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Like conventional software projects, projects in model-driven software engineer-
ing require adequate management of multiple versions of development artifacts,
importantly allowing living with temporary inconsistencies. In the case of model-
driven software engineering, employed versioning approaches also have to handle
situations where different artifacts, that is, different models, are linked via auto-
matic model transformations.

In this report, we propose a technique for jointly handling the transformation of
multiple versions of a source model into corresponding versions of a target model,
which enables the use of a more compact representation that may afford improved
execution time of both the transformation and further analysis operations. Our
approach is based on the well-known formalism of triple graph grammars and
a previously introduced encoding of model version histories called multi-version
models. In addition to showing the correctness of our approach with respect to the
standard semantics of triple graph grammars, we conduct an empirical evaluation
that demonstrates the potential benefit regarding execution time performance.
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1 Introduction

In model-driven software development, models are treated as primary develop-
ment artifacts. Complex projects can involve multiple models, which describe the
system under development at different levels of abstraction or with respect to dif-
ferent system aspects and can be edited independently by a team of developers. In
this case, consistency of the holistic system description is ensured by model trans-
formations that automatically derive concrete models from more abstract ones or
propagate changes to a model describing one aspect of the system to other models
concerned with different but overlapping aspects [20].

Similarly to program code in conventional software development, the evolution
of models via changes made by different developers requires management of the
resulting versions of the software description. In particular, version management
has to support parallel development activities of multiple developers working on
the same development artifact, where living with inconsistencies of a single artifact
may temporarily be necessary to avoid loss of information [8]. In [2], we have
introduced multi-version models as a means of managing multiple versions of the
same model that also enables monitoring the consistency of the individual model
versions and potential merge results of versions developed in parallel.

However, with model transformations effectively linking multiple models via
consistency relationships, considering only the evolution of a single model without
its context is insufficient for larger model-driven software development projects.
Thus, a mechanism for establishing consistency of different versions of such linked
models that simultaneously allows parallel development of multiple versions is
required.

Such a mechanism would allow working with more compact representations
that also enable further analysis operations as described in [2]. In addition, an
integrated handling of multiple model versions may afford an improved execution
time performance of the transformation.

In this report, we propose a first step in the direction of model transforma-
tions working on multi-version models by adapting the well-known formalism of
triple graph grammars, which enables the implementation of single-version model
transformations, to the multi-version case.

The remainder of the report is structured as follows: In Section 2, we briefly
reiterate the basic concepts of graphs, graph transformations, triple graph gram-
mars, and multi-version models, as used in this report. Subsequently, we present
our approach for deriving transformation rules that work on multi-version models
from single-version model transformation specifications in the form of triple graph
grammars in Section 3. In Section 4, we describe how the derived rules can be
used to realize the joint transformation of all individual model versions encoded



1 Introduction

in a multi-version model and prove the correctness of our technique with respect
to the semantics of triple graph grammars. Section 5 reports on the results of an
initial evaluation of the presented solution’s performance regarding execution time,
which is based on an application scenario in the software development domain.
Related work is discussed in Section 6, before Section 7 concludes the report.



2 Preliminaries

In this section, we give a brief overview of required preliminaries regarding graphs
and graph transformations, triple graph grammars and multi-version models.

2.1 Graphs and Graph Transformations

We briefly reiterate the concepts of graphs, graph morphisms and graph transfor-
mations and their typed analogs as defined in [6] and required in the remainder of
the report.

A graph G = (VC,EC,sC,tC) consists of a set of nodes V, a set of edges E© and
two functions s : E¢ — VG and t© : E¢ — V© assigning each edge its source and
target, respectively. A graph morphism m : G — H is given by a pair of functions
m" : V6 — VH and mf : E6 — EH that map elements from G to elements from
H such that s o mF = m" 05 and tH o mF = m" o t©. We also call m" the vertex
morphism and m® the edge morphism.

A graph G can be typed over a type graph TG via a typing morphism type : G —
TG, forming the typed graph GT = (G, type®). In this report, we consider a model
to be a typed graph, with the type graph defining a modeling language by acting
as a metamodel.

A typed graph morphism between two typed graphs GT = (G, type®) and HT =
(H, type') with the same type graph then denotes a graph morphism m’ : G — H
such that type® = type!’ om?’. A (typed) graph morphism m is a monomorphism
iff its functions m" and m® are injective.

Figure 2.1 shows an example typed graph G from the software development
domain along with the corresponding type graph TG. The typing morphism is
encoded by the node’s labels. G represents an abstract syntax graph of a program
written in an object-oriented programming language, where nodes may repre-
sent class declarations (ClassDecl), field declarations (FieldDecl) or type accesses
(TypeAccess). Class declarations may contain field declarations via edges of type
declaration, whereas field declarations can reference a class declaration as the field
type via a TypeAccess node and edges of type access and type. The example graph
contains two class declarations, one of which contains a field declaration, the field
type of which is given by the other class declaration.

