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Cyber-physical systems often encompass complex concurrent behavior with tim-
ing constraints and probabilistic failures on demand. The analysis whether such
systems with probabilistic timed behavior adhere to a given specification is essential.
When the states of the system can be represented by graphs, the rule-based formal-
ism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to
suitably capture structure dynamics as well as probabilistic and timed behavior of
the system. The model checking support for PTGTSs w.r.t. properties specified using
Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented.
Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic
(MTGL) has been developed for stating metric temporal properties on identified
subgraphs and their structural changes over time.
In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph

Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt
our MTGL satisfaction checking approach to PTGTSs, and (c) combine the ap-
proaches for PTCTL model checking and MTGL satisfaction checking to obtain a
BoundedModel Checking (BMC) approach for PMTGL. In our evaluation, we apply
an implementation of our BMC approach in AutoGraph to a running example.
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1 Introduction

Cyber-physical systems often encompass complex concurrent behavior with timing
constraints and probabilistic failures on demand [16, 17]. Such behavior can then be
captured in terms of probabilistic timed state sequences (or spaces) where time may
elapse between successive states and where each step in such a sequence has a desig-
nated probability. The analysis whether such systems adhere to a given specification
describing admissible or desired system behavior is essential in a model-driven de-
velopment process.

Graph Transformation Systems (GTSs) [5] can be used for the modeling of sys-
tems when each system state can be represented by a graph and when all changes of
such states to be modeled can be described using the rule-based approach to graph
transformation. Moreover, timing constraints based on clocks, guards, invariants,
and clock resets have been combined with graph transformation in Timed Graph
Transformation Systems (TGTSs) [3] and probabilistic aspects have been added to
graph transformation in Probabilistic Graph Transformation Systems (PGTSs) [11].
Finally, the formalism of PTGTSs [14] combines timed and probabilistic aspects sim-
ilar to Probabilistic Timed Automata (PTA) [13] and offers model checking support
w.r.t. PTCTL [12, 13] properties employing the Prism model checker [12]. The usage
of PTCTL allows for stating probabilistic real-time properties on the induced PTGT
state space where each graph in the state space is labeled with a set of Atomic Propo-
sitions (APs) obtained by evaluating that graph w.r.t. e.g. some property specified
using Graph Logic (GL) [7, 17].
However, structural changes over time in the state space cannot always be di-

rectly specified using APs that are locally evaluated for each graph. To express such
structural changes over time, MTGL [6, 17] has been introduced based on GL. Us-
ing MTGL conditions, an unbounded number of subgraphs can be tracked over
timed graph transformation steps in a considered state sequence once bindings have
been established for them via graph matching. Moreover, MTGL conditions allow
to identify graphs where certain elements have just been added to (removed from)
the current graph. Similarly to MTGL, for runtime monitoring, Metric First-Order
Temporal Logic (MFOTL) [2] (with limited support by the tool MonPoly) and the
non-metric timed logic Eagle [1, 8] (with full tool support) have been introduced
operating on sets of relations and Java objects as state descriptions, respectively.
Obviously, both logics PTCTL and MTGL have distinguishing key strengths but

also lack bindings on the part of PTCTL and an operator for expressing probabilistic
requirements on the part of MTGL.1 Furthermore, specifications using both, PTCTL

1PTCTL model checkers such as Prism do not support the branching capabilities of PTCTL as of now
due to the complexity of the corresponding algorithms.
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1 Introduction

and MTGL conditions, are insufficient as they cannot capture phenomena based on
probabilistic effects and the tracking of subgraphs at once. Hence, a more complex
combination of both logics is required. Moreover, realistic systems often induce
infinite or intractably large state spaces prohibiting the usage of standard model
checking techniques. Bounded Model Checking (BMC) has been proposed in [9]
for such cases implementing an on-the-fly analysis. Similarly, reachability analysis
w.r.t. a bounded number of steps or a bounded duration has been discussed in [10].

To combine the strengths of PTCTL and MTGL, we introduce PMTGL by enrich-
ing MTGL with an operator for expressing probabilistic requirements as in PTCTL.
Moreover, we present a BMC approach for PTGTSs w.r.t. PMTGL properties by com-
bining the PTCTL model checking approach for PTGTSs from [14] (which is based
on a translation of PTGTSs into PTA) with the satisfaction checking approach for
MTGL from [6, 17]. In our approach, we just support bounded model checking since
the binding capabilities of PMTGL conditions require non-local satisfaction checks
taking possibly the entire history of a (finite) path into account as for MTGL condi-
tions. However, we obtain even full model checking support for two cases: (a) for
the case of finite loop-free state spaces and (b) for the case where the given PMTGL
condition does not need to be evaluated beyond a maximal time bound.
As a running example, we consider a system in which a sender decides to send

messages at nondeterministically chosen time points, which have then to be transmit-
ted to a receiver via a network of routers within a given time bound. In this system,
transmission of messages is subject to a probabilistic failure on demand, requiring
a retransmission of a message that was lost at an earlier transmission attempt. For
this scenario, we employ PMTGL to express the desired system property of timely
message reception. Firstly, using the capabilities inherited from MTGL, we identify
messages that have just been sent, track them over time, and check whether their in-
dividual deadlines are met. Secondly, using the probabilistic operator inherited from
PTCTL, we specify lower and upper bounds for the probability with which such an
identified message is transmitted to the receiver before the deadline expires. During
analysis, we are interested in determining the expected best-case and worst-case proba-
bilities for a successful multi-hop message transmission from sender to receiver. For
our evaluation, we also consider further variants of the considered scenario where
messages are dropped after n transmission failures.

This paper is structured as follows. In chapter 2, we recall the formalism of PTA. In
chapter 3, we discuss further preliminaries including graph transformation, graph
conditions, and the formalism of PTGTSs. In chapter 4, we recall MTGL and present
the extension of MTGL to PMTGL in terms of syntax and semantics. In chapter 5, we
present our BMC approach for PTGTSs w.r.t. PMTGL properties. In chapter 6, we
evaluate our BMC approach by applying its implementation in the tool AutoGraph
to our running example. Finally, in chapter 7, we close the paper with a conclusion
and an outlook on future work.
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2 Probabilistic Timed Automata
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(a) PTA A.
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(b) Path of the PTA A for some adversary (for clarity, for timed/discrete steps, labels
contain here the duration/action and the probability to reach the given successor).
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(c) Symbolic state space induced by the PTA A.

