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The dynamics of ecosystems is of crucial importance. Various model-based ap-
proaches exist to understand and analyze their internal effects. In this paper, we
model the space structure dynamics and ecological dynamics of meta-ecosystems
using the formal technique of Graph Transformation (short GT). We build GT mod-
els to describe how a meta-ecosystem (modeled as a graph) can evolve over time
(modeled by GT rules) and to analyze these GT models with respect to qualitative
properties such as the existence of structural stabilities. As a case study, we build
three GT models describing the space structure dynamics and ecological dynamics
of three different savanna meta-ecosystems. The first GT model considers a savanna
meta-ecosystem that is limited in space to two ecosystem patches, whereas the other
two GT models consider two savanna meta-ecosystems that are unlimited in the
number of ecosystem patches and only differ in one GT rule describing how the
space structure of the meta-ecosystem grows. In the first two GT models, the space
structure dynamics and ecological dynamics of the meta-ecosystem shows two main
structural stabilities: the first one based on grassland-savanna-woodland transitions
and the second one based on grassland-desert transitions. The transition between
these two structural stabilities is driven by high-intensity fires affecting the tree
components. In the third GT model, the GT rule for savanna regeneration induces
desertification and therefore a collapse of the meta-ecosystem. We believe that GT
models provide a complementary avenue to that of existing approaches to rigorously
study ecological phenomena.
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1 Introduction

Over the long term, ecosystems are growing and shrinking in space according to in-
trinsic and extrinsic processes as well as to neighboring opportunities. To understand
and predict such changing structures, ecologists usually model them as assumed
empty spaces (i.e., fixed ecosystem patches) gradually filled by ecosystems ([54]).
It could be more efficient to model new ecosystem patches according to present eco-
logical processes and without assumptions about the influencing spatial structure
([15, 19]). Several theories have been proposed to handle space in ecology. To the
best of our knowledge, this paper illustrates for the first time in ecology the use
of discrete-state discrete-event models to capture an unlimited (i.e., unbounded)
growth of meta-ecosystems.

The landscape ecology theory ([24]) focuses on spatially fixed mosaics composed
of various adjacent ecosystem patches (e.g. forest stands, crop fields) and considers
biotic and abiotic processes they involve ([13, 14, 53]). The meta-population theory
provides a new understanding on how distant populations of a given species with
connections (fluxes of individuals) to other ones influence the fate of the meta-
population ([25, 51]). The meta-community theory ([34]) is a functional extension
of the meta-population theory considering various communities of the same kind
that are spatially connected ([29]). Finally, the meta-ecosystem theory takes into
account biotic and abiotic fluxes between different and potentially distant spatial
units displaying common arbitrary characteristics. In this paper, we consider a meta-
ecosystem as “[...] a set of ecosystems connected by spatial flows of energy, materials, and
organisms across ecosystem boundaries” ([35]). So far, none of these four theories has
been able to convincingly model a growing (or shrinking) meta-ecosystem in space
over time, i.e., a meta-ecosystem with new ecosystem patches added (or removed)
to (from) the meta-ecosystem during the simulation ([37]).

The previously mentioned theories focus on the impacts of space in ecological (i.e.,
spatial) dynamics but they usually bypass modeling the space structure dynamics.
In addition, most models used in ecology are based on a quantitative approach and,
more specifically, on ordinary differential equations ([35, 49, 52]). The calibration
and resolution of such equation systems usually show an exponential increase in
complexity with the number of involved variables and the number of ecosystem
patches. Due to this increase in complexity and to be able to handle more variables
and ecosystem patches, it could be helpful to simplify the used models ([52]). In
contrast, qualitative models may be a viable alternative grasping this ecological
complexity with a flexible and still rigorous control ([8, 36, 42]) where the pres-
ence/absence of components but not their number is captured as in quantitative
models.
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1 Introduction

Qualitative discrete-state discrete-event models based on Petri nets and their firing
relation to model complex ecosystems integrating multiple components have been
already used in ecology (e.g. [16]). However, using Petri nets often assumes a fixed
(frozen) structure of the meta-ecosystem ([5, 36, 40]) whereas real meta-ecosystems
are often growing and/or shrinking dynamically ([31]). To model meta-ecosystems,
we therefore need to model a dynamic system on a dynamic structure (i.e., a kind
of space structure growth, also called DS2 ([18])) possibly assuming and knowing
how space structure will change.

The formal technique of Graph Transformation (short GT), which allows for rule-
based transformation of discrete-state models, is a well-known general purpose
technique that has been developed in theoretical computer sciencewith a broad range
of available tools for modeling and analysis (e.g. [12, 19, 32]). GT allows for adding
and removing nodes/edges (i.e., ecosystem patches or ecological components) using
GT rules (which describe ecological processes) as soon as the (meta-)ecosystem is
represented as a graph with a changing topology (i.e., the neighboring relationships
between ecosystem patches).

We illustrate our approach on savannas (sensu lato) as these ecosystems arewidely
represented (one fifth of the Earth land surface) and quite simple in terms of vegeta-
tion structure (i.e., tree and grass interplay) but among the ecosystemsmost sensitive
to future global changes ([4]). Savannas result from the interplay between various
components (e.g. local climate, fire, vegetation, hydrology, topography, human popu-
lations, and activities ([26])) and may be considered as meta-ecosystems ([23, 44]).
Savannas are also often associated (i.e., nearby) to crop fields andwoodlands in land-
scapes ([50]). Understanding the drivers that structure savanna meta-ecosystems is
thus required to improve future management efforts ([30, 43]).

The aim of this paper is to evaluate whether the formal technique of GT is suitable
for the modeling of meta-ecosystems with fixed or dynamic space structure. To
achieve this, we (a) determine whether GT is suitable to model the space structure
dynamics and ecological dynamics of savannameta-ecosystems with a fixed number
of ecosystem patches, (b) analyze using GT the influence of the space structure
dynamics generated when the number of ecosystem patches is unlimited and varies
due to the ecological processes at work (e.g. vegetation dispersal, impact of fire,
vegetation regrowth), and, finally, (c) discuss the pros and cons of the usage of GT
in ecology.
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2 Material and Methods

In section 2.1, we introduce the formal technique of GT based on typed graphs. In
our approach, we use GT for the modeling of space structure dynamics and ecologi-
cal dynamics of meta-ecosystems captured by so-called GT models. Afterwards, in
section 2.2, we define three concrete GT models for three different savanna meta-
ecosystems. Subsequently, in section 2.3, we introduce the notion of labeled transition
systems describing state spaces generated by GT models together with the central
operations for merging these state spaces according to a suitable equivalence notion.
Finally, in section 2.4, we discuss analysis techniques dedicated to GT models and
use them to provide the reachability properties of three concrete meta-ecosystem
models.

2.1 Typed Graphs and Graph Transformation

In this subsection, we provide a short informal introduction to the well-established
formal technique of GT ([12]) based on typed graphs (see section A.1 for more
details on formal definitions).

As discrete data structures, graphs can be used to represent system states. In par-
ticular, graphs are efficient at visually capturing relationships between the system
elements (called nodes) using connections (called edges) between these elements. In
this paper, we consider directed graphs where each edge has a single source node and
a single target node as well as allow for the special case of edges, called loops, where
the source and the target node are the same (see Figure 2.1b for a directed graph
with a loop). Moreover, we allow that different edges may have the same source
and target nodes, leading to so-called parallel edges. In this paper, we focus on finite
graphs with a finite number of nodes and edges, to ease tool-based analysis. In our
ecological case study, nodes represent ecological components as well as ecosystem
patches, which describe the boundaries of ecosystems, while edges represent the
interaction between ecological components on these ecosystem patches.

Definition 1 (Graph). If N is a finite set of nodes, E is a finite set of edges, s : E → N
maps each edge to its source node, and t : E → N maps each edge to its target node,
then G = (N, E, s, t) is a directed graph also called graph for short in the following.

There exist various graph formalisms that allow for distinguishing between differ-
ent kinds of nodes and edges. Here, we follow the standard approach of typed graphs
(instead of e.g. labeled or attributed graphs). In typed graphs, each node and each
edge has a certain type that is contained in a given type graph TG. In general, a type
graph TG specifies which node and edge types are allowed in graphs that are typed
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2.1 Typed Graphs and Graph Transformation

:Rain

:Eco

:Grass :Tree

:on :off

:r2e

:g2e :t2e

(a) The type graph TGS for the meta-
ecosystems S2, SU , and SD

Rain

Eco Eco

Grass Tree Grass Tree

on

r2e r2e

g2e t2e g2e t2e

(b) The initial graph G0 for the meta-
ecosystems S2, SU , and SD

Figure 2.1: Type graph and initial graph for the meta-ecosystems S2, SU , and SD. Squares
in color represent ecological components of a meta-ecosystem as well as ecosystem patches.
Arrows represent interactions between ecological components and ecosystem patches.

over TG. At the same time, a type graph restricts the set of all admissible graphs
by preventing the existence of certain edges (based on their types) between certain
nodes (based on their types).

The type graph TGS of our ecological case study is given in Figure 2.1a. TGS con-
tains as nodes the node types Eco, Grass, and Tree for modeling ecosystem patches,
grass, and trees, respectively. Also, we use the node type Rain for modeling rain-
fall on ecosystem patches during the rainy season. TGS contains as edges the edge
types g2e and t2e to model that a certain ecosystem patch contains grass and trees,
respectively. Moreover, the edge type r2e is used to model that rainfall is possible on
a connected ecosystem patch. Finally, the edge types on and off are used to model
if there is or if there is no rainfall on the connected ecosystem patches, respectively.
Note also that TGS prevents e.g. edges from nodes of type Eco to nodes of type Grass
as well as between nodes of type Grass and Rain altogether.

The graph G0, which is an example of a graph that is typed over the type graph TGS,
is given in Figure 2.1b. Intuitively, the graph G0 represents a state of ameta-ecosystem
consisting of two ecosystem patches (given by two Eco-nodes), each containing
trees and grass (given by Tree- and Grass-nodes connected to the corresponding Eco-
nodes), during the rainy season (given by the Rain-node with an on-loop connected
to both Eco-nodes). Note that a graph such as G0 does not need to contain nodes or
edges of each type contained in the type graph TGS.

To transform a given graph into a new one, GT rules are used. An application of a
GT rule to a graph modifies this graph using two basic operations, namely removal
and addition of certain graph elements (i.e., nodes or edges). For this purpose, a
GT rule contains a left-hand-side graph L, an interface graph I, and a right-hand-side
graph R. The left-hand-side graph L is a subgraph of the graph to be modified (up
to renaming of graph elements). The interface graph I, which is a subgraph of the
graph L, describes the elements of L that should not be removed (i.e., the elements
contained in I and L should not be removedwhile the elements contained in L but not
in I (i.e., in L− I) should be removed). The right-hand-side graph R, which has I as a
subgraph, describes the elements that should be added (i.e., the elements contained
in R but not in I (i.e., in R− I) should be added).Moreover, a GT rule contains a finite
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2 Material and Methods

set NAC of forbidden graphs X (also called negative application conditions in computer
science), which have L as a subgraph and are used to restrict the applicability of the
GT rule (see section A.1 for more details on formal definitions). In the ecological
context, GT rules represent the transitions between meta-ecosystem states and hence
are directly linked to ecological processes.