A (typed) graph transformation rule r is characterized by a span of (typed)

graph monomorphisms L & K 5 R and can be applied to a graph G via a
monomorphism m : L — G called match that satisfies the so-called dangling
condition [6]. The result graph H of the rule application is then formally defined

10



2.1 Graphs and Graph Transformations

G TG
c,:ClassDecl c,:ClassDecl ClassDecl
declaration type declaration type
A A
access access
f,:FieldDecl t,:TypeAccess FieldDecl » TypeAccess

Figure 2.1: example graph and type graph

by a double pushout over an intermediate graph [6]. Intuitively, the application of
r deletes the elements in m(L) that do not have a corresponding element in R and
creates new elements for elements in R that do not have a corresponding element
in L. The graph L is also called the rule’s left-hand side, K is called the rule’s glueing
graph, and R is called the right-hand side.

r is called a graph production if it does not delete any elements, that is, | is
surjective. In this case, since L and K are isomorphic with / an isomorphism
and we only distinguish graphs up to isomorphism, we also use the simplified
representation L — R.

Figure 2.2 shows an example graph production in shorthand notation, where
preserved elements are colored black, whereas created elements are colored green
and marked by an additional “++” label. For two existing classes, the production
creates a field declaration in one of them that references the other class declaration
as the field type.

c,:ClassDecl c,:ClassDecl

Figure 2.2: example graph transformation rule in shorthand notation

We denote a sequence of applications of rules from a set of rules R to a graph G
with resulting graph G’ by G —R G’. We say that such a rule application sequence
is maximal if it cannot be extended by any application of a rule from R.

Definition 1. Maximal Rule Application Sequence A sequence of rule applications
G —R G’ with a set of (multi-version or original) forward rules R is maximal if no
rule from R is applicable to G'.

11



2 Preliminaries

2.2 Triple Graph Grammars

Triple graph grammars were initially presented by Schuerr [19]. This report is based
on the slightly adapted version introduced in [9].

In [9], a triple graph grammar (TGG) relates a source and a target modeling
language via a correspondence modeling language and is characterized by a set
of TGG rules. A TGG rule is defined by a graph production that simultaneously
transforms connected graphs from the source, correspondence and target modeling
language into a consistently modified graph triplet. The set of TGG rules has to
include a dedicated axiom rule, which has a triplet of empty graphs as its left-hand
side and practically defines a triplet of starting graphs via its right-hand side.

The left-hand side of a TGG rule r = L -+ R can be divided into the source,
correspondence, and target domains Ls, Lc, and Lt respectively, with Ls C L,
Lc €L ,and Lg € L and LsWwW Lc W Lg = L. The right-hand side can similarly
be divided into three domains Rgs, Rc, and Rr. The type graph for graph triplets
and TGG rules is hence given by the union of the type graphs defining the source,
correspondence, and target language along with additional edges connecting nodes
in the correspondence language to nodes in the source and target language.

Figure 2.3 shows a TGG rule for linking the language for abstract syntax graphs
given by the type graph in Figure 2.1 to a modeling language for class diagrams
given by the type graphs TT in Figure 2.4, using the correspondence language
TC from Figure 2.4. The rule simultaneously creates a FieldDecl and TypeAccess
along with associated edges in the source domain (labeled S) and a corresponding
Association with associated edges in the target domain (labeled T), which are linked
via a newly created correspondence node of type CorrField in the correspondence
domain (labeled C).

v

cc,:CorrClass

c,:ClassDecl c,:ClassDecl ¢}
v

o cc,:CorrClass -+ uc,:Class uc,:Class

Figure 2.3: example TGG rule in shorthand notation

TGGs can be employed to transform a model of the source language into a
model of the target language. This requires the derivation of so-called forward

rules from the set of TGG rules.FA forward rule for a TGG rule r = L = R can be
constructed as rF = LF & LF =5 R, where Lf = LU (Rs\ (L)) and f = ruid,
with id the identity morphism. Intuitively, ¥ already requires the existence of the

12



2.2 Triple Graph Grammars

TC T

CorrClass Class

source T T target

CorrField Association

Figure 2.4: example type graphs for the TGG rule in Figure 2.3

elements in the source domain that would be created by an application of r and
only creates elements in the correspondence and target domain. In the following,
we also denote the subgraph of a forward rule that corresponds to the subgraph
that is newly transformed by the rule by LT = LF \ L.