Figure 2.1: PTA A, one of its paths, and its symbolic state space

We briefly review PTA [13], which combine the use of clocks to capture real-time
phenomena and probabilism to approximate/describe the likelihood of outcomes of
certain steps, and PTA analysis as supported by Prism [12].
For a set of clocks X, clock constraints ψ ∈ CC(X) also called zones are finite

conjunctions of clock comparisons c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X, ∼ ∈
{<,>,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation (v : X R0) ∈ CV(X) satisfies
a zone ψ, written v |= ψ, as expected. The initial clock valuation ICV(X) maps all
clocks to 0. For a clock valuation v and a set of clocks X′, v[X′ := 0] is the clock
valuation mapping the clocks from X′ to 0 and all other clocks according to v. For
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2 Probabilistic Timed Automata

a clock valuation v and a duration δ ∈ R0 , v + δ is the clock valuation mapping
each clock x to v(x) + δ. A Discrete Probability Distribution (DPD) µ : A [0, 1],
written µ ∈ DPD(A), satisfies ∑a∈A µ(a) = 1. An element a ∈ A is in the support of
µ, written a ∈ supp(µ), if µ(a) > 0.
A PTA (see Figure 2.1a for an example) is of the form A = (L, ` ∈ L, X, I :

L CC(X), δ ⊆ L ×A × CC(X) × DPD(2X × L),L : L 2AP) where L is a set of
locations, ` is an initial location, X is a set of clocks, I maps each location to an in-
variant, δ contains edges e = (`, a, ψ, µ) where ` is the source location, a ∈ A is an
action, ψ is a guard, and µ is a DPD where µ(X′, `′) is the probability to reach the
target location `′ while resetting the clocks in X′ to 0, and L labels each location with
a set of atomic propositions from AP.
The states of a PTA are of the form (`, v) ∈ L × CV(X) with v |= I(`). The initial

state is (`, ICV(X)). The labeling of a state (`, v) is given byL(`). PTA allow for timed
and discrete steps between states resulting in paths (such as the one in Figure 2.1b). A
timed step (`, v)[δ, µ〉(`, v+ δ) of duration δ ∈ R andDPD µ must satisfy that (`, v+
δ′) is a state for every 0 < δ′ < δ and µ(`, v+ δ) = 1. A discrete step (`, v)[0, µ〉(`′, v′)
of duration 0 and DPD µ using some (`, a, ψ, µ) ∈ δ and (X′, `′) ∈ supp(µ) must
satisfy v |= ψ, v′ = v[X′ := 0], and µ(`′, v′) = ∑X′,v′=v[X′ :=0] µ(X′, `′).
Prism supports PTA analysis, returning minimal probabilities Pmin=?(F ap) and

maximal probabilities Pmax=?(F ap) with which an ap labeled state can be reached.
These two probabilities may differ due to different resolutions of the nondetermin-
ism among timed and discrete steps for which adversaries are employed as usual.
For effective analysis, Prism does not compute the (usually infinite) induced state
space but computes instead a finite symbolic state space (such as the one in Fig-
ure 2.1c) intuitively eliminating the impact of guards, invariants, and resets. In this
finite symbolic state space, states are of the form (`, ψ) ∈ L × CC(X) symbolically
representing all states (`, v) with v |= ψ.
For example, the PTA A from Figure 2.1a (for which adversaries only decide

how much time to spend in location `1), Pmax=?(F success) = 0.7 + 0.05 using a
probability maximizing adversary that lets 5 ≤ δ ≤ 6 time units elapse in `1 (0.25 is
not added as `4 is not reachable using this adversary). Similarly, Pmin=?(F success) =
0.05 using a probability minimizing adversary that lets 3 < δ < 5 time units elapse
in `1 (0.25 and 0.7 are not added as `4 and `6 are not reachable using this adversary).
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3 Probabilistic Timed Graph
Transformation Systems

We briefly recall graphs, graph conditions, and PTGTSs in our notation.
Using the variation of symbolic graphs [15] from [17], we consider typed at-

tributed graphs (short graphs) (such as G0 in Figure 3.1b), which are typed over
a type graph TG (such as TG in Figure 3.1a). In such graphs, attributes are con-
nected to local variables and an Attribute Condition (AC) over a many-sorted first-
order attribute logic is used to specify the values for these local variables. Mor-
phisms m : G1 G2 must ensure that the AC of G2 (e.g. y = 4) implies the AC of
G1 (e.g. m(x ≥ 2) = (y ≥ 2)). Lastly, monomorphisms (short monos), denoted
by m : G1 G2, map all elements injectively.

GraphConditions (GCs) [7, 17] of GL are used to state properties on graphs requir-
ing the presence or absence of certain subgraphs in a host graph using propositional
connectives and (nested) existential quantification over graph patterns. For example,
the GC φallDone from Figure 3.1c is satisfied by all graphs, in which all messages are
equipped with a done loop.
A Graph Transformation (GT) step is performed by applying a GT rule ρ = (` :

K L, r : K R, γ) for a match m : L G on the graph to be transformed (see [17]
for technical details). A GT rule specifies that (a) the graph elements in L − `(K)
are to be deleted and the graph elements in R − r(K) are to be added using the
monos ` and r, respectively, according to a Double Pushout (DPO) diagram and
(b) the values of variables of R are derived from those of L using the AC γ (e.g.
x′ = x + 2) in which the variables from L and R are used in unprimed and primed
form, respectively.1

PTGTSs introduced in [14] are a probabilistic real-time extension of Graph Trans-
formation Systems (GTSs) [5]. PTGTSs can be translated into equivalent PTA ac-
cording to [14], and hence, PTGTSs can be understood as a high-level language for
PTA following similar mechanics.
PTGT states are pairs (G, v) of a graph and a clock valuation. The initial state is

given by a distinguished initial graph and a valuation mapping all clocks to 0. For
our running example, the initial graph G0 (given in Figure 3.1b) captures a sender,
which is connected via a network of routers to a receiver, and two messages to be
sent. The type graph of a PTGTS also identifies attributes representing clocks, which
are the clock attributes of a message in Figure 3.1a.

1Nested application conditions given byGCs to further restrict rule applicability are straightforwardly
supported by our approach but, to improve readability, not used in the running example and
omitted subsequently.
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3 Probabilistic Timed Graph Transformation Systems

:Router

:Receiver :Message

clock:real
id:int
failures:int

:Sender

num:int

:snd :at

:rcv

:next

:done

⊥

(a) Type graph TG.

S:Sender

num=1

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1

M2:Message

clock=c2

id=2
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

(b) Initial graph G0.

M:Message¬∃ , M:Message e1:done¬∃ ,>

(c) PTGT AP φallDone, which is satisfied by graphs where all messages are equipped with a
done loop indicating their successful delivery to the receiver.

[d
on

eS
]

reset: {c}

attribute effect: n′ = n + 1 ∧ i′ = i

probability: 1

send attribute guard: n = i clock guard: > clock invariant: c ≤ 10 priority: 0

S:Sender

num=n

R1:Router M:Message

clock=c
id=i

e1:snd e2:at ⊕⊕⊕

[d
on

eR
]

reset: ∅

attribute effect: >

probability: 1

receive attribute guard: > clock guard: > clock invariant: c ≤ 0 priority: 1

R:Receiver R1:Router M:Message
e1:rcv e2:at 			

e3:done ⊕⊕⊕

[s
uc

ce
ss
]

[f
ai
lu
re
]

reset: {c}

attribute effect: >

probability: 0.8

reset: {c}

attribute effect: >

probability: 0.2

transmit attribute guard: > clock guard: c ≥ 2 clock invariant: c ≤ 5 priority: 0

R1:Router R2:RouterM:Message

clock=c
e1:at 			 e2:next

e3:at ⊕⊕⊕

R1:Router R2:RouterM:Message

clock=c
e1:at e2:next

[d
on

eD
]

reset: ∅

attribute effect: f ′ = f

probability: 1

drop attribute guard: f > 0 clock guard: > clock invariant: c ≤ 0 priority: 1

R1:RouterM:Message

failures= f
e1:at 			

(d) PTGT rules σsend, σreceive, σtransmit, and σdrop.

