
Technische Berichte Nr. 154

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Modular and
Incremental Global
Model Management
with Extended
Generalized
Discrimination
Networks
Matthias Barkowsky , Holger Giese

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam | 154

Matthias Barkowsky | Holger Giese

Modular and Incremental Global Model
Management with Extended Generalized

Discrimination Networks

Universitätsverlag Potsdam

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the Internet
via http://dnb.dnb.de/.

Universitätsverlag Potsdam 2023
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Phone: +49 (0)331 977 2533 / Fax: 2292

Email: verlag@uni-potsdam.de

The series Technische Berichte des Hasso-Plattner-Instituts für Digital
Engineering an der Universität Potsdam is edited by the professors of the
Hasso Plattner Institute for Digital Engineering at the University of Potsdam.

ISSN (print) 1613-5652

ISSN (online) 2191-1665

The work is protected by copyright.
Layout: Tobias Pape
Print: docupoint GmbH Magdeburg

ISBN 978-3-86956-555-2

Also published online on the publication server of the University of Potsdam:
https://doi.org/10.25932/publishup-57396
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-573965

http://dnb.dnb.de/
http://verlag.ub.uni-potsdam.de/
https://doi.org/10.25932/publishup-57396
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-573965

Complex projects developed under the model-driven engineering paradigm
nowadays often involve several interrelated models, which are automatically pro-
cessed via a multitude of model operations. Modular and incremental construction
and execution of such networks of models and model operations are required
to accommodate efficient development with potentially large-scale models. The
underlying problem is also called Global Model Management.

In this report, we propose an approach to modular and incremental Global Model
Management via an extension to the existing technique of Generalized Discrimi-
nation Networks (GDNs). In addition to further generalizing the notion of query
operations employed in GDNs, we adapt the previously query-only mechanism
to operations with side effects to integrate model transformation and model syn-
chronization. We provide incremental algorithms for the execution of the resulting
extended Generalized Discrimination Networks (eGDNs), as well as a prototypical
implementation for a number of example eGDN operations.

Based on this prototypical implementation, we experiment with an application
scenario from the software development domain to empirically evaluate our ap-
proach with respect to scalability and conceptually demonstrate its applicability in
a typical scenario. Initial results confirm that the presented approach can indeed be
employed to realize efficient Global Model Management in the considered scenario.

5

Contents

1 Introduction 8

2 Preliminaries 10
2.1 Graphs and Models . 10

2.2 Discrimination Networks . 10

3 Requirements for Global Model Management 13
3.1 Models and Modeling Languages Integration: Construction and Ex-

ecution . 14

3.2 Model Operations: Construction and Execution 19

3.3 Megamodels and other Global Model Management Approaches . . 21

3.4 Summary of the state of the art . 24

4 Extended Generalized Discrimination Networks 25
4.1 Definition of eGDNs . 25

4.2 eGDNs as Megamodels . 27

5 Incremental Execution of Extended Generalized Discrimination
Networks 29
5.1 Definitions regarding Incremental Execution 29

5.2 Incremental Execution with Guaranteed Termination 32

5.3 Incremental Execution of Arbitrary eGDNs 41

5.4 Development with eGDNs . 44

6 Implementation 45

7 Evaluation 49
7.1 Evaluation of Performance . 49

7.2 Evaluation of Applicability . 51

8 Conclusion 57

7

1 Introduction

Complex projects developed under the model-driven engineering paradigm nowa-
days often involve several interrelated models, which are inspected, analyzed,
transformed, and synchronized via a multitude of model operations [66]1. An ef-
fective and efficient management of the resulting sophisticated networks of model
operations is both a crucial prerequisite to successful development projects and a
challenging research problem, known as Global Model Management [9].

On the one hand, modular and incremental construction of model operation net-
works is required in the context of project landscapes that evolve to accommodate
dynamic development processes and changing requirements. On the other hand,
in order to scale to today’s potentially large models and allow development in
teams, modular and incremental execution of these networks is required, as full
re-execution of the entire network in reaction to changes may result in unacceptable
execution times and loss of information [39].

In this context, model queries, due to being explicitly and implicitly required
by model properties and model consistency checks respectively model transforma-
tions and model synchronizations, play a central role. Solutions thus have to offer
dedicated support for handling potentially complex model queries and facilitate
their modular composition and reuse.

Furthermore, model operations with side-effects, such as model transformation
and synchronization, and their interaction with other model operations pose a
unique challenge regarding the overall goal of guaranteeing the consistency of a
system description that may be distributed over multiple models.

In this report, we propose an approach to Global Model Management that specifi-
cally aims to provide both the required modularity and incrementality. Our solution
is based on an extended notion of Generalized Discrimination Networks [43], a
mechanism that has previously been implemented in the context of model driven
engineering [6] to allow a modular and incremental specification and execution of
model queries in the form of nested graph conditions [42].

Therefore, we introduce a more general formalization called extended Generalized
Discrimination Networks (eGDNs), which (i) supports a more flexible notion of model
queries, affording increased expressiveness and (ii) allows the integration of model
operations with side effects into the unifying framework. In addition, we provide
algorithms for the incremental execution of eGDNs.

Furthermore, we integrate a number of typical model operations into a prototyp-
ical implementation of the approach and use this implementation to perform an

1Note that references in bold refer to our own publications.

8

1 Introduction

initial evaluation of our technique’s scalability using an application scenario from
the software development domain. This empirical evaluation is complemented by
a conceptual evaluation regarding the applicability of eGDNs in a typical scenario.

The remainder of the report is structured as follows: We briefly reiterate the basic
concepts of models in the form of typed graphs and discrimination networks in
Chapter 2. After introducing the required concepts, we discuss requirements of a
solution for global model management and related work in Chapter 3, providing
further motivation for the design of a new solution. Our contribution in the form
of extended Generalized Discrimination Networks is presented in Chapters 4, 5,
and 6. Therefore, Chapter 4 provides a definition of eGDNs along with a graphical
notation. Chapter 5 describes the incremental execution of eGDNs. Chapter 6 then
lists a number of examples for eGDN operations that are part of our prototypical
implementation. This prototypical implementation is used to perform an initial
empirical evaluation of the presented concepts, which is presented in Chapter 7

along with a conceptual evaluation of the applicability of eGDNs to an example
use case. Finally, Chapter 8 concludes the report and gives an overview of possible
directions for future work.

9

2 Preliminaries

In this chapter, we reiterate the basic notions of models in the form of typed graphs
and discrimination networks.

2.1 Graphs and Models

A graph G = (VG, EG, sG, tG) consists of a set of vertices VG, a set of edges EG,
and two functions sG, tG : EG → VG assigning each edge its source respectively
target vertex [24]. A graph morphism m : G → H between graphs G and H is a
pair of functions mV : VG → VH, mE : EG → EH such that sH ◦mE = mV ◦ sG and
tH ◦mE = mV ◦ tG.

A graph G can be typed over a type graph TG via a morphism typeG : G → TG
that assigns elements from G types defined in TG. This yields a typed graph
GT = (G, typeG). A typed graph morphism mT : GT → HT between two typed
graphs GT = (G, typeG) and HT = (H, typeH) typed over the same type graph TG
is given by a graph morphism m : G → H with typeG = typeH ◦mT.

In the context of this report, a model is then characterized by a typed graph,
where the type graph effectively acts as a metamodel. Importantly, attributes for
model elements can be realized in the framework of typed graphs by simply
modeling attribute values as dedicated nodes, which leads to the notion of typed
attributed graphs [45]. A modeling language ML is defined by a graph TG and
denotes the set of all possible graphs typed over TG.

Figure 2.1 shows an example model from the software development domain in
the form of a typed graph G, and the associated metamodel in the form of the type
graph TG, with the typing morphism given by node labels in case of nodes and
implicitly in case of edges. The example model represents the abstract syntax graph
(ASG) of a program written in an object-oriented programming language. Nodes in
the model represent packages, types, and methods. Edges represent containment
relationships between the different concepts, with methods contained in types and
types contained in packages, and return type relationships between methods and
types.

2.2 Discrimination Networks

A discrimination network is a graph of nodes representing computation units and
edges representing dependencies between these units. Discrimination networks

10

2.2 Discrimination Networks

Type

Method

Package

types

type

p1:Package

t1:Type t2:Type

m1:Method m3:Methodm2:Method

G TG

methods

Figure 2.1: Example model and metamodel in the form of typed graph and type
graph from the software development domain

are a popular solution for the incremental execution of model queries such as
the computation of model properties or the checking of model consistency condi-
tions. Therefore, the model query is decomposed into subqueries, which form the
discrimination network’s nodes.

The execution of a subquery can make use of the results computed for another
subquery, which is indicated by a dependency relation between the two subqueries.
The execution of a final discrimination network node yields the overall query result.
By storing the results of discrimination network nodes beyond the execution of a
query, incremental execution that reuses previously computed results in subsequent
executions is enabled.

Since discrimination networks so far are primarily employed for model querying,
current approaches offer only limited or no support for the integration of model
operations with side-effects and thus constitute at best a partial solution for global
model management. However, due to their inherent support for modularity and
incrementality, they offer a promising starting point.

There exist different realizations of the concept of discrimination networks in the
context of model driven engineering, two of which will be briefly presented in the
following subsections.

2.2.1 RETE nets

RETE nets were initially introduced by Forgy [34] and are characterized by the
fact that nodes are only allowed to have dependencies to at most two other nodes.
Some examples of RETE nodes are:

• input nodes, which correspond to primitive model queries that extract individ-
ual elements, that is, nodes or edges, from a model, and consequently have
no dependencies

• filter nodes, which filter the results of some other subquery by a condition and
consequently have one dependency

11

2 Preliminaries

• join nodes, which combine the results of two other subqueries into results for
a more complex subquery and consequently have two dependencies

While the listed node types form the core of incremental model querying solutions
such as the well-established VIATRA [73], RETE nets are a flexible mechanism
that allows a multitude of other query-related node types. This is illustrated by
VIATRA’s support for various advanced constructs for specifying model queries,
including negative patterns and certain aggregation operations.

In RETE implementations, results computed by a RETE net’s nodes are usually
stored in memory in so-called indexers, which act as implicit interfaces between
computation nodes. These indexers can also be made explicit by modeling them
as part of the RETE net via a different kind of RETE node that is not associated
with any computational functionality, but only serves as a storage for other nodes’
results.

2.2.2 Generalized Discrimination Networks

Generalized Discrimination Networks (GDNs) are a less restrictive form of dis-
crimination networks than RETE nets and were developed by Hanson et al. [43].
Essentially, GDNs drop the limit on the number of a node’s dependencies of RETE
nets and thereby allow for more control over which intermediate query results are
to be stored in memory.

A realization in the context of model querying was presented in [6]. It imple-
ments GDN nodes as model transformation rules that create marking elements
for subquery results directly as part of the queried model. Dependencies between
nodes are realized by considering marking elements created by the required node
in the transformation rule associated with the dependent node. However, while
the approach in [6] is based on a fairly expressive notion of queries in the form of
nested graph conditions, certain query-related operations such as aggregation are
not supported by the underlying formalism.

12

3 Requirements for Global Model
Management

Nowadays the development of complex systems with models requires Global Model
Management (GMM) [8, 31] to ensure that the models of different subsystems, of
different views, and of different domains are properly combined, even though the
models might reside at different levels of abstraction. Indeed, due to the hetero-
geneity and complexity of systems such as Cyber-Physical Systems (CPS), it is no
longer feasible to represent the system as a Single Underying Model (SUM). This
is because numerous languages and tools are already employed independently
by domain experts collaborating to build the system. Redeveloping these tools
and thus requiring industry to change its practices is not conceivable given the
required development efforts, but also the strong resistance to change development
processes. This is especially relevant in the case of safety-critical systems that must
undergo complex certification processes. Therefore, many models must be used
to represent the system and adequate GMM is required to ensure that the devel-
opment activities that operate on the models are properly coordinated such that
the models lead to a proper system as a whole, where the different elements and
aspects covered by the different models are correctly integrated and are consistent
with each other.

A classification of model integration problems and fundamental integration tech-
niques has been introduced in [38]. It highlights the techniques of decomposition
and enrichment, which characterize two orthogonal dimensions of development
where the system is decomposed into subsystems and domains (horizontal dimen-
sion) and into a set of models with increasing level of details (vertical dimension).
This requires coordinating all activities operating on the models across these di-
mensions to ensure their consistency.

The development activities for nowadays complex systems are spread across
multiple domains and teams, where each team is using its own set of modeling
languages thus requiring proper integration of these languages. Indeed, it has been
shown that using a single language to cover all domains would lead to very large
monolithic languages not easily customizable for the development environments
and tools needed by development organizations. These considerations lead to
Multi-Paradigm Modeling (MPM) [72], which advocates the integration of reusable
modular modeling languages instead of large monolithic languages. Hence, GMM
must support integrating with appropriate modularity not only models but also
their modeling languages (hereafter modeling language integration), in addition to
coordinating all activities operating on the models and specified as model operations
/ transformations. The execution of these model operations has to be scalable for

13

3 Requirements for Global Model Management

being able to handle large models. This requires incrementality, where only the
operations impacted by a model change are re-executed, thus avoiding the effort
to recompute entire models as in the case of incremental code compilers.

GMM is also known as modeling-in-the-large, which consists of establishing global
relationships (e.g. model operations that generated one model from other models)
between macroscopic entities (models and metamodels) while ignoring the internal
details of these entities [8]. Megamodeling [10, 31] has been introduced for the
purpose of describing these macroscopic entities and their relations.

Consequently, for modular and incremental global model management solutions
for the modular and incremental construction and execution of I) models and mod-
eling languages integration, II) model operations, and III) megamodels are required.
We will outline in the following that nowadays only preliminary approaches exist
that provide ad hoc solutions for fragments of the sketched problem and that a
solid understanding of the underlying needs and challenges is currently lacking.
In particular, the current approaches do at most offer some modularity and/or
incrementality for a single aspect as modeling languages integration or model op-
erations. However, support for handling complex modeling landscapes as a whole
in a modular and incremental fashion as required for the large-scale problems that
exist in practice is not offered so far.

In the following, we will discuss the needs in more detail and review how far
existing solutions that address the construction and execution of 1) models and
modeling languages integration, 2) model operations, and 3) megamodels. The way
the existing approaches perform along these dimensions is depicted in Table 3.1,
where an empty cell identifies a need that is not addressed, a ~ denotes partial
fulfilment of the need and a + indicates that the need is addressed sufficiently.1

This evaluation is discussed in further details in the following sections.

3.1 Models and Modeling Languages Integration:
Construction and Execution

3.1.1 Construction

The construction of models and modeling languages integration is addressed in
the current approaches in three main ways via (1) linking of models and model
elements, (2) model interfaces and (3) metamodel composition.

(1) Links:
All approaches make use of some kind of trace links between models and their
model elements to integrate models. In this report, we adopt the definitions of trace-
ability proposed by the Center of Excellence for Software Traceability (CoEST) [20].

1For convenience, we use the name of the tool or project to identify an approach when it exists,
otherwise the name of the first author of the publication describing the approach is used.

14

3.1 Models and Modeling Languages Integration: Construction and Execution
Approach Modeling Languages Integration Model Operations Megamodels

Const. Exec. Const. Exec. Const. Exec.
Links Int. MMI Batch Inc. Flow Ctx. Batch Inc. Mon. Mod. Batch Inc.