Additionally, the derivation of a forward rule requires a technical extension to
avoid redundant translation of the same element. Therefore, a dedicated bookkeeping
node, which is connected to every currently untranslated source element via a book-
keeping edge, is introduced. Then, a bookkeeping node and bookkeeping edges to
all elements in LT are added to the forward rule’s left-hand side. The bookkeeping
node is also added to the rule’s glueing graph and right-hand side. Additionally,
negative application conditions are added to LF, which ensure that for a match m
from LF into SCT, Vx € LF\ LT : #b € BT : 13¢T = m(x).

The application of the forward rule via m thus requires that elements in m (L")
are untranslated, as indicated by the existence of bookkeeping edges, and marks
these elements as translated by deleting the adjacent bookkeeping edges. Elements
in m(LF \ LT) are in contrast required to already be translated. Note that, in order
to allow bookkeeping edges between the bookkeeping node and regular edges, a
slightly extended graph model is used, which is detailed in [10].

Figure 2.5 shows the forward rule derived from the TGG rule in Figure 2.3. The
elements f; and t; and adjacent edges are no longer created but preserved instead.
Also, the rule requires bookkeeping edges to fi, t;, and adjacent edges, and contains
NACs that forbid the existence of bookkeeping edges to c; and co. However, this
bookkeeping mechanism is omitted in the figure for readability reasons. The rule’s
application then deletes the bookkeeping edges to fi, t1, and their adjacent edges,
and creates the corresponding elements in the target domain along with the linking
node c¢f; in the correspondence domain.

TGGs can also be used to perform a transformation from the target to the source
language by means of similarly derived backward rules. In the following, we will
focus on the forward case. However, the backward case simply works analogously.

A TGG without any critical pairs [6] among its rules is called deterministic [9]. A
forward transformation with a deterministic TGG can be executed via an operation
transt, which simply applies the TGG’s forward rules for as long as there is a match
for any of them, with the order of rule applications not affecting the final result due
to the absence of critical pairs. Specifically, for a deterministic TGG with a set of
forward rules R and a starting model triple SCT, any maximal rule transformation
sequence SCT —R SCT’ constitutes a correct model transformation if it deletes all

13



2 Preliminaries

Y

ccy:CorrClass

c,:ClassDecl c,:ClassDecl ¢~

v

declaration type L ccpiCorrClass |- : uc,:Class uc,:Class

access
f,:FieldDecl t,:TypeAccess

Figure 2.5: example forward rule derived from the TGG rule in Figure 2.3, with the
bookkeeping mechanism omitted for readability reasons

bookkeeping edges in SCT. Note that, if SCT —R SCT’ satisfies this bookkeeping
criterion, every other possible maximal rule transformation sequence for SCT and
R also satisfies the bookkeeping criterion. In this report, we will focus on such
deterministic TGGs, which allow for efficient practical implementations that avoid
potentially expensive undoing of forward rule applications and backtracking [9].

2.3 Multi-version Models

In this report, we consider models in the form of typed graphs. A model modifi-
cations can in this context be represented by a span of morphisms M < K — M/,
where M’ is the original model, which is modified into a changed model M’ via
an intermediate model K, similar to a graph transformation step [21]. A version

models M;, My, ..., M, with type graph TM. We call a version history with a unique
initial version and acyclic model modification relationships between the individual
versions a correct version history.

In [2], we have introduced multi-version models as a means of encoding such a
version history in a single consolidated graph. Therefore, an adapted version of
TM, TM, is created. To represent model structure, TM,,;, contains a node for
each node and each edge in TM. Source and target relationships of edges in TM
are represented by edges in TM,,,. In addition, a version node with a reflexive suc
edge is added to T M, which allows the materialization of the version history’s
version graph. The version graph and the model structure are linked via cv, and
dv, edges from each node v in TM,, to the version node.

The result of the adaptation of the type graph from Figure 2.1 is displayed in
Figure 2.6. Note that cv and dv edges are omitted for readability reasons.

TMy, allows the translation of AM(.-#) into a single typed graph MVM con-
forming to TM,,,, which is called a multi-version model, via a procedure comb.
This translation yields a bijective function origin : VMYM — | ;. (1,21} VMiy EMi
mapping the vertices in MV M to their respective original element. An individ-
ual model versions can be extracted from MVM via the projection operation

14



2.3 Multi-version Models

TG (adapted)

Liype

ClassDecl type

suc Sdeclaration

[ version declaration

Ldectaration

Stype

Saccess taccess
FieldDecl access TypeAccess

Figure 2.6: example adapted type graph derived from the type graph in Figure 2.1,
with cv and dv edges omitted for readability reasons

proj(MVM,i) = M;. Finally for a vertex v,,, € VMVM the set of model versions
that include the element origin(v,,) can be computed via the function p, with
p(Omy) = {M; € {M1, My, ..., My }|origin(vm,,) € M;}.