Figure 3.1: Components of the PTGTS for the running example
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3 Probabilistic Timed Graph Transformation Systems

PTGT rules of a PTGTS contain (a) a left-hand side graph L, (b) an AC specifying
as an attribute guard non-clock attributes of L that must be satisfied by any match of
L, (c) an AC specifying as a clock guard clock attributes of L that must be satisfied to
permit the application of the PTGT rule, (d) anAC specifying as a clock invariant clock
attributes of L that must never be violated for a match of L, (e) a natural number
describing a priority preventing the application of the PTGT rule when a PTGT rule
with higher priority can be applied, and (f) a nonempty set of tuples of the form
(` : K L, r : K R, γ, C, p) where (`, r, γ) is an underlying GT rule, C is a set of
clocks contained in R to be reset, and p is a real-valued probability from [0, 1] where
the probabilities of all such tuples must add up to 1.
For our running example, the PTGTS contains the four PTGT rules from Fig-

ure 3.1d. The PTGT rules σsend, σreceive, and σdrop have each a unique underlying GT
rule ρsend,doneS, ρreceive,doneR, and ρdrop,doneD, respectively, and the PTGT rule σtransmit has
two alternative underlying GT rules ρtransmit,success and ρtransmit,failure. For each of these
underlying GT rules, we depict the graphs L, K, and R in a single graph where graph
elements to be removed and to be added are annotated with 	 and ⊕, respectively.
Further information about the PTGT rule and its underlying GT rules are given in
gray boxes. The PTGT rule σsend is used to push the next message into the network
by connecting it to the router that is adjacent to the sender. Thereby, the attribute
num of the sender is used to push the messages in the order of their id attributes.
The PTGT rule σreceive has the higher priority 1 and is used to pull a message from
the router that is adjacent to the receiver by marking the message with a done loop.
The PTGT rule σtransmit is used to transmit a message from one router to the next one.
This transmission is successful with probability 0.8 and fails with probability 0.2.
The clock guard and the clock invariant of σtransmit (together with the fact that the
clock of the message is reset to 0 whenever σtransmit is applied or when the message
was pushed into the network using σsend) ensures that transmission attempts hap-
pen within 2–5 time units. Lastly, the PTGT rule σdrop has priority 1 and is used to
drop messages for which transmission has failed. In our evaluation in chapter 6, we
also consider the cases that messages are never dropped or not dropped before the
second transmission failure by changing the attribute guard of σdrop from f > 0 to ⊥
and f > 1, respectively. PTGTS steps (G, v)[δ, µ〉(G′, v′) are timed and discrete steps
as for PTA.
PTGT APs are GCs φ and PTGT states (G, v) are labeled by φ when G satisfies

φ. For our running example, the AP φallDone labels states where each message has
been successfully delivered. Subsequently, we introduce PMTGL to identify relevant
target states for analysis not relying on PTGT APs.
Besides translating a PTGTS into a PTA following [14], we can generate directly

a symbolic state space (cf. Figure 2.1c for the PTA case) using the tool AutoGraph
where each symbolic state (G, ψ) represents all states (G, v) with v |= ψ and where
ψ is encoded as a Difference Bound Matrix (DBM) [4].
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4 Probabilistic Metric Temporal Graph
Logic

Before introducing PMTGL, we recall MTGL [6, 17] and adapt it to PTGTSs. To sim-
plify our presentation, we focus on a restricted set of MTGL operators and conjecture
that the presented adaptations of MTGL are compatible with full MTGL from [17]
as well as with the orthogonal MTGL developments in [18].
The Metric Temporal Graph Conditions (MTGCs) of MTGL are specified using

(a) the GC operators to express properties on a single graph in a path and (b) metric
temporal operators to navigate through the path. For the latter, the operator ∃N

(called exists-new) is used to extend a current match of a graph H to a supergraph H′

in the future such that some additionallymatched graph element could not have been
matched earlier. Moreover, the operator U (called until) is used to check whether
an MTGC θ2 is eventually satisfied within a given time interval in the future while
another MTGC θ1 is satisfied until then.
Definition 1 (MTGCs). For a graph H, θH ∈ MTGC(H) is a metric temporal graph
condition (MTGC) over H defined as follows:

θH ::= > | ¬θH | θH ∧ θH | ∃( f , θH′) | ν(g, θH′′) | ∃N( f , θH′) | θH UI θH

where f : H H′ and g : H′′ H are monos and where I is an interval over R0 .

For our running example, consider the MTGC given in Figure 4.1 inside the oper-
ator Pmax=?(·). Intuitively, this MTGC states that (forall-new) whenever a message
has just been sent from the sender to the first router, (restrict) when only tracking
this message by match restriction (since at least the edge e2 can be assumed to be
removed in between), (until) eventually within 5 time units, (exists) this message is
delivered to the receiver as indicated by the done loop.
In [6, 17], MTGL was defined for timed graph sequences in which only discrete

steps are allowed each having a duration δ > 0. We now adapt MTGL to PTGTSs in
which multiple graphs may occur at the same time point.

For tracking subgraphs in a path π over time using matches, we first identify the
graph π(τ) in π at a position τ = (t, s) ∈ R0 × N where t is a total time point and s
is a step index starting at 0 after every non-zero timed step.1
Definition 2 (Graph at Position). A graph G is at position τ = (t, s) in a path π of a
PTGTS S, written π(τ) = G, if pos(π, i, t, s, δ) = G for the ith step of π and delay δ

(since the last change of the step index s) is defined as follows.
• If π0 = ((G, v)[δ, µ〉(G′, v′)), then pos(π, 0, 0, 0, 0) = G.

1To compare positions, we define (t, s) < (t′, s′) if either t < t′ or t = t′ and s < s′.
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4 Probabilistic Metric Temporal Graph Logic

S:Sender R1:Router M:Message
e1:snd e2:at∀N ,Pmax=?