Modeling Languages Integration

Blanc et al. [11] + +
EMF Inc-
Query [25, 71]

+ +

Egyed et al. [23,
41]

+ +

Cabot et al. [19] + +
ACOL [54] ∼ +
SmartEMF [48,
55]

+ +

Composite EMF
Models [21, 50]

+ +

EMF Views [18,
27]

+ ∼ +

Kompren [12] /
Kompose [33, 52]

∼

Reuseware Mod-
elSoc [49]

∼ ∼

Ratiu et al. [61] + ∼ ∼
König et al. [53] + +

Model Operations

Wires* [62] + +
ATL Flow [4] + +
Epsilon [28, 60] + + +
Gaspard2 [29] ∼ + ∼ + ∼
Debreceni et
al. [22]

+ ∼ + +

MoTCoF [65] + + + ∼
MoTE [37][57] + + +

Integration Languages and Others

CyPhy [68] + + +
FUSED [15, 35] + ∼ + +
CONSYSTENT [46,
47]

+ + +

Megamodels

AM3 [1, 74] + + + + ∼
FTG+PM [5, 56] + + + +
MegaL Exp. [32] + + +
GMM* [13] + ∼ + + ∼ + + ∼
Seibel et al. [64,
67][7]

+ + + ∼

Stevens [69, 70] + + + + + +
Gleitze et al. [40] + + + + + +
Vitruvius [51] + + + + + + + + +

eGDNs + + + + + + + + + + + + +

Table 3.1: Comparison of existing and planned global model management ap-
proaches

A trace link is "...a specified association between a pair of artifacts, one comprising the
source artifact and one comprising the target artifact...". Following the CoEST again,
trace links are specialized into traces between the vertical and horizontal dimen-
sions. Hence, a vertical trace "...links artifacts at different levels of abstraction so as to
accommodate lifecycle-wide or end-to-end traceability, such as from requirements to code...".
A horizontal trace links "...artifacts at the same level of abstraction, such as: (i) traces
between all the requirements created by ‘Mary’, (ii) traces between requirements that are
concerned with the performance of the system, or (iii) traces between versions of a particular
requirement at different moments in time".

15

3 Requirements for Global Model Management

There is a plethora of approaches (e.g., [2, 15, 28, 32, 46, 55, 68] [57]) making use
of trace links to integrate models. The Atlas Model Weaving (AMW) language [2]
provided one of the first approaches for capturing hierarchical traceability links
between models and model elements. The purpose was to support activities such as
automated navigation between elements of the linked models. In this approach, a
generic core traceability language is made available and optionally extended to pro-
vide semantics specific to the metamodels of the models to be linked. Similarly, the
Epsilon framework [28] provides a tool (ModeLink) to establish correspondences
between models. MegaL Explorer [32] supports relating heterogeneous software
development artifacts which do not necessary have to be models or model elements
using predefined relation types. SmartEMF [55] is another tool for linking models
based on annotations of Ecore metamodels to specify simple relations between
model elements through correspondence rules for attribute values. Complex rela-
tions are specified with ontologies relating the concepts of the linked languages.
The whole set of combined models is converted into Prolog facts to support various
activities such as navigation, consistency and user guidance when editing models.
The CONSYSTENT tool and approach [46] make use of a similar idea. However,
graph structures and pattern matching are used to represent the combined models
in a common formalism and to identify and manage inconsistencies instead of
Prolog facts as in the case of SmartEMF.

There are also a number of approaches such as [68] and [15] that build on estab-
lishing links between models through the use of integration languages developed
for a specific set of integrated modeling languages, where the integration language
embeds constructs specific to the linked languages. This is also the case for model
weaving languages extending the core AMW language. However, AMW has the
advantage of capturing the linking domain with a core common language. Other
means for linking and integrating models are Triple Graph Grammars (TGG) such
as the Model Transformation Engine (MoTE) tool [57], which similarly requires
the specification of some sort of integration language (correspondence metamodel)
specific to the integrated languages. However, an important asset of this approach
is that it automatically establishes and manages the traceability links and main-
tains the consistency of the linked models (model synchronization) in a scalable,
incremental manner. Finally, in [7, 64, 67], an approach is presented to automatically
create and maintain traceability links between models in a scalable manner. While
the approach focuses on traceability management rather than model integration,
compared to integration languages, it relies on link types defined at the model level
(and not at the metamodel / language level), thus avoiding the need to update the
integration language every time a new language must be integrated. Recently, the
concept of reactive links has been presented [61], which allows incremental propa-
gation of attribute value changes between models of different languages. However,
incremental execution is only offered for a limited notion of consistency.

The comparison of these approaches shows that apart from our earlier ap-
proach [7, 64, 67], all approaches suffer from being dependent on the set of in-
tegrated languages, thus requiring to better support modularity. Furthermore, only
our own work [7, 57, 64, 67] supports automated management of traceability links.

16

3.1 Models and Modeling Languages Integration: Construction and Execution

(2) Interfaces:
In addition to links, a few more sophisticated approaches (e.g., [48, 49, 50, 54])
introduce a concept of model interface (int. column in Table 3.1) for specifying how
models can be linked. In [54], the Analysis Constraints Optimization Language
(ACOL) is proposed, which has been designed to be pluggable to an Architecture
Description Language (ADL). A concept of interface specific to ACOL is included
so that constraints can refer to these interfaces to relate to the model elements
expected from the ADL. SmartEMF [48] proposes a more generic concept of model
interface to track dependencies between models and metamodels and provide
automated compatibility checks. Composite EMF Models [21, 50] introduces export
and import interfaces to specify which model elements of a main model (body)
should be exposed to other models (i.e. are part of the public API), and which
elements of a body model are to be required from an export interface. In [49], an
approach for the composition of grammars with explicit variation points (hooks)
constituting an implicit invasive composition interface is presented.

However, while these approaches provide interesting preliminary ideas, they
need to be enriched to cover a larger number of non intrusive model integration
use cases such as for example, specifying modification policies of the linked model
elements required to ensure the models can be kept consistent. They also lack
integration into GMM.

(3) Metamodel Integration:
Some approaches (e.g., [13, 27, 29, 52]) consider the construction of view metamod-
els in terms of other metamodels or language fragments (MMI column in Table
3.1). In [29], an approach implemented in the Gaspard2 tool is presented where
metamodels are artificially extended for the purpose of combining independent
model transformations resulting in an extended transformation for the extended
metamodels. In [12], a language and tool (Kompren) are proposed to specify and
generate slices of metamodels via the selection of classes and properties of an
input metamodel. A reduced metamodel is then produced, which must be com-
pletely regenerated when the input metamodel is changed. Such is the case for
the Kompose approach [52], which on the contrary to Kompren proposes to create
compound metamodels, where a set of visible model elements from each combined
metamodels is selected and optionally related. EMF Views [18, 27] provides sim-
ilar approach however without the need to duplicate the metamodel elements as
opposed to Kompose and Kompren. Indeed, EMF Views allows the specification
of virtual metamodels that only refer to existing metamodel elements instead of
duplicating them. The same principle applies for the given models of the virtual
metamodels, which only refer to elements of the existing integrated models instead
of duplicating them. The defined virtual view metamodels are usable transpar-
ently by tools. Furthermore, the same models can be simultaneously used by both
legacy tools and new tools making use of the virtual metamodels, thanks to the
non-intrusiveness of the approach. Finally, the Global Model Management lan-

17

3 Requirements for Global Model Management

guage (GMM*)2 [13] provides means to specify and interpret reusable language
subsets as sets of constraints combined to form subsetted metamodels. Like for
EMF Views, these reduced metamodels can to some extent be used transparently
by tools. Aspect-oriented metamodel composition is another well-known technique
for metamodel composition. However it requires metamodels to be expressed in a
specific aspect-related format, which does not meet our non-intrusiveness require-
ment.

While each of these approaches provides interesting support for modular model-
ing languages integration, their unification into a common formalism, the use of
an explicit notion of a model interface and their integration into GMM is lacking,
except for subsetted metamodels already integrated within our GMM* language.
Among these approaches, we note that EMF Views provides an adequate start-
ing point for this work, due to its non-intrusiveness property essential for reusing
legacy models and tools. However, in its current implementation, only changes
of attributes of virtual compound models are propagated to the underlying real
models [18]. Other changes propagation as well as metamodel constraints compo-
sition remain to be addressed. The integration of an explicit metamodel interface
construct for governing how metamodels can be composed, as well as the ability to
solve attribute and operation conflicts of merged classes inspired from the concept
of Traits / Mixins developed for object oriented programming are required future
works for this approach.

Execution of integrated models concerns the evaluation of the well-formedness
constraints of each combined model alone, but also of the combined models as
a whole. To our knowledge, no approach addresses the incremental checking of
well-formedness conditions across the different language fragments of compound
models. However, some approaches on incremental constraints evaluation exist.
In [11], changes on models are expressed as sequences of atomic model opera-
tions to determine which constraint is impacted by the changes, so that only these
constraints need to be re-evaluated. In [25, 71], a graph-based query language (EMF-
IncQuery) relying on incremental pattern matching for improved performance is
also proposed. In [23], an approach is presented for incremental evaluation of
constraints based on a scope of model elements referenced by the query and deter-
mined during the first query evaluation. This scope is stored into cache and used
to determine which queries need to be re-evaluated according for some model
changes. In [41], this approach is extended for the case where the constraints them-
selves may change besides the constrained models. Finally in [19], an incremental
OCL checker is presented where a simpler OCL expression and reduced context
elements set are computed from an OCL constraint and a given structural change
event. Evaluating this simpler constraint for the reduced context is sufficient to as-
sert the validity of the initial constraint and requires significantly less computation
resources.

2We use * to distinguish this existing language and tool from the generic Global Model Management
(GMM) acronym.

18

3.2 Model Operations: Construction and Execution

In [53], König et al. introduce a technique for the checking of consistency con-
straints over linked models, which avoids the merging of these models into a
single underlying model to achieve better scalability. However, while formally de-
fined and proven to be correct, the approach in [53] does not consider incremental
consistency checking.

We identified the following requirements as main needs concerning modularity
and incrementality of modeling languages integration:

R 1.1 modeling languages integration via integration links and combination
of well-formedness conditions with consistency

R 1.2 interfaces for embedding of modeling languages

Note that concerning Table 3.1 the requirements cover here Links and Interfaces
which jointly emulate the less modular direct meta model integration and that the
employed well-formedness conditions and consistency conditions will be covered
when we consider model operations in the next section. Consequently, as visible in
Table 3.1, there yet does not exists any approach that provides a combination of all
these requirements we target.

3.2 Model Operations: Construction and Execution

The construction of model operations is addressed in two ways in the literature.
Most approaches combine model operations as model transformations chains ((1)
Flow Composition), where each chained transformation operates at the granularity
of complete models. In order to support reuse and scalability for complex mod-
eling languages, which are defined by composing them from simpler modeling
languages, a few approaches have considered specifying model transformations
as white boxes. Composed of explicit fine grained operations processing model
elements for a given context, these operations are reusable across several model
transformations ((2) Context Composition).

(1) Flow Composition Approaches:

FUSED (Formal United System Engineering Development) [15] is an integration
language to specify complex relationships between models of different languages.
It supports model transformation chains, but only implicitly via execution of tools,
without explicit representation of the involved transformations and processed data.
On the contrary, there is a plethora of approaches allowing the explicit speci-
fication and construction of model transformation chains implementing a data
flow paradigm. Such is the case of the AtlanMod Megamodel Management (AM3)
tool [1], for which the Atlas Transformation Language (ATL) [3] is used to spec-
ify the model transformations. Besides, a type system has been developed [74],
which enables type checking and inference on artifacts related via model transfor-
mations. Another similar but less advanced tool is the Epsilon Framework [28],

19

3 Requirements for Global Model Management

which provides model transformation chaining via ANT tasks. Wires [62] and ATL
Flow [4] are tools providing graphical languages for the orchestration of ATL model
transformations. The Formalism Transformation Graph + Process Model (FTG+PM)
formalism [56] implemented in the AToMPM (A Tool for Multi-Paradigm Modeling)
tool [5] provides similar functionality. However, it has the advantage of also speci-
fying the complete modeling process in addition to the involved model transforma-
tions. This is achieved via activity diagrams coupled with model transformation
specifications executed automatically to support the development process. Finally,
GMM* [13] also supports model transformation chaining, but through the speci-
fication of relations between models of specific metamodels that can be chained.
One advantage of this approach is that automated incremental (re-)execution of
the specified relations between models is provided in response to received model
change events. Incrementality of the execution of the transformations is also made
possible by the integration of the MoTE [57] incremental model transformation
tool into GMM*.

However, while chaining model transformations offers some degree of modular-
ity of model transformation specifications, apart from GMM*, most approaches
suffer from scalability issues for large models, since the used transformation tools
do not support incremental execution. In addition, the case where a generated
model is modified by hand to add information not expressible with the language
of the original model(s) cannot easily be handled by these approaches, since re-
generating the model modified by hand will destroy the user-specific information.
This need is better supported by context composition approaches.

(2) Context Composition Approaches:

A few approaches allow context composition of model operations (column Ctx.
in Table 3.1). In [29] as mentioned above, an approach is described to combine
independent model transformations resulting in extended transformations for cor-
responding extended metamodels. In [22], an approach is described for specifying
the construction of view models using contextual composition of model operations
(derivation rules) encoded as annotations of queries of the EMF IncQuery [25]
language. Traceability links between view and source model elements are auto-
matically established and maintained. The use of EMF IncQuery natively provides
incremental execution of the derivation rules to synchronize the view model with
the source model. Some views may be derived from other views thus allowing
flow composition as chains of view models. This approach achieves results similar
to TGGs supporting incrementality, however with the drawback of being unidi-
rectional. Similarly, but with bi-directionality the MoTCoF language [65] allows
for both flow and fine grained context composition of model transformations. An
advantage over [29] however is that model transformations are used as black boxes
without the need to adapt the transformations according to the context.

As can be seen, most approaches only support flow type modularity for model
operations with batch execution except for our GMM* language thanks to its
integration of MoTE providing incremental execution. This will not scale and

20

3.3 Megamodels and other Global Model Management Approaches

lead to information losses in case of partial model information overlap. Only
a few approaches allow context modularity, which better supports incremental
application where only the impacted operations can be re-applied following a
change in order to avoid the cost of re-computing complete transformations. Such
is the case of MoTCoF, which theoretically permits incremental execution, but a
concrete technical solution is still lacking for it.

To address modularity and incrementality for model operations, we identified as
main needs:

R 2.1 composition of model operations

R 2.2 model operations over integrated models

R 2.3 execution scheme for model operations

Note that concerning Table 3.1 the requirements cover here Flow and Context
based composition and Batch as well as Incremental Execution at first for all
special cases of model operations and then also for the general case. Consequently,
as visible in Table 3.1, there yet does not exists any approach that fully cover the
envisioned combination of all these requirements we target.

3.3 Megamodels and other Global Model Management
Approaches

Two strands can be identified for GMM. A first one makes use of (1) model integration
languages, which are defined for a specific set of integrated modeling languages
and tools meaning that the integration language must be updated every time a
new language or tool is used. The second strand attempts to solve this problem by
making use of (2) megamodels providing configurable global model management.

(1) Integration Languages and other Approaches:

The CyPhy [68] used in the GME modeling tool and FUSED [15, 35] are examples
of model integration languages. But as mentioned above, these languages must be
adapted as soon as a different set of integrated languages and tools must be used,
thus requiring highly skilled developers. Integration languages are therefore not
practical.

Open Services for Lifecycle Collaboration (OSLC) [59] provides standards for
tool integration through the Web. Many specifications are available for change
management, resource previews, linked data, etc. It builds on the W3C linked data
standard, which aims at providing best practices for publishing structured data on
the Web based on the W3C Resource Description Framework (RDF). RDF is a model
for data interchange on the Web where data is represented as graphs. However,
OSLC is more services (and tools) oriented and inherits the problems of linked data,
which is specific to the Web and therefore does not separate the concerns of data

21

3 Requirements for Global Model Management

representation and persistence as opposed to Model-Driven Engineering (MDE)
where an abstract syntax is used independently of the way the data is stored.

Another approach making use of these standards is [46] and is implemented in
a tool named CONSYSTENT, used to identify and resolve inconsistencies across
viewpoints due to information overlapping. The information of all models involved
during development is captured in a common RDF graph. The approach relies on
a human3 to specify patterns representing semantic equivalence links (semantic
connections) across the graph models. Inconsistency patterns based on these se-
mantic connections are continuously checked over the RDF model for potential
matches identifying inconsistencies. Means to automatically resolve inconsistencies
are under development. However, this approach necessitating the conversion of all
models as a RDF graph is not incremental and will not scale for large models.