15



3 Derivation of Multi-version
Transformation Rules from Triple
Graph Grammars

The transformation of the individual model versions encoded in a multi-version
model with a triple graph grammar can trivially be realized via the projection
operation proj. However, the multi-version model may in practice afford a more
compact representation compared to an explicit enumeration of all model versions,
as derived via proj.

In such practical application scenarios, operations concerning all model versions
that directly work on the multi-version model may therefore also perform better
regarding execution time than the corresponding operations on individual model
versions, as we have already demonstrated for the case of pattern matching for
checking the well-formedness of all model versions in a version history [2]. Since
pattern matching also constitutes an important task in model transformation via
triple graph grammars, a direct, joint translation of all model versions based on the
multi-version model representation seems desirable.

Given a triple graph grammar TGG, graph transformation rules for the joint
translation of all source or target model versions encoded in a multi-version model
can be derived from the regular translation rules in a straightforward manner. In
the following, we will discuss the deriviation for forward translation. Rules for the
backward case can be derived analogously.

First, the adapted multi-version type graph for the TGG’s merged source, corre-
spondence and target type graph is created via the translation procedure described
in [2]. The resulting adapted type graph TG, for multi-version models is ex-
tended by two additional edges, ucv, and udv,, for each node v in the source
domain of the merged type graph. Source and target of these edges are given by
sT6m (ucv,) = sT6m (udv,) = v and t7%w (ucv,) = t'%m (udv,) = version, where
version is the dedicated version node in the adapted type graph.

Analogously to the bookkeeping edges in the original typegraph, these edges
will be used in the translation process to encode in which versions an element
represented by a node v,,, with type v has already been translated. We therefore
define the set of versions where v,,;, has not been translated yet u(v,,,) analogously
to the set of versions p(vy,) where vy, is present, except that ucv, and udv, replace
cv, and dv, in the definition.

Then, for each forward rule r = L <- K 5 R a corresponding multi-version

lmz;

forward rule is created via a procedure adapt, with adapt(r) = trans'(L) <=

trans'(K) 2% trans'(R). The vertex morphism of I, is given by 1V = origin™! o

16



3 Derivation of Multi-version Transformation Rules from Triple Graph Grammars

| o origin and the edge morphisms by IE, = soorigint o IF o origin o s71 and

1L, = toorigin~t o lF o origin ot~! for all edges representing source respectively
target relationships. r,,;, is constructed analogously.

The trans’ procedure is a minor adaptation of the trans procedure in [2], which
ignores the bookkeeping node, bookkeeping edges, and negative application con-
ditions, but otherwise works analogously. The bookkeeping mechanism is in-
stead translated into the additional constraint P # @ over trans’'(L), where P =
(ﬂvmvevthns/(w p(Omo) N Moy corigin-1(LT) u(Omo)) \ Uy, e virans' (1) u(Omo)-

The application of the adapted rule additionally creates outgoing cv and dv
edges for all vertices v5, € V™ s(R)\ (origin=! o r o origin)(trans(K)) to realize
the assignment p(v5,) := P. Furthermore, for each v, € origin='(r(I"}(LT))),
the application also adds and deletes outgoing ucv and udv edges to realize the
modification u(vyy) = u(vyy) \ P.

Note that, since the computation of the p and u sets requires considedring paths
of arbitrary length, these computations cannot technically be defined as part of the
graph transformation but have to be realized externally.

For the set of forward rules R, the corresponding set of multi-version forward
rules is then simply given by Ry, = {adapt(r)|r € R}.

1
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4 Execution of Multi-version
Transformations

The forward transformation of all model versions encoded in a multi-version model
MV M according to a specified TGG can jointly be performed via the TGG'’s set of
multi-version forward rules.

In a first step, all ucv and udv edges present in MV M are removed. Then, for
each edge e, € EMVM with type(es) = cv, and sMYM(e.,), an edge e,, with
type(eucy) = ucvy and sMVM(ey,) = sMVM(e,,) and tMVM (e, ) = tMVM(e, ) is
created. For all dv edges, corresponding udv edges are created analogously. Thus,
after the creation of the ucv and udv edges, it holds that Vv, € yMVM . u(vom) =
p(vom)-

Subsequently, the simultaneous transformation of all model versions encoded
in MV M is performed similarly to the regular transformation of a single model
version via the TGG. More specifically, the adapted forward rules of the TGG are
simply applied to MV M until no such rule is applicable anymore.

In the following, we will argue that this transformation approach is correct in the
sense that it yields the same result as the transformation of an individual model
version via the regular forward rules.

Therefore, we first extend the projection operation proj from [2] to a bookkeeping-
sensitive variant.