M:Messageν ,>U[0,5]
M:Message e3:done∃ ,>

Figure 4.1: PMTGC χmax where the additional MTGL operator forall-new (written
∀N) is derived from the operator exists-new by ∀N( f , θ) = ¬∃N( f ,¬θ)

• If πi = ((G, v)[δ, µ〉(G′, v′)), pos(π, i, t, s, 0) = G, and δ > 0, then
pos(π, i, t + δ′, 0, δ′) = G for each δ′ ∈ (0, δ) and pos(π, i + 1, t + δ, 0, 0) = G′

• If πi = ((G, v)[0, µ〉(G′, v′)) and pos(π, i, t, s, δ) = G, then
pos(π, i + 1, t, s + 1, 0) = G′

A match m : H π(τ) into the graph at position τ can be propagated forwards
(or backwards) over the steps in a path to the graph π(τ′). Such a propagated match
m′ : H π(τ′), written m′ ∈ PM(π, m, τ, τ′), can be obtained uniquely if allmatched
graph elements m(H) are preserved by the considered steps, which is trivially the
case for timed steps. When some graph element is not preserved, PM(π, m, τ, τ′) is
empty.

We now present the semantics ofMTGL by providing a satisfaction relation, which
is defined as for GL for the operators inherited from GL and as explained above for
the operators exists-new and until.
Definition 3 (Satisfaction of MTGCs). An MTGC θ ∈ MTGC(H) over a graph H is
satisfied by a path π of the PTGTS S, a position τ ∈ R0 ×N, and amono m : H π(τ),
written (π, τ, m) |= θ, if an item applies.
• θ = >.
• θ = ¬θ′ and (π, τ, m) 6|= θ′.
• θ = θ1 ∧ θ2, (π, τ, m) |= θ1, and (π, τ, m) |= θ2.
• θ = ∃( f : H H′, θ′) and ∃m′ : H′ π(τ). m′ ◦ f = m ∧ (π, τ, m′) |= θ.
• θ = ν(g : H′′ H, θ′) and (π, τ, m ◦ g) |= θ′.
• θ = ∃N( f : H H′, θ′) and there are τ′ ≥ τ, m′ ∈ PM(π, m, τ, τ′), and m′′ :

H′ π(τ′) s.t. m′′ ◦ f = m′, (π, τ′, m′′) |= θ, and for each τ′′ < τ′ it holds that
PM(π, m′′, τ′, τ′′) = ∅.

• θ = θ1 UI θ2, τ = (t, s), and there are δ ∈ I and τ′ = (t + δ, s′) s.t.
◦ s′ ≥ s if δ = 0,
◦ there is m′ ∈ PM(π, m, τ, τ′) s.t. (π, τ′, m′) |= θ2, and
◦ for every τ ≤ τ′′ < τ′ there is m′′ ∈ PM(π, m, τ, τ′′) s.t. (π, τ′′, m′′) |= θ1.

Moreover, if θ ∈ MTGC(∅), τ = (0, 0), and (π, τ, i(π(τ))) |= θ, then π |= θ.

We now introduce the ProbabilisticMetric Temporal Graph Conditions (PMTGCs)
of PMTGL, which are defined based on MTGCs.
Definition 4 (PMTGCs). Each probabilistic metric temporal graph condition (PMTGC) is
of the form χ = P∼c(θ) where ∼ ∈ {≤,<,>,≥}, c ∈ [0, 1] is a probability, and
θ ∈ MTGC(∅) is anMTGC over the empty graph. Moreover, we also call expressions
of the form Pmin=?(θ) and Pmax=?(θ) PMTGCs.
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4 Probabilistic Metric Temporal Graph Logic

The satisfaction relation for PMTGL defines when a PTGTS satisfies a PMTGC.
Definition 5 (Satisfaction of PMTGCs). A PTGTS S satisfies the PMTGC χ = P∼c(θ),
written S |= χ, if, for any adversary Adv, the probability over all paths of Adv that
satisfy θ is∼ c. Moreover, Pmin=?(θ) and Pmax=?(θ) denote the infimal and supremal
expected probabilities over all adversaries to satisfy θ.

For our running example, the evaluation of the PMTGC χmax fromFigure 4.1 for the
PTGTS from Figure 3.1 results in the probability of 0.84 = 0.4096, using a probability
maximizing adversary Adv as follows. Whenever the first graph of the PMTGC can
be matched, this is the result of an application of the PTGT rule σsend. The adversary
Adv ensures then that the matched message is transmitted as fast as possible to the
destination router R3 by (a) letting time pass only when this is unavoidable to satisfy
the guard for the next transmission step and (b) never allowing to match the router
R4 by the PTGT rule σtransmit as this leads to a transmission with 3 hops. For each
message, the only transmission requiring at most 5 time units transmits the message
via the router R2 to router R3 using 2 hops in at least 2 + 2 time units. The urgently
(i.e., without prior delay) applied PTGT rule σreceive then attaches a done loop to the
message as required by χmax. Since the transmissions of the messages do not affect
each other and messages are successfully transmitted only once both transmission
attempts for each of the messages have succeeded, the maximal probability to satisfy
the inner MTGC is (0.8 × 0.8)2 = 0.84. Using Pmin=?(·) results in a probability of 0
since there is e.g. the adversary Adv′ that only allows a transmission with 3 hops via
router R4 exceeding the deadline.
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5 Bounded Model Checking Approach

We now present our BMC approach in terms of an analysis algorithm for a fixed
PTGTS S, PMTGC χ = P∼c(θ), and time bound T ∈ R0 ∪ {∞}. Using this algo-
rithm, we analyze whether S satisfies χ when restricting the discrete behavior of
S to the time interval [0, T). In fact, we consider in this algorithm PMTGCs of the
form Pmax=?(θ) or Pmin=?(θ) for computing expected probabilities since they are
sufficient to analyze PMTGCs of the form P∼c(θ).1 In the subsequent presentation,
we focus on the case of Pmax=?(θ) and point out differences for the case of Pmin=?(θ)

where required.

Step 1: Encoding the Time Bound into the PTGTS
For the given PTGTS S and time bound T, we construct an adapted PTGTS S′ into
which the time bound T is encoded (for T = ∞, to be used when all paths derivable
for the PTGTS are sufficiently short, we use S′ = S). In S′, we ensure that all discrete
PTGT steps are disabledwhen time bound T is reached (also then no longer requiring
the satisfaction of the PTGT invariants). For this purpose, we (a) create a fresh local
variable xT of sort real and a fresh clock variable xc (for which fresh types are added
to the type graph to ensure non-ambiguous matching of variables during GT rule
application), (b) add both variables and the attribute constraint xT = T to the initial
graph of S, (c) add both variables to the graphs L, K, and R of each underlying GT
rule ρ = (` : K L, r : K R, γ) of each PTGT rule σ of S and add xc < xT as an
additional clock guard to each PTGT rule to prevent the application of PTGT rules
beyond time bound T, and (d) add a PTGT rule σBMC with a clock guard xc ≥ xT and a
clock invariant xc ≤ xT, which (in its single underlying GT rule) deletes the variable
xT from the matched graph. The application of σBMC at time xT ensures that no PTGT
rule can be applied subsequently and that all PTGT invariants are disabled due to
step (c).2 For the resulting PTGTS S′, we then solve the model checking problem for
the given PMTGC χ.

Lemma 1 (Encoded BMC Bound). If π is a path of the PTGTS S′, then the time point
of the last discrete step (if any exists) precedes T. See appendix for a proof sketch.