Definition 2 (GT Rule). If L is a left-hand-side graph, R is a right-hand-side graph, I
is an interface graph that is contained in L and R, and NAC is a finite set of forbidden
graphs X containing L, then ρ = (NAC, L, I, R) is a GT rule also called rule for short
in the following.

For examples of GT rules see e.g. the rule GrowGrass in Table 2.1. Intuitively, this
rule describes the ecological process that grass may grow on an ecosystem patch
during the rainy season if there is no grass on that ecosystem patch yet. In our
visualization, we depict the left-hand-side graph L of the rule in the square left to
the double arrow, the right-hand-side graph R of the rule in the square right to the
double arrow, the name of the rule over the double arrow, and the single forbidden
graph from the set NAC in the red square over the left-hand-side graph L. The red
triangle between the left-hand-side graph L and the forbidden graph visualizes that
the extension of L to the forbidden graph disables the rule application. Moreover,
we capture the node identities in L, R, and forbidden graphs using numbers in the
nodes’ bottom corners. Note that we do not visualize the interface graph I in the
following since it is used for technical reasons only.

GT steps then apply a rule ρ = (NAC, L, I, R) to a given graph G to modify G into
a resulting graph H. For this purpose, the left-hand-side graph L is embedded into
the graph G such that this embedding cannot be extended to an embedding of one
of the forbidden graphs in NAC. Afterwards, the graph elements from L − I are
removed on the basis of where L has been embedded into the graph G. This removal
then results in an embedding of the interface graph I into the intermediate graph
D, which retains information on where graph elements have been removed. Finally,
the graph elements from R − I are added to the graph D resulting in the graph
H. Hereby, the embedding of I into D is used to determine where graph elements
should be added to D (see section A.1 for more details on formal definitions).

Definition 3 (GT Step). If ρ = (NAC, L, I, R) is a rule, G is a graph, L can be embed-
ded into G, the embedding of L in G cannot be extended to an embedding of any
forbidden graph in NAC, D is a graph obtained by removing L − I from G resulting
in an embedding of I in D, and H is a graph obtained by adding R − I to D, then
G

ρ
=⇒ H is a GT step modifying graph G into resulting graph H.

A GT step for an application of the rule GrowGrass from Table 2.1 works as follows.
Whenever a subgraph containing an Eco-node connected to a Rain-node with an
on-loop is found in a graph to be modified and there is no Grass-node connected to
the found Eco-node, a Grass-node is added to the found subgraph and connected to
the Eco-node.
Graph Transformation Systems (GTSs) are used to describe how and when graphs

have to be modified following the concept of GT steps introduced before. A GTS

12



2.2 Examples of Meta-Ecosystems Modeled as Graph Transformation Systems

contains (a) a unique initial graph from which all sequences of GT steps start, (b) a
finite set of GT rules that may be applied to perform GT steps of the GTS, and (c) an
assignment of each contained GT rule to a priority given by a natural number. A GTS
uses these priorities to only permit those GT steps modifying a graph G for which no
other rule with higher priority can be applied to the same graph G. Such rules with
higher priorities represent mandatory processes in meta-ecosystems. For examples
of GTSs, see the following subsection. Note that in the ecological context, we also
call GTSs GT models.

Definition 4 (Graph Transformation System (GTS)). If G0 is a typed graph (called
initial graph), P is a finite set of rules, and κ : P → N is a mapping assigning a priority
(i.e., a natural number) to each rule in P, then S = (G0, P, κ) is a graph transformation
system (GTS).

2.2 Examples of Meta-Ecosystems Modeled as Graph
Transformation Systems

In this subsection, we model the ecological dynamics as well as the space structure
dynamics of three different savanna meta-ecosystems using GTSs. In the first GTS
(also called GT model in the following), we consider a savanna meta-ecosystem that
is limited in space to two ecosystem patches, whereas in the other two GTSs we
consider two savanna meta-ecosystems that are unlimited in the number of ecosys-
tem patches and only differ in one rule describing how the space structure of the
meta-ecosystem grows.

For all three GT models we use the same initial graph given in Figure 2.1b that
consists of two ecosystem patches with trees and grass during the rainy season.
Starting with this initial graph, we then apply the corresponding rules to model the
possible ecological dynamics and space structure dynamics of meta-ecosystems.

In the first GT model S2, we model a savanna meta-ecosystem where grass and
trees can grow during the rainy season and where grass and trees can disappear due
to low or high intensity fire during the dry season. S2 contains six rules with the
same priority (see the six rules in Table 2.1). The rules RainOff and RainOn allow to
model the change between the rainy and the dry season in the meta-ecosystem. The
rules GrowGrass and GrowTree allow under certain conditions to model the growth of
grass and trees on ecosystem patches during the rainy season, respectively. The rules
LowFire and HighFire allow to model the impact of a low and high intensity fire on
affected ecosystem patches during the dry season, respectively. Note that none of the
rules allows for the addition or deletion of ecosystem patches as the meta-ecosystem
S2 is limited in space to two ecosystem patches only.

Definition 5 (GT Model S2). If G0 is the initial graph from Figure 2.1b, P2 is the set
of 6 rules {RainOff , RainOn, LowFire, HighFire, GrowGrass, GrowTree} (see Table 2.1),
and κ2 assigns the same priority 0 to each rule in P2, then S2 = (G0, P2, κ2) is a GT
model.

13



2 Material and Methods

In the second GTmodel SU , we model a savanna meta-ecosystem as in S2 with the
additional space structure dynamics. SU contains in addition to the six rules from S2

the rules DelEco and AddEcoU (see Table 2.2). The rule DelEco allows to remove an
ecosystem patch without trees and grass from the meta-ecosystem, whereas the rule
AddEcoU allows ecosystem patches with grass to appear during the rainy season. To
ensure that an ecosystem patch without trees and grass is removed from the meta-
ecosystem before another rule can be applied, the rule DelEco has a higher priority
than the other rules.

Definition 6 (GTModelSU). If G0 is the initial graph fromFigure 2.1b, PU is the set of
8 rules {RainOff , RainOn, LowFire, HighFire, GrowGrass, GrowTree, DelEco, AddEcoU}
(see Table 2.1 and Table 2.2), and κU assigns the same priority 0 to each rule in
PU − {DelEco} and the priority 1 to the rule DelEco, then SU = (G0, PU , κU) is a GT
model.

In the third GT model SD, we model a savanna meta-ecosystem as in S2 with a
different kind of space structure dynamics as in SU . SD differs from the second GT
model SU in only one rule describing how the space structure of the meta-ecosystem
grows: The rule AddEcoD (see Table 2.2) is used in SD instead of the rule AddEcoU
(explained before) to model that grass may spread to new ecosystem patches during
the rainy season from ecosystem patches with grass and trees. Also, the rule DelEco
has a higher priority than the other rules to ensure that an ecosystem patch without
trees and grass is removed from the meta-ecosystem before another rule can be
applied.

Definition 7 (GTModelSD). If G0 is the initial graph fromFigure 2.1b, PD is the set of
8 rules {RainOff , RainOn, LowFire, HighFire, GrowGrass, GrowTree, DelEco, AddEcoD}
(see Table 2.1 and Table 2.2), and κD assigns the same priority 0 to each rule in
PD − {DelEco} and the priority 1 to the rule DelEco, then SD = (G0, PD, κD) is a GT
model.

2.3 Labeled Transition Systems and Strongly Connected
Components

As already introduced in section 2.1, GTSs execute GT steps between successive
graphs labeled with the rules used for these steps. When all possible graphs that
can be reached using successive GT step computation are determined, we obtain a
labeled transition system (LTS).

An LTS, which is a certain kind of graph as well, consists of a possibly infinite set
of states S, a finite set of labels L, a distinguished initial state Z, and a step relation R
where each step between two states is labeled using an element of L. In the ecological
context, an LTS represents all trajectories of the modeled meta-ecosystem starting in
the initial state G0.

14



2.3 Labeled Transition Systems and Strongly Connected Components

Rule Ecological Interpretation
RainOff

Rain on
1

Rain off
1

The rainy season changes to the
dry season (rule used in GT
models S2, SU , and SD).

RainOnRain off
1

Rain on
1

The dry season changes to the
rainy season (rule used in GT
models S2, SU , and SD).

LowFire
Rain Eco Grass

off

r2e g2e1 2
Rain Eco

off

r2e1 2

A low intensity fire may destroy
grass during the dry season (rule
used in GT models S2, SU , and
SD).

HighFireRain Eco Grass

Treeoff

r2e g2e
t2e

1 2
Rain Eco

off

r2e1 2

A high intensity fire may destroy
trees and grass during the dry
season when grass is present as a
combustive (rule used in GT
models S2, SU , and SD).

GrowGrass
Rain Eco

on

r2e1 2
Rain Eco Grass

on

r2e g2e1 2

Rain Eco Grasson
r2e g2e1 2

Grass may grow during the rainy
season if there is no grass yet
(rule used in GT models S2, SU ,
and SD).

GrowTree

Rain

Eco Eco

Grass Tree Grass

on

r2e r2e

g2e t2e g2e

1

2 5

43 6

Rain

Eco Eco

Grass Tree Grass Tree

on

r2e r2e

g2e t2e g2e t2e

1

2 5

43 6

Rain

Eco Eco

Grass Tree Grass Tree

on

r2e r2e

g2e t2e g2e t2e

1

2 5

43 6

Trees may spread to another
ecosystem patch with grass
during the rainy season if there
are no trees yet on that ecosystem
patch (rule used in GT models S2,
SU , and SD).

Table 2.1: Rules for the GT models S2, SU , and SD (see also Table 2.2). For each rule, its
left-hand-side graph L is depicted in the square left to the double arrow, its right-hand-side
graph R is depicted in the square right to the double arrow, its name is written over the
double arrow, and its possibly existing forbidden graphs are depicted in the red squares over
the left-hand-side graph L. The red triangle between the left-hand-side graph L of a rule
and its forbidden graph visualizes that the extension of L to the forbidden graph disables
the rule application. The node identities in L, R, and forbidden graphs are captured using
numbers in the nodes’ bottom corners.
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2 Material and Methods

Rule Ecological Interpretation

DelEcoRain Eco
r2e1 2

Rain
1

Rain Eco Grass
r2e g2e1 2

Rain Eco Tree
r2e t2e1 2

Ecosystem patches without grass
and trees are removed from the
meta-ecosystem (rule with
higher priority used in GT
models SU and SD).