Definition 2. (Bookkeeping-sensitive Projection) For a multi-version model MV M
with version graph V and version t € V", the bookkeeping-sensitive projection
operation works similarly to the regular projection operation proj, except that it
also adds a bookkeeping node and bookkeeping edges to an element origin(v) iff
t ¢ u(v) for all v € VMVM_ We also denote the result of the bookkeeping-sensitive
projection operation by MV M[t] = projM(MV M, t).

We also define two sets that represent the bookkeeping during the transformation
process.

Definition 3. (Bookkeeping Set) For a model M, we denote the set of translated
elements (vertices and edges) by B(M) = {x € M|fb € E'M : M = x}, with E'M
the set of bookkeeping edges in M and +'M the target function for bookkeeping
edges. We also call B(M) the bookkeeping set of M.

Definition 4. (Projection Bookkeeping Set) For a multi-version model MVM and
version t € VY, with V the version graph, we denote the set of already handled
elements (vertices and edges) in MV M]t] by By,(MVM]t]) = {x € MVM[t]|t ¢
u(proj—1(x))}. We also call By, (MV M|t]) the projection bookkeeping set of MV M|t].

18



4 Execution of Multi-version Transformations

The following theorem states that, at the start of the transformation process via
adapted forward rules, the prepared multi-version model via the bookkeeping-
sensitive projection correctly encodes the starting situation for the translation of
the individual model versions.

Theorem 1. Given a multi-version model MV M encoding a version history with
model versions My, My, ..., My, such that Yv,,, € VMYM 2 3(v,,,) = p(vyn), it holds
that Vt € {1,2,...,n} : MVM]t| = initp(M;) up to isomorphism, where initp(SCT;)
denotes the graph with bookkeeping resulting from the preparation of M; for
the regular forward transformation process, that is, the graph M; with an added
bookkeeping node and bookkeeping edges to all elements in M;.

Proof. Follows directly from the fact that Vt € {1,2,..,n} : proj(MVM,t) = M,
which has been shown in [2], and the definition of the bookkeeping-sensitive
projection operation. O

By Theorem 1, we also get the following corollary:

Corollary 1. Given a multi-version model MV M encoding a version history with
model versions My, My, ..., My, such that Vv, € VMYM 2 3(v,,,) = p(vyn), it holds
that Vt € {1,2,..,n} : Byuy(MVM][t]) = B(initp(M;)) up to isomorphism, where
initp(SCT;) denotes the graph with bookkeeping resulting from the preparation of
M; for the regular forward transformation process, that is, the graph M; with an
added bookkeeping node and bookkeeping edges to all elements in M;.

Proof. Follows directly from Theorem 1 and the definition of bookkeeping set and
projection bookkeeping set. O

We now show that a multi-version rule is applicable to a multi-version model
iff the corresponding regular rule is applicable to all individual model versions
affected by the rule application.

Theorem 2. A multi-version forward rule 7., = Ly < Kyw — Ryp is applicable
to a multi-version model triple SCT;,, with bookkeeping via match m, if and only
if for all t € P, the associated original forward rule r = L <— K — R is applicable
to SCTo[t] via match trans(m), with P = Myeyrm p(m(v)) NO _up, u(m(0)).

Proof. For a version t, as we have already shown in [2], the match m : L,, —
SCTyp has a corresponding match trans(m) : L — SCTy[t] if and only if ¢ €
Nocyime p(m(v)). Furthermore, due to the definition of P and the construction
of 7y, all elements in m(trans(m)(LT)) have an adjacent bookkeeping edge in
SCTuo[t] iff t € N .7, u(m(v)). Similarly, all elements in m(trans(m)(L \ LT))
have no adjacent bookkeeping edge in SCTyolt] iff t & U _, 1,0\, #(m(0)). Since
r and 7y, delete no vertices, the dangling condition is trivially satisfied for » and
the match frans(m). ryy is hence applicable to SCT,,, via m, with t € P, iff r is
applicable to SCT,,;,[t] via trans(m). O

We can now show the equivalence of a single multi-version rule application to
a multi-version model to the application of the corresponding regular rule to all
affected model versions.

19



4 Execution of Multi-version Transformations

Theorem 3. For an application SCTy, —° SCT,,, of a multi-version forward
rule 74y = Ly < Kuo — Ry with original forward rule ¥ = L < K — R to
a multi-version model triple SCT,,, with bookkeeping and version graph V via
match m, it holds that vVt € P : SCT,,,[t] = SCT’' A Buy(SCT,,,[t]) = B(SCT")
up to isomorphism, with the corresponding application SCTy,[t] — SCT'.

trans(m)
Furthermore, Vt € VV'\ P : SCT,,,[t] = SCTup[t] A Buo(SCT.,[t]) = B(SCTolt])
up to isomorphism, where P = Nycyiu p(m(v)) VO _ .z u(m(v)).