(2) Megamodels:

In this second strand, megamodels serve to capture and manage MDE resources
such as modeling languages, model transformations, model correspondences, and
tools used in modeling environments. There are several megamodeling approaches
as already mentioned. AM3 [1] is one of the first ones where a megamodel is
basically a registry for MDE resources. Model transformations are specified with
ATL [3] and model correspondences with the Atlas Model Weaving (AMW) lan-
guage [2]. Similarly, FTG+PM [56] as mentioned above is also a megamodeling
language as well as MegaL Explorer [32] allowing to model the artifacts used in
software development environments and their relations from a linguistic point of
view. The involved software languages and related technologies and technolog-
ical spaces can be captured with linguistic relationships between them such as
membership, subset, conformance, input, dependency, definition, etc. Operations
between entities can also be captured. The artifacts do not need to be represented
as models, but each entity of the megamodel can be linked to a Web resource that
can be browsed and examined. However, the language seems to be used mostly for
visualization providing a better understanding of the developments artifacts but
cannot be executed to perform model management. The aforementioned GMM*
infrastructure [13] consists of a megamodeling language inspired from [44]. Meta-
models can be declared, as well as relations between models of these metamodels.
In particular, synchronization relations can relate models of two different meta-
models making use of the MoTE TGG engine [57] to transform or synchronize the
models. As mentioned earlier, chains of model transformations can be specified
and executed incrementally in response to model change events and subsets of
modeling languages can be declared. GMM* is experimented within the Kaolin
tool [14] making use of complex and rich industrial languages such as AADL and
VHDL thus challenging GMM for realistic specifications.

3An automated method making use of Bayesian Belief Networks is also under study [47].

22

3.3 Megamodels and other Global Model Management Approaches

A new approach to modeling in the large with bidirectional model transforma-
tion has been proposed by Stevens [70]. The work in [70] presents a formalized
notion of a megamodel in the form of a hypergraph, where models are represented
as nodes that can be connected via hyperedges representing bidirectional transfor-
mations. Incremental execution is generally supported by the formalism, however,
a concrete algorithm is only presented for megamodels with a restricted structure
for which a certain notion of correctness can be guaranteed. The author extends
her work in [69] by connecting her previous work to research in the domain of
build systems and introducing a so-called orientation model to steer megamodel
execution, relaxing the restrictions on the megamodel’s structure while maintain-
ing a formal guarantee of correctness. However, the construction of an orientation
model is a manual and potentially challenging process for complex networks of
model operations. Furthermore, the work in [69, 70] abstracts from the technical
realization of model operations and hence does not explicitly consider how opera-
tions such as the computation of model properties may be composed in a modular
manner.

In [40], Gleitze et al. propose an incremental execution strategy for networks
of model transformations, specifically aiming for a solution that provides expla-
nations of cases where the strategy failed to produce a consistent result. While
their strategy is applicable to networks with arbitrary structure, only bidirectional
transformations between pairs of models are considered, limiting the notion of
supported model operations.

Recently, significant progress has also been made in the field of model views
[16], which studies how consistent view models can be derived from a system
description consisting of multiple interrelated models and therefore also relates
to Global Model Management. The most comprehensive and advanced model
view technique is probably the Vitruvius approach [51], which relies on a so-
called virtual single underlying model (V-SUM) for the description of the overall
system under development. The V-SUM is used to integrate the individual models
describing system parts and derive new view models via consistency relations.
Therefore, Vitruvius employs a dedicated incremental algorithm for executing
complex networks of consistency preservation operations. However, the notion of
consistency in [51] is limited to relations between pairs of tuples of model elements
and hence does not support certain model operations such as computation of
model properties using aggregations. Furthermore, intra-model well-formedness
is deliberately not covered and reuse at the mega-model level is not considered.

However, most of these megamodeling approaches only cover to a certain degree
the core ingredients of specifying MDE resources by means of metamodels and
model operations with appropriate modularity and incrementality. Only fragments
of the problem are solved. Furthermore, all these megamodeling languages are
monolithic (column Mon. in Table 3.1) and as a result, predefined megamodel frag-
ments cannot be composed and reused to avoid rebuilding complete megamodel
specifications from scratch for new projects. We note however that aspect-oriented
metamodel composition may be used as an inspiring point and adapted to meg-
amodeling for the specification of distributed megamodels fragments contributing

23

3 Requirements for Global Model Management

cross-cutting information in an integrated megamodel. As for megamodel exe-
cution, FTG+PM, [40, 51, 70], GMM*, and [64, 67] consider automated or semi-
automated execution in response to model changes or modeling events from the
tool’s user interfaces.

The related work demonstrates that for global model management, we need
a view that combines all its facets in a mega model. To address modularity and
incrementiality for modamodels we can conclude that the main needs are:

R 3.1 a megamodeling language with

R 3.1.1 support for metamodels, well-formedness, model operations, integra-
tion views, and traceability links

R 3.1.2 a megamodel operation module concept

R 3.2 a robust incremental megamodel execution scheme

R 3.3 megamodel interfaces

R 3.4 an asynchronous incremental megamodel execution scheme

Note that concerning Table 3.1, the requirements cover here the modular con-
struction as well as incremental execution. As visible in Table 3.1 there do exist
three approaches that do not support modularity but provide a combination of all
the other requirements we target. However, neither of them provides the required
robust incremental megamodel operation execution scheme. The technique in [69,
70], while providing formal guarantees regarding correctness and termination, is
limited to networks of model operations in the form of trees of synchronizations be-
tween pairs of models or requires the manual construction of an orientation model.
The Vitruvius approach [51], by virtue of employing a fixpoint iteration, does not
introduce any restrictions regarding the network’s structure, but consequently does
not guarantee termination. The execution scheme presented in [40] is applicable
to networks of model synchronizations between pairs of models with arbitrary
structure and also guarantees termination. However, outside of performing the
actual execution on the concrete instance, it provides no means of determining
whether a network will eventually terminate with a correct result.

3.4 Summary of the state of the art

This survey of the state of the art demonstrates that several approaches address
the needs for modularity and incrementality raised in this report. However, none
of them fulfill these needs at the three levels of model operations, modeling lan-
guages integration and megamodels that we identify as being required all at once.
Moreover, for certain individual aspects of Global Model Management, solutions
with adequate modularity and incrementality do not even exists yet on their own.
This work specifically targets these essential needs that have not been sufficiently
addressed yet.

24

4 Extended Generalized Discrimination
Networks

In this chapter, we introduce a notion of extended Generalized Discrimination
Networks (eGDNs) and explain how the new formalism can be used as a language
for megamodels.

4.1 Definition of eGDNs

In order to address shortcomings of current solutions and enable the modular and
incremental construction and execution of complex nets of model operations such
as model properties, model consistency operations, model transformations, and
model synchronization, we further generalize the idea of Generalized Discrimina-
tion Networks [6] to extended Generalized Discrimination Networks. Therefore,
we introduce a generalized notion of GDN nodes and their interfaces. This enables
the integration of model operations with side-effects and allows a more flexible
definition of queries in comparison to [6], which also affords increased expressive-
ness.

An eGDN G = (O, S, E, s, t) is essentially a bipartite graph with two kinds of
nodes, slot nodes and operation nodes, where O is the set of operation nodes and
S is the set of slot nodes. Operation nodes can be connected to slot nodes and
vice-versa via edges from the set of edges E. The source and target functions of
edges are given by s : E→ O ∪ S respectively t : E→ O ∪ S.

Operation nodes represent model operations or building blocks thereof, that is,
suboperations. Slot nodes store information used by model operations and their
suboperations in the eGDN. Edges represent dependency relationships between
operation and slot nodes, with the source of an edge representing the required node
and the target of the edge representing the dependent node. An operation node
depending on a slot nodes indicates that the corresponding model operation uses
information stored in that slot. A slot node having a dependency on an operation
node means that the operation node’s model operation modifies the slot’s contents.

We denote the set of dependencies of a slot or operation node n in O ∪ S by
in(n) = {d ∈ O ∪ S|∃e ∈ E : s(e) = d ∧ t(e) = n}. Similarly, we denote the set of
dependent nodes of n by out(n) = {d ∈ O ∪ S|∃e ∈ E : s(e) = n ∧ t(e) = d}. G is
bipartite in the sense that ∀o ∈ O : in(o) ⊆ S ∧ out(o) ⊆ S and ∀s ∈ S : in(s) ⊆
O ∧ out(s) ⊆ O. For an operation node o ∈ O, we also refer to the set of slot nodes
in(o) as the input slots of o and to the set of slot nodes out(o) as the output slots of o.

25

4 Extended Generalized Discrimination Networks

A slot node s is always associated with a modeling language ML or an ordered
set of variables var = {v1, v2, ..., vk} and contains a model (typed graph) of ML
respectively a set of variable assignments for var. A variable assignment for an
ordered set of variables var = {v1, v2, ..., vk} is given by a tuple in domV(v1) ×
...× domV(vk), where dom(vi) denotes the domain of variable vi, which can either
be a set of nodes or edges from one or more models or a set of primitives, e.g.
N. We refer to the set of possible contained assignment sets or models of s as
the slot’s domain, which is given by dom(s) = ML in case s is associated with
a modeling language ML or by dom(s) = P(domV(v1) × ... × domV(vk)) if s is
associated with an ordered set of variables var = {v1, v2, ..., vk}. Contents are then
assigned to an eGDN’s slots via a valuation function val : S → ⋃

s∈S dom(s), such
that ∀s ∈ S : val(s) ∈ dom(s).

In addition to regular models, we also allow model slots to contain linking models.
The only difference between a regular model and linking model is the fact that a
linking model’s set of vertices may reference vertices from other regular and linking
models as edge targets, thus allowing the establishment of inter-model connections.
Therefore, similarly to linking models, the metamodel of a linking model, that is,
the type graph of a linking model, may refer to vertices from other type graphs as
edge targets.

Regarding operation nodes, we further distinguish between query nodes, transfor-
mation nodes, and mixed nodes.

Query nodes extract information from models and/or other queries’ results.
Therefore, a query node q may have an arbitrary number of input slots and exactly
one output slot. q’s input slots may contain both models or sets of variable assign-
ments, whereas q′s output slot may only contain a set of variable assignments.

Transformation nodes create or modify models based on models and/or query
results. Therefore, a transformation node t may have an arbitrary number of in-
put and output slots. t’s input slots may contain both models or sets of variable
assignments, whereas t’s output slots may only contain models.

A mixed node x constitutes a combination of query and transformation nodes
and may have an arbitrary number of input and output slots, which may contain
both models or sets of variable assignments.

Each operation node o with input slots in(o) = {si1 , ..., sik} is associated with a se-
mantics function γS : dom(si1)× ...× dom(sik)→ P(F), where F denotes the set of
functions f : out(o) → ⋃

so∈out(o) dom(so) such that ∀so ∈ out(o) : f (so) ∈ dom(so).
Essentially, the semantics function of an operation node describes a consistency
relationship between the operation’s input and output slots.

To indicate that the contents of the slots adjacent to o are consistent with o’s
semantics function for a valuation function val, we write o.valid(val). Formally,
o.valid(val)↔ ∃ f ∈ γS(val(si1), ..., val(sik)) : ∀so ∈ out(o) : f (so) = val(so).

A valuation function val for an eGDN G = (O, S, E, s, t) is consistent with G as a
whole if it holds that ∀o ∈ O : o.valid(val).

26

4.2 eGDNs as Megamodels

4.2 eGDNs as Megamodels

Since an eGDN encodes a network of model operations connecting a set of poten-
tially integrated models, it represents a megamodel. The definition of eGDNs thus
constitutes a language for megamodels.

Importantly, eGDNs allow the composition of model operations from nodes that
realize suboperations. In addition, they also allow hierarchical composition: An
eGDN (and therefore also a basic GDN or RETE net) can be interpreted as an eGDN
operation node. The input and output slots are given by the input respectively
output slots of its nodes that are connected to another operation node of the parent
eGDN. Any slots of the child eGDN without a connection to another node of the
parent eGDN can act as internal slots of the child and do not have to be exposed
to the parent. However, some such potential internal slots may also be considered
input or output slots if their contents are relevant to human users. The semantics
function of an operation node representing a sub-eGDN is then implicitly defined
by the semantics functions of that eGDN’s own operation nodes.

In addition to (hierarchical) composability, eGDNs support modularity in the
sense that the semantics of an operation node regarding its output slots directly
depend only on the contents of its immediate input slots. Thereby, integrating
additional operation nodes (along with additional slot nodes) into an eGDN only
requires appropriate wiring with the node’s input and output slots, but is com-
pletely independent of any other operation nodes. Effectively, slots thus act as
interfaces between model operations.

eGDNs can also enable modularity at the model level by using the results of
query nodes, potentially along with transformation nodes for propagating changes
from the query results back to the base model, as model interfaces or views. For
instance, simple projection queries in combination with access restrictions can be
employed to implement different visibilities for different roles in a development
process. Alternatively, dedicated view models in conjunction with bidirectional
model synchronization operations can similarly serve to implement editable model
views in the context of eGDNs.

Figure 4.1 shows our graphical notation for the visualization of eGDNs. Slot
nodes are depicted as rectangles and labelled “A” in the top right corner in the
case of assignment slots and “M” in the case of model slots. Model slots that
contain linking models are connected to the model slots containing the linked
models via dashed arrows for visual clarity. Operation nodes are visualized as
rectangles with rounded corners, with query nodes such as model properties
or model consistency checks labelled “Q”, transformation nodes such as model
transformations and model synchronizations labelled “T”, and mixed nodes such
as sub-eGDNs labelled “X” in the top right corner. In addition, all nodes are labeled
according to the schema <name>:<type>.

Figure 4.2 shows an example eGDN that consists of three slot nodes and two
operation nodes and realizes a simple chain of model operations. A class diagram
stored in the leftmost slot is transformed into an abstract syntax graph via a trans-

27

4 Extended Generalized Discrimination Networks

x:
Mixed

X

t:
Trans.

T Transformation Node
(e.g. model transformation,
model synchronization)

Mixed Node
(e.g. subnet)

q:
Query

Q Query Node
(e.g. model property,
model consistency)

o:
Operation

Operation Node
(linked to slots)

a:
Assignment

A

m:
Model

M

Assignment Slot

Model Slot

m:
LinkingModel

M
Model Slot
(Linking Model)

Figure 4.1: Graphical notation for eGDNs

formation node. Then, a query node extracts some information from the created
abstract syntax graph and makes the query result accessible via an assignment slot.

m1:
ClassDiagram

M
t:

Transform

T
q:

Query

Q
m2:
ASG

M
a:

Result

A

Figure 4.2: Simple example eGDN

28

5 Incremental Execution of Extended
Generalized Discrimination Networks

In this chapter, we describe how eGDNs can be executed to restore consistency in
a network of models and model operations in reaction to external changes.

5.1 Definitions regarding Incremental Execution

As a result of edit operations by a user, a model M in the model slot of an eGDN
can undergo changes. In this context, a change corresponds to the creation or
deletion of a vertex or an edge and is characterized by an atomic model delta of
one of four types:

• δV
+ is a single-element tuple (v), with v a vertex; applying δV

+ to M modifies
M into M′ = (VM ∪ {v}, EM, sM, tM)

• δV
− is a single-element tuple (v), with v ∈ VM, applying δV

− to M modifies M
into M′ = (VM \ {v}, EM, sM, tM)

• δE
+ is a tuple (e, s, t), with e an edge and s, t ∈ VM; applying δE

+ to M modifies
M into M′ = (VM, EM ∪ {e}, sM ∪ {(e, s)}, tM ∪ {(e, t)})

• δE
− is a single-element tuple (e), with e ∈ EM; applying δE

− to M modifies M
into M′ = (VM, EM \ {e}, sM \ {(e, sM(e))}, tM \ {(e, tM(e))})

Importantly, this notion of atomic deltas can also cover the case of changes to
attribute values in models in the form of typed attributed graphs [45]. In this
context, attributes can be modeled via dedicated vertices representing attribute
values and edges representing the assignment of these values to attributes of
regular vertices.