AddEcoURainon
1

Rain Eco Grasson
r2e g2e1

Ecosystem patches with grass
may appear during the rainy
season (rule used in GT model
SU).

AddEcoD

Rain

Eco

Grass Tree

on

r2e

g2e t2e

1

2

43

Rain

Eco Eco

Grass Tree Grass

on

r2e r2e

g2e t2e g2e

1

2

43

Grass may spread to new
ecosystem patches during the
rainy season from ecosystem
patches with grass and trees
(rule used in GT model SD).

Table 2.2: Further rules for the GT models SU and SD (see also Table 2.1)
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2.3 Labeled Transition Systems and Strongly Connected Components

Definition 8 (Labeled Transition System (LTS)). If S is a set of states, L is a finite
set of labels, Z ∈ S is an initial state, R ⊆ S × L × S is a relation for discrete labeled
steps on states, then L = (S, L, Z, R) is a labeled transition system (LTS).

In the context of GTSs, we call an LTS also a state space of the GTS and interpret the
components of such an LTS as follows. The states are all graphs, which are reachable
from the initial graph of the GTS, the labels are the rules of the GTS, the initial state
Z is the initial graph of the GTS, and the step relation is obtained using GT steps.

As the next step, we want to introduce an aggregation operation that merges
several LTS states when they are understood to be equivalent. Such merging of LTS
states leads then to a smaller and simpler LTS. For this purpose, we first introduce
the notion of paths through the states of an LTS. Note that the iterative application
of the step relation R of an LTS results in a multi-step relation R∗ ⊆ S × L∗ × S. This
relation thereby characterizes the paths between two states using lists of labels. That
is, a tuple (s, π, s′) of R∗ contains the start state s, a finite list of labels π (the empty
list is denoted by ε), and the end state s′ of that path. In the ecological context, a
path corresponds to a trajectory of the modeled meta-ecosystem.

Definition 9 (Paths of an LTS). Each LTS L = (S, L, Z, R) induces a path relation
R∗ ⊆ S × L∗ × S, which is the smallest relation satisfying (a) (s, ε, s) ∈ R∗ and (b)
(s, π, s′) ∈ R∗ and (s′, `, s′′) ∈ R implies (s, π · `, s′′) ∈ R∗ where π · `means that the
label ` is added to the end of the list π.

Two states s and s′ of an LTS are understood to be equivalent when there is a path
from s to s′ and vice versa. In general, this equivalence results in a partitioning of the
set of states of an LTS where each partition is as large as possible. Such partitions are
called strongly connected components (SCCs). Each state within an SCC can be reached
from any other state of this SCC.

Definition 10 (Strongly Connected Component (SCC) of an LTS). IfL = (S, L, Z, R)
is an LTS and C ⊆ S is a maximal subset of the states of L satisfying that for each
state s and s′ in C there is some list of labels π such that (s, π, s′) ∈ R∗, then C is a
strongly connected component (SCC) of L.

Based on the notion of SCCs, we now define the aggregation operation, which
takes an LTS as an input and returns another LTS as an output. For each SCC of the
input LTS, the aggregation operation merges all states of this SCC into a single state
of the output LTS. The steps between these merged SCCs are then obtained by lifting
the steps of the input LTS to the output LTS. This means that when s and s′ are states
contained in two (possibly the same) SCCs C and C′, respectively, then each step
between s and s′ results in a step between the states obtained from merging the two
SCCs C and C′.

Definition 11 (SCC-Based Merged LTS). If L = (S, L, Z, R) is an LTS, C is the set of
all SCCs ofL, Z′ ∈ C is the initial SCC containing the initial state Z ofL (i.e., Z ∈ Z′),
and (C, `, C′) ∈ R′ if there are states s ∈ C and s′ ∈ C′ such that (s, `, s′) ∈ R, then
L′ = (C, L, Z′, R′) is the SCC-based merged LTS of L.
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2 Material and Methods

In the ecological context, we are interested in the SCC-based merged state spaces
(which can be understood to be directed acyclic graphs) induced by GT models.
These SCC-based merged state spaces identify sets of states that are structurally
stable. That is, all states in an SCC of such a state space are equal with respect to
the states that can be reached from them. Hence, GT steps within an SCC describe
reversible steps of the meta-ecosystem dynamics. In contrast, the step relation of an
SCC-based merged state space describes how one SCC can be reached from another
one using an irreversible step of the meta-ecosystem dynamics.

2.4 Analysis of Graph Transformation Systems

A wide variety of analysis techniques have been developed in the past for GTSs.
Some of these analysis techniques are based on the computation of tractably small
finite state spaces. Some other analysis techniques are symbolic (also called static)
and allow for reasoning on the generated state space only based on the rules of the
GTS and without calculating the GT steps on particular graphs. In this subsection,
we discuss only those analysis techniques that we apply to the three GT models
(see section 2.2) from our ecological case study.

Firstly, an exhaustive behavioral analysis of GTSs can be performed when the
entire state space can be explicitly computed (depending on time and hardware
restrictions). For example, the computation tree logic (CTL) ([6]) can be used to
check whether a specific target state can be reached using some finite path from the
initial state of the state space (see sectionA.2 for a formal introduction of CTL). In the
savanna ecological context, such a target state could be e.g. a state that does not have
any Tree-node. Moreover, CTL allows for recursive properties, which could require
that the reachable state must not have a path back to another specific state. In the
savanna ecological context, the latter state could be e.g. a state that has at least one
Tree-node. CTL is well-suited for specifying properties of the generated state space
due to its expressiveness and yet simple syntax and semantics. For our ecological
case study, we used the tool Groove ([17]) that supports CTL by computing the
entire state space first and then by evaluating the provided CTL properties.

Secondly, when the state space of the GTS is infinite or intractably large, it may be
possible to adapt the GTS in a reasonable way so that it results in a finite state space.
For this purpose, rules may be adapted such that they are applicable to fewer graphs
while still producing the same resulting graphs as in the infinite case. For example,
rules may be modified such that an upper threshold of graph elements of a certain
type is never exceeded. Such an adaptation leads to a finite state space that can be
inspected for specific properties. Since this adaptation cuts off all but a finite part of
an infinite state space, only certain properties can then be checked. For example, a
state that is reachable in the finite state space is also reachable in the infinite state
space but not vice versa.

Thirdly, symbolic analysis techniques such as the principle of k-induction can
be applied to GTSs that generate finite as well as infinite state spaces ([10, 46]).
This particular technique attempts to establish an invariant, which requires that all

18



2.4 Analysis of Graph Transformation Systems

reachable states of a GTS satisfy a certain property such as e.g. that the number of
graph elements of a certain type never exceeds a certain upper limit.

However, it is a well-known result in computer science that non-trivial properties
on Turing-complete formalisms such as GTSs cannot be solved by fully-automatic
procedures. This implies that implementations of symbolic techniques, such as k-
induction, do not always succeed by proving or disproving a conjectured invariant.
In cases where such available techniques for fully-automatic analysis fail, manual
mathematical reasoning is the usual fallback solution. Manual mathematical rea-
soning then allows to verify properties of a GTS by relying on the knowledge of
domain experts that understand the GTS at a more fundamental level compared to
the generic fully-automatic procedures, which realize a fixed heuristics for analysis.
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3 Results

In this section, we analyze the ecological dynamics as well as the space structure
dynamics of the three savanna meta-ecosystems introduced in section 2.2 using the
SCC-based merged state spaces of the corresponding GT models.

3.1 Analysis of GT Model S2

The following theorem captures the analysis results for the GT model S2.

Theorem 1 (State Space Induced by S2). The GT model S2 generates a finite state
space given in Figure 3.1a. The SCC-based merging of this finite state space results
in the state space given in Figure 3.1b containing two SCCs.

The state space given in Figure 3.1a is computed using the general-purpose GT
tool Groove ([17]). When inspecting each state of this state space, it turns out (by
using the principle of k-induction) that all graphs reachable from the initial graph
G0 contain (1) precisely one Rain-node, (2) precisely one on-loop or precisely one
off -loop, (3) a number of Eco-nodes all connected to the Rain-node, (4) a number of
Grass-nodes each connected to a unique Eco-node, (5) a number of Tree-nodes each
connected to a unique Eco-node, (6) no two different Grass-nodes connected to the
same Eco-node, and (7) no two different Tree-nodes connected to the same Eco-node.
Based on this observation, we can define for each graph Gi in the state space of
S2 the abstraction (n1, n2, n3, n4, b). This abstraction captures (i) the number n1 of
Eco-nodes in Gi with a connected Tree- and a connected Grass-node, (ii) the number
n2 of Eco-nodes in Gi with no connected Tree- and a connected Grass-node, (iii) the
number n3 of Eco-nodes in Gi with no connected Tree- and no connected Grass-node,
(iv) the number n4 of Eco-nodes in Gi with a connected Tree- and no connected Grass-
node, and (v) the Boolean value b = T if the Rain-node in Gi has an on-loop and
the Boolean value b = F if the Rain-node in Gi has an off -loop. In Figure 3.1a, we do
not show the actual reachable graphs for presentation purposes but instead employ
names of the form n1n2n3n4b for the states using the five variables of the introduced
abstraction. For example, the initial graph G0 from Figure 2.1b has the name 2000T.

Moreover, the state space in Figure 3.1a is visually separated using blue rectangles
into two SCCs that abstractly represent the two stable states of the GT model S2. The
left SCC describes S2 being in a state with at least one Tree-node and the right SCC
describes S2 being in a state without any Tree-node. The fact that both visualized
partitions are SCCs means that all ecological processes within each partition are
reversible (represented by some finite sequence of GT steps inside that partition).
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(a) The finite state space for the GT model S2. The states are visualized using filled rectangles. The
transitions between states by rule applications are visualized using labeled arrows. The six green states
represent graphs with two Tree-nodes, the eight orange states represent graphs with one Tree-node, and
the six blue states represent graphs with no Tree-nodes. The initial graph G0 is marked with a vertical
red arrow. The name of a state of the form n1n2n3n4b captures the information about the structure
of the underlying graph Gi using the following five variables: (i) the number n1 of Eco-nodes in Gi
with a connected Tree- and a connected Grass-node, (ii) the number n2 of Eco-nodes in Gi with no
connected Tree- and a connected Grass-node, (iii) the number n3 of Eco-nodes in Gi with no connected
Tree- and no connected Grass-node, (iv) the number n4 of Eco-nodes in Gi with a connected Tree- and
no connected Grass-node, and (v) the Boolean value b = T if the Rain-node in Gi has an on-loop and
the Boolean value b = F if the Rain-node in Gi has an off -loop.
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(d) A finite part of the infinite SCC-based merged state space for the GT model SD

Figure 3.1: Analysis results for the GT models S2, SU , and SD. The obtained SCCs are
visualized using unfilled blue rectangles. The transitions between SCCs by rule applications
are visualized using labeled arrows. The SCC containing the initial graph G0 is marked with
a vertical red arrow. The names of SCCs capture the information about the contained states
using conditions over the variables n1, n2, n3, n4, and b from Figure 3.1a.
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3 Results

The SCC-basedmerged state space in Figure 3.1b is obtained from the state space in
Figure 3.1a by checkingmutual reachability between each two states of the computed
state space. We formulated the property of mutual reachability using CTL properties
and checked the satisfaction of these CTL properties using the tool Groove. Since
the number of Tree-nodes is captured by the expression n1 + n4 according to the
abstraction above, the two SCCs are named n1 + n4 > 0 representing graphs that
have at least one Tree-node and n1 + n4 = 0 representing graphs that have no Tree-
nodes. Figure 3.1b shows again that the removal of the last Tree-node (by means of
the rule HighFire) is an irreversible step from the left SCC to the right SCC.