Proof. Disregarding bookkeeping edges, all forward rules and thus also the adapted
forward rules are productions. Due to the construction of the adapted forward rules,
all elements created by the rule’s application are only mv-present in SCT,,, for the
versions in P. Therefore, for all remaining versions, SCTy[t] contains exactly the
same elements as SCT,,,[t]. An isomorphism iso : SCTy,[t] — SCT,,,[t] is hence
trivially given by the identity in this case. Since the application of r,,, only changes
the projection bookkeeping sets for versions in P, By, (SCT,,,[t]) = B(SCTus|t])
with isomorphism iso.

It thus holds up to isomorphism that Vt € VV \ P : SCT,,,[t] = SCTuo[t] A
By (SCT;,,[t]) = B(SCTus|t]).

The application of 7, to SCTy, yields a comatch n : Ry, — SCT,,, and the
associated application of r to SCT,,;[t] similarly yields a comatch n’ : R — SCT’
forany t € P.

An isomorphism iso : SCT,,[t] — SCT’ can then be constructed as follows:
Since 7y, is a production, SCTy,, is a subgraph of SCT;,, and hence SCT,;|t] is
also a subgraph of SCT;,,[t]. Since r is a production, SCTy,[t] is also a subgraph
of SCT'. Isomorphic mappings for SCTy,;,[t] between SCT}, [t] and SCT’ are thus
simply given by the identity. This leaves only the elements in #(R, \ Lio) and
the elements in n’(R \ L) unmapped. Due to the construction of r,,, being unique
up to isomorphism, n and n’ being monomorphisms, and trans and origin being
bijections, the remaining isomorphic mappings are given by n’ o trans o n=! o origin.
Note that for elements in 7(L,;), the definition of iso via identity and n’ o trans o
n~1 o origin is redundant but compatible.

Due to the definition of bookkeeping-sensitive projection, bookkeeping set, and
projection bookkeeping set, it holds that B(SCT,,(t]) = Buo(SCTup[t]) and thus
Byo(SCTyw[t]) = B(SCTyw[t])). Compared to By, (SCTy(t]), the application of
*mp only changes the projection bookkeeping set By, (SCT;,,[t]) by adding the
elements in trans(m(LL,)). The modification to B, (SCT},[t]) hence corresponds
to the modification of the bookkeeping set B(SCT’) by the application of r via
trans(m) for the isomorphism iso due to the construction of 7.

It thus holds that Vt € P : SCT,,,[t] = SCT' A Buo(SCT,,,[t]) = B(SCT"). O

Based on Theorem 3 for individual rule applications, we get the following corol-
lary for sequences of rule applications:

Corollary 2. For a TGG with associated set of forward rules R and multi-version
forward rules R;;, and a multi-version model triple SCT},, with bookkeeping and
version graph V, there is a sequence of rule applications SCTy,, —Rm SCT},, if
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4 Execution of Multi-version Transformations

and only if for all + € VV, there is a sequence of rule applications SCT,,[t] —&
SCT" with SCT,,,[t] = SCT' Aiso(Buw(SCT,,[t])) = B(SCT’), where iso is an
isomorphism from SCT;,,[t] into SCT’.

Proof. We prove the corollary by induction over the length of the multi-version rule
application sequence.

For the base case of application sequences of length o, the identity morphism
and empty application sequences trivially satisfy the corollary.

If there is a sequence of rule applications SCT,,, —Rm SCT},, if and only if
for all t € VY, there is a sequence of rule applications SCTy,[t] —® SCT' with
SCT,,,[t] = SCT' Aiso(Buy(SCT;,,[t])) = B(SCT’), by Theorem 3 we have an
extended multi-version sequence SCT,, —%m SCT),, —m* SCT, and all t € VV
if and only if for all t+ € VV, there is a sequence of regular rule applications
SCTup[t] =R SCT" with SCTJ,[t] = SCT” Aiso(Buy(SCTh,[t])) = B(SCT").

For all t € VV'\ P, where P = Myeytw p(m(v)) NN, _yur, #(m(v)), the corre-
sponding regular rule application sequence SCTy;,[t] =] SCT’ and isomorphism
iso : SCT;,,[t] — SCT' are also valid for SCT,,,[t] and satisfy the condition on
bookkeeping sets, since SCT' = SCT,,,[t] = SCT,,,[t] (up to isomorphism).

In accordance with Theorem 3, there is an extended sequence SCT; — R
SCT,,, —n" SCT,, if and only if for all t € P, the regular rule application sequence
SCTup[t] =R SCT},[t] can be extended by a rule application SCT,,,[t] — brans(m)
SCT,,,[t] that satisfies the condition on bookkeeping sets.