Note that we do not allow implicit deletion of edges. If a vertex is deleted, it
must not have any adjacent edges, that is, all adjacent edges have to be deleted
previously. Similarly, if an edge is created, adjacent vertices have to be present in
the model already.

Changes to the assignment set A in a slot s can similarly be described by atomic
slot deltas:

• δA
+ is a single-element tuple (a), where a ∈ dom(s); applying δA

+ to the assign-
ment set A modifies A into A′ = A ∪ {a}

29

5 Incremental Execution of Extended Generalized Discrimination Networks

• δA
− is a single-element tuple (a), where a ∈ dom(s); applying δA

− to the assign-
ment set A modifies A into A′ = A \ {a}

For a slot node s, we denote the set of all possible atomic deltas over dom(s) by
dom∆(s) and the set of all possible sequences of elements in dom∆(s) by S(dom∆(s)).

Atomic deltas can be applied to a model or assignment set via an apply proce-
dure. We overload this procedure to also work with a sequence of atomic deltas,
in which case the procedure applies the individual deltas in the order specified by
the sequence.

We say that a sequence of atomic deltas ∆ is minimal for the contents of a slot
node s, iff for all possible contents v ∈ dom(s), it holds that @∆′ ∈ S(dom∆(s)) :
apply(v, ∆′) = apply(v, ∆), where we only consider equality of graphs up to iso-
morphism.

To enable reacting to model changes with an eGDN G = (O, S, E, s, t), an
operation node o ∈ O with input slots in(o) = {si1 , ..., sik} and output slots
out(o) = {so1 , ..., sol} can be equipped with an update procedure. This proce-
dure is parametrized with a valuation function for G and realizes a function
γδ : dom(si1)× ...× dom(sik)× S(dom∆(si1))× ...× S(dom∆(sik))× dom(so1)× ...×
dom(sol) → F∆, with F∆ the set of functions f∆ : out(o) → ⋃

soi∈out(o) S(dom∆(soi))

such that ∀soi ∈ out(o) : f∆(soi) ∈ S(dom∆(soi)).
To store deltas to react to later, o is also extended by an array o.∆ that caches

sequences of atomic deltas for its input and output slots, which can in practice be
collected via a notification mechanism and the observer design pattern [36].

Calling o.update(val) with val a valuation function for G’s slots then yields the
value of γδ parametrized according to val and the cached sequences of deltas, that
is, o.update(val) = γδ(val(si1), ..., val(sik), o.∆[si1], ..., o.∆[sik], val(so1), ..., val(sol)).

Intuitively, the update procedure of an operation node should produce a sequence
of deltas for the node’s output slots that update the contents of these output slots
to be consistent with the current contents of the operation node’s input slots.
Therefore, in addition to the contents of slots adajcent to o, an update procedure
may also consider additional information in the form of deltas to input slots to
enable a more efficient realization.

Formally, an update procedure update of operation node o with input slots
in(o) = {si1 , ..., sik}, output slots out(o) = {so1 , ..., sol}, and associated function
γδ is correct iff for parameters ∆1 ∈ S(dom∆(si1)), ..., ∆k ∈ S(dom∆(sik)), vi1 ∈
dom(si1), ..., vik ∈ dom(sik), and vo1 ∈ dom(so1), ..., vl ∈ dom(sol),

∃ f ∈ γS(vi1 , ..., vik) : ∀soi ∈ out(o) : apply(voi , f∆(so)) = f (soi),

with f∆ = γδ(∆1, ..., ∆k, vi1 , ..., vik , vo1 , ..., vol) and ∀i ∈ [1, k], j ∈ [1, l] : sii = soj →
vii = voj .

In many cases, the efficient realization of an update procedure requires a relaxed
notion of correctness, which requires the contents of the output slot to be consistent
with the contents of the input slots before the application of the deltas according

30

5.1 Definitions regarding Incremental Execution

to o’s semantics function. In the following, we will refer to this relaxed notion of
correctness as conditional correctness, which is formally given by

∃v′i1 ∈ dom(si1), ..., v′ik
∈ dom(sik) :

(apply(v′i1 , ∆1) = vi1 ∧ ...∧ apply(v′ik
, ∆k) = vik∧

∃ f ′ ∈ γS(v′i1 , ..., v′ik
) :

(∀sii ∈ in(o) ∩ out(o) : v′ii = f ′(sii)∧
∀soi ∈ out(o) \ in(o) : voi = f ′(soi)))

→
∃ f ∈ γS(vi1 , ..., vik) : ∀soi ∈ out(o) : apply(voi , f∆(so)) = f (soi),

with f∆ = γδ(∆1, ..., ∆k, vi1 , ..., vik , vo1 , ..., vol) and ∀i ∈ [1, k], j ∈ [1, l] : sii = soj →
vii = voj .

We say that the realization of an update procedure of an operation node o is
fully incremental iff for a valuation function val and cached deltas ∆1, ..., ∆k with
∑i∈{1,...,k} |∆i| = 1, that is, a single atomic delta as an input, (i) the realization’s
runtime complexity is in O(|∆o|), with ∆o =

⋃
so∈out(o) o.update(val)(so), and (ii)

the produced sets of deltas for each output slot are minimal.
In some cases, as with bidirectional or in-place model transformations, operation

nodes may be connected to a slot via both an incoming and an outgoing edge,
making such a slot simultaneously an input and output slot to the same operation
node. Such an operation node may as a result exhibit recursive behavior, since an
application of its update procedure can also change the contents of the operation
node’s input slots and thus necessitate further calls to update to restore consistency.
In this context, we call an update procedure of an operation node o is non-recursive,
if, after one execution of o’s update function and subsequent application of the
resulting deltas to o’s output slot values, a second execution with updated slot
values never yields any new deltas.

Formally, an update procedure of an operation node o with input slots in(o) =
{si1 , ..., sik} and output slots out(o) = {so1 , ..., sol}, is non-recursive, if for any pos-
sible parametrization vi1 ∈ dom(si1), ..., vik ∈ dom(sik), ∆1 ∈ S(dom∆(si1)), ..., ∆k ∈
S(dom∆(sik)), and vo1 ∈ dom(so1), ..., vol ∈ dom(sol), it holds that

∀so ∈ out(o) : γδ(∆′1, ..., ∆′k, v′i1 , ..., v′ik
, v′o1

, ..., v′ol
)(so) = ∅,

where

∆′i =

{
f∆(si) if sii ∈ out(o)

∆i otherwise

and

v′ii =

{
apply(vii , f∆(si)) if sii ∈ out(o)

vii otherwise

31

5 Incremental Execution of Extended Generalized Discrimination Networks

and

v′oi
= apply(voi , f∆(so1)),

with f∆ = γδ(∆1, ..., ∆k, vi1 , ..., vik , vo1 , ..., vol).
The potential update directions of an update procedure of operation node o for a

set of input slots Si ⊆ in(o) are given by o.dir∆(o, Si), where for a slot so ∈ out(o),

so ∈ o.dir∆(o, Si)↔∃∆1 ∈ S(dom∆(si1)), ..., ∆k ∈ S(dom∆(sik)),

vi1 ∈ dom(si1), ..., vik ∈ dom(sik),

vo1 ∈ dom(so1), ..., vol ∈ dom(sol) :

∀sii ∈ in(o) \ Si : ∆i = ∅∧
γδ(∆1, ..., ∆k, vi1 , ..., vik , vo1 , ..., vol)(so) 6= ∅

Intuitively, o.dir∆(o, Si) thus denotes the subset of output slots for which o’s
update procedure may generate deltas if the contents of at most the input slots in
Si have changed.

A function dir∆ for potential update directions is monotonic by definition in
the sense that ∀Si1 , Si2 ⊆ in(o) : Si1 ⊆ Si2 → o.dir∆(o, Si1) ⊆ o.dir∆(o, Si2). We
say that dir∆ is union monotonic if it furthermore holds that ∀Si1 , Si2 ⊆ in(o) :
o.dir∆(Si1) ∪ o.dir∆(Si2) = o.dir∆(Si1 ∪ Si2).

In the following, we present algorithms for the incremental execution of an
eGDN based on the update procedures of its operation nodes. For these algorithms,
we assume that deltas cached in the input eGDN are consistent in the sense that
they correspond to a modification from slot contents that were consistent with
the semantics functions of all operations in the eGDN to the current contents.
Intuitively, this assumption simply implies that the presented algorithms can only
produce consistent slot contents if the slot contents were previously consistent at
some point and all changes since then have been tracked and cached in the eGDN.

5.2 Incremental Execution with Guaranteed Termination

Given a correct update function for each operation node, an eGDN G = (O, S, E, s, t)
can be executed incrementally in the context of a valuation function val via Algo-
rithm 1. Therefore, Algorithm 1 first derives an ordering of G’s operation nodes and
then updates the val function by executing the nodes’ update functions, applying
the resulting deltas to the appropriate slots, and updating the cached deltas.

Importantly, the employed ordering has to guarantee correct results in the
sense that the contents of G’s slots after the execution must be consistent with
the semantics functions of all of its operation nodes, that is, it must hold that
∀o ∈ O : o.valid(val).

If G takes the form of a directed acyclic graph and operation nodes do not share
output slots, such an ordering can be obtained by simply sorting G’s operation

32

5.2 Incremental Execution with Guaranteed Termination

nodes topologically. However, requiring DAG structure represents a substantial
restriction, as it effectively prohibits bidirectional transformations where some
input slots are also output slots. Moreover, the assumption regarding the complete
absence of shared output slots, while required to prevent overwriting of operation’s
results, is another obstacle to realizing several desirable use cases, for instance those
involving chains of bidirectional transformations.

Based on the properties of an eGDN’s operation nodes with respect to non-
recursiveness and potential update directions, an appropriate order can also be
found for certain cyclical eGDNs, with a relaxed assumption regarding shared
output slots. Algorithm 2 represents an analysis for an eGDN G that contains only
nodes with non-recursive update procedures and a set of slots Si with initially
modified contents. If successful, the algorithm returns an execution order that
can be used instead of the topological ordering in Algorithm 1. Importantly, the
computed ordering still yields a valuation function that is consistent with all
operations’ semantics.

Algorithm 1: Incremental algorithm for executing an eGDN based on an
ordering of its operation nodes

Procedure ExecuteIncrementalDAG(G = (O, S, E, s, t), val)
Input : G: The eGDN

val: A valuation function for G’s slots

1 D ← FindValidUpdateOrder(O, {s ∈ S|∃o ∈ O : o.∆[s] 6= ∅});
2 if D 6= null then
3 foreach o ∈ D do
4 ∆o ← o.update(val);
5 foreach so ∈ out(o) do
6 val(so)← apply(val(so), ∆o(so));
7 foreach o′ ∈ out(so) do
8 o′.∆[so] ∪ ∆o;
9 end

10 end
11 foreach s ∈ in(s) ∪ out(s) do
12 o.∆[s]← ∅;
13 end
14 end
15 end

The algorithm first creates an array C with one cell per operation node in O
and initializes it with empty sets. It also initializes a queue Q with all operation
nodes that are connected to a slot in Si and, for each such operation node, stores
the set of its input slots that are also in Si in the corresponding cell in C. Then, a
slightly modified breadth-first search is performed over the eGDN structure using

33

5 Incremental Execution of Extended Generalized Discrimination Networks

Algorithm 2: Static analysis algorithm for finding an eGDN update order

Procedure FindValidUpdateOrder(G = (O, S, E, s, t), Si)
Input : G: The eGDN

Si: The set of initially changed slots
1 C ← new Array(|O|);
2 C.init(∅);
3 Q← new Queue;
4 GT = new Graph;

5 foreach o ∈ in(Si) ∪ out(Si) do
6 Q.enqueue(o);
7 C[o]← Si ∩ in(o);
8 end
9 GT.addVertices(Q);
10 while ¬Q.isEmpty() do
11 o ← Q.dequeue();
12 So ← o.dir∆(o, C[o]);
13 Oo ← out(So) ∪ in(So) \ {o};
14 foreach o′ ∈ Oo do
15 if ¬o′ ∈ Q then
16 Q.enqueue(o′);
17 end
18 C[o′]← C[o′] ∪ (So ∩ in(o′));
19 GT.addVertexI f NotExists(o′);
20 GT.createEdgeI f NotExists(o, o′);
21 if GT.hasCycle() then
22 return null;
23 end
24 end
25 C[o]← ∅;
26 end
27 return SortTopologically(GT);

34

5.2 Incremental Execution with Guaranteed Termination

the initialized queue Q to essentially simulate an execution of G without concrete
inputs.

Therefore, the procedure loops until Q is empty. In each loop execution, the first
operation node o in Q is dequeued. Then, all output slot nodes for which deltas
could be produced due to the execution of o′s update procedure So are obtained
based on o’s potential update directions and the set of slots that might currently
contain unhandled deltas, which is retrieved from C. Afterwards, all operation
nodes o′ connected to a slot in So are added to Q if they are not yet contained. Also,
the set of o’s input slots with potentially unhandled deltas stored in C is updated
based on So. An exception is made for the currently considered node o, which
is never added to the queue again and whose set of input slots with potentially
unhandled deltas is reset to the empty set, exploiting the assumption that all update
procedures in the eGDN are non-recursive.

During execution, the algorithm keeps track of the dependencies between G’s
operations in a trigger graph GT. Execution aborts by returning null as soon as a
cyclical dependency is detected, which may indicate a potential infinite loop in G’s
execution for the initially populated slots Si. This also guarantees that after a full
execution of the loop in line 10, GT is a DAG.

Finally, a topological ordering of GT, is returned as a possible canonic execution
order that, under the mentioned assumptions, produces a valuation function for
the input eGDN’s slots that is consistent with the semantics functions of all of the
eGDN’s operation nodes.

While the presented algorithm is formulated to handle incremental changes to a
network of models and model operations, the batch case that requires an initial exe-
cution of model operations to derive corresponding query results and transformed
models for an initial set of existing models can be handled in a straightforward
manner. Therefore, an incremental construction of the initially existing models
can be emulated by deriving trivial sequences of corresponding creation opera-
tions, which can act as the starting point for the algorithm. This only requires
the assumption that the case where all slots of an eGDN are empty constitutes a
consistent valuation regarding the semantics of all of the eGDN’s operations, which
seems reasonable. The additional assumption is essentially required to satisfy the
rerquirement regarding consistency of initially cached deltas with the current state.

Termination

By including the additional termination criterion in the loop in line 10 of Algorithm
2 that requires the constructed dependency graph to be acyclic, Algorithm 2 is
guaranteed to terminate.

Theorem 1. Algorithm 2 always terminates.

Proof. Except for the loop in line 10, all loops only iterate over finite sets, and
all individual operations always terminate. The loop in line 10 also always termi-
nates due to the termination criterion regarding cyclical dependencies between the
eGDN’s operation nodes: Since one operation node is removed from Q in each loop

35

5 Incremental Execution of Extended Generalized Discrimination Networks

iteration, termination is only threatened if operation nodes keep getting added to
Q. Since there is only a finite number of operation nodes, infinite behavior can
only occur as a result of cycles in the modified breadth-first search. However, such
cycles are detected via GT and immediately lead to abortion of the execution.

Consequently, Algorithm 1 is also guaranteed to terminate if the execution of the
input eGDN’s update procedures always terminates.

Theorem 2. For an input eGDN G, Algorithm 1 always terminates if the update proce-
dures of G’s operation nodes always terminate.

Proof. According to Theorem 1, Algorithm 2 always terminates by either aborting
or returning a sequence of operation nodes. Such a sequence being returned implies
that the sequence is finite. The loop in line 3 is thus only executed for finitely many
iterations. Since all other loops only iterate over finite sets and all individual oper-
ations always terminate due to the assumption regarding G’s update procedures,
Algorithm 1 always terminates.