3.2 Analysis of GT Model SU

The following theorem captures the analysis results for the GT model SU .

Theorem 2 (State Space Induced by SU). The GT model SU generates an infinite
state space. The SCC-based merging of this infinite state space results in the state
space given in Figure 3.1c containing two SCCs.

The state space of the GT model SU is infinite in contrast to that of S2 because
an unlimited number of Eco-nodes can be added using the rule AddEcoU. Since the
infinite state space of SU is not manageable by fully-automatic analysis techniques,
as a first step for analysis, we adapt the rule AddEcoU. This adaptation only permits
the addition of Eco-nodes up to a fixed threshold N resulting in a finite state space.
It turns out that for thresholds such as N = 4 the state space can be partitioned into
two SCCs as for S2 containing states with at least one Tree-node and states with no
Tree-nodes.

However, the use of such thresholds may significantly change the structure of
the state space in terms of resulting SCCs. Hence, as a second step for analysis, we
manually analyze the infinite state space generated by SU . The result of this manual
analysis is given in Theorem 2 stating that the infinite state space of SU induces
the same two SCCs as suggested by the threshold-based state space generation. The
proof of Theorem 2 is given in section A.3.

3.3 Analysis of GT Model SD

The following theorem captures the analysis results for the GT model SD.

Theorem 3 (State Space Induced by SD). The GT model SD generates an infinite
state space. The SCC-based merging of this infinite state space results in the state
space given in Figure 3.1d containing infinitely many SCCs.

The state space of the GT model SD is infinite as for SU . However, in SD, the
addition of Eco-nodes using the rule AddEcoD requires the existence of Eco-nodes
with a connected Grass- and Tree-node. Hence, as soon as all Tree-nodes are removed
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3.3 Analysis of GT Model SD

by the rule HighFire, the rule AddEcoD is continuously disabled. As a consequence,
the only remaining GT steps change the season between rainy and dry using the
rules RainOn and RainOff , remove Grass-nodes using the rule LowFire, and remove
Eco-nodes using the rule DelEco. Since the rules LowFire and DelEco are not reversible,
there is an infinite chain of SCCs as indicated in Figure 3.1d where either the number
of Eco-nodes or the number of Grass-nodes decreases from SCC to SCC.

These observations have again been obtained using the threshold-based approach
as for SU . To ensure that the use of thresholds did not significantly change the struc-
ture of the induced SCC-based merged state space of SD, we employed manual
analysis, which results in Theorem 3 stating that the observations above are also
valid for the infinite state space of SD. The proof of Theorem 3 is given in section A.3.
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4 Discussion

The main goal of this paper was to evaluate whether the formal technique of GT is
suitable for the modeling and analysis of meta-ecosystems.

GT as a domain agnostic formal technique has been already applied in different
fields of biology including cellular and molecular biology (e.g. [1, 20, 41]) but, to
the best of our knowledge, this paper shows its applicability in the field of ecology
for the first time.

In this paper, we have considered GTSs in which the graphs representing states
of meta-ecosystems are discrete (i.e., not featuring continuous variables) and the
transitions between these states are untimed (i.e., the passage of time is not mod-
eled), discrete (i.e., there are countably many descriptions of transitions between
two states), atomic (i.e., steps cannot be interrupted half-way), asynchronous/non-
deterministic (i.e., multiple transitions possibly using different rules may be possible
from the same state), and nonprobabilistic (i.e., no relative likelihood is assigned to
possible transitions from a single state). In contrast to the less expressive formalism
of Petri nets that has been investigated previously ([16]), the use of such GTSs en-
ables the modeling of space structure dynamics in which the number of ecosystem
patches in the meta-ecosystem may grow unboundedly.

To achieve our main goal, we have defined in section 2.2 three GT models for
three different savanna meta-ecosystems, analyzed them with respect to their space
structure dynamics and ecological dynamics in chapter 3, and we now compare the
obtained results to related model-based analysis results from the literature. In partic-
ular, we have analyzed for these three GT models two different kinds of qualitative
properties. Firstly, we have analyzed state reachability meaning that the modeled
meta-ecosystem can reach a certain state according to the GT model at hand. This
state reachability served as the basis for the validation of the GTmodel (i.e., it helped
to determine whether the transitions in the GT model correspond to the transitions
expected from the modeled meta-ecosystem) as well as for the comprehension of
unpredicted dynamics governed by the rules of the GTmodel (i.e., the desertification
effect induced by the rule for the grass dispersal (AddEcoD) in the third GT model
SD, see below). Secondly, we have analyzed transition irreversibility (meaning that
when a transition from a first state to a second state cannot be undone by any se-
quence of further transitions leading back to the first state) including an analysis of
the transition sequences leading to a tipping point. The result of such an analysis of
transition irreversibility is assumed to be useful for managers wishing to be notified
of situations in which they want to act sparingly and efficiently on the system to
timely counter certain dynamics via human intervention before unwantedly reach-
ing the related tipping point ([7, 55]). In particular, in the considered GT models,
we have analyzed the effect of two kinds of fires on the vegetation for which the
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effect varies among these GT models due to the considered ecological processes for
the growth of grass. Moreover, considering the distinguishing feature of unbounded
space structure dynamics, we subsequently discuss the results of our evaluation
with respect to the three defined GT models and assess how qualitative properties
of these GT models can be derived using formal analysis techniques.

The first GT model S2 from section 3.1 describes a savanna meta-ecosystem with a
constant number of two ecosystem patches (i.e., a meta-ecosystemwith a rigid space
structure dynamics) and induces a finite state space. For the GT model S2, we have
assumed that seeds of trees can only spread over short distances by requiring that
the growth of trees on an ecosystem patch is impossible without trees on neighbor
ecosystem patches. Consequently, a high intensity fire destroying the last tree in a
meta-ecosystem is irreversible in S2 leading to an attractor given by a set of states
representing grassland and desert states. This irreversibility (as obtained in our
analysis of S2) indicates that the ecological dynamics of the modeled savanna meta-
ecosystem is highly sensitive to high intensity fires. This result is in good agreement
with previous studies (e.g. [49, 52]), which show the importance of the dispersal of
trees for maintaining meta-ecosystems with high biodiversity.

To obtain these analysis results for the GT model S2 and to obtain hints for human
intervention, we have performed an exhaustive computation of all states that are
reachable from the initial state resulting in a finite state space to allow for the analy-
sis of qualitative properties (see Figure 3.1a). State reachability properties (e.g. the
expected possibility of the destruction of all trees in the meta-ecosystem) can then
be analyzed either by inspecting each state and transition by hand or by applying
standard logics such as CTL (which supports the checking of further properties on
the entire state space) for automation. Transition irreversibility properties (given
in S2 by a high intensity fire destroying the last tree in the entire meta-ecosystem)
can be identified by constructing an additional finite SCC-based merged state space
from the original state space where states that are mutually reachable (i.e., the tran-
sitions between them are reversible) are merged (see Figure 3.1b). The transitions
between different states in the finite SCC-based merged state space then character-
ize the irreversible transitions of the original state space. Additionally, once such
irreversible transitions are identified, transition sequences leading to these tipping
points can be identified and inspected. In S2, such an inspection results in the ob-
servation that the distance (in terms of the number of transitions) to the tipping
point grows with (a) the number of ecosystem patches with trees, (b) the number of
ecosystem patches with trees but without grass, and (c) the meta-ecosystem being
in the rainy season. This observation indicates that (a) tree planting (to compensate
for tree destruction via high intensity fires), (b) removal of grass from ecosystem
patches with trees (to prevent high intensity fires where grass serves as a combustive
agent), and (c) artificial watering (to prevent high intensity fires during the dry sea-
son) are viable human interventions according to the GT model. However, some of
these interventions may not be feasible due to resource limitations such as economic
costs or the availability of water. Note that artificial tree planting in S2 is even then
successful when all trees have been destroyed because the destruction of all trees did
not result in a further irreversible collapse of other ecological components. The iden-
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tified tipping point and the transition sequences leading to it are in agreement with
other studies (e.g. [45, 48]). However, in our approach, such transition sequences
leading to the tipping point can be explicitly obtained from the state space of the GT
model.

In the GT model S2, the restriction of the space structure dynamics to a constant
number of two ecosystem patches allows for a finite state space. Subsequently, we
discuss the two GT models SU and SD with space structure dynamics where an
unbounded number of ecosystem patches may be observed. This space structure
dynamics is significant since it results in an infinite state space in both cases, which
requires an adaptation of the successful analysis procedure carried out for S2. Also
note that such space structure dynamics can be modeled using GT since it does not
require a fixed space structure on the reachable graphs in contrast to e.g. DS2 ([20])
and the formalism of Petri nets ([39, 40]).

The second GT model SU from section 3.2 describes a savanna meta-ecosystem
with an unbounded number of ecosystem patches (i.e., a meta-ecosystem where
additional ecosystem patches can appear due to ecological processes) and induces
therefore an infinite state space. The grass related ecological processes considered in
SU differ from that in S2 as follows. Firstly, in SU , we have allowed that ecosystem
patches without grass and without trees can disappear from the meta-ecosystem
since such empty ecosystem patches are of no further interest. Secondly, as for S2, we
have assumed for SU that seeds of grass can successfully spread over close ranges
during the rainy season to nearby ecosystem patches, which may result in SU in
such nearby ecosystem patches appearing in the meta-ecosystem. Moreover, the
spreading of trees between ecosystem patches in SU follows the same ecological
processes as in S2. Consequently, as for S2, a high intensity fire destroying the last
tree in a meta-ecosystem is irreversible in SU . Such an irreversible transition in SU

leads to a more complex attractor compared to S2 containing states with any number
of grassland ecosystem patches.

