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Abstract. Recently, different evolutionary algorithms (EAs) have been
analyzed in noisy environments. The most frequently used noise model
for this was additive posterior noise (noise added after the fitness evalu-
ation) taken from a Gaussian distribution. In particular, for this setting
it was shown that the (µ + 1)-EA on OneMax does not scale gracefully
(higher noise cannot efficiently be compensated by higher µ).
In this paper we want to understand whether there is anything special
about the Gaussian distribution which makes the (µ + 1)-EA not scale
gracefully. We keep the setting of posterior noise, but we look at other
distributions. We see that for exponential tails the (µ + 1)-EA on One-
Max does also not scale gracefully, for similar reasons as in the case of
Gaussian noise. On the other hand, for uniform distributions (as well as
other, similar distributions) we see that the (µ+ 1)-EA on OneMax does
scale gracefully, indicating the importance of the noise model.
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1 Introduction

A major challenge to the theoretical analysis of randomized search heuristics
is developing a rigorous understanding of how they behave in the presence of
uncertainty. Uncertain problems are pervasive in practice, and practitioners often
rely on heuristic techniques in these settings because classical tailored approaches
often cannot cope with uncertain environments such as noisy objective functions
and dynamically changing problems [1, 10].

It is therefore very important to understand the effect that different proper-
ties of uncertainty have on algorithm behavior. In stochastic optimization, the
fitness of a candidate solution does not have a deterministic value, but instead
follows some given (but fixed) noise distribution. We are interested in under-
standing what properties of the noise distribution pose a direct challenge to
optimization, and what problems might be overcome by different features of the
algorithm. Prior work on stochastic optimization is mostly concerned with the
magnitude of noise (usually measured by the variance). Our goal in this paper is
to also understand how different kinds of distributions might affect optimization.

This is in contrast to most recent work on the theoretical analysis of random-
ized search heuristics in stochastic environments. For ant colony optimization,
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a series of papers studied the performance of ACO on stochastic path finding
problems [13, 3, 5], see also [9, 8] for early work in this area. For evolutionary al-
gorithms, Gießen and Kötzing [7] analyzed the (µ+λ)-EA on noisy OneMax and
LeadingOnes and found that populations make the EA robust to specific distri-
butions of prior and posterior noise, while [2] considers non-elitist EAs and gives
run time bounds in settings of partial information. None of these works aimed at
showing difference between noise settings. Posterior noise from a Gaussian was
considered in [6, 12] for various algorithms.

We follow [6] in their definition of what counts as a desirable property of an
algorithm with respect to noisy optimization: graceful scaling. An algorithm is
said to scale gracefully if, for any noise strength v, there is a suitable parameter
for this algorithm such that optimization is possible in a time polynomial in v
(a typical measure of noise strength v is the variance of the noise). We give the
formal details in Definition 1.

In this paper we consider the (µ + 1)-EA optimizing the classical OneMax
fitness function with additive posterior noise coming from some random vari-
able D. The case of D a Gaussian distribution was considered in [6], where the
authors found that the the (µ+1)-EA does not scale gracefully. In this paper we
investigate what properties of D lead to graceful scaling, and what properties
do not.

In Section 3 we consider the case of exponentially decaying tails in the dis-
tribution of the noise. This is similar to the case of Gaussian noise, which decays
even faster. In fact, we use a similar proof to show that also in this case the
(µ+ 1)-EA does not scale gracefully with noise.

After this we turn to another extreme case, uniform distributions. In Section 4
we show that, for noise taken from a uniform distribution, the (µ+ 1)-EA scales
gracefully. Our proof makes use of the fact that the uniform distribution is
truncated at its lower end: there is a value k such that the noise never takes
values below k, but values between k and k + 1 are still fairly frequent. Thus,
our results generalize to all noise distributions with this property.

Our results have some interesting implications. First, if it is possible to trun-
cate the noise distribution artificially, then this can potentially improve the run
time of an EA. This is an attractive option since no noise-specific modifications
need to be made to the algorithm (such as performing re-evaluations to sample
the distribution and thereby reduce the variance). Second, there are settings
where even very large populations do not sufficiently reduce the effect of the
noise, so that other techniques are required. This serves as a cautionary tale
to practitioners that increasing the population size does not always improve an
EA’s robustness to noise.

Before we discuss our results on exponential tails and uniform distributions
in Sections 3 and 4, respectively, we introduce the algorithm and noise model
in Section 2. Finally in Section 5 we summarize our findings and conclude the
paper.
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2 Preliminaries

In this paper we study the optimization of pseudo-Boolean functions (mapping
{0, 1}n for fixed n to real numbers). As our main test function we use OneMax,
where

OneMax : {0, 1}n → R, x 7→ ‖x‖1 := |{i : xi = 1}| .

As algorithm for the optimization, we consider the (µ+ 1)-EA, defined in Algo-
rithm 1. The (µ+ 1)-EA is a simple mutation-only evolutionary algorithm that
maintains a population of µ solutions and uses elitist survival selection.

Algorithm 1: The (µ+ 1)-EA.

1 t← 1;
2 Pt ← µ elements of {0, 1}n uniformly at random;
3 while termination criterion not met do
4 Select x ∈ Pt uniformly at random;
5 Create y by flipping each bit of x with probability 1/n;
6 Pt+1 ← Pt ∪ {y} \ {z} where ∀v ∈ Pt : f(z) ≤ f(v);
7 t← t+ 1;

2.1 Noise Model

We consider additive posterior noise, meaning that the noisy fitness value is
given by the actual fitness value plus some term sampled (independently for
each sample) from some fixed random variable D. For OneMax and a fixed
distribution, we call this noisy fitness function OneMaxD.

