithreading

implicit parallelism  (almost) free lunch

implicit/vertical parallelism explicit/horizontal parallelism

explicit parallelism  must work hard to exploit it

distributed systems
running a program over 

multiple machines

core



• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism
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agenda
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OLTP & implicit parallelism
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OLTP & implicit parallelism
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memory stalls in data-intensive apps
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data-intensive apps suffer due to memory stalls
not just due to data but also instructions 

[ASPLOS12]

https://cloudsuite.ch/
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doesn’t mean these systems are bad
but we have room to do better 18

what about in-memory OLTP?

in-memorydisk-based

TPC-C, 100GB, Intel Ivy Bridge
[SIGMOD16]
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transactions under microscope

Index Probe

Index Scan

Update Record

Delete Record
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database 
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Insert Record(Z2)

Delete Record(Y2)many transactions are composed 
of common instructions
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instruction & data overlap

mix new order
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[PVLDB14]
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utilizing instruction commonality

T1

T2 T1

cores
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can be software/hardware managed
up to 2X throughput of conventional on TPC-B/C/E

[MICRO12,
ISCA13,

PVLDB14]chasing instructions



• implicit parallelism isn’t completely free lunch

• > 50% of cycles are stalls for traditional OLTP 
• L1-I misses are significant 

• invest in
• utilizing instruction overlap across transactions 

& aggregate L1-I cache capacity
• simplified code, cache-friendly data/code 

layouts, smarter query compilation …
22

summary: OLTP & implicit parallelism



OLTP instructions have
1. large footprint
2. high overlap
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interlude: SUN SPARC

SPARC M7 & M8
L1-I L1-D

L2-I

L1-I L1-D L1-I L1-D L1-I L1-D

L2-D L2-D

L3 (LLC)

L1-I L1-D

L2 (LLC)

16KB 8KB

UltraSPARC T2
(Niagara 2)

L1-I L1-D
16KB 8KB

2007

2017



• types of hardware parallelism
• OLTP & implicit parallelism
• OLTP & explicit parallelism
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agenda



core core core core

core core core core

core core core core

core core core core

scaling-up vs scaling-out
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adding more cores in a single 
server should give proportional 

performance increase

scaling-up

core core core core

core core core core

adding more servers in a data 
center should give proportional 

performance increase

scaling-out

for regular folk!



scaling-up vs scaling-out
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scaling-up

adding more servers in a data 
center should give proportional 

performance increase

scaling-out

for google, amazon …!

adding more data centers 
should give proportional 

performance increase
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scaling-up

th
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number of threads

th
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number of threads

optimized

need better metrics to reason about scalability
throughput measurements are not enough

probe one customer, read balance on Shore-MT

next-gen hardware
4-processor server

[PVLDB11, PVLDB12, ICDE14]

1-processor
server = 8 cores

1

2

3 4 = sockets
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critical sections / synchronization
unbounded cooperative fixed

unbounded  fixed / cooperative

[PVLDB11]

shared
data
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critical path of transaction execution

core core core core core core core core

data

system 
state

threads

many unpredictable accesses to shared data
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impact of unpredictable data accesses

data

index

probe one customer, update balance on ShoreMTworkers
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physiological partitioning (PLP)
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critical sections as a metric?
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unbounded communication will hit you eventually
with NUMA even fixed/cooperative have issues
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NUMA impact

core

L1-I L1-D

MAIN MEMORY

L2

L3

PERSISTENT STORAGE

registers
core

L1-I L1-D

L2

registers
core

L1-I L1-D

MAIN MEMORY

L2

L3

registers
core

L1-I L1-D

L2

registers

CPU

<10 cycles ~50 cycles 500 cycles
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ATraPos: NUMA-aware PLP

core core

system 
state

core core

update 
table A

update 
table B

[ICDE14]

limit unbounded communication within a socket
keep access latencies predictable

system 
state
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summary: OLTP & explicit parallelism

• high throughput != scalable
• lock freedom != scalable
• eliminate any unbounded communication

• or at least bound it within a socket

• keep fixed/cooperative communication among cores 
with similar/predictable access latency
 avoid sharing data across different processors
     (avoid NUMA impact)



main memory
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today: traditional vs. modern OLTP

disk

buffer manager

caches

multicore CPU

traditional main-memory-optimized

• no / minimal disk use
during transactions

• lightweight logging &
replication for recovery

• optimize for PMem & SSDs instead

• no / light buffer manager
• data organized for better cache 

accesses

• non-blocking concurrency control
• query compilation that generates 

more efficient code
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