Thus, there is a sequence of rule applications SCTy, —Rm SCT,,, —* SCTh,
if and only if for all t € V'V, there is a sequence of rule applications SCTy,[t] —&
SCT" with SCT;,,[t] = SCT" Aiso(Buy(SCT,[t])) = B(SCT").

With the proof for the base case and the induction step, we have proven the
validity of the corollary. O

Intuitively, the multi-version forward rules perform an interleaved, parallel trans-
formation of all model versions encoded in SCT,,,. The application of a multi-
version rule Ly, < Ky, — Ry corresponds to the application of the original
rule to all model versions in P = Nyeytm p(m(0)) NN _,,ir, u(m(v)) and leaves all
other model versions unchanged. Thus, a multi-version rule application effectively
extends the corresponding original rule application sequences for all versions in P
by the associated original rule application, whereas it represents the “skipping” of
a step in the sequences of all versions not in P.

For a deterministic TGG, a correct translation of source graph S is given by any
maximal rule application sequence of forward rules that deletes all bookkeeping
edges in the source model. Note that because of the determinism criterion, either
every maximal rule application sequences or none of them satisfies the bookkeeping
criterion. Correctness of the joint translation of all individual versions via multi-
version forward rules is hence given by the following corollary:

Corollary 3. For a TGG with associated set of forward rules R and multi-version
forward rules R, and a multi-version model triple SCT,,, with bookkeeping and
version graph V, there is a maximal sequence of rule applications SCT,,, —Rm

21



4 Execution of Multi-version Transformations

SCT},, if and only if for all t+ € V'V, there is a maximal sequence of regular rule
applications SCT,;,[t] —® SCT’ such that SCT},,[t] = SCT' A Byuy(SCT.,[t]) =
B(SCT').

Proof. The existence of a sequence of original rule applications for a sequence of
multi-version rule applications and all versions t € VV and vice-versa is given by
Corollary 2. From Theorem 2, it follows directly that the multi-version sequence is
maximal if and only if the regular sequences are maximal for all t € V. O

Thus, for a deterministic TGG and by corollaries 1 and 3, the result of repeated
application of adapted transformation rules to a multi-version model prepared for
multi-version translation until a fixpoint is reached is equivalent to the results of
repeated application of the original rules to the individual model versions prepared
for translation, that is, the results of transforming the individual model versions
using the TGG.

We thereby have the correctness of the forward transformation using multi-
version forward rules transt,, which applies multi-version forward rules to a

multi-version model with bookkeeping until a fixpoint is reached.

set of forward rules R, it holds up to isomorphism that

vt € {1,..,n} : transh (initp(comb(AMi-m)), adapt(R))[t] = transt (M, R) (4.1)

Proof. Follows directly from Theorem 1 and Corollary 3. O
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5 Evaluation

In order to evaluate our approach empirically with respect to execution time per-
formance, we have realized the presented concepts in our MoTE2 tool [12] for
TGG-based model transformation, which is implemented in the context of the
Java-based Eclipse Modeling Framework [7] and has been shown to be efficient
compared to other existing model transformation tools [12].

As an application scenario, we consider the transformation of Java abstract syntax
trees to class diagrams. We have therefore modeled this transformation as a TGG
with MoTE2 and use the original and our adapted implementation to automatically
derive the required forward rules respectively multi-version forward rules.

To obtain realistic source models, we have extracted the version history of one
small personal Java project (rete, around 50 versions) and one larger open source
Java project (henshin [1], around 2000 versions) from their respective GitHub repos-
itories and have constructed the corresponding history of abstract syntax trees
using the MoDisco tool [3]. As input for the solution presented in Sections 3 and
4, we have consolidated both version histories into multi-version models using a
mapping based on hierarchy and naming.

Our implementation and the employed datasets are available under [22].

Based on this, we run the following model transformations for both repositories
and measure the overall execution time"* for each of them:

* SVM: individual forward transformation of all model versions (abstract syn-
tax trees) in the repository using the original MoTE2 implementation

* MVM: joint forward transformation of all model versions in the repository us-
ing a multi-version model encoding and our implementation of the technique
presented in Sections 3 and 4

Note that the SVM strategy would require initial projection operations and a
final combination of transformation results to work within the framework of multi-
version models. However, for fairness of comparison of the transformation, we do
not consider these additional operations in our evaluation.