Correctness

The following theorem states the correctness of a canonic execution order resulting
from an execution of Algorithm 2 for the case that all dir∆ functions are union
monotonic.

Theorem 3. For inputs G = (O, S, E, s, t) and val, if all update procedures in G are
correct and non-recursive, all dir∆ functions in G are union-monotonic, and if the valuation
function before the application of the deltas cached in G was consistent with the semantics
of G’s operation nodes, Algorithm 1 aborts or produces a final valuation function val such
that ∀o ∈ O : o.valid(val).

Proof. If Algorithm 1 does not abort, a canonic execution order R for G’s operation
nodes has been generated by topologically sorting the resulting directed acyclic
dependency graph GT of a terminating execution of Algorithm 2.

Due to the non-recursiveness of G’s operation nodes, we know that after execut-
ing an operation node o via Algorithm 1, it holds that o.valid(val). Thus, for an
operation node o, ¬o.valid(val) can only hold after executing the entire sequence
R if there exists some operation node o’ that comes after o in R and that changes
the contents of a slot adjacent to o or if o /∈ R. Considering that all operation nodes
that have an adjacent slot with initially modified contents are initially added to GT,
the algorithm has terminated, and that prior to the cached modifications of G’s
slots, slot contents were consistent with all operation nodes’ semantics, for a node
o /∈ R, ¬o.valid(val) can also only hold if there is some operation node o′ ∈ R that
changes the contents of a slot s adjacent to o.

In either case, we know that there cannot exist an edge from o′ to o in GT,
because o′ either comes after o in the topological ordering or because the addition
of such an edge would have caused o to be added to GT and consequently R. This
means that, due to the definition of o′.dir∆ and because of the assumed union

36

5.2 Incremental Execution with Guaranteed Termination

monotonicity, there must be a slot s′ with o′.∆[s] 6= ∅ and s ∈ o′.dir∆({s′}) before
executing o′ that was never in the set of slots C[o′] when o′ was dequeued in line
11 of Algorithm 2. Since slots are only removed from C[o′] when o′ is dequeued
and corresponding edges are added, we know that s′ /∈ Si and thus o′.∆[s′] = ∅
at the start of Algorithm 1, as otherwise, o′ would have been added to Q and the
edge between o′ and o would eventually have been created.

There hence must be a node o′′ that comes before o′ in R that modified the
contents of s′. Also for o′′, there must be a slot s′′ with o′′.∆[s′′] 6= ∅ and s′ ∈
o′′.dir∆({s′′}) before executing o′′ that was never in C[o′′] whenever o′′ was de-
queued (because otherwise, the edge between o′ and o would have been created
eventually). Therefore, again, there must be an operation node before o′′ in R that
modified the contents of s′′ and for which the same constraints apply as for o′′.
Ultimately, this implies that for the first operation node in the sequence, there must
be a predecessor that changes the contents of some slot node, which is obviously a
contradiction.

Hence, there cannot be an operation node in R whose execution changes the
contents of a slot adjacent to a previous operation node in R or an operation
node not contained in R. Consequently, we know that after executing R, ∀o ∈ O :
o.valid(val).

If the eGDN’s update functions are only conditionally correct, an additional
constraint has to be introduced regarding eGDN structure to guarantee correctness.
Namely, operation nodes may not share output slots if the output slots are not also
input slots of all sharing operation nodes, and output slots of a node that are not
simultaneously input slots of the same node may not have their contents modified
by users.

Intuitively, these conditions impose the restriction on the eGDN structure that
the contents of an operation node’s output slot may not be modified by another
operation node or a user without that operation node being able to pick up on and
handle the changes.

Corollary 1. Assuming that ∀o1, o2 ∈ O : o1 6= o2 → ∀s ∈ out(o1) ∩ out(o2) : s ∈
in(o1)∧ s ∈ in(o2) and ∀o ∈ O : ∀s ∈ out(o) : o.∆[s] = ∅, for inputs G = (O, S, E, s, t)
and val, if all update procedures in G are conditionally correct and non-recursive, all dir∆

functions in G are union-monotonic, and if the valuation function before the deltas cached
in G was consistent with the semantics of G’s operation nodes, Algorithm 1 aborts or
produces a final valuation function val such that ∀o ∈ O : o.valid(val).

Proof. From the additional assumptions regarding output slots of G’s operation
nodes it follows directly that the condition in the definition of conditional correct-
ness is never violated. Thus, the statement from Theorem 3 also applies for the case
of conditionally correct update functions.

Notably, the order in which operation nodes are added to the queue Q in lines 5

and 14 of Algorithm 2 is undefined. Since the order of operation nodes in Q affects
the behavior of the algorithm, this might mean that Algorithm 2 is ultimately not
deterministic.

37

5 Incremental Execution of Extended Generalized Discrimination Networks

We can however show that, if Algorithm 2 does not abort due to cycles in GT,
the final dependency graph GT is uniquely defined, independently of the order in
which operation nodes are added to Q. Thus, the only remaining nondeterminism
in Algorithm 2 affecting the result stems from the topological sorting at the end of
the algorithm, which is an inherently nondeterministic operation.

Theorem 4. For inputs G = (O, S, E, s, t) and Si, the dependency graph GT after a full
execution of the loop in line 10 of Algorithm 2 is uniquely defined up to isomorphism if all
dir∆ functions in G are union monotonic.

Proof. The set of vertices initially added to GT is uniquely determined by in(Si) ∪
out(Si). Since additional vertices are only ever added in conjunction with the
creation of an edge, the set of vertices added during the execution of the loop in
line 10 is determined by the set of added edges.

To show the unique determination of added edges by the algorithm’s inputs, we
show that in a terminating execution of the loop, the initial set Si in conjunction
with the eGDN G uniquely determines a set of pairs of operation nodes (o1, o2),
between which directed edges are created in GT.

Si uniquely determines the set of operation nodes OQ = in(Si) ∪ out(Si) that
is initially added to Q. For each of these operation nodes oQ ∈ OQ, due to the
monotonicity of oQ.dir∆ and because slots are only removed from C[oQ] after oQ
has been dequeued and processed, at least the edges for pairs edgesS(oQ, Si) =

{(oQ, oT)|oT ∈ out(So) ∪ in(So) \ {oQ}} are added to GT, where So = oQ.dir∆(Si ∩
in(oQ)) when oQ is dequeued. Due to the assumption regarding union mono-
tonicity, we can also write edgesS(oQ, Si) = edges∅(oQ)∪

⋃
si∈Si∩in(oQ) edgesN(oQ, si),

with edges∅(oQ) = {(oQ, oT)|oT ∈ out(oQ.dir∆(∅)) ∪ in(oQ.dir∆(∅)) \ {oQ}} and
edgesN(oQ, si) = {(oQ, oT)|oT ∈ out(oQ.dir∆(in(oQ) ∩ {si})) ∪ in(oQ.dir∆(in(oQ) ∩
{si})) \ {oQ}}.

In addition, the modification of C and Q that takes place for each dequeued
oQ ∈ OQ may cause the addition of further edges down the line. Specifically, for
each so ∈ oQ.dir∆({si}) and each oT ∈ out(so) ∪ in(so) \ {oQ}, oT, if not already
contained, is added to Q and subsequently handled in the same way as oQ, with
si guaranteed to be in C[oT] at that moment. This will cause the addition of all
edges corresponding to the pairs edgesN(oT, so) and again trigger the addition
of further edges. Due to the monotonicity of oT.dir∆ and because slots are only
removed from C[oT] when oT is dequeued, the addition of these edges happens
independently from any other modifications to C[oT] that might be made in the
meantime. Furthermore, due to the assumption regarding union monotonicity of
oT.dir∆, a combination of modifications of C[oT] cannot yield any additional edges
compared to what is yielded for the individual members of C[oT].

Because neither can C[oT] be modified in any other way, nor can edges be added
to GT in any other way, the set of pairs of operation nodes (o1, o2) between which
directed edges are created in GT in the loop is given by the function edges(Si) =⋃

oQ∈in(Si)∪out(Si)(edges∅(oQ) ∪
⋃

si∈Si∩in(oQ) edgesR(oQ, si)), where edgesR(oQ, si) =

edgesN(oQ, si) ∪
⋃

oT∈OT))\{oQ}
⋃

so∈oQ.dir∆(in(oQ)∩{si} edgesR(oT, so), where OT is given
by OT = out(oQ.dir∆(in(oQ) ∩ {si})) ∪ in(oQ.dir∆(in(oQ) ∩ {si}.

38

5.2 Incremental Execution with Guaranteed Termination

The loop terminating due to Q becoming empty implies that all nodes ever added
to Q have been processed and hence all corresponding edges have been added to
GT. Since it is ensured that for each pair of operation nodes (o1, o2), only one corre-
sponding edge is added, we know that regardless of the concrete processing order,
GT always contains exactly one directed edge for each pair (o1, o2) ∈ edges(Si).

Since the set of added vertices is uniquely determined by the set of added edges
and each vertex can only be added once, the set of GT’s vertices is uniquely defined
for inputs G and Si.

The graph GT at the end of a full execution of the loop in line 10 of Algorithm
2 is hence uniquely defined for inputs G and Si, regardless of the order in which
operation nodes are added to Q in lines 5 and 14.

The fact that GT is uniquely defined by the inputs G and Si also implies that
if an execution of Algorithm 1 terminates without aborting, so does any possible
execution for the same inputs.

Theorem 5. An execution of the loop in line 10 of Algorithm 1 terminates without aborting
for inputs G = (O, S, E, s, t) and Si if and only if any other execution for the same inputs
also terminates without aborting.

Proof. According to Theorem 1, the loop in line 10 of Algorithm 1 always terminates,
either because of a violation of the looping condition or because the loop aborts.
Since the loop aborts if and only if a cycle is detected in GT at any point and edges
are never removed from GT, it follows that the loop terminates without aborting if
and only if the set of edges added to GT during the loop execution does not form
cycles. Since the set of edges added to GT during the loop execution is functionally
determined by only the inputs G and Si, it hence follows that, if an execution of
the loop terminates without aborting for G and Si, any execution with the same
inputs will also terminate without aborting.

Furthermore, we can show that if there exists an execution sequence for G that
guarantees correct results in the worst case and that executes every operation node
at most once, Algorithm 2 finds such a sequence.

Theorem 6. For an input eGDN G = (O, S, E, s, t) with correct and non-recursive
update procedures with union monotonic dir∆ functions and a set of slots Si ⊆ S with
initially modified contents for a valuation function val, assuming that

1. for any operation node o1 ∈ O, for any execution of o1.update(val′) with a valua-
tion function val′ and deltas for input slots S∆, it holds that ∀so ∈ o1.dir∆(S∆) :
o1.update(val′)(so) 6= ∅,

2. for a second node o2 ∈ O with o1 6= o2, it holds that ∃so ∈ out(o1) ∩ in(o2) :
o1.update(val′)(so) 6= ∅→ ¬o2.valid(val′′), where for s ∈ S

val′′(s) =

{
apply(val′(s), o1.update(val′)(s)) if s ∈ out(o1) ∩ in(o2)

val′(s) otherwise
(5.1)

and

39

5 Incremental Execution of Extended Generalized Discrimination Networks

3. it holds that ∀o ∈ in(Si) ∪ out(Si) : ¬o.valid(val),

if there exists a sequence that guarantees a correct resulting valuation function if executed
via Algorithm 1 and that only contains each node o ∈ O once, Algorithm 2 returns such a
sequence.

Proof. Under the given assumptions, the set of edges in GT created by Algorithm
before termination or abortion represents a subset of all relations between pairs of
operation nodes (o1, o2), where o1’s update procedure has to be executed at least
once to produce a correct final valuation function and that execution modifies
the contents of a slot adjacent to o2, necessitating the subsequent execution of o2

according to assumption (2).
This is due to the fact that, to restore consistency, all operation nodes in o ∈

in(Si) ∪ out(Si) have to be executed at least once according to assumptions (2) and
(3). All these operation nodes o1 are initially added to the queue Q in Algorithm
2. Each execution of an operation node o1, according to assumption (1), modifies
all slots in o1.dir∆(Si ∩ in(o1)), which necessitates a subsequent execution of all
operation nodes o2 ∈ in(o1.dir∆(Si ∩ in(o1))) ∪ out(o1.dir∆(Si ∩ in(o1))) according
to assumption (2). Algorithm 2 creates edges for all these pairs (o1, o2) when o1 is
dequeued.

The subsequent execution of any operation node o2 similarly necessitates the exe-
cution of all nodes o3 ∈ in(o2.dir∆(Si ∩ in(o2)))∪ out(o2.dir∆(Si ∩ in(o2))), which is
also reflected by the edges created in Algorithm 2 when o2 is dequeued, and so on.
Since the algorithm creates no additional edges due to the assumption regarding
union monotonicity of the dir∆ functions, all edges in GT represent such necessary
relationships on the ordering of operation nodes1.

Since Algorithm 2 always produces a correct sequence of operation nodes if GT

is acyclic, we can assume that in the case where the algorithm does not produce
an ordering, there is at least one cycle in GT. There hence cannot exist a sequence
of the operation nodes involved in this cycle where each node is only contained
once and each node is executed at least once after its predecessor in the cycle. Thus,
by contraposition it follows that, if there exists a sequence of operation nodes that
guarantees correct results and where each operation node is only contained once,
Algorithm 2 finds such a sequence.

Note that there may be finite orders of operation node executions that guarantee
correct results based on the assumptions in Theorem 6 that are not found by
Algorithm 2. However, these orders require that at least one operation node is
executed at least twice.

1As a side note, since operation nodes can be dequeued/executed with different sets of potentially
modified input slots, an edge between nodes (o1, o2) in GT does not necessarily mean that o2 has
to be executed after any execution of o1, but only that such a subsequent execution is necessary at
least once.

40

5.3 Incremental Execution of Arbitrary eGDNs

5.3 Incremental Execution of Arbitrary eGDNs

If the eGDN is not a DAG and no suitable ordering of its operation nodes can be
found via Algorithm 2, incremental execution can instead be achieved via a simple
fixpoint iteration as in Algorithm 3.

Algorithm 3: Incremental algorithm for eGDN execution

Procedure ExecuteIncremental(G = (O, S, E, s, t), val)
Input : G: The eGDN

val: A valuation function for G’s slots

1 D ← {o ∈ O|∃s ∈ in(o) ∪ out(o) : o.∆[s] 6= ∅};
2 while D 6= ∅ do
3 Dn ← ∅;
4 foreach o ∈ D do
5 D ← D \ {o};
6 ∆o ← o.update(val);
7 foreach s ∈ in(s) ∪ out(s) do
8 o.∆[s]← ∅;
9 end
10 foreach so ∈ out(o) do
11 if ∆o(so) 6= ∅ then
12 val(so)← apply(val(so), ∆o(so));
13 foreach o′ ∈ out(so) do
14 o′.∆[so] ∪ ∆o;
15 if o′ /∈ D then
16 Dn ← Dn ∪ {o′};
17 end
18 end
19 foreach o′ ∈ in(so) do
20 if o′ 6= o ∧ o′ /∈ D then
21 Dn ← Dn ∪ {o′};
22 end
23 end
24 end
25 end
26 end
27 D ← Dn;
28 end

Algorithm 3 first initializes the set of operation nodes that require execution D
with the set of all operation nodes in the input eGDN for which there are changes

41

5 Incremental Execution of Extended Generalized Discrimination Networks

in one of the node’s input or output slots. Then, the algorithm iterates until a
fixpoint is reached.

Therefore, a set of operation nodes that will require execution in the next iteration
Dn is initialized with the empty set. Afterwards, for each operation node o that
is due for execution in the current iteration, that node is removed from the set D.
Then, o’s update procedure is called to compute a set of changes to the contents of
o’s output slots to make them consistent with the semantics of o.