Step 2:Construction of Symbolic State Space and Timing Specification
Following the construction of a symbolic state space for a given PTA by the Prism
model checker (where states are given by pairs of locations and zones over the
clocks of the PTA (cf. chapter 2)), we may construct a symbolic state space for a

1For example, Pmin=?(θ) = c implies satisfaction of P≥c′ (θ) for any c′ ≤ c.
2The additional PTGT rule σBMC is used since PTGT invariants cannot be disabled by changing them
from γ to γ ∨ xc ≥ T due to the limited syntax of zones.
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5 Bounded Model Checking Approach

given PTGTS where states are given by pairs of graphs and zones over the clocks
contained in the graph. Paths π̂ through such a symbolic state space are of the form
s1[µ2〉s2[µ3〉 . . . sn consisting of states and (nondeterministically selected) DPDs on
successor states (i.e., µi(si) > 0). Note again that each such path π̂ is symbolic itself
by not specifying the amount of time that elapses in each state. We call a path π

of the form s1[δ2, µ2〉s2[δ3, µ3〉 . . . sn a timed realization of π̂ when the added delays
δi ≥ 0 are a viable selection according to the zones contained in the states (e.g. for
the symbolic state space in Figure 2.1c, the zone c1 = c2 ≤ 6 of the initial state allows
any selection δ1 ≤ 6).
As a deviation from the symbolic state space generation approach for PTA, we

generate a tree-shaped symbolic state space M by not identifying isomorphic states.
The absence of loops in M guaranteed by the tree-shaped form ensures that, as
required by Step 3, every path of M is finite (on time diverging paths). Moreover,
for each path π̂ of M, guards, invariants, and clock resets have been encoded in the
zones of the states also ensuring the existence of at least one timed realization π for
each π̂. For our analysis algorithm, ultimately deriving the resulting probabilities
in Step 5, we now use the guards, invariants, and clock resets again to derive for
each path3 π̂ of M a timing specification TS(π̂). This timing specification captures
for a path π̂ when each of its states has been reached (which may be impossible
without the tree-shaped form of the symbolic state space) thereby characterizing all
viable timed realizations π of π̂. To define TS(π̂), we use time point clocks tpci for
1 ≤ i ≤ n where n is the maximal length of any path of M. For a path π̂, tpci then
represents in TS(π̂) the time point when state i has been just reached in π̂. Hence,
TS(π̂) ranges over tpci for 1 ≤ i ≤ m where m is the length of π̂. In the following,
we also use the notion of the total time valuation ttv(π) to be the AC equating the time
point clock tpci and the time point ∑1≤k<i δi of the ith step in π. Using this notion, we
characterize that π is a timed realization of π̂ (performing the same discrete steps)
when TS(π̂) ∧ ttv(π) is satisfiable.

To define TS(π̂), we use a map LastReset(k, c) = k′ returning for an index 1 ≤
k ≤ m and a clock c the largest index k′ ≤ k where c was reset in π̂ (which can be
easily computed by iterating once through π̂). Recall that all clocks c are reset in
the initial state, i.e., LastReset(1, c) = 1. We include the ACs in TS(π̂) as follows for
each state si. Firstly, when i = 1 (i.e., si is the initial state), we add tpc1 = 0 to TS(π̂).
Secondly, when i > 1, we add tpci−1 ≤ tpci to TS(π̂). Thirdly, when si was reached
by respecting a guard ψ (implying i > 1), we add ψ to TS(π̂) after replacing each
clock c contained in ψ by tpci − tpck′ where k′ = LastReset(i − 1, c).4 Fourthly, when
si was reached by respecting an invariant ψ′, we add ψ′ to TS(π̂) after replacing each
clock c contained in ψ′ by tpci+1 − tpck′ where k′ = LastReset(i, c).5

3We only consider paths starting in the initial state and ending in a leaf state.
4Intuitively, tpci − tpck′ is the duration between the last reset of c and the time point when the guard
was checked upon state transition to si.

5Intuitively, tpci+1 − tpck′ is the duration between the last reset of c and the time point at which the
invariant was no longer checked due to the state transition to si+1.
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5 Bounded Model Checking Approach

Lemma 2 (Sound Timing Specification). If π̂ is a path of the symbolic state space
M constructed for the PTGTS S′, then there is a one-to-one correspondence between
valuations of the time point clocks tpci satisfyingTS(π̂) and the time points at which
states are reached in the timed realizations π of π̂. See appendix for a proof sketch.

For our running example (considering the restriction to a single message in the
initial graph), for a path π̂ex where the message is sent to router R1, transmitted to
router R2, transmitted to router R3, and then received by receiver R, we derive (after
simplification) TS(π̂ex) as the conjunction of tpc1 = 0, 0 ≤ tpc2 ≤ 10, tpc2 + 2 ≤
tpc3 ≤ tpc2 + 5, and tpc3 + 2 ≤ tpc4 = tpc5 ≤ tpc3 + 5 essentially encoding the
guards and invariants as expected.6
In the next two steps of our algorithm, we derive for the MTGC θ (contained in

the given PMTGC Pmin=?(θ) or Pmax=?(θ)) and a path π̂ an AC describing timed
realizations π of π̂ satisfying θ. For our running example and the path π̂ex from
above, this derived AC will be tpc5 − tpc2 ≤ 5 expressing that the time elapsed
between the sending of the message and its reception by the receiver is at most 5
time units as required by θ. Then, in Step 5 of the algorithm, we will identify (a)
successful paths π̂ to be those where TS(π̂) and the derived AC are satisfiable at
once and (b) failing paths π̂ to be those where TS(π̂) and the negated derived AC
are satisfiable together.

Step 3: FromMTGC Satisfaction to GC Satisfaction
Following the satisfaction checking approach for MTGL from [6, 17], we translate
the MTGC satisfaction problem into an equivalent, yet much easier to check, GC
satisfaction problem using the operations fold and encode (presented below). The
operation fold aggregates the information about the nature and timing of all GT steps
of π̂ into a singleGraph with History (GH). The operation encode translates theMTGC
into a corresponding GC.7 Technically, the MTGC θ is satisfied by a timed realization
π of a path π̂ of M precisely when the encoded MTGC is satisfied by the folded
GH GH once the total time valuation AC ttv(π) is added to GH (incorporating the
precise timing of steps in π).

Theorem 1 (Soundness of fold and encode). If θ is an MTGC over the empty graph,
encode(θ) = φ, π̂ is a path through the symbolic state space constructed for the
PTGTS S′, fold(π̂) = GH, π is a timed realization of π̂ (i.e., a path through S′), and
G′

H is obtained from GH by adding the AC ttv(π), then π |= θ iff G′
H |= φ. See

appendix for a proof sketch.