According to our analysis results, the GT model SU suggests the same human
interventions as S2 as discussed in the following where we had to rely on the manual
process of mathematical reasoning due to the infinite state space of SU . We have
demonstrated that the underlying structures of the state spaces induced by S2 and
SU (in terms of the SCC-based merged state spaces) coincide (compare Figure 3.1b
and Figure 3.1c). This means that the number of ecosystem patches involved and the
space structure dynamics of both GT models differed but both GT models exhibited
the same two overall stabilities (in particular, one with trees and one without trees).
Consequently, we have observed in SU the same tipping point as in S2 given by the
irreversible transition enabling the destruction of the last tree by a high intensity fire
during the dry season. Further analysis of the transition sequences leading to this
tipping point also shows that, albeit there are states in the state space where a large
number of high intensity fires is required to reach this tipping point, there is a state
where a single high intensity fire is irreversible as in S2 and SU therefore suggesting
the same human interventions as for S2. We conclude that GT models with infinite
space structure dynamics may be tractable using manual mathematical reasoning
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resulting in suitable finite representations such as the one given by the SCC-based
merged state space of SU , which demonstrates transition irreversibility.

The space structure dynamics in the GT model SU allows for a finite SCC-based
merged state space. Subsequently, we discuss the GT model SD with space structure
dynamics where not only the state space but also the SCC-based merged state space
are infinite. For this more complex case, we evaluate by means of the GT model SD

how to adapt the successful analysis procedure carried out for SU .
The third GT model SD from section 3.3 describes a savanna meta-ecosystem with

an unbounded number of ecosystem patches as for SU and therefore also induces an
infinite state space. In SD, we have adapted the ecological process for the spreading of
grass from SU by requiring that grass may only spread to nearby ecosystem patches
during the rainy season from ecosystem patches with trees. Moreover, the spreading
of trees between ecosystem patches in SD follows the same ecological processes
as in S2. Consequently, as for S2 and SU , a high intensity fire destroying the last
tree in a meta-ecosystem is irreversible in SD. Such an irreversible transition in SD

leads to an infinite number of attractors each containing states with a certain number
of grassland/desert ecosystem patches including the attractor containing a meta-
ecosystem state without ecosystem patches representing a desertified savanna (see
[26, 27, 50]).

According to our analysis results, the GT model SD suggests the same human
interventions as S2 as discussed in the following where we had to rely as for SU on
the manual process of mathematical reasoning due to the infinite state space of SD.
We have demonstrated that the same transitions are irreversible in SD as in S2 and
SU even though the induced SCC-based merged state space of SD is infinite and
therefore fundamentally different to the finite SCC-based merged state spaces of S2

and SU (compare Figure 3.1b, Figure 3.1c, and Figure 3.1d). However, note that the
state in the SCC-based merged state space of SU representing meta-ecosystem states
without trees can be understood to correspond to the infinite number of states of the
SCC-based merged state space of SD representing meta-ecosystem states without
trees. These latter states are not merged for SD because some transitions for the
spreading of grass from SU are not allowed in SD where the existence of trees is an
additional requirement for the spreading of grass. Consequently, even though the
number of states in the SCC-based merged state spaces differs between SD on the
one hand and S2 and SU on the other hand, we have observed in SD the same tipping
point as in S2 and SU given by the irreversible transition enabling the destruction of
the last tree by a high intensity fire during the dry season. Further analysis reveals
that the transition sequences leading to this tipping point correspond closely to those
for S2 and SU therefore indicating the same human interventions. We conclude that
GTmodels with infinite space structure dynamicsmay be still tractable usingmanual
mathematical reasoning even when they induce infinite SCC-based merged state
spaces.

The strong similarities between S2, SU , and SD result from the fact that different
intra-patch and inter-patch dynamics are defined independently using GT rules. This
indicates that the formal technique of GT is well suited for the modeling of meta-
ecosystems where even larger numbers of ecological processes are to be considered.
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In comparison, other formalisms such as Petri nets would require during the manual
modeling process an error-prone composition of the various transitions that may be
carried out at the same state. In the future, we want to further evaluate the applica-
bility of GT by incorporating more complex and realistic intra-patch and inter-patch
dynamics observed in the past such as that of the green sahara during holocene ([9,
56]).

As described above, we have evaluated the validity of considered GT models by
(a) inspecting the finite state space manually, (b) using automatic support for check-
ing CTL properties (such as state reachability), or (c) mathematically characterizing
the reachable states (for GT models with infinite state spaces). We have observed
that the considered GT models show ecological dynamics similar to those modeled
in other studies (e.g. [28, 31, 52]), which do not use GT and do not consider space
structure dynamics, and observed through long term monitoring or paleoecological
reconstructions. However, it also turned out that seemingly minor modifications
such as adding, removing, or changing a single rule may drastically affect the dy-
namics of a GT model as can be observed by the drastically different behavior of
the GT models SU and SD resulting from the replacement of the rule AddEcoU by
the rule AddEcoD. This observation may be understood as a threat that a given GT
model adequately captures the dynamics of the considered meta-ecosystem but it
also demonstrates the feasibility of human interventions that can also be integrated
into the GT model via additional rules. Nevertheless, a further systematic analysis
of the sensitivity of GT models such as SU against reasonable adaptions is called for.

As mentioned before, in our approach we have considered standard GTSs where
seasonal timing, durations of ecological processes, and relatively likelihoods of tran-
sitions are not captured. We have decided against the use of more advanced GTSs
(e.g. [3, 21, 38, 47]) supporting such parametrizations in this paper since (a) suitable
values for such parametrizations are often difficult to obtain, (b) the qualitative anal-
ysis of GT models considered in this paper can be better compared to related work
involving qualitative analysis using formalisms that are not based on GT, (c) the
qualitative analysis is of no less importance since it is usually simpler compared to
quantitative analysis where results cannot be always obtained, and (d) the ecolog-
ical dynamics of the GT models considered in this paper may serve as a starting
point for the integration of time and probabilities into the GT models since these
would be used to rule out certain transitions of GT models or to make these tran-
sitions less likely once certain transition sequences (e.g. an infinite uninterrupted
switching between dry and rainy season) are observed in the GT model. An obvious
consequence of omitting a parametrization using time and probabilities is that the
properties referring to time, probabilities, or quantities (e.g. the probability that all
trees have disappeared within 10 years) cannot be analyzed. With all these points in
mind, once suitable parametrizations can be determined via long term monitoring
of meta-ecosystems or paleoecological reconstructions, we want to explore the use
of such more complex GTSs and the available analysis approaches for the field of
ecology.

While not being critical for the GTmodel S2 with a small state space, the efficiency
of the tools such as Groove ([17]) and Autograph ([47]) for generating such state
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spaces may become critical in the future when incorporating many ecological pro-
cesses. Hence, further technical advancements may be required, which seem to have
not yet been in the focus of the GT community.

Moreover, the analysis of GT models describing meta-ecosystems requires ded-
icated domain-specific tools tailored for the needs of ecologists. ([5]). Such tools
should e.g. support the construction of the SCC-based merged state space from a
given state space but also provide at least partial automation of the mathematical
reasoning carried out for SU and SD with their infinite state spaces. Also, while CTL
has proven to be useful in this paper for the considered GT models without any
further parametrization, we also need to evaluate the usefulness of other logics such
as PTCTL ([33]) or MTGL ([22]) for the specification and analysis of GT models
describing meta-ecosystems that capture aspects of time or probabilities.

In conclusion, we propose to use the formal technique of GT for the modeling
of (savanna) meta-ecosystems exhibiting besides ecological dynamics also space
structure dynamics and their analysis with respect to qualitative properties such
as transition irreversibility. In particular, the space structure dynamics cannot be
adequately modeled using already existing approaches based on Petri nets (e.g.
[16]), differential equations (e.g. [31, 35, 52]), or IBMs (e.g. [11]). We believe that GT
models provide a complementary avenue to that of existing approaches to rigorously
study ecological phenomena.
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A Supplementary Material

A.1 Additional Details on Typed Graphs and Graph
Transformation

In this appendix, we give more details on the formal technique of GT based on typed
graphs following the standard handbook ([12]).

First, we introduce so-called plain graphs, which are then used to define typed
graphs. A plain graph consists of nodes that are connected by edges. Plain graphs
considered here are allowed to have parallel edges (i.e., two or more edges can
have the same source and target node). While we do not use parallel edges in the
GT models from section 2.2, this requirement is generally assumed to ensure that
pushouts (see Definition 19 below) can always be constructed.

Definition 12 (Plain Graph). If N is a finite set of nodes, E is a finite set of edges,
s : E → N maps each edge to its source node, and t : E → N maps each edge to its
target node, then G = (N, E, s, t) is a plain graph.

Plain graphmorphisms between plain graphs are used to detect how a plain graph G1

can be embedded into another plain graph G2. This is achieved bymapping each node
and edge of G1 to one node and edge in G2. If both components of the plain graph
morphism are injective, then G1 is a subgraph of G2. Each plain graph morphism
must, however, preserve the graph structure, whichmeans that themapping of nodes
and edges must be compatible (i.e., the source and target nodes of an edge e must
be mapped to the source and target nodes of the mapping of e).

Definition 13 (Plain Graph Morphism). If G1 = (N1, E1, s1, t1) and G2 = (N2, E2, s2,
t2) are plain graphs, mN : N1 → N2 maps each node of G1 to a node of G2, mE :
E1 → E2 maps each edge of G1 to an edge of G2, s2(mE(e1)) = mN(s1(e1)) and
t2(mE(e1)) = mN(t1(e1)) for each edge e1 ∈ E1 (which means that if mE maps an
edge e1 to an edge e2, then mN must map the source/target of e1 to the source/target
of e2), then m = (mN , mE) is a plain graph morphism from G1 to G2, also written
m : G1 → G2.

E1 N1

E2 N2

s1

t1

mE mN

s2

t2
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The composition of two plain graph morphisms m : G1 → G2 and m′ : G2 → G3 is
defined componentwise using the composition operation for functions. It results in
a plain graph morphism from G1 to G3 that specifies how G1 is embedded into G3.

Definition 14 (Composition of Plain Graph Morphisms). If m = (mN , mE) : G1 →
G2 and m′ = (m′

N , m′
E) : G2 → G3 are plain graph morphisms, then m′ ◦ m =

(m′
N ◦ mN , m′

E ◦ mE) : G1 → G3 is the composition of m and m′.

G2G1 G3
m m′

m′ ◦ m

The notion of typed graphs relies on that of plain graphs. A typed graph consists of
a plain graph G that is typed over a type graph TG. The typing of G is represented
by a plain graph morphism m from G to TG. Note that this typing morphism m is
in general not injective since all graph elements of the same type are mapped to the
same graph element of TG.

Definition 15 (Typed Graph). If G is a plain graph, TG is a plain graph called type
graph, and m : G → TG is a plain graph morphism, then (G, m) is a typed graph.

Typed graph morphisms map nodes and edges as plain graph morphisms addition-
ally ensuring that nodes and edges are only mapped to nodes and edges of the same
type.

Definition 16 (Typed Graph Morphism). If H1 = (G1, m1 : G1 → TG), H2 =

(G2, m2 : G2 → TG) are typed graphs using the same type graph TG, m : G1 → G2 is
a plain graph morphism, m2 ◦ m = m1 (which means that m maps a node/an edge
of a certain type only to a node/an edge of the same type), then m is a typed graph
morphism from H1 to H2, also written m : H1 → H2.