For each output slot so of o that update has computed changes for, these changes
are subsequently applied and appropriately registered at each operation node o′

for which so is an input slot. If any such o′ is not still due for execution in the
current iteration, it is marked for execution in the next iteration by adding it to Dn.
Operation nodes for which so is an output slot are similarly marked for execution.
Finally, after all operation nodes in D have been considered, Dn replaces D and a
new iteration starts if Dn is not empty.

Analogously to Algorithm 1, Algorithm 3 can handle the batch case of an initial
eGDN execution for existing models by encoding such existing models as sequences
of element creations.

Termination

In contrast to Algorithm 1, Algorithm 3 is not guaranteed to terminate, since cyclical
transitive dependencies of operation nodes may cause infinite cycles of changes
to the contents of some slot node. Without restricting developers in what kinds of
eGDNs they are allowed to specify, this problem is inevitable.

In practice however, termination of networks of model operations like eGDNs
can be achieved despite the presence of cyclical structures. In some cases for in-
stance, cycles at the network level do not necessarily correspond to actual cyclical
dependencies of model operations if the involved model operations only affect
distinct parts of slot contents, such as elements of certain, distinct types. In some
cases, a restructuring of the eGDN may remove cycles at the structural level while
preserving semantics, for instance by converting in-place model transformations
without an effective reflexive dependency into a model transformation with distinct
input and output models.

Moreover, cycles of model operations may exhibit monotonic behavior, for in-
stance by deleting certain elements in each iteration that are never recreated, thus
guaranteeing convergence. Ultimately however, it remains the responsibility of the
developers to create networks of model operations that do not lead to infinite loops
in execution.

Correctness

If Algorithm 3 terminates, the resulting valuation function is guaranteed to be
consistent with the semantics of all operation nodes in the input eGDN.

Theorem 7. For inputs G = (O, S, E, s, t) and val, if Algorithm 3 terminates, all employed
update procedures are correct and non-recursive, and if the valuation function before the ap-

42

5.3 Incremental Execution of Arbitrary eGDNs

plication of the deltas cached in G was consistent with the semantics of G’s operation nodes,
the algorithm produces a final valuation function val such that ∀o ∈ O : o.valid(val).

Proof. We show that the invariant (1) ∀o ∈ O : ¬o.valid(val)→ o ∈ D holds for the
loop in line 2 via induction over the number of loop iterations.

The base case for invariant (1) holds due to the initialization of D and the
assumption regarding the initial cached deltas and previous valuation function.

To show the induction step for invariant (1), we first show that under the induc-
tion assumption, the invariant (2) ∀o ∈ O : ¬o.valid(val) → o ∈ D ∪ Dn holds for
the loop in line 10. This can also be done via induction.

The base case for invariant (2) holds due to the induction assumption of (1).
The induction step holds for invariant (2) since in each iteration of the inner loop,

only one operation node o is executed via its update procedure and removed from
D, updating val and the cached deltas in the process. If the execution of o does
not change the contents of one of its own input slots, we know that afterwards,
o.valid(val) due to the assumption regarding correctness of update procedures and
because the cached deltas are always updated correctly. Otherwise, o is added to
Dn in the loop in line 13. The loops in line 13 and 19 also add all operation nodes o′

to Dn for which the result of o′.valid(val) may have been impacted by the update
to val. Thus, given the induction assumption, at the end of the loop in line 10, we
again have ∀o ∈ O : ¬o.valid(val) → o ∈ D ∪ Dn and hence the induction step
holds.

Since at the end of the loop in line 10, D = ∅, we know that ∀o ∈ O :
¬o.valid(val) → o ∈ Dn. Because at the end of the iteration of the loop in line
2, the set D is replaced by Dn, the induction step for (1) holds.

Since the loop in line 2 is only left when D = ∅ after the replacement with Dn,
we know that, if the algorithm terminates, ∀o ∈ O : o.valid(val).

Similar to Algorithm 1, the algorithm also yields correct results if all employed
update procedures are at least conditionally correct, the eGDN’s nodes do not share
output slots that are not also input slots to all sharing nodes, and there are no deltas
for an output slot of a node that is not simultaneously an input slot.

Corollary 2. Assuming that ∀o1, o2 ∈ O : o1 6= o2 → ∀s ∈ out(o1) ∩ out(o2) : s ∈
in(o1)∧ s ∈ in(o2) and ∀o ∈ O : ∀s ∈ out(o) : o.∆[s] = ∅, for inputs G = (O, S, E, s, t)
and val, if Algorithm 3 terminates, all employed update procedures are conditionally correct
and non-recursive, and if the valuation function before the deltas cached in G was consistent
with the semantics of G’s operation nodes, it produces a final valuation function val such
that ∀o ∈ O : o.valid(val).

Proof. From the additional assumptions regarding output slots of G’s operation
nodes, it follows directly that the condition in the definition of conditional correct-
ness is never violated. Thus, the statement from Theorem 7 also applies for the case
of conditionally correct update functions.

43

5 Incremental Execution of Extended Generalized Discrimination Networks

5.4 Development with eGDNs

Since Algorithm 2 considers only the eGDN structure and no concrete slot contents,
it can be employed as a tool for statically analyzing eGDNs. In particular, via the
algorithm, configurations of slots with modified contents can be analyzed regarding
termination of a corresponding eGDN execution. For instance, the algorithm can
be used to check whether termination is guaranteed if a specific individual model
is modified.

If this is the case for all user-editable models, a conservative approach that
always guarantees terminating eGDN executions and correct results while avoiding
the exponential effort of executing the analysis for every combination of user-
editable models would be enforcing a direct propagation policy. Under this policy,
after modifying a single model, the corresponding changes would immediately be
propagated to restore consistency. Only after that, the modification of a different
model would be permitted.

Furthermore, Algorithm 2 can be adapted to return the set of slots closure∆(Si)

that may be automatically modified by eGDN operations if the eGDN were to be
executed via Algorithm 1 with initially modified slots Si. This enables collabora-
tive development of a network of models managed via an eGDN with guaranteed
termination and conflict-free consistency restoration via a propagation closure locking
policy. For a set of already modified slots S∆, this policy would only allow modifica-
tion of the contents of another slot s if, for the set S∆ ∪ {s}, Algorithm 2 produces
an execution order. Furthermore, to guarantee that no user edits are overwritten,
the policy would check whether S∆ ∪ {s} ∩ closure∆(S∆ ∪ {s}) = ∅. Note that the
restrictions of this policy would also apply in the case where the same user wants
to edit the contents of multiple slots.

Since Algorithm 3 does not guarantee termination, careful consideration is re-
quired if an eGDN cannot be executed via Algorithm 1. However, if developers are
confident that their eGDN is guaranteed to terminate despite cyclical dependencies
at the structural level, Algorithm 3 can be used as a fallback option for eGDN
execution.

The presented algorithms also enable the treatment of sub-eGDNs as operation
nodes of a parent eGDN, as they essentially provide a realization of the required
update procedure.

44

6 Implementation

We have prototypically implemented a number of concrete example operation node
types for the construction of eGDNs for usage in the context of the Eclipse Modeling
Framework (EMF) [26]. In addition to listing the implemented operations’ names,
Table 6.1 also provides brief descriptions of their behavior. Table 6.2 characterizes
our implementations in terms of the properties defined in this report.

Non-recursiveness: The update procedure of TGG Snychronisation operations is
non-recursive if the slots containing source, target, and correspondence model are
distinct. The non-recursiveness of composite nodes depends on the exact composi-
tion of the sub-eGDN. All other nodes’ update procedures are only guaranteed to
be non-recursive if their input and output slots are distinct. The checkmark symbol
Xindicates non-recursive update procedures under this assumption.

Potential Population/Update Directions: The potential update directions of the
TGG Synchronization (↔) can be characterized as follows (under the assumption of
distinct slots for source, target, and correspondence model): If the set of considered
input slots is empty, no modifications will be made to the contents of any output
slot. If the set of considered input slots contains only the source model, the opera-
tion will only modify the target model and correspondence model and vice-versa.
In all other cases, all models may be modified. The potential update directions of
composite nodes are determined by the exact structure of the sub-eGDN. All other
nodes may modify the contents of all of their output slots for any set of considered
input slots. The potential update direction function dir∆ of all example nodes is
union monotonic.

Correctness: The update procedures of all operation implementations are only
conditionally correct. Effectively, this means that operations may not share output
slots and no user edits are allowed to output slots of operation nodes, unless the
shared or edited output slot is also simultaneously an input slot of the concerned
operation nodes.

Incrementality: The checkmark symbol Xindicates a fully incremental update
procedure under the assumption of ideal data structures. Also operations which
are listed as not fully incremental support incremental execution to some extent.
The degree of incrementality depends on the operation and its concrete inputs.
Naturally, our implementation of the Expression node is only fully incremental if
the evaluation of the considered expression has a runtime complexity in O(1). In the
case of the Pattern Matching and TGG Synchronization node, a fully incremental
execution can be achieved for certain input models and patterns respectively TGGs.
The degree of incrementality of the execution of an eGDN or sub-eGDN depends
on which slots are designated the eGDN’s interface slots, as well as the contained
operation nodes and their composition. While the Group Expression node also has

45

6 Implementation

a partially incremental update procedure, due to the handling of collections via the
employed OCL-interpreter, a fully incremental execution is usually not possible.

As interfaces between these operations, that is, slot nodes, our implementation
employs regular EMF models for model slots and hash-based indices for assign-
ment slots. While the choice of hash-based indices over array-based indices means
that the theoretically fully incremental operation implementations may not be fully
incremental in conjunction with our slot implementations, hash-based data struc-
tures are usually preferable in practice due to their lower memory footprint and
exhibit acceptable performance in most scenarios.

Figure 6.1 shows a more complex version of the example eGDN from Figure 4.2
that can be realized using the introduced example eGDN nodes from Table 6.1.
The transformation from class diagram to abstract syntax graph is now concretely
realized via a unidirectional TGG Synchronization. The query operation that was
previously represented by a single query node is decomposed into a complex
network of subqueries. This sub-eGDN consists of two Pattern Matching nodes
labeled “x → y” that look for primitive patterns consisting of a single edge, one
Group Count and one Group Sum node visualized as nodes labeled “COUNT (X)”
respectively “SUM (X)”, and a Join node labeled “./”. Alternatively, the Pattern
Matching nodes could also be realized as Edge Inputs.

m1:
ClassDiagram

M t:
TGG Sync.

(→)

T

q3:
COUNT

(per Type)

Q

m2:
ASG

M

a5:
Assignment

A

q1:
Type →
Method

Q

a1:
Assignment

A

q2:
Package →

Type

Q

a2:
Assignment

A

a3:
Assignment

A

q4: Q
a4:

Assignment

A q5:
SUM

(per Package)

Q

q:
eGDN

Q

m3:
Corr.

Model

M

Figure 6.1: Complex example eGDN

46

6 Implementation

Name Description
RETE Nodes
Node Input extracts individual nodes of a given type from a model
Edge Input extracts individual edges of a given type from a model
Join performs a natural join of assignments stored in two input

assignment slots
Anti-Join performs an anti-join of a left input assignment slot against

a right input assignment slot
GDN Nodes
Pattern Matching finds matches for a given pattern into a model; supports

additional constraints formulated in OCL [58]; supports
constraints regarding the existence/absence of matches for
other patterns via dependencies to related assignment slots

Property Computation Nodes
Expression computes the value of an OCL [58] expression for individ-

ual assignments
Group Expression computes the value of an OCL [58] expression for collec-

tions of assignments grouped by certain variables
Group Count counts the number of assignments in collections of assign-

ments grouped by certain variables
Group Sum computes the sum of numerical values of a specific variable

in collections of assignments grouped by certain variables
Transformation Nodes
TGG Sync. (→) performs unidirectional model synchronization of changes

from a source to a target and associated correspondence
model via a triple graph grammar [63]

TGG Sync. (↔) performs bidirectional model synchronization of changes
between a source, target, and associated correspondence
model via a triple graph grammar [63]

Composite Nodes
eGDN executes a sub-eGDN to update the contents of exposed

slots via Algorithm 1 or Algorithm 3

Table 6.1: Example eGDN node types

47

6 Implementation

Name Non-recursive Directions Correct Incremental
RETE Nodes
Node Input X all cond. X
Edge Input X all cond. X
Join X all cond. X
Anti-Join X all cond. X
GDN Nodes
Pattern Matching X all cond. (X)
Property Computation Nodes
Expression X all cond. (X)
Group Expression X all cond. ∼
Group Count X all cond. X
Group Sum X all cond. X
Transformation Nodes
TGG Sync. (→) X all cond. (X)
TGG Sync. (↔) X * cond. (X)
Composite Nodes
eGDN ? ? cond. (X)

Table 6.2: Properties of example eGDN node types

48

7 Evaluation

In this chapter, we report on an initial empirical evaluation based on our proto-
typical implementation. Moreover, we describe how eGDNs can be employed in a
typical application scenario, evaluating the developed approach with respect to the
requirements from Chapter 3.

7.1 Evaluation of Performance

For an initial empirical evaluation of the proposed approach, we perform an exper-
iment inspired by an application scenario from the software development domain,
where an evolving class diagram serves as the basis for generating object-oriented
code, which is subsequently analyzed to compute code metrics.

Therefore, we have implemented a simple model transformation from Ecore
models [26] to Java abstract syntax graphs [17] via a triple graph grammar. For each
class in the class diagram, the transformation creates an interface in the Java abstract
syntax graph in a first package, along with an implementation class in a second
package. Also, for each attribute of a class in the class diagram, the transformation
creates a corresponding field and associated getter and setter methods in the
corresponding interface and class in the abstract syntax graph.

In addition, we have realized a model query composed of several subqueries,
which counts the number of methods in all types of a Java package. The transforma-
tion and query are integrated into an eGDN, which yields the structure displayed
in Figure 6.1.

Using our prototypical implementation, which is available under [30], we assign
a real-world Ecore model [17] to the class diagram model slot and perform an
initial population of the remaining slots via Algorithm 1. To evaluate the scalability
of the eGDN, we then apply a number of synthetic updates to the model in the
class diagram slot, each of which adds an attribute to each class in the model, and
measure the time required for the eGDN to process each such update via Algorithm
1 (“INCREMENTAL”). We compare this to a baseline, where instead, we perform a
full recomputation of both the model transformation’s and the query’s results via
non-incremental implementations of the corresponding operations (“BATCH”).1

1All experiments were performed on a Linux SMP Debian 4.19.67-2 machine with Intel Xeon E5-2630

CPU (2.3 GHz clock rate) and 386 GB system memory running OpenJDK version 11.0.6. Reported
execution time measurements correspond to the mean execution time of 10 runs of the respective
experiment.

49

7 Evaluation

Figure 7.1 displays the execution times for the first 30 updates. After an initial
phase comprising the first 5 updates, where execution time decreases from update
to update, the execution time for processing an update to the class diagram via
the strategy INCREMENTAL does not change much. In particular, there does not
seem to be any trend of increasing execution time related to the growth of the class
diagram as additional updates are being performed. In contrast, the execution time
of BATCH increases from update to update as the class diagram grows. While it
starts out similar to the execution time of INCREMENTAL (larger by factor 1.6), by
update 30 the execution time of BATCH has increased to factor 80 compared to the
execution time of INCREMENTAL.

0

5000

10000

15000

20000

5 10 15 20 25 30

ex
ec

ut
io

n
tim

e
(m

s)

update number

INCREMENTAL BATCH

Figure 7.1: Execution time measurements for class diagram updates

The measurements thus indicate that incremental eGDN execution via INCRE-
MENTAL efficiently handles updates to the class diagram, in the sense that exe-
cution time only seems to depend on the actual changes rather than the size of
the model, indeed affording incrementality. Therefore, eGDNs seem to constitute a
suitable formalism for a scalable, modular and incremental realization of networks
of model operations for this scenario. The decreasing execution times per update
during the initial phase of the experiment can likely be attributed to warming-up
effects of the Java virtual machine.