Figure 5.1 shows the execution times of the transformations using the two strate-
gies. For both repositories, the transformation based on multi-version models re-
quires substantially less time than the transformation of the individual model

TAll experiments were performed on a Linux SMP Debian 4.19.67-2 machine with Intel Xeon E5-2630
CPU (2.3 GHz clock rate) and 386 GB system memory running Open]JDK version 11.0.6. Reported
execution time measurements correspond to the mean execution time of 10 runs of the respective
experiment.
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5 Evaluation

versions using the original MoTE2 tool, with a more pronounced improvement for
the larger repository (factor 4 for the smaller and factor 74 for the larger repository).

Transformation Time

10000000
1000000
100000
10000
1000

100

10

1

execution time (ms)

rete henshin

B SVM MVM

Figure 5.1: execution time measurements for the transformation of all model ver-
sions in two different software repositories (logarithmic axis)

The improvement in efficiency and scalability can likely be explained by two
factors: First, SVM has to perform a somewhat expensive initialization step for every
indidvidual model version that is to be transformed, whereas MVM only requires
one such initialization. Second, many elements in the abstract syntax trees of the
repositories are shared between many versions. SVM has to perform a separate
transformation, including separate pattern matching, for each model version. In
contrast, MVM only performs a transformation including pattern matching over a
single multi-version model, the size of which is much smaller than the combined
sizes of the encoded model versions, along with efficient search operations over the
version graph. Since pattern matching is efficient in this example, that is, pattern
matching has a runtime complexity that is linear in the size of the model for the
derived forward rules, this results in an improved overall efficiency.

Threats to the internal validity of our experimental results include unexpected
behavior of the Java virtual machine such as garbage collection. To address this
threat, we have performed multiple runs of all experiments and report the mean
execution time of these runs, with the standard deviation always below 5% of the
execution time. To minimize the impact of the concrete implementation on our mea-
surements, we have realized our solution in the framework of the transformation
tool we use for comparison and thereby largely use the same execution mechanism.

To mitigate threats to external validity, we use real-world models as the source
models of the transformation. However, we remark that our results are not nec-
essarily generalizable to different examples or application domains and make no
quantitative claims regarding the performance of our approach.

24



6 Related Work

The general problem of model versioning has already been studied extensively,
both formally [5, 17] and in the form of concrete tool implementations [13, 14].
Several solutions employ a unified representation of a model’s version history
similar to multi-version models [14, 17]. However, due to the problem definition
focusing on the management of different versions of a single model, realising model
transformation based on a unified encoding is out of scope for these approaches.

There is also a significant body of previous work on synchronization of concur-
rently modified pairs of models using triple graph grammars [15, 24]. The focus
of these works is the derivation of compatible versions of source and target model
that respect the modifications to either of. This report aims to make a step in an
orthogonal direction, namely towards allowing living with inconsistencies by en-
abling developers to temporarily work with multiple modified, possibly conflicting
versions of source and target model.

In the context of software product lines, so-called 150% models are employed
to encode different configurations of a software system [4, 16]. In this context,
Greiner and Westfechtel present an approach for propagating so-called variability
annotations along trace links created by model transformations [23], explicitly
considering the case of transformations implemented via triple graph grammars. A
similar approach could also be employed to propagate versioning information and
would have the advantage of not requiring any adaptation of the employed rules,
type graph, or transformation process. However, not integrating this propagation
with the transformation process and only propagating versioning information
after the transformation has been executed would mean that certain cases that
are covered by our approach could not be handled. The occurence of such cases
may hence prevent a possible correct transformation. For instance, under standard
TGG semantics, such cases include a model element being translated differently in
different model versions based on its context.

In previous work in our group, the joint execution of queries over multiple
versions of an evolving model has been considered for both the case with [2]
and without [11, 18] parallel, branching development. This report builds on these
results, but instead of focusing on pure queries without side-effects considers the
case of writing operations in the form of model transformations.
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7 Conclusion

In this report, we have presented a first step in the direction of model transfor-
mation on multi-version models in the form of an adaptation of the well-known
triple graph grammar formalism that enables the joint transformation of all ver-
sions encoded in a multi-version model. The presented approach is correct with
respect to the translation semantics of deterministic triple graph grammars for in-
dividual model versions, that is, it produces equivalent results. Initial experiments
for evaluating the efficiency of our approach demonstrate that our technique can
improve performance compared to a naive realization, which simply translates all
model versions individually according to a triple graph grammar specification, in
a realistic application scenario.

In future work, we plan to build on the presented approach to realize model syn-
chronization for multi-version models, that is, incremental propagation of changes
to one or more versions of a source model to the corresponding target model ver-
sions. Furthermore, we want to explore the possibility of improving the efficiency
of multi-version model transformations via incremental pattern matching for multi-
version models. Another interesting direction for future work is the integration
of advanced application conditions for the specification of triple graph grammar
rules such as nested graph conditions into our approach. Finally, a more extensive
evaluation can be conducted to study the scalability of the presented technique in
more detail.
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