G1 G2

TG

m

m1 m2

The composition of two typed graph morphisms m : H1 → H2 and m′ : H2 → H3 is
defined componentwise as for plain graph morphisms.

Definition 17 (Composition of Typed Graph Morphisms). If m = (mN , mE) : H1 →
H2 and m′ = (m′

N , m′
E) : H2 → H3 are typed graph morphisms, then m′ ◦ m =

(m′
N ◦ mN , m′

E ◦ mE) : H1 → H3 is the (typed) composition of m and m′.

H2H1 H3
m m′

m′ ◦ m
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Note that in the following, typed graphs are also called graphs and typed graph
morphisms are also called morphisms for short.

The formal technique of GT relies on the notion of GT rules. A GT rule contains
an injective morphism ` : I → L that describes the removal of graph elements
(technically given by L − `(I)) and an injective morphism r : I → R that describes
the addition of graph elements (technically given by R − r(I)). Moreover, GT rules
contain a finite set NAC of so-called negative application conditions. Each negative
application condition is given by an injective morphism n : L → X describing (in
comparison to L) additional graph elements that must not be in the graph to be
transformed.

Definition 18 (GT Rule). If ` : I → L and r : I → R are injective morphisms (i.e.,
both of their components are injective functions) and NAC is a finite set of injective
morphisms n : L → X, then ρ = (NAC, `, r) is a GT rule also called rule for short.

IL R

X

` r

n. . .

The rule application in a GT step is realized by the construction of two pushouts. In
general, a pushout construction merges two graphs H1 and H2 to obtain a resulting
graph G′. As for the union operation on sets, some graph elements may be identified
(i.e., merged), which results in the case that G′ contains fewer graph elements than
the sum of the graph elements in H1 and H2. To determine graph elements in H1

and H2 that are to be identified, two morphisms m1 : G → H1 and m2 : G → H2 are
used. Two graph elements in H1 and H2 are identified when they are the images of
a common graph element in G via m1 and m2 (i.e., m1(x) and m2(x) are identified
for a common graph element x in G). The resulting morphisms m′

1 : H1 → G′ and
m′

2 : H2 → G′ identify then the graph elements of H1 and H2 in the resulting graph
G′. These morphisms are needed because e.g. the identification generally implies
that m′

1 and m′
2 are not both inclusions for both of their components. For better

comprehensibility of the preceding explanations see the diagram in Definition 19.

Definition 19 (Pushout). If m1 : G → H1, m2 : G → H2, m′
1 : H1 → G′, and

m′
2 : H2 → G′ are morphisms, then (m′

1, m′
2) is the pushout of (m1, m2) according to

the following construction. The graph G′ is the largest graph such that m′
1 and m′

2
map together to all graph elements of G′ and the square (1) below commutes (i.e.,
m′

1 ◦ m1 = m′
2 ◦ m2).

G H1

H2 G′

(1)

m1

m2 m′
1

m′
2
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A GT step uses a rule ρ = (NAC, ` : I → L, r : I → R) to transform a graph G into
a graph H. For this purpose, a morphism m : L → G (also called match) needs to be
determined first. A GT step is possible if none of the negative application conditions
n : L → X from the set NAC can be embedded into the graph G to be transformed.
Technically, this means that we attempt to match the elements of X into the graph G
using some morphism k : X → G such that k maps graph elements in the same way
as m with respect to the morphism n. To allow for the removal of graph elements
according to the morphism ` of the rule, two morphisms d : I → D and `′ : D → G
are constructed such that (m, `′) is the pushout of (`, d). Intuitively, the graph D
is constructed by preserving all graph elements of G that are not mapped to by m
and by adding all graph elements that should be preserved by the rule application
(i.e., the graph elements from m(`(I))). Implicitly, the removal of graph elements is
subject to two conditions. Firstly, the dangling condition ensures that a node cannot be
removed by the rule applicationwhen it has an adjacent edge that is not also removed
by this rule application. Secondly, the identification condition ensures that if two graph
elements in L are mapped to the same graph element in G (using a non-injective
match m), then both of these elements in L should be removed or not removed by
the rule application. To allow for the addition of graph elements according to the
morphism r of the rule, two morphisms m̄ : R → H and r′ : D → H are constructed
such that (m̄, r′) is the pushout of (r, d). Intuitively, the graph H is constructed by
preserving all graph elements of D and by adding all graph elements that are not
mapped to by r (i.e., the graph elements from R− r(I)). For better comprehensibility
of the preceding explanations see the diagram in Definition 20.

Definition 20 (GT Step). If G and H are graphs, ρ = (NAC, ` : I → L, r : I → R)
is a rule, m : L → G, d : I → D, m̄ : R → H, `′ : D → G, and r′ : D → H are
morphisms, ∀n : L → X ∈ NAC. @k : X → G. k ◦ n = m (which means that there
is no negative application condition given by some injective morphism n : L → X
contained in the set NAC of the rule ρ that can be extended using a morphism k to a
morphism k ◦ n in a compatible way with the morphism m), (m, `′) is the pushout
of (`, d), and (m̄, r′) is the pushout of (r, d), then there is a GT step from G to H using
rule ρ, written G

ρ
=⇒ H.

L I R

G D H

X
` r

m

`′

m̄

r′

d

n

@k

A graph transformation system (GTS) contains a unique initial graph G0 from which
all sequences of GT steps start. Moreover, every GT step uses only one of the rules
contained in the rule set P. To simplify the used rules, we assign to them priorities
ensuring that a GT step modifying a graph G using a certain rule is part of the
induced LTS of a GTS (i.e., of the GTS semantics) given below if there is no other
rule with a strictly higher priority also applicable to G.
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Definition 21 (Graph Transformation System (GTS)). If G0 is a graph, P is a finite set
of rules, and κ : P → N is a mapping that assigns a priority (i.e., a natural number)
to each rule in P, then S = (G0, P, κ) is a graph transformation system (GTS).

Finally, to connect the formal technique of GT presented here to the notion of
LTSs used in section 2.3, we define the notion of induced LTS of a given GTS. Such an
induced LTS is the foundation for our analysis using SCCs.

Definition 22 (Induced LTS of a GTS). If S = (G0, P, κ) is a GTS, S is the set of all
graphs reachable by GT steps, L is the set of rules P, Z is the initial graph G0, and
R is the labeled step relation that contains all GT steps G

ρ
=⇒ H where ρ ∈ P and

where no GT step G
ρ′

=⇒ H′ with ρ′ ∈ P satisfies κ(ρ′) > κ(ρ), then L = (S, L, Z, R)
is the LTS induced by the GTS S .

A.2 Additional Details on the Computation Tree Logic (CTL)

For presenting CTL, we follow the introductory book ([2], section 6.2), which covers
various linear and branching temporal logics together with algorithms for model
checking. CTL is a propositional temporal logic in the sense that every state (i.e.,
every graph in our case) of a state space is labeled with the subset of the set of so-
called atomic propositions Q, which are understood to be satisfied in these states.
Based on these atomic propositions, further CTL state formulas are constructed using
propositional operators such as conjunction and negation (hence, we automatically
also allow for other propositional operators such as disjunction and implication as
they can be derived from conjunction and negation). Moreover, the path operators
next (written X) and until (written U) can be used to state that the next state in a
selected path satisfies a certain condition or that all following states in a path satisfy
a condition until some other condition is eventually satisfied, respectively. Here we
also allow for other path operators such as e.g. eventually (written F) and globally
(written G) as they can be derived from the path operators next and until. For more
derived path operators see ([2], section 6.2). Lastly, the branching operators for all
(written A) and exists (written E) can be used to switch from a state property to
a path property by requiring that all paths or some path exiting the current state
satisfy/satisfies a certain path condition, respectively. For example, the condition
(EX a) → A(b U c) states for atomic propositions Q = {a, b, c} and some current
state s that if a is satisfied in some state directly reachable from s, then b is satisfied
until eventually c is satisfied on every path starting in s.

Definition 23 (Syntax of CTL). If Q is a finite set of atomic propositions then ψ is a
computation tree logic (CTL) formula over Q, written ψ ∈ SCTL

Q , if one of the following
items applies.

• ψ ∈ Q.

• ψ = ¬ψ′ and {ψ′} ⊆ SCTL
Q .
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• ψ = ψ1 ∧ ψ2 and {ψ1, ψ2} ⊆ SCTL
Q .

• ψ = AXψ′ and {ψ′} ⊆ SCTL
Q .

• ψ = EXψ′ and {ψ′} ⊆ SCTL
Q .

• ψ = A(ψ1 U ψ2) and {ψ1, ψ2} ⊆ SCTL
Q .

• ψ = E(ψ1 U ψ2) and {ψ1, ψ2} ⊆ SCTL
Q .

For defining the semantics of CTL, we now introduce all paths (including the
infinite paths) of an LTS as sequences of states where the labels of the steps are
ignored.

Definition 24 (Possibly Infinite Paths of an LTS). If L = (S, L, Z, R) is an LTS, then
Rω∗ contains all finite and infinite paths w over the states S such that for each pair (s, s′)
of adjacent states in w there is some label l such that (s, l, s′) ∈ R. Moreover, wi is the
ith state of the path w.

Finally, we provide the CTL semantics (as described above) for the case of LTSs,
which are equipped with a state-labeling operation ξ.

Definition 25 (Semantics of CTL). If L = (S, L, Z, R) is an LTS, ξ ⊆ S × Q is a
relation between states S of L and atomic propositions Q, s is a state from S, and
ψ ∈ SCTL

Q is a CTL formula over Q, then s satisfies ψ for L and ξ, written (L, ξ, s) |= ψ,
if one of the following items applies.

• ψ ∈ Q and (s, ψ) ∈ ξ.

• ψ = ¬ψ′ and (L, ξ, s) 6|= ψ′.

• ψ = ψ1 ∧ ψ2, (L, ξ, s) |= ψ1, and (L, ξ, s) |= ψ2.

• ψ = AXψ′ and for each step (s, l, s′) ∈ R it holds that (L, ξ, s′) |= ψ′.

• ψ = EXψ′ and for some step (s, l, s′) ∈ R it holds that (L, ξ, s′) |= ψ′.

• ψ = A(ψ1 U ψ2) and for each path w ∈ Rω∗ with w0 = s there is some n such
that (L, ξ, wn) |= ψ2 and for each j < n it holds that (L, ξ, wj) |= ψ1.

• ψ = E(ψ1 U ψ2) and there is some path w ∈ Rω∗ with w0 = s such that
there is some n such that (L, ξ, wn) |= ψ2 and for each j < n it holds that
(L, ξ, wj) |= ψ1.