The internal validity of our results is mostly threatened by unexpected behavior
of the Java virtual machine, most notably garbage collection. To mitigate such
effects, the reported execution time measurements were obtained as the arithmetic
mean of multiple runs of the experiment, with the standard deviation of the overall
execution time always below 5% of the overall execution time.

The synthetic updates used in the experiment pose a threat to external validity.
However, the experiment is inspired by a real-world application scenario and
uses a real-world model as its basis and demonstrates the applicability of the
eGDN approach in this scenario. The synthetic updates only serve the purpose
of allowing a systematic evaluation of our technique’s scalability. We hence do
not make any quantitative claims regarding our approach in practical application
scenarios, but merely consider our experimental results as an indicator for the

50

7.2 Evaluation of Applicability

presented approach’s potential. We furthermore do not make claims regarding the
generalizability of the approach to other application domains, which would require
further evaluation and is left for future work.

7.2 Evaluation of Applicability

In order to investigate the applicability of the developed technique, we consider
the following extended example scenario that requires global model management:
A class diagram, adhering to a metamodel similar to the one displayed in Figure
2.1, is used to model the structure of a software system under development by
means of classes contained in packages. Classes may contain methods, which may
in turn reference classes as the method’s return type. OCL expressions in a separate
model are used to describe the behavior of some of the class diagram’s methods.
Therefore, the OCL model has its own representation of types corresponding to the
classes in the class diagram. This correspondence is captured by means of a linking
model, which simply contains dedicated link vertices. A link vertex can either have
edges to a class from the class diagram and the corresponding type from the OCL
model or edges to a method in the class diagram and the corresponding expression,
that is, implementation, in the OCL model.

We consider the following use cases for this setup:

• Consistency Checking: The developers want to run automatic and incre-
mental consistency checks that verify that the return type of a method in
the class diagram matches the corresponding type of the method’s OCL-
implementation. The developed consistency check should also work for simi-
lar setups that use a different expression language than OCL for the method
implementations. An implementation for this use case thus requires a solution
satisfying the requirements R 1.1, R 1.2, R 2.2, and R 2.3.

• Code Generation: The developers want to automatically and incrementally
generate Java code in the form of an ASG from the class diagram. In addition,
Java implementations for the class diagram’s methods should be generated
from the methods’ OCL implementations. In the end, the resulting Java code
fragments for the two models should be integrated and analyzed for some
code metrics. An implementation for this use case thus requires a solution
satisfying the requirements R 2.1, R 2.2, and R 2.3.

• Megamodel Reuse: After developing the automatic consistency checking and
code generation, the developers want to reuse the same two operations in
another project with a similar set of models. An implementation for this use
case thus requires a solution satisfying the requirements R 3.1.2, R 3.2, R 3.3,
and R 3.4.

In order to allow global model management for all three use cases, a solution also
has to enable the modeling of a network of different kinds of model operations over

51

7 Evaluation

a set of potentially integrated models, that is, a solution has to satisfy requirement
R 3.1.1.

Figures 7.3, 7.2, and 7.4 visualize example eGDN implementations for the Con-
sistency Checking, Code Generation, and Megamodel Reuse use cases, respectively.

As displayed in Figure 7.3, the Consistency Checking use case is realized via four
Pattern Matching query nodes that extract certain simple patterns from the base
models and make them accessible in a generalized format via assignment slots.
Then, a complex query operation, which is composed of three Join query operations
and an Anti-Join query operation (labelled B), realizes the actual consistency check
by finding all the combinations of a method from the class diagram, its implemen-
tation from the OCL model, and the associated return class respectively expression
type, where the return class and expression type do not correspond. Thus, the
eGDN-based approach in this case fulfills the requirements R 1.1 and R 2.2, as it
implements a consistency check over a set of models integrated via integration
links. Furthermore, the resulting implementation is reusable for different modeling
languages that offer similar functionality via the generic interface provided by
the assignment slots a1, a2, a3, and a7, satisfying requirement R 1.2. The example
eGDN also demonstrates how more complex model operations can be composed
from simpler operations, satisfying requirement R 2.1, and provides an incremental
execution scheme for these operations, satisfying requirement R 2.3. In particular,
via Algorithm 2, it can be verified that Algorithm 1 provides a means of executing
the eGDN that guarantees both correct results and termination for changes to any
combination of the three base models.

The eGDN shown in Figure 7.2 realizes the Code Generation use case via a com-
bination of two TGG Synchronizations that translate the class diagram and OCL
model into Java ASGs. The two Java models are integrated via a dedicated link-
ing model, which is produced by a unidirectional model transformation from the
original linking model and the correspondence models created by the TGG Syn-
chronizations. Finally, query operations can be executed over the ASGs to compute
code metrics. Using Algorithm 2 to analyze the eGDN, it can be determined that
terminating execution via Algorithm 1 can be guaranteed for changes to any com-
bination of the three base models. This example shows how the eGDN provides
a unified, modular notion of model operations along with an incremental execu-
tion scheme and demonstrates the composition of model operations, satisfying
requirements R 2.1, R 2.2, and R 2.3.

Together, the eGDNs in Figure 7.3 and 7.2 also illustrate how eGDNs can be
used as a megamodeling language, supporting different kinds of model operations,
including model properties (like the metrics computed in the Code Generation
use case), model consistency (like the consistency condition in the Consistency
Checking use case), and model transformation and synchronization (like the trans-
formation and synchronizations in the Code Generation use case). It also shows
how integration views (like the cross-model consistency query results in slot a8 in
Figure 7.3) and traceability links (like the correspondence models produced by the
TGG Synchronizations) can be represented in the language. While not present in
the example eGDNs, the class diagram and OCL metamodel are models themselves

52

7.2 Evaluation of Applicability

and could simply be made explicit by including them in dedicated model slots.
Well-formedness conditions for metamodels or regular models can be realized and
treated as regular query operations. eGDNs thus satisfy the requirement R 3.1.1.

Finally, the eGDN realization of the Megamodel Reuse use case in Figure 7.4
considers the eGDNs from Figure 7.3 and 7.2 as operation nodes in an overarching
eGDN. This exemplifies how eGDNs offer modularity and incrementality at the
megamodel level by considering sub-eGDNs as regular operations that can be
executed via the general execution scheme, which also permits the accumulation
of several changes before execution. The example thus illustrates the satisfaction of
requirements R 3.1.2, R 3.2, and R 3.4. The eGDN also demonstrates how slots act
as interfaces for these megamodel operations, satisfying requirement R 3.3.

Thus, eGDNs can be employed to realize the functionality required by the three
example use cases, satisfying the requirements regarding model operations, model-
ing languages integration, and megamodels introduced in Section 3 in this scenario.

Table 7.1 summarizes the coverage of the requirements by the example use cases
and the eGDN approach, with “◦” denoting that the realization of a use case relates
to a requirement and “X” indicating that a requirement is satisfied by eGDNs in
this scenario.

m1:
ClassDiagram

M
m2:
OCL

M
m3:

LinkingModel

M

t1:
TGG Sync.

(↔)

T t2:
TGG Sync.

(↔)

Tm5:
Corr.
OCL

M

m6:
ASG

M
m7:
ASG

M

t3:
Transform

T

m8:
LinkingModel

M

m4:
Corr.

ClassDiagram

M

q1:
Query

Q
q2:

Query

Q

metric1:
Assignment

A
metric2:

Assignment

A

codegen & analysis:
eGDN

X

Figure 7.2: Sample eGDN realizing the Code Generation use case

53

7 Evaluation

m1:
ClassDiagram

M
m2:
OCL

M
m3:

LinkingModel

M

q1:
Method →

Class

Q q2:
Expression →

Type

Q
q3:

Method ← Link → Expression

Q

q4: Q q5: Q

a1:
Assignment

A
a3:

Assignment

A
a2:

Assignment

A

a4:
Assignment

A
a5:

Assignment

A

q6: Q

a6:
Assignment

A

q8:

▷
Q

q7:
Class ← Link → Type

Q

a7:
Assignment

A

a8:
Assignment

Aconsistency:
eGDN

Q

Figure 7.3: Sample eGDN realizing the Consistency Checking use case

54

7.2 Evaluation of Applicability

m1:
ClassDiagram

M
m2:
OCL

M
m3:

LinkingModel

M

q1:
Method →

Class

Q q7:
Class ← Link → Type

Q
q3:

Method ← Link → Expression

Q

a1:
Assignment

A
a3:

Assignment

A
a7:

Assignment

A

q2:
Expression →

Type

Q

a2:
Assignment

A

consistency:
eGDN

Q

m6:
ASG

M
m7:
ASG

M
m8:

LinkingModel

M
metric1:

Assignment

A
metric2:

Assignment

A

a8:
Assignment

A

codegen
& analysis:

eGDN

X

Figure 7.4: Sample eGDN realizing the Megamodel Reuse use case

55

7 Evaluation

C
on

si
st

en
cy

C
he

ck
in

g

C
od

e
G

en
er

at
io

n
M

eg
am

od
el

Re
us

e

eG
D

N
s

R 1.1: modeling languages integration ◦ X
R 1.2: interfaces for embedding of modeling languages ◦ X
R 2.1: composition of model operations ◦ X
R 2.2: model operations over integrated models ◦ ◦ X
R 2.3: execution scheme for model operations ◦ ◦ X
R 3.1.1: megamodeling language ◦ ◦ ◦ X
R 3.1.2: megamodel operation module concept ◦ X
R 3.2: robust megamodel execution scheme ◦ X
R 3.3: megamodel interfaces ◦ X
R 3.4: asynchronous megamodel execution scheme ◦ X

Table 7.1: Coverage of requirements from Chapter 3

56

8 Conclusion

In this report, we have developed a further generalization of the GDN mechanism
called eGDNs, which enables the modular and incremental construction and execu-
tion of complex networks of model operations, including model properties, model
consistency, model transformation and model synchronization. In addition to a
formal definition of eGDNs, we have provided incremental algorithms for their
execution. Moreover, we have presented a number of example eGDN nodes that
we have prototypically implemented in order to perform an initial empirical evalu-
ation of the approach regarding scalability. Our experiments, which are based on
an application scenario from the software development domain, indicate that the
introduced technique can be employed to realize efficient Global Model Manage-
ment. Moreover, we have conceptually evaluated our approach against identified
requirements of global model management solutions.

In future work, we plan to perform a more extensive evaluation with respect to
both expressiveness and performance of eGDNs in real application scenarios. This
may also involve the implementation of additional types of eGDN nodes and may
ultimately result in the implementation of true tool support for the specification
and execution of eGDNs. Furthermore, we will investigate how the presented
concepts can be extended to the case of evolving modeling landscapes that consist
of multiple distinct versions. We will also explore how such an extension may help
alleviate problems such as potential infinite loops or overwriting of user edits in
eGDN execution via the derivation of additional versions.

Acknowledgements

This work was developed mainly in the course of the project modular and incre-
mental Global Model Management (project number 336677879), which is funded
by the Deutsche Forschungsgemeinschaft.

57

Bibliography

[1] AM3 Project Homepage. https://wiki.eclipse.org/AM3. Last accessed 25

January 2023.

[2] AMW Project Homepage. https://projects.eclipse.org/projects/mode
ling.gmt.amw/. Last accessed 25 January 2023.

[3] ATL Project Homepage. https://eclipse.org/atl/. Last accessed 25 January
2023.

[4] ATLFlow Project Homepage. http://opensource.urszeidler.de/ATLflow/.
Last accessed 25 January 2023.

[5] AToMPM Project Homepage. https://atompm.github.io/. Last accessed 25

January 2023.

[6] T. Beyhl, D. Blouin, H. Giese, and L. Lambers. “On the operationalization
of graph queries with generalized discrimination networks”. In: International
Conference on Graph Transformation. Springer. 2016, pages 170–186.

[7] T. Beyhl, R. Hebig, and H. Giese. “A Model Management Framework for
Maintaining Traceability Links”. In: Software Engineering 2013 Workshopband.
Edited by S. Wagner and H. Lichter. Volume P-215. Lecture Notes in Infor-
matics (LNI). Aachen: Gesellschaft für Informatik (GI), Feb. 2013, pages 453–
457.

[8] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. “Modeling in the Large
and Modeling in the Small”. In: Model Driven Architecture. Volume 3599/2005.
Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2005, pages 33–
46.

[9] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. “Modeling in the large
and modeling in the small”. In: Model Driven Architecture. Springer, 2004,
pages 33–46.

[10] J. Bézivin, F. Jouault, and P. Valduriez. “On the Need for Megamodels”. In:
Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Devel-
opment workshop, 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 2004.

[11] X. Blanc, A. Mougenot, I. Mounier, and T. Mens. “Incremental Detection of
Model Inconsistencies Based on Model Operations”. In: CAiSE ’09: Proceedings
of the 21st International Conference on Advanced Information Systems Engineering,
Amsterdam, The Netherlands. Volume 5565/2009. Berlin, Heidelberg: Springer
Verlag, Aug. 2009, pages 32–46.

58

https://wiki.eclipse.org/AM3
https://projects.eclipse.org/projects/modeling.gmt.amw/
https://projects.eclipse.org/projects/modeling.gmt.amw/
https://eclipse.org/atl/
http://opensource.urszeidler.de/ATLflow/
https://atompm.github.io/

Bibliography

[12] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. “Kompren: modeling
and generating model slicers”. In: Software & Systems Modeling 14.1 (2015),
pages 321–337.

[13] D. Blouin, Y. Eustache, and J.-P. Diguet. “Extensible Global Model Manage-
ment with Meta-model Subsets and Model Synchronization”. In: Proceedings
of the 2nd International Workshop on The Globalization of Modeling Languages co-
located with ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages and Systems, GEMOC@Models 2014, Valencia, -. 2014, pages 43–
52.

[14] D. Blouin, G. Ochoa Ruiz, Y. Eustache, and J.-P. Diguet. “Kaolin: a System-
level AADL Tool for FPGA Design Reuse, Upgrade and Migration”. In:
NASA/ESA International Conference on Adaptive Hardware and Systems (AHS).
Montréal, Canada, June 2015.

[15] M. Boddy, M. Michalowski, A. Schwerdfeger, H. Shackleton, S. Vestal, and
A. Enterprises. “FUSED: A Tool Integration Framework for Collaborative
System Engineering”. In: Analytic Virtual Integration of Cyber-Physical Systems
Workshop. 2011.

[16] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer. “A feature-based survey
of model view approaches”. In: Software & Systems Modeling 18.3 (2019),
pages 1931–1952.

[17] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. “MoDisco: a generic and
extensible framework for model driven reverse engineering”. In: Proceedings
of the IEEE/ACM international conference on Automated software engineering. 2010.
doi: 10.1145/1858996.1859032.

[18] H. Bruneliere, J. G. Perez, M. Wimmer, and J. Cabot. “EMF Views: A View
Mechanism for Integrating Heterogeneous Models”. In: Conceptual Modeling -
34th International Conference, ER 2015, Stockholm Sweden, October 19-22, 2015,
Proceedings. 2015, pages 317–325.

[19] J. Cabot and E. Teniente. “Incremental Evaluation of OCL Constraints”. In:
CAiSE’06: 18th International Conference on Advanced Information Systems Engi-
neering, Luxembourg, Luxembourg. Volume 4001/2006. Lecture Notes in Com-
puter Science (LNCS). Springer Verlag, May 2006, pages 81–95.

[20] CoEST Project Homepage. http://www.coest.org/. Last accessed 25 January
2023.

[21] Composite EMF Models Project Homepage. http://www.mathematik.uni-
marburg.de/~swt/compoemf/. Last accessed 25 January 2023.

[22] C. Debreceni, A. Horvath, A. Hegedus, Z. Ujhelyi, I. Rath, and D. Varro.
“Query-driven Incremental Synchronization of View Models”. In: Proceedings
of the 2Nd Workshop on View-Based, Aspect-Oriented and Orthographic Software
Modelling. VAO ’14. New York, NY, USA: ACM, 2014, 31:31–31:38.