The operation fold generates for a path π̂ the corresponding GH GH by (a) con-
structing the union of all graphs of π̂ where nodes/edges preserved in steps are
identified and (b) recording for each node/edge in the resulting GH the position τ

(cf. Definition 2) when it was created and deleted (if the node/edge is deleted at

6Note that tpc4 = tpc5 since the message reception by R takes no time.
7The operations fold and encode presented here are adaptations of the corresponding operations
from [6, 17] to the modified MTGL satisfaction relation for PTGTSs from Definition 3 allowing for
successive discrete steps with zero-time delay in-between.
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5 Bounded Model Checking Approach

R1:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

M1:Message

clock=c1

id=1
cts=tpc1
dts=− 1
cidx=0
didx=− 1

S:Sender

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e2:at

cts=tpc2
dts=tpc3
cidx=1
didx=2

e1:snd

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e3:done

cts=tpc5
dts=− 1
cidx=4
didx=− 1

Figure 5.1: A part of the GH GH obtained using the operation fold for the path π̂ex

of the running example

some point) in π̂ using additional creation/deletion time stamp attributes cts/dts and
creation/deletion index attributes cidx/didx. In particular, (i) nodes/edges contained
in the initial state of π̂ are equipped with attributes cts = tpc1 and cidx = 0, (ii)
nodes/edges added in step i of π̂ are equippedwith attributes cts = tpci and cidx = i,
(iii) nodes/edges deleted in step i of π̂ are equipped with attributes dts = tpci and
didx = i, and (iv) nodes/edges contained in the last state of π̂ are equipped with
attributes dts = −1 and didx = −1. For the path π̂ex from our running example, see
Figure 5.1 depicting the part of the GH GH that is matched when checking the GC
encode(θ) against GH.

The operation encode generates for the MTGC θ contained in the given PMTGC χ

the corresponding GC φ (note that encode does not depend on a path and is there-
fore executed precisely once). Intuitively, it recursively encodes the requirements
expressed using MTGL operators (see the items of Definition 3) on a timed realiza-
tion π of a path π̂ by using GL operators on the GH (obtained by folding π̂) with
additional integrated ACs. In particular, quantification over positions τ = (t, s) of
global time t and step index s, as for the operators exists-new and until, is encoded
by quantifying over additional variables xt and xs representing t and s, respectively.
Also, matching of graphs, as for the operators exists and exists-new, is encoded by
an additional AC alive. This AC requires that each matched node/edge in the GH
has cts, dts, cidx, and didx attributes implying that this graph element exists for the
position (xt, xs) in π. Lastly, matching of new graph elements using the exists-new
operator is encoded by an additional AC earliest. This AC requires that one of the
matched graph elements has cts and cidx attributes equal to xt and xs, respectively.

Step 4:Construction of AC-Restrictions for Satisfaction
In this step, we obtain for each leaf state s of M a symbolic characterization in terms
of an AC over the time point clocks tpci of all timed realizations π of the path π̂

ending in s satisfying the given MTGC θ. Firstly, the timed realizations π of the path
π̂ ending in s are characterized by the timing specification TS(π̂) as discussed in
Step 2. Secondly, we refine the set of such timed realizations using an AC γπ̂ over the
time point clocks tpci symbolically describing when such a timed realization satisfies
the givenMTGC θ. The AC γπ̂ is obtained by checking the GC encode(θ) = φ against
the GH fold(π̂) = GH . The conjunction of TS(π̂) and γπ̂ is then recorded in the set of
state conditions SC(s) and is satisfied by precisely those valuations of the time point
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5 Bounded Model Checking Approach

clocks tpci that correspond to timed realizations π ending in s satisfying the MTGC
θ.8 In Step 5, we also use the notion of state probability SP(s) assigning a probability
of 1 to a state s when the AC in SC(s) is satisfiable and 0 otherwise.

Lemma 3 (Correct ACs). If θ is an MTGC over the empty graph, π̂ is a path of the
symbolic state space constructed for the PTGTS S′ ending in state s, and π is a timed
realization of π̂, then π |= θ iff TS(π̂) ∧ γπ̂ ∧ ttv(π) is satisfiable. See appendix for
a proof sketch.

For our running example, when checking the encoded MTGC (cf. Figure 4.1) for
the GH partially given in Figure 5.1, (a) the graph elements S, R1, M1, e1, and e2

are matched for the forall-new operator and (b) the graph elements M1 and e3 are
matched for the exists operator. For (a), all matched graph elements are alive at the
symbolic position (tpc2, 1) characterizing all positions (t, 1) where tpc2 = t. The ACs
in the encoded MTGC then ensure that e.g. e1 is alive since it was created not after
tpc2 (cts = tpc1 ≤ tpc2 and cidx = 0 ≤ 1) and it has never been deleted (dts = −1)
whereas e.g. e2 is alive since it was created at (tpc2, 1) and it has been deleted strictly
later (dts = tpc2 but 1 < didx). Moreover, the matched graph elements are not
alive earlier since e2 was created at (tpc2, 1). For (b), all matched graph elements
are alive at (tpc5, 4). Overall, we obtain (after simplification) the AC requiring that
tpc5 − tpc2 ≤ 5 as the encodedMTGC expresses the time bound≤ 5 used in the until
operator. For the last state of the path π̂ex, we obtain theACTS(π̂ex)∧ tpc5 − tpc2 ≤ 5,
which is e.g. satisfied by the valuation {tpc1 = 0, tpc2 = 0, tpc3 = 2, tpc4 = 4, tpc5 =

4} representing a timed realization πex of π̂ex where the message is transmitted as
early as possible in both transmission steps.

Step 5:Computation of Resulting Probabilities
In this step, we compute the maximal/minimal probability for the satisfaction of the
given MTGC θ, i.e., for reaching states s with clock valuation v satisfying the AC
contained in the state conditions SC(s). However, this kind of specification of target
states is not supported by Prism, which requires a clock-independent specification of
target states. Therefore, we propose a custom analysis procedure to solve the analysis
problem from above.
In the following, we first discuss, on an example, an analysis procedure for the

case of a clock-independent labeling of states and then expand this procedure to the
additional use of state conditions SC(s). For the symbolic state space in Figure 2.1c,
the maximal probability to reach a state labeled with success can be computed by
propagating restrictions of valuations given by zones backwards. Initially, each state
is equipped only with the zone given in the state space and the probability 1 when
it is a target state. The zone/probability pairs (c1 − c2 ≤ 3, 1) and (5 ≤ c1 − c2 ≤
6, 1) of the `4-state and the `6-state are then propagated backwards without change
to the `3-state and the `5-state, respectively. However, when steps have multiple
target states, any subset of the target states is considered and the probabilities of
pairs for the considered target states are summed up when the conjunction of their

8For the case of Pmin=?(θ), we define SC(s) = {TS(π̂) ∧ ¬γπ̂}.
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5 Bounded Model Checking Approach

zones is satisfiable. For example, we obtain (5 ≤ c1 − c2 ≤ 6, 0.75) for the `2-state
since the conjunction of the zones obtained for the `5- and `9-states is satisfiable,
whereas the other subsets of target states result in unsatisfiable conjunctions or
lower probabilities. When multiple zone/probability pairs with a common maximal
probability are obtained, they are all retained for the source state of the step.
We now introduce our backward analysis procedure by adapting the procedure

from above to the usage of the ACs contained in the state condition SC(s) instead of
zones. Technically, our (fixed-point) backward analysis procedure updates the state
conditions SC and state probability SP, which record the AC/probability pairs, until
no further modifications can be performed according to the following definition.
Definition 6 (Backward Analysis Procedure). The subsequent operation updat-
ing SC and SP is performed until a fixed-point is reached. When SC, SP, and I
assign to each state s of M a set of ACs, a probability, and the depth of s in the
tree-shaped state space M, respectively, (s, µ) is an edge of M, S′ ⊆ supp(µ) is a sub-
set of the target states of µ, f selects for each target state s′ ∈ S′ an AC from SC(s′),
γ = ∃tpcI(s).