A.3 Proofs for Results

We now present the proofs for Theorem 2 and Theorem 3. Theorem 1 is justified by
application of the tool Groove.
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of Theorem 2. Let L = (S, L, Z, R) be the state space (i.e., an LTS) induced by the GT
model SU = (G0, PU , κU). We make use of the invariant that ensures that each state
G ofL (given by a graph) can be represented by a tuple (n1, n2, n3, n4, b)where (i) n1

is the number of Eco-nodes in G with a connected Tree- and a connected Grass-node,
(ii) n2 is the number of Eco-nodes in G with no connected Tree- and a connected
Grass-node, (iii) n3 is the number of Eco-nodes in G with no connected Tree- and no
connected Grass-node, (iv) n4 is the number of Eco-nodes in G with a connected Tree-
and no connected Grass-node, and (v) b = T if the Rain-node in G has an on-loop
and b = F if the Rain-node in G has an off -loop.

We prove the following items to focus on the central statements indicated in the
theorem.

1. All two graphs from C1 = {G | ∃π, n1, n2, n3, n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1,
n2, n3, n4, b) ∧ n1 + n4 > 0} are mutually reachable.

2. All two graphs from C2 = {G | ∃π, n1, n2, n3, n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1,
n2, n3, n4, b) ∧ n1 + n4 = 0} are mutually reachable.

3. ∃G1 ∈ C1. ∃G2 ∈ C2. (G1, HighFire, G2) ∈ R, which means that there is a step
using the rule HighFire from C1 to C2.

4. There are no other steps between C1 and C2, which also means that C1 and C2

are maximal and, hence, SCCs.

We now consider the four items from above.

1. We need to show that all two graphs from C1 = {G | ∃π, n1, n2, n3, n4, b. (G0, π,
G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 > 0} are mutually reachable.
Fix a list of labels πG and G = (n1, n2, n3, n4, b) with (G0, πG, G) ∈ R∗ and
n1 + n4 > 0.
Fix a list of labels πG′ and G′ = (n′

1, n′
2, n′

3, n′
4, b′) with (G0, πG′ , G′) ∈ R∗ and

n′
1 + n′

4 > 0.
We need to show that there is a path from G to G′.
We show this by proving the existence of two paths (G, π1, G0) ∈ R∗ and
(G0, π2, G′) ∈ R∗.

• We need to show that there is a path from G to G0:
We construct the list of labels π1 needed to transform G = (n1, n2, n3, n4,
b) into G0 = (2, 0, 0, 0, T) as follows.1

π1 =DelEcon3 · (A.1)
(if b = T then RainOff else ε)· (A.2)
(LowFire · DelEco)n2 · (A.3)
RainOn· (A.4)

1The list of labels containing precisely n copies of the rule ρ is denoted by ρn. Similarly, the list of
labels containing precisely n copies of the list of labels π is denoted by πn.
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GrowGrassn4 · (A.5)
AddEcoU· (A.6)
GrowTree· (A.7)
RainOff · (A.8)
(HighFire · DelEco)n1+n4+1−2· (A.9)
RainOn (A.10)

We now discuss the individual steps one by one.
Using (A.1): All n3 Eco-nodes without Tree- and Grass-nodes are removed
using the rule DelEco (note that n3 can be at most one for all reachable
states because the rule DelEco has a higher priority than all other rules).
The resulting state is (n1, n2, 0, n4, b). Using (A.2): The rainy season changes
to the dry season using the rule RainOff , if SU is currently in the rainy sea-
son. The resulting state is (n1, n2, 0, n4, F). Using (A.3): The n2 Eco-nodes
with only a Grass-node are removed using the rules LowFire and DelEco.
Note that the rule DelEco must be applied directly after the rule LowFire
due to its higher priority. The resulting state is (n1, 0, 0, n4, F). Using (A.4):
The dry season changes to the rainy season using the rule RainOn. The
resulting state is (n1, 0, 0, n4, T). Using (A.5): On each of the n4 Eco-nodes
with a Tree-node but no Grass-node, a Grass-node is added using the rule
GrowGrass. The resulting state is (n1 + n4, 0, 0, 0, T). Using (A.6): For the
case that there are not at least two Eco-nodes with Tree- and Grass-nodes
now, anotherEco-nodewith aGrass-node (by construction) is addedusing
the rule AddEcoU. The resulting state is (n1 + n4, 0, 0, 1, T). Using (A.7):
On this new Eco-node, a Tree-node is added using the rule GrowTree. The
resulting state is (n1 + n4 + 1, 0, 0, 0, T). Using (A.8): The rainy season
changes to the dry season using the rule RainOff . The resulting state is
(n1 + n4 + 1, 0, 0, 0, F). Using (A.9): All but two Eco-nodes with Tree- and
Grass-nodes are removed using the rules HighFire and DelEco. Note that
the rule DelEco must be applied directly after the rule HighFire due to its
higher priority. The resulting state is (2, 0, 0, 0, F). Using (A.10): The dry
season changes to the rainy season using the rule RainOn. The resulting
state is (2, 0, 0, 0, T).
The graph representing the resulting state is, as required, equal to G0.

• We need to show that there is a path from G0 to G′:
This path trivially exists using π2 = πG′ from above.

2. We need to show that all two graphs from C2 = {G | ∃π, n1, n2, n3, n4, b. (G0, π,
G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 = 0} are mutually reachable.
Fix a list of labels πG and G = (n1, n2, n3, n4, b) with (G0, πG, G) ∈ R∗ and
n1 + n4 = 0.
Fix a list of labels πG′ and G′ = (n′

1, n′
2, n′

3, n′
4, b′) with (G0, πG′ , G′) ∈ R∗ and

n′
1 + n′

4 = 0.
We need to show that there is a path from G to G′.
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We show this by proving the existence of two paths (G, π1, Ḡ) ∈ R∗ and
(Ḡ, π2, G′) ∈ R∗ where Ḡ = (0, 0, 0, 0, F).

• We need to show that there is a path from G to Ḡ:
We construct the list of labels π1 needed to transform G = (0, n2, n3, 0, b)
into Ḡ = (0, 0, 0, 0, F) as follows.

π1 =DelEcon3 · (A.11)
(if b = T then RainOff else ε)· (A.12)
(LowFire · DelEco)n2 (A.13)

We now discuss the individual steps one by one.
Using (A.11): All n3 Eco-nodeswithout Tree- and Grass-nodes are removed
using the rule DelEco (note that n3 can be at most one for all reachable
states because the rule DelEco has a higher priority than all other rules).
The resulting state is (0, n2, 0, 0, b). Using (A.12): The rainy season changes
to the dry season using the rule RainOff , if SU is currently in the rainy sea-
son. The resulting state is (0, n2, 0, 0, F). Using (A.13): The n2 Eco-nodes
with only a Grass-node are removed using the rules LowFire and DelEco.
Note that the rule DelEco must be applied directly after the rule LowFire
due to its higher priority. The resulting state is (0, 0, 0, 0, F).
The graph representing the resulting state is, as required, equal to Ḡ.

• We need to show that there is a path from Ḡ to G′:
We construct the list of labels π2 needed to transform Ḡ = (0, 0, 0, 0, F)
into G′ = (0, n′

2, n′
3, 0, b′) as follows.

π2 =RainOn· (A.14)

AddEcoUn′
2+n′

3 · (A.15)
RainOff · (A.16)

LowFiren′
3 · (A.17)

(if b′ = T then RainOn else ε) (A.18)

We now discuss the individual steps one by one.
Using (A.14): The dry season changes to the rainy season using the rule
RainOn. The resulting state is (0, 0, 0, 0, T). Using (A.15): n′

2 + n′
3 Eco-

nodes, each with a Grass-node (by construction), are added using the rule
AddEcoU. The resulting state is (0, n′

2 + n′
3, 0, 0, T). Using (A.16): The rainy

season changes to the dry season using the rule RainOff . The resulting
state is (0, n′

2 + n′
3, 0, 0, F). Using (A.17): The n′

3 Grass-nodes are removed
using the rule LowFire (note that n′

3 can be at most one for all reachable
states as before). The resulting state is (0, n′

2, n′
3, 0, F). Using (A.18): The

dry season changes to the rainy season using the rule RainOn if required.
Note that b′ cannot be equal to T when n′

3 = 1 because n′
3 = 1 can only

be reached using the rule LowFire, which can only be applied during the
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dry season. Moreover, as the rule DelEco must be applied directly after
the rule LowFire, SU has still to be in the dry season. The resulting state is
(0, n′

2, n′
3, 0, b′).

The graph representing the resulting state is, as required, equal to G′.

3. We need to show that ∃G1 ∈ C1. ∃G2 ∈ C2. (G1, HighFire, G2) ∈ R, which
means that there is a step using the rule HighFire from C1 to C2.
Let G1 = (1, 0, 0, 0, F) and G2 = (0, 0, 1, 0, F). Obviously, (G1, HighFire, G2) ∈ R.
It is sufficient to show now that G1 is in C1. Note that G2 is in C2 by appending
the rule HighFire to the list of labels used for showing that G1 is in C1.
We construct the list of labels π needed to transform G0 = (2, 0, 0, 0, T) into
G1 = (1, 0, 0, 0, F) as follows.

π =RainOff · (A.19)
HighFire· (A.20)
DelEco (A.21)

We now discuss the individual steps one by one.
Using (A.19): The rainy season changes to the dry seasonusing the ruleRainOff .
The resulting state is (2, 0, 0, 0, F). Using (A.20): One Tree- and one Grass-node
are removed from one Eco-node using the rule HighFire. The resulting state is
(1, 0, 1, 0, F). Using (A.21): The Eco-node without a Tree- and a Grass-node is
removed using the rule DelEco. The resulting state is (1, 0, 0, 0, F).
The graph representing the resulting state is, as required, equal to G1.

4. We need to show that there are no other steps between C1 and C2, which also
means that C1 and C2 are maximal and, hence, SCCs.

• Assume that there are ρ ∈ P, G1 ∈ C1, and G2 ∈ C2 such that (G2, ρ, G1) ∈
R. But there is no such rule ρ in the GTmodel SU as follows. Only the rule
GrowTree can increase the number of Tree-nodes but this rule requires the
existence of a Tree-node in G2. Hence, there is no such step (G2, ρ, G1) ∈ R
as required.

• Assume that there are ρ ∈ P, G1 ∈ C1, and G2 ∈ C2 such that (G1, ρ, G2) ∈
R and ρ 6= HighFire. But the rule HighFire is the only rule that can decrease
the number of Tree-nodes as required for such a step (G1, ρ, G2).

of Theorem 3. Let L = (S, L, Z, R) be the state space (i.e., an LTS) induced by the GT
model SD = (G0, PD, κD). We make use of the invariant as in the proof of Theorem 2
before.

We prove the following items to focus on the central statements indicated in the
theorem.

1. All two graphs from C1 = {G | ∃π, n1, n2, n3, n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1,
n2, n3, n4, b) ∧ n1 + n4 > 0} are mutually reachable.
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2. For each n ∈ N it holds that all two graphs from C2,n,0 = {G | ∃π, n1, n2, n3, n4,
b. (G0, π, G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 = 0 ∧ n2 = n ∧ n3 = 0}
are mutually reachable.