59

https://doi.org/10.1145/1858996.1859032
http://www.coest.org/
http://www.mathematik.uni-marburg.de/~swt/compoemf/
http://www.mathematik.uni-marburg.de/~swt/compoemf/

Bibliography

[23] A. Egyed. “Instant Consistency Checking for the UML”. In: ICSE ’06: Pro-
ceedings of the 28th International Conference on Software Engineering. Shanghai,
China, 20-28 May 2006, pages 381–390.

[24] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. EATCS. Springer, 2006. doi: 10.1007/3-540-31188-2.

[25] EMF-IncQuery Project Homepage. https://www.eclipse.org/incquery/.
Last accessed 25 January 2023.

[26] EMF: Eclipse Modeling Framework. https://www.eclipse.org/modeling/
emf/. Last accessed 25 November 2022.

[27] EMF Views Project Homepage. http://atlanmod.github.io/emfviews/.
Last accessed 25 January 2023.

[28] Epsilon Project Homepage. http://eclipse.org/epsilon/. Last accessed 25

January 2023.

[29] A. Etien, A. Muller, T. Legrand, and X. Blanc. “Combining Independent
Model Transformations”. In: Proceedings of the 2010 ACM Symposium on Ap-
plied Computing. SAC ’10. New York, NY, USA: ACM, 2010, pages 2237–2243.

[30] Extended Generalized Discrimination Networks Evaluation Artifacts. https://
github.com/hpi-sam/Extended-GDNs. Last accessed 25 November 2022.

[31] J.-M. Favre. “Foundations of Model (Driven) (Reverse) Engineering – Episode
I: Story of The Fidus Papyrus and the Solarus”. In: Post-Proceedings of Dagstuhl
Seminar on Model Driven Reverse Engineering. 2004.

[32] J.-M. Favre, R. Lämmel, and A. Varanovich. “Modeling the linguistic architec-
ture of software products”. In: Proceedings of the 15th international conference
on Model Driven Engineering Languages and Systems. MODELS’12. Berlin, Hei-
delberg: Springer-Verlag, 2012, pages 151–167.

[33] F. Fleurey, B. Baudry, R. France, and S. Ghosh. “Models in Software Engi-
neering”. In: edited by H. Giese. Berlin, Heidelberg: Springer-Verlag, 2008.
Chapter A Generic Approach for Automatic Model Composition, pages 7–15.

[34] C. L. Forgy. “Rete: A fast algorithm for the many pattern/many object pattern
match problem”. In: Readings in Artificial Intelligence and Databases. Elsevier,
1989, pages 547–559.

[35] FUSED Project Homepage. http://www.adventiumlabs.com/. Last accessed
25 January 2023.

[36] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, J. Vlissides, et al. Design pat-
terns: elements of reusable object-oriented software. Pearson Deutschland GmbH,
1995.

60

https://doi.org/10.1007/3-540-31188-2
https://www.eclipse.org/incquery/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://atlanmod.github.io/emfviews/
http://eclipse.org/epsilon/
https://github.com/hpi-sam/Extended-GDNs
https://github.com/hpi-sam/Extended-GDNs
http://www.adventiumlabs.com/

Bibliography

[37] H. Giese, S. Neumann, and S. Hildebrandt. “Model Synchronization at Work:
Keeping SysML and AUTOSAR Models Consistent”. In: Graph Transforma-
tions and Model Driven Enginering - Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday. Edited by G. Engels, C. Lewerentz, W. Schäfer, A.
Schürr, and B. Westfechtel. Volume 5765. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2010, pages 555–579.

[38] H. Giese, S. Neumann, O. Niggemann, and B. Schätz. “Model-Based Integra-
tion”. In: Model-Based Engineering of Embedded Real-Time Systems - International
Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9, 2007. Revised Se-
lected Papers. Edited by H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz.
Volume 6100. Lecture Notes in Computer Science. Springer, 2011, pages 17–
54.

[39] H. Giese and R. Wagner. “From model transformation to incremental bidi-
rectional model synchronization”. In: Software & Systems Modeling 8.1 (2009),
pages 21–43.

[40] J. Gleitze, H. Klare, and E. Burger. “Finding a universal execution strategy for
model transformation networks”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer, Cham. 2021, pages 87–107.

[41] I. Groher, A. Reder, and A. Egyed. “Incremental Consistency Checking of
Dynamic Constraints”. In: Fundamental Approaches to Software Engineering.
Edited by D. Rosenblum and G. Taentzer. Volume 6013. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pages 203–217.

[42] A. Habel and K.-H. Pennemann. “Correctness of high-level transformation
systems relative to nested conditions”. In: Mathematical Structures in Computer
Science 19.2 (2009), pages 245–296.

[43] E. N. Hanson, S. Bodagala, and U. Chadaga. “Trigger condition testing and
view maintenance using optimized discrimination networks”. In: IEEE Trans-
actions on Knowledge and Data Engineering 14.2 (2002), pages 261–280.

[44] R. Hebig, A. Seibel, and H. Giese. “On the Unification of Megamodels”. In:
Proceedings of the 4th International Workshop on Multi-Paradigm Modeling (MPM
2010). Edited by V. Amaral, H. Vangheluwe, C. Hardebolle, L. Lengyel, T.
Magaria, J. Padberg, and G. Taentzer. Volume 42. Electronic Communications
of the EASST. 2011.

[45] R. Heckel, J. M. Küster, and G. Taentzer. “Confluence of typed attributed
graph transformation systems”. In: International Conference on Graph Transfor-
mation. Springer. 2002, pages 161–176.

[46] S. J. Herzig, A. Qamar, and C. J. Paredis. “An Approach to Identifying Incon-
sistencies in Model-based Systems Engineering”. In: Procedia Computer Science
28.0 (2014). 2014 Conference on Systems Engineering Research, pages 354–
362. issn: 1877-0509. doi: http://dx.doi.org/10.1016/j.procs.2014.
03.044.

61

https://doi.org/http://dx.doi.org/10.1016/j.procs.2014.03.044
https://doi.org/http://dx.doi.org/10.1016/j.procs.2014.03.044

Bibliography

[47] S. J. Herzig and C. J. Paredis. “Bayesian Reasoning Over Models”. In: 11th
Workshop on Model Driven Engineering, Verification and Validation MoDeVVa
2014. 2014, page 69.

[48] A. Hessellund and A. Wasowski. “Interfaces and Metainterfaces for Mod-
els and Metamodels”. In: Model Driven Engineering Languages and Systems.
Edited by K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Wolter. Vol-
ume 5301. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pages 401–415.

[49] J. Johannes and U. Assmann. “Concern-Based (de)composition of Model-
Driven Software Development Processes”. In: Model Driven Engineering Lan-
guages and Systems. Edited by D. Petriu, N. Rouquette, and O. Haugen. Vol-
ume 6395. Lecture Notes in Computer Science. 10.1007/978-3-642-16129-2_5.
Springer Berlin / Heidelberg, 2010, pages 47–62.

[50] S. Jurack and G. Taentzer. “A Component Concept for Typed Graphs with
Inheritance and Containment Structures”. In: Graph Transformations - 5th Inter-
national Conference, ICGT 2010 Enschede, The Netherlands, September 27 - October
2, 2010. Proceedings. 2010, pages 187–202.

[51] H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger, and R. Reuss-
ner. “Enabling consistency in view-based system development—the vitruvius
approach”. In: Journal of Systems and Software 171 (2021), page 110815.

[52] Kompose Project Homepage. http://www.kermeta.org/mdk/kompose. Last
accessed 25 January 2023.

[53] H. König and Z. Diskin. “Efficient consistency checking of interrelated mod-
els”. In: European Conference on Modelling Foundations and Applications. Springer.
2017, pages 161–178.

[54] D. Langsweirdt, N. Boucke, and Y. Berbers. “Architecture-Driven Devel-
opment of Embedded Systems with ACOL”. In: Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2010 13th IEEE
International Symposium on. May 2010, pages 138–144.

[55] H. Lochmann and A. Hessellund. “An Integrated View on Modeling with
Multiple Domain-Specific Languages”. In: Proceedings of the IASTED Inter-
national Conference Software Engineering (SE 2009). ACTA Press, Feb. 2009,
pages 1–10.

[56] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. “FTG+PM: An
Integrated Framework for Investigating Model Transformation Chains”. In:
SDL 2013: Model-Driven Dependability Engineering. Edited by F. Khendek, M.
Toeroe, A. Gherbi, and R. Reed. Volume 7916. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pages 182–202.

[57] MoTE Project Homepage. http://www.mdelab.org/mdelab-projects/mote-
a-tgg-based-model-transformation-engine/.

[58] Object Management Group. Object Constraint Language Specification. https:
//www.omg.org/spec/OCL/. Last accessed 25 November 2022.

62

http://www.kermeta.org/mdk/kompose
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
https://www.omg.org/spec/OCL/
https://www.omg.org/spec/OCL/

Bibliography

[59] OSLC Project Homepage. http://open-services.net/. Last accessed 25

January 2023.

[60] R. F. Paige, D. S. Kolovos, L. Rose, N. Drivalos, and F. A. C. Polack. “The
Design of a Conceptual Framework and Technical Infrastructure for Model
Management Language Engineering”. In: Engineering of Complex Computer
Systems, 2009 14th IEEE International Conference on. June 2009, pages 162–171.

[61] C. C. Raţiu, W. K. Assunção, R. Haas, and A. Egyed. “Reactive links across
multi-domain engineering models”. In: Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems. 2022, pages 76–
86.

[62] J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. Bautista, and A. Vallecillo.
“Orchestrating ATL Model Transformations”. In: In Proc. of MtATL 2009: 1st
International Workshop on Model Transformation with ATL. Edited by F. Jouault.
Nantes, France, July 2009, pages 34–46.

[63] A. Schürr. “Specification of graph translators with triple graph grammars”.
In: Proc. of the 20th International Workshop on Graph-Theoretic Concepts in Com-
puter Science. Edited by E. W. Mayr, G. Schmidt, and G. Tinhofer. Volume 903.
Lecture Notes in Computer Science. Herrsching, Germany: Spinger Verlag,
June 1994, pages 151–163.

[64] A. Seibel, R. Hebig, and H. Giese. “Traceability in Model-Driven Engineering:
Efficient and Scalable Traceability Maintenance”. In: Software and Systems
Traceability. Edited by J. Cleland-Huang, O. Gotel, and A. Zisman. Springer
London, 2012, pages 215–240.

[65] A. Seibel, R. Hebig, S. Neumann, and H. Giese. “A Dedicated Language for
Context Composition and Execution of True Black-Box Model Transforma-
tions”. In: 4th International Conference on Software Language Engineering (SLE
2011) , Braga, Portugal. July 2011.

[66] A. Seibel, S. Neumann, and H. Giese. “Dynamic hierarchical mega models:
comprehensive traceability and its efficient maintenance”. In: Software &
Systems Modeling 9.4 (2010), pages 493–528.

[67] A. Seibel, S. Neumann, and H. Giese. “Dynamic hierarchical mega models:
comprehensive traceability and its efficient maintenance”. In: Software and
Systems Modeling 9.4 (2010), pages 493–528.

[68] G. Simko, T. Levendovszky, S. Neema, E. Jackson, T. Bapty, J. Porter, and
J. Sztipanovits. “Foundation for model integration: Semantic backplane”. In:
ASME 2012 International Design Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference. American Society of Mechanical
Engineers. 2012, pages 1077–1086.

[69] P. Stevens. “Connecting software build with maintaining consistency between
models: towards sound, optimal, and flexible building from megamodels”.
In: Software and Systems Modeling 19.4 (2020), pages 935–958.

63

http://open-services.net/

Bibliography

[70] P. Stevens. “Maintaining consistency in networks of models: bidirectional
transformations in the large”. In: Software and Systems Modeling 19.1 (2020),
pages 39–65.

[71] Z. Ujhelyi, G. Bergmann, A. Hegedus, A. Horvath, B. Izso, I. Rath, Z. Szatmari,
and D. Varro. “EMF-IncQuery: An integrated development environment for
live model queries”. In: Science of Computer Programming 98, Part 1 (2015).
Fifth issue of Experimental Software and Toolkits (EST): A special issue on
Academics Modelling with Eclipse (ACME2012), pages 80–99.

[72] H. Vangheluwe, J. de Lara, and P. J. Mosterman. “An introduction to multi-
paradigm modelling and simulation”. In: Proceedings of the AIS2002 Conference
(2002). 2002.

[73] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi.
“Road to a reactive and incremental model transformation platform: three
generations of the VIATRA framework”. In: Software & Systems Modeling 15.3
(2016), pages 609–629.

[74] A. Vignaga, F. Jouault, M. Bastarrica, and H. Brunelière. “Typing artifacts in
megamodeling”. In: Software & Systems Modeling 12 (2013), pages 105–119.

64

Current Technical Reports
of the Hasso-Plattner-Institut

Vol. ISBN Title Authors/Editors

153 978-3-86956-551-4 Human pose estimation
for decubitus
prophylaxis

Benedikt Weber

152 978-3-86956-550-7 Abschlussbericht
Forschungsprojekt
„RailChain“

Lukas Pirl

151 978-3-86956-547-7 HPI Future SOC Lab –
Proceedings 2018

Christoph Meinel, Andreas Polze,
Karsten Beins, Rolf Strotmann,
Ulrich Seibold, Kurt Rödszus,
Jürgen Müller

150 978-3-86956-546-0 openHPI : 10 Jahre
MOOCs am
Hasso-Plattner-Institut

Christoph Meinel, Christian
Willems, Thomas Staubitz,
Dominic Sauer, Christiane
Hagedorn

149 978-3-86956-545-3 Implementing a
crowd-sourced picture
archive for Bad
Harzburg

Rieke Freund, Jan Philip Rätsch,
Franziska Hradilak, Benedikt
Vidic, Oliver Heß, Nils Lißner,
Hendrik Wölert, Jens Lincke, Tom
Beckmann, Hirschfeld Robert

148 978-3-86956-544-6 openHPI : 10 Years of
MOOCs at the Hasso
Plattner Institute

Christoph Meinel, Christian
Willems, Thomas Staubitz,
Dominic Sauer, Christiane
Hagedorn

147 978-3-86956-533-0 Modeling and formal
analysis of
meta-ecosystems with
dynamic structure using
graph transformation

Boris Flotterer, Maria Maximova,
Sven Schneider, Johannes Dyck,
Christian Zöllner, Holger Giese,
Christelle Hély, Cédric Gaucherel

146 978-3-86956-532-3 Probabilistic metric
temporal graph logic

Sven Schneider, Maria Maximova,
Holger Giese

145 978-3-86956-528-6 Learning from failure : a
history-based,
lightweight test
prioritization technique
connecting software
changes to test failures

Falco Dürsch, Patrick Rein, Toni
Mattis, Robert Hirschfeld

ISBN 978-3-86956-555-2
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Models
	2.2 Discrimination Networks
	2.2.1 RETE nets
	2.2.2 Generalized Discrimination Networks

	3 Requirements for Global Model Management
	3.1 Models and Modeling Languages Integration: Construction and Execution
	3.1.1 Construction

	3.2 Model Operations: Construction and Execution
	3.3 Megamodels and other Global Model Management Approaches
	3.4 Summary of the state of the art

	4 Extended Generalized Discrimination Networks
	4.1 Definition of eGDNs
	4.2 eGDNs as Megamodels

	5 Incremental Execution of Extended Generalized Discrimination Networks
	5.1 Definitions regarding Incremental Execution
	5.2 Incremental Execution with Guaranteed Termination
	5.3 Incremental Execution of Arbitrary eGDNs
	5.4 Development with eGDNs

	6 Implementation
	7 Evaluation
	7.1 Evaluation of Performance
	7.2 Evaluation of Applicability

	8 Conclusion
	Bibliography
	Current Technical Reports of the Hasso-Plattner-Institut