∧
s′∈S′ f (s′) is the AC derived for the state s based on the selections S′

and f , γ is satisfiable, and p = ∑s′∈S′(µ(s′)× SP(s′)) is the new probability for s
based on the selections S′ and f , then (a) SC(s) and SP(s) are changed to {γ} and p
when p > SP(s) recording the AC γ and the new maximal probability p derived for
s and (b) SC(s) is changed to SC(s) ∪ {γ} when p = SP(s) recording an additional
AC γ and not changing the probability SP(s).

Finally, using our BMC approach introduced in this section, we derive the expected
maximal probability.9

Theorem 2 (Soundness of BMC Approach). The presented BMC approach in terms
of the presented 5-step analysis algorithm returns the correct probability for a given
PTGTS S, PMTGC χ, and time bound T. See appendix for a proof sketch.

9For Pmin=?(θ), the procedure from Definition 6 returns 1 −Pmin=?(θ) maximizing the probability
of failing paths by minimizing the probability for successful paths.
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6 Evaluation

Our implementation of the presented BMC approach in the tool AutoGraph reports
for all considered variations of our running example the expected best-case proba-
bility for timely message transmission of 0.82n (and the worst-case probability of 0)
for n messages to be transmitted. For our experiments, we employed the time bound
T = 20 corresponding to the maximum duration required for sending the message
and transmitting it via the shortest connection. Note that an unbounded number of
transmission retries for T = ∞ is unrealistic and would not allow for a finite state
space M to be generated in Step 2. Also, any message transmission failure inevitably
leads to a non-timely transmission of that message due to the time bound used in
the PMTGC χmax. However, the size of M is exponential in the number of messages
to be transmitted as their transmission is independent from each other resulting in
any resolution of their concurrent behavior to be contained in M. Hence, allowing
for up to 10 transmission attempts via time bound T = 20 resulted in 31 states for
n = 1 but exceeded our memory at 83000 states for n = 2. Using the drop rule to
further limit the number of transmission retries allowed to analyze the variation of
our running example in which two messages are transmitted but dropped after the
second transmission failure, resulting in 12334 states.

However, as of now, the bottle neck of our current implementation, which is faith-
ful to our presentation from the previous section, is not the runtime but the memory
consumption. To overcome this limitation, we plan to generate the tree-shaped state
space M in a depth-first manner performing the subsequent steps of the analysis
algorithm (Step 3–Step 5) on entirely generated subtrees of M (before continuing
with the state space generation). This would allow to dispose paths from M that
are no longer needed in subsequent steps of the algorithm. Also, when the memory
consumption has been drastically reduced along this line, a multithreaded imple-
mentation would be highly beneficial due to the tree-shaped form of M and the
independent analysis for its subtrees.
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7 Conclusion and Future Work

We introduced PMTGL for the specification of cyber-physical systems with proba-
bilistic timed behavior modeled as PTGTSs. PMTGL combines (a) MTGL with its
binding capabilities for the specification of timed graph sequences and (b) the prob-
abilistic operator from PTCTL to express best-case/worst-case probabilistic timed
reachability properties. Moreover, we presented a novel BMC approach for PTGTSs
w.r.t. PMTGL properties.

In the future, we plan to apply PMTGL and our BMC approach to the case study
[14, 16] of a cyber-physical system where, in accordance with real-time constraints,
autonomous shuttles exhibiting probabilistic failures on demand navigate on a track
topology.Moreover, we plan to extend our BMC approach by supporting the analysis
of so-called optimistic violations introduced in [18].
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Glossary

AC Attribute Condition.

AP Atomic Proposition.

BMC Bounded Model Checking.

DBM Difference Bound Matrix.

DPD Discrete Probability Distribution.

GC Graph Condition.

GH Graph with History.

GL Graph Logic.

GTS Graph Transformation System.

MFOTL Metric First-Order Temporal Logic.

MTGC Metric Temporal Graph Condition.

MTGL Metric Temporal Graph Logic.

PGTS Probabilistic Graph Transformation System.

PMTGC Probabilistic Metric Temporal Graph Condition.

PMTGL Probabilistic Metric Temporal Graph Logic.

PTA Probabilistic Timed Automaton.

PTCTL Probabilistic Timed Computation Tree Logic.

PTGTS Probabilistic Timed Graph Transformation System.

TGTS Timed Graph Transformation System.
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A Proofs

In this appendix, we provide proof sketches omitted in the main body of this paper.

Proof for Lemma 1, p. 18: Encoded BMC Bound. No PTGT rule of the PTGTS S′ can be
applied at time> T since at time T the additional PTGT rule σBMC is applied deleting
the variable xT, which is contained in every left-hand side graph of every rule of the
PTGTS S′. This PTGT rule is applied because every other PTGT rule of the PTGTS S′

has the additional guard xc < xT forbidding rule application. Hence, only σBMC may
be applicable at time T. The PTGT rule σBMC is applicable because (a) the variables
xc and xT could not have been matched and deleted before by any other PTGT rule
of the PTGTS S′ since we added fresh types for both variables to the type graph, (b)
the guard xc ≥ xT of σBMC is satisfied at time T, and (c) the PTGT invariant xc ≤ xT

of σBMC does not exclude reaching time T with the rule being applicable.

Proof for Lemma 2, p. 19: Sound Timing Specification. For a given path π̂ of the sym-
bolic state space, collecting the guards, invariants, and resets as explained, gathers
exactly the same information that is inserted into the DBM representation for the
zones contained in the states of the path π̂. By induction on the length of the path,
we observe that the restriction of tpci computed for an additional step of the path
π̂ precisely encodes the time when the target state of that step is reached. Note that
tpc1 = 0 is added as well ensuring that this first variable is restricted to the correct
global time when the path starts. By then defining each successive variable tpci+1
based on the previous variable tpci, we only need to ensure that the successive vari-
able is properly restricted to the duration that could have elapsed in state i, which is
ensured by including precisely the constraints given by the guards (before the reset)
and invariants (after the previous reset) for each step.