3. For each n ∈ N it holds that all two graphs from C2,n,1 = {G | ∃π, n1, n2, n3,
n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 = 0 ∧ n2 = n ∧ n3 =

1 ∧ b = F} are mutually reachable.

4. ∀n ∈ N. ∃G1 ∈ C1. ∃G2 ∈ C2,n,1. (G1, HighFire, G2) ∈ R, which means that
there is a step using the rule HighFire from C1 to C2,n,1.

5. ∀n ∈ N. ∃G1 ∈ C2,n,1. ∃G2 ∈ C2,n,0. (G1, DelEco, G2) ∈ R, which means that
there is a step using the rule DelEco from C2,n,1 to C2,n,0.

6. ∀n ∈ N − {0}. ∃G1 ∈ C2,n,0. ∃G2 ∈ C2,n−1,1. (G1, LowFire, G2) ∈ R, which
means that there is a step using the rule LowFire from C2,n,0 to C2,n−1,1.

7. There are no other steps between the mentioned SCC candidates, which means
that they are maximal and, hence, SCCs.

We now consider the seven items from above.

1. We need to show that all two graphs from C1 = {G | ∃π, n1, n2, n3, n4, b. (G0, π,
G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 > 0} are mutually reachable.
Fix a list of labels πG and G = (n1, n2, n3, n4, b) with (G0, πG, G) ∈ R∗ and
n1 + n4 > 0.
Fix a list of labels πG′ and G′ = (n′

1, n′
2, n′

3, n′
4, b′) with (G0, πG′ , G′) ∈ R∗ and

n′
1 + n′

4 > 0.
We need to show that there is a path from G to G′.
We show this by proving the existence of two paths (G, π1, G0) ∈ R∗ and
(G0, π2, G′) ∈ R∗.

• We need to show that there is a path from G to G0:
We construct the list of labels π1 needed to transform G = (n1, n2, n3, n4,
b) into G0 = (2, 0, 0, 0, T) as follows (which is similar to the corresponding
part in the proof of Theorem 2 above).

π1 =DelEcon3 · (A.22)
(if b = T then RainOff else ε)· (A.23)
(LowFire · DelEco)n2 · (A.24)
RainOn· (A.25)
GrowGrassn4 · (A.26)
AddEcoD· (A.27)
GrowTree· (A.28)
RainOff · (A.29)
(HighFire · DelEco)n1+n4+1−2· (A.30)
RainOn (A.31)
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We now discuss the individual steps one by one.
Using (A.22): All n3 Eco-nodes without Tree- and Grass-nodes are re-
moved using the rule DelEco (note that n3 can be at most one for all reach-
able states because the rule DelEco has a higher priority than all other
rules). The resulting state is (n1, n2, 0, n4, b). Using (A.23): The rainy sea-
son changes to the dry season using the rule RainOff , if SD is currently in
the rainy season. The resulting state is (n1, n2, 0, n4, F). Using (A.24): The
n2 Eco-nodes with only a Grass-node are removed using the rules LowFire
and DelEco. Note that the rule DelEco must be applied directly after the
rule LowFire due to its higher priority. The resulting state is (n1, 0, 0, n4, F).
Using (A.25): The dry season changes to the rainy season using the rule
RainOn. The resulting state is (n1, 0, 0, n4, T). Using (A.26): On each of the
n4 Eco-nodes with a Tree-node but no Grass-node, a Grass-node is added
using the rule GrowGrass. The resulting state is (n1 + n4, 0, 0, 0, T). Using
(A.27): For the case that there are not at least two Eco-nodeswith Tree- and
Grass-nodes now, another Eco-node with a Grass-node (by construction)
is added using the rule AddEcoD. Note that the required Eco-node with
a Tree- and a Grass-node exists for the application of the rule AddEcoD.
The resulting state is (n1 + n4, 0, 0, 1, T). Using (A.28): On this new Eco-
node, a Tree-node is added using the rule GrowTree. The resulting state is
(n1 + n4 + 1, 0, 0, 0, T). Using (A.29): The rainy season changes to the dry
season using the rule RainOff . The resulting state is (n1 + n4 + 1, 0, 0, 0, F).
Using (A.30): All but two Eco-nodes with Tree- and Grass-nodes are re-
moved using the rules HighFire and DelEco. Note that the rule DelEco must
be applied directly after the rule HighFire due to its higher priority. The
resulting state is (2, 0, 0, 0, F). Using (A.31): The dry season changes to
the rainy season using the rule RainOn. The resulting state is (2, 0, 0, 0, T).
The graph representing the resulting state is, as required, equal to G0.

• We need to show that there is a path from G0 to G′:
This path trivially exists using π2 = πG′ from above.

2. We need to show that for each n ∈ N it holds that all two graphs from C2,n,0 =

{G | ∃π, n1, n2, n3, n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 =

0 ∧ n2 = n ∧ n3 = 0} are mutually reachable.
Only the two graphs G1 = (0, n, 0, 0, F) and G2 = (0, n, 0, 0, T) may be in C2,n,0.
The rules RainOn and RainOff can be applied to reach those graphs from each
other.

3. We need to show that for each n ∈ N it holds that all two graphs from C2,n,1 =

{G | ∃π, n1, n2, n3, n4, b. (G0, π, G) ∈ R∗ ∧ G = (n1, n2, n3, n4, b) ∧ n1 + n4 =

0 ∧ n2 = n ∧ n3 = 1 ∧ b = F} are mutually reachable.
C2,n,1 may only contain the graph G = (0, n, 1, 0, F). Hence, the empty list of
labels ε can be used for the mutual reachability.
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4. We need to show that ∀n ∈ N. ∃G1 ∈ C1. ∃G2 ∈ C2,n,1. (G1, HighFire, G2) ∈ R,
which means that there is a step using the rule HighFire from C1 to C2,n,1.
Fix some n ∈ N.
Let G1 = (1, n, 0, 0, F) and G2 = (0, n, 1, 0, F). Obviously, (G1, HighFire, G2) ∈
R. It is sufficient to show now that G1 is in C1. Note that G2 is in C2,n,1 by
appending the rule HighFire to the list of labels used for showing that G1 is in
C1.
We construct the list of labels π needed to transform G0 = (2, 0, 0, 0, T) into
G1 = (1, n, 0, 0, F) as follows.

π =RainOff · (A.32)
HighFire· (A.33)
DelEco· (A.34)
RainOn· (A.35)
AddEcoDn· (A.36)
RainOff (A.37)

We now discuss the individual steps one by one.
Using (A.32): The rainy season changes to the dry seasonusing the ruleRainOff .
The resulting state is (2, 0, 0, 0, F). Using (A.33): One Tree- and one Grass-node
are removed from one Eco-node using the rule HighFire. The resulting state is
(1, 0, 1, 0, F). Using (A.34): The Eco-node without a Tree- and a Grass-node is
removed using the rule DelEco. The resulting state is (1, 0, 0, 0, F). Using (A.35):
The dry season changes to the rainy season using the rule RainOn. The result-
ing state is (1, 0, 0, 0, T). Using (A.36): n Eco-nodes, each with a Grass-node
(by construction), are added using the rule AddEcoD, which can be applied
because there is still one Eco-node with a Grass- and a Tree-node. The resulting
state is (1, n, 0, 0, T). Using (A.37): The rainy season changes to the dry season
using the rule RainOff . The resulting state is (1, n, 0, 0, F).
The graph representing the resulting state is, as required, equal to G1.

5. We need to show that ∀n ∈ N. ∃G1 ∈ C2,n,1. ∃G2 ∈ C2,n,0. (G1, DelEco, G2) ∈ R,
which means that there is a step using the rule DelEco from C2,n,1 to C2,n,0.
Fix some n ∈ N.
Let G1 = (0, n, 1, 0, F) and G2 = (0, n, 0, 0, F). Obviously, (G1, DelEco, G2) ∈ R.
It is sufficient to show now that G1 is in C2,n,1. This has been shown in the
previous item. Note that G2 is in C2,n,0 by appending the rule DelEco to the list
of labels used for showing that G1 is in C2,n,1.

6. We need to show that ∀n ∈ N−{0}. ∃G1 ∈ C2,n,0. ∃G2 ∈ C2,n−1,1. (G1, LowFire,
G2) ∈ R, which means that there is a step using the rule LowFire from C2,n,0 to
C2,n−1,1.
Fix some n ∈ N with n > 0.
Let G1 = (0, n, 0, 0, F) and G2 = (0, n− 1, 1, 0, F). Obviously, (G1, LowFire, G2) ∈
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R. It is sufficient to show now that G1 is in C2,n,0. This has been shown in the
previous item. Note that G2 is in C2,n−1,1 by appending the rule LowFire to the
list of labels used for showing that G1 is in C2,n,0.

7. We need to show that there are no other steps between the mentioned SCC
candidates, which means that they are maximal and, hence, SCCs.

• Assume that there are ρ ∈ P, G1 ∈ C1, and G2 ∈ C2,n,0 ∪ C2,n,1 such that
(G2, ρ, G1) ∈ R. But there is no such rule ρ in the GT model SD as follows.
Only the rule GrowTree can increase the number of Tree-nodes but this
rule requires the existence of a Tree-node in G2. Hence, there is no such
step (G2, ρ, G1) ∈ R as required.

• Assume that there are ρ ∈ P, G1 ∈ C1, and G2 ∈ C2,n,0 ∪ C2,n,1 such that
(G1, ρ, G2) ∈ R and ρ 6= HighFire. But the rule HighFire is the only rule
that can decrease the number of Tree-nodes as required for such a step
(G1, ρ, G2).

• Assume that there are ρ ∈ P, G1 ∈ C2,n,0, and G2 ∈ C2,m,0 such that
(G1, ρ, G2) ∈ R and n 6= m. There is no rule that changes the number
of Eco-nodes with a connected Grass-node. Each removal of Eco-nodes
requires two steps using the rules LowFire and DelEco. Each addition of
Eco-nodes requires an existing Eco-node with a connected Tree- and a
connected Grass-node using the rule AddEcoD.

• Assume that there are ρ ∈ P, G1 ∈ C2,n,0, and G2 ∈ C2,m,1 such that
(G1, ρ, G2) ∈ R, n 6= m, and ρ 6= LowFire. The only two rules that lead to
the existence of an Eco-node with no Tree- and no Grass-node are the rules
LowFire and HighFire. The rule LowFire is excluded here by assumption.
The rule HighFire cannot be applied because there is no Tree-node in G1.

• Assume that there are ρ ∈ P, G1 ∈ C2,n,1, and G2 ∈ C2,m,1 ∪ C2,m,0 such
that (G1, ρ, G2) ∈ R and n 6= m. ρ must be the rule DelEco due to the
priority but the application of that rule retains the number of Eco-nodes
with only a Grass-node implying n = m.
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