Proof for Theorem 1, p. 20: Soundness of fold and encode . Here, we mostly follow the
proofs for the corresponding operations from [6, 17] for the case of timed graph
sequences where a non-zero amount of time elapsed between two states. For the
adaptation of MTGL to the clock-based setting of PTGTSs in this paper, we then only
need to ensure that the extended notion of positions (from pure time points to pairs
of a time point and a step index) is properly reflected in the two operations.
For the operation fold, we note that adding the correct global time points for cts

and dts variables in terms of the tpci variables instead of the explicitly computed
accumulated global time is even a simplification. Also, for the operation fold, adding
the step index for each step to the cidx and didx variables is a trivial extension (where
we do not reset the step index counter at any time as this is then correctly recovered
by the encode operation). Hence, for the operation fold, there is no information loss
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A Proofs

for a given π̂ that is folded into a GH meaning that this conversion can be reversed
obtaining the same path π̂ from the resulting GH again.

For the operation encode, we basically need to quantify over the extended form of
positions, which is trivially supported by GCs in the expected way. However, check-
ing for graph element to be alive (alive and earliest) for graph matching (for new
graph matching) is complicated by the additional use of a step index. In fact, allow-
ing that multiple discrete steps happen at the same time (deviating from the setting
where a non-zero delay had to elapse between any two successive states) complicates
both checks. For the AC alive, for checking whether certain graph elements in the
GH are alive for a virtual position (xt, xs), we need to account for the fact that some
graph elements may have cts and dts variables equal to xt but cidx and didx variables
satisfying cidx ≤ xs < didx, which implies that the matched graph elements are
indeed alive in the given π̂. For the AC earliest, we simply have to check that some
graph element has not only a cts variable equal to xt but also a cidx variable equal to
xs.
All remaining steps of the correctness proof for the two operations fold and encode

together reducing the MTGC satisfaction problem to a GC satisfaction problem are
not altered by the transition of MTGL to clock-based PTGTSs.

Proof for Lemma 3, p. 22: Correct ACs. This lemma is a direct consequence of Theo-
rem 1 since the state conditions SC(π̂) obtained for a path π̂ of the symbolic state
space M capture the requirements of the given MTGC θ in terms of an AC over
the tpci variables. These tpci variables are then associated in operation foldwith the
cts/dts attributes of the graph elements matched in the GC that is obtained from the
MTGC θ using operation encode.

Proof for Theorem 2, p. 23: Soundness of BMC Approach. Wenowconclude that the pre-
sented BMC approach computes the correct results (a) by encoding the time bound
T properly in Step 1 (leading to a finite symbolic tree-shaped state space M in Step 2
according to Lemma 1), (b) by generating the correct symbolic state space M in Step 2
(deriving also a correct timing specification for all paths and therefore all leaf states
of M according to Lemma 2), (c) from the soundness of the adapted translation of
MTGC satisfaction problem into an equivalent GC satisfaction problem along the
lines of [6, 17] in Step 3 (according to Theorem 1), (d) from the correct derivation of
zone-restrictingACs for each leaf state according to Lemma 3 in Step 4 (based on The-
orem 1), and (e) from the soundness of the backward analysis procedure in Step 5
correctly combining symbolic path suffixes (given by ACs over the tpci variables)
to longer path suffixes (given by ACs over tpci variables omitting/hiding the tpci
variable representing the time point where the next state has been reached, which
allows for arbitrary time points of such later steps in the symbolically represented
path suffix).
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B Details for Simplified Running Example

In this appendix, we provide visualizations for the steps of our BMC approach for a
simplified form of our running example where only a single message is transmitted
to the receiver.
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B Details for Simplified Running Example

S:Sender

num=1

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e8:at

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e9:at

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e10:at

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e11:done

PTGT rule: σsend
GT rule: ρsend,doneS
probability: 1.0
satisfied guard: >
clock resets: {c1}

PTGT rule: σtransmit
GT rule: ρtransmit,success
probability: 0.8
satisfied guard: c1 ≥ 2
clock resets: {c1}

PTGT rule: σtransmit
GT rule: ρtransmit,success
probability: 0.8
satisfied guard: c1 ≥ 2
clock resets: {c1}

PTGT rule: σreceive
GT rule: ρreceive,doneR
probability: 1.0
satisfied guard: >
clock resets: ∅

Figure B.1: Visualization for Step 2 of our BMC approach: A path π of the PTGTS
S′ (using an adapted initial graph with a single message)
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B Details for Simplified Running Example

S:Sender

num=2
cts=tpc1
dts=− 1
cidx=0
didx=− 1

R1:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

R2:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

R3:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

R4:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

R5:Router

cts=tpc1
dts=− 1
cidx=0
didx=− 1

R:Receiver

cts=tpc1
dts=− 1
cidx=0
didx=− 1

M1:Message

clock=c1

id=1
cts=tpc1
dts=− 1
cidx=0
didx=− 1

e1:snd

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e2:rcv

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e3:next

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e4:next

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e5:next

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e6:next

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e7:next

cts=tpc1
dts=− 1
cidx=0
didx=− 1

e11:done

cts=tpc5
dts=− 1
cidx=4
didx=− 1

e8:at

cts=tpc2
dts=tpc3
cidx=1
didx=2

e9:at

cts=tpc3
dts=tpc4
cidx=2
didx=3

e10:at

cts=tpc4
dts=tpc5
cidx=3
didx=4

Figure B.2: Visualization for Step 3 of our BMC approach: GH GH obtained for the
path π from Figure B.1
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B Details for Simplified Running Example

{xt,0:real, xs,0:int} Θ0 ,∃
S:Sender

cts=tS,c

dts=tS,d

cidx=sS,c

didx=sS,d

R1:Router

cts=tR1,c

dts=tR1,d

cidx=sR1,c

didx=sR1,d

M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

e1:snd

cts=te1,c

dts=te1,d

cidx=se1,c

didx=se1,d

e2:at

cts=te2,c

dts=te2,d

cidx=se2,c

didx=se2,d

{xt,1:real, xs,1:int} Θ1 ,∀

M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

{xt,0:real, xs,0:int, xt,1:real, xs,1:int} Θ2 ,ν

{xt,2:real, xs,2:int} Θ3 ,∃
M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

e3:done

cts=te3,c

dts=te3,d

cidx=se3,c

didx=se3,d

Θ4 ,>∃

Θ0 = {xt,0 = 0, xs,0 = 0}
Θ1 = Θ0 ∪ {xt,0 < xt,1 ∨ (xt,0 = xt,1 ∧ xs,0 < xs,1),

alive((xt,1, xs,1), {S, R1, M, e1, e2}), earliest((xt,1, xs,1), {S, R1, M, e1, e2})}
Θ2 = Θ0 ∪ {alive((xt,1, xs,1), {M})}
Θ3 = Θ2 ∪ {xt,1 < xt,2 ∨ (xt,1 = xt,2 ∧ xs,1 < xs,2), xt,2 ≤ xt,1 + 5}
Θ4 = Θ3 ∪ {alive((xt,2, xs,2), {M, e3})}

Figure B.3: Visualization for Step 3 of our BMC approach: GC φ obtained by encod-
ing the MTGC from the PMTGC χmax
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