Let F be a family of pseudo-Boolean functions (Fn)n∈N where each Fn is a
set of functions f : {0, 1}n → R. Let D be a family of distributions (Dv)v such
that for all Dv ∈ D, E(Dv) = 0. We define F with additive posterior D-noise as
the set F [D] := {fn +Dv : fn ∈ Fn, Dv ∈ D}.

Definition 1. An algorithm A scales gracefully with noise on F [D] if there is a
polynomial q such that, for all gn,v = fn +Dv ∈ F [D], there exists a parameter
setting p such that A(p) finds the optimum of fn using at most q(n, v) calls to
gn,v.

We will need the following result regarding noisy optimization from [6] for
our negative results.

Theorem 2 ([6]). Let µ ≥ 1 and D a distribution on R. Let Y be the random
variable describing the minimum over µ independent copies of D. Suppose

Pr(Y > D + n) ≥ 1

2(µ+ 1)
.
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Consider optimization of OneMaxD by (µ + 1)-EA. Then, for µ bounded from
above by a polynomial, the optimum will not be evaluated after polynomially
many iterations w.h.p.

Intuitively, whenever the selection pressure is so weak that selection is almost
uniform (which would mean a probability of 1/(µ+1) for choosing any particular
individual), optimization will not succeed.

2.2 Drift Analysis

For the theoretical analysis we will use the following drift theorem.

Theorem 3 (Multiplicative Drift [4]). Let (Xt)t≥0 be a sequence of random
variables over R≥0. Let T be the random variable that denotes the earliest point
in time t ≤ 0 such that Xt < 1. If there exist c > 0 such that, for all a,

E[Xt −Xt+1 | T > t, Xt = a] ≥ c a ,

then, for all a,

E[T | X0 = a] ≤ 1 + ln(a)

c
.

3 Exponential Tails

In this section we consider noise taken from a random variable D that decays
exponentially fast, i.e., we assume

F (t) := Pr(D < k) =
1

2
ect if t ≤ 0 and

F (t) := 1− 1

2
e−ct if t > 0 ,

for some constant c. By taking the derivative of F, we get the probability mass
function p of D, i.e.,

p(t) = F ′(t) =
c

2
ect if t ≤ 0 and

p(t) =
c

2
e−ct if t > 0 .

This is basically a symmetric variant of the exponential distribution. Note
that D is a distribution, since F is non-negative and monotonically increas-
ing, limt→−∞ F (t) = 0, and limt→∞ F (t) = 1. Because p is symmetric around 0,
it follows that D has mean 0.

We calculate the variance of D:

Var(D) =

∫ ∞
−∞

t2p(t)dt =
c

2

(∫ 0

−∞
t2ectdt+

∫ ∞
0

t2e−ctdt

)

= c

∫ 0

−∞
t2ectdt = c

[(
2− 2ct+ t2c2

)
ect

c3

]0
−∞

=
2

c2
=: σ2 ,
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where the integral can be computed by integrating by parts twice. This leads to

F (t) =
1

2
e
√
2 tσ if t ≤ 0 ; and

F (t) = 1− 1

2
e−
√
2 tσ if t > 0 .

We now want to show that, in this setting and for sufficiently large variance,
the (µ + 1)-EA is not successful. We will start with the case of µ ∈ {1, 2}, as
this case is not covered by our main theorem of this section (Theorem 5 below).
The proof is instructive, since its structure is similar to the proof of Theorem 5,
while it is a bit simpler in the details.

Proposition 4. Consider optimization of OneMaxD by the (µ + 1)-EA with
µ ∈ {1, 2}. Suppose σ2 = ω(n2). Then the optimum will not be evaluated after
polynomially many iterations w.h.p.

Proof. We set up to use Theorem 2. Thus, let t− < 0 and t+ > 0 be such that
Pr(D < t−) = Pr(D ≥ t+) = 1/4. Hence, Pr(t− ≤ D < 0) = Pr(0 ≤ D < t+) =
1/4 because D is symmetric around 0.

We consider D and µ copies of it: D∗i , for i = 1, . . . , µ. We want to bound

Pr

(
min

i=1,...,µ
{D∗i } > D + n

)
= Pr

(
µ∧
i=1

D∗i > D + n

)
.

We lower-bound the above probability as follows:

Pr

(
µ∧
i=1

D∗i > D + n

)
≥Pr(D < t−)

µ∏
i=1

Pr(D∗i ≥ t− + n) +

Pr(t− < D < 0)

µ∏
i=1

Pr(D∗i ≥ n) +

Pr(0 < D < t+)

µ∏
i=1

Pr(D∗i ≥ t+ + n)

=
1

4

(
µ∏
i=1

Pr(D∗i ≥ t− + n) +

µ∏
i=1

Pr(D∗i ≥ n) +

µ∏
i=1

Pr(D∗i ≥ t+ + n)

)
.

Thus, we have to bound the probabilities of the form Pr(D∗i ≥ a+ n). We do so
by showing Pr(D∗i ≥ a+ n) ≥

(
1− o(1)

)
Pr(D∗i ≥ a). First, consider a ≥ 0.

Pr(D∗i ≥ a+ n) =
1

2
e−
√
2 a+nσ =

1

2
e−
√
2( aσ+

n
σ ) =

1

2
e−
√
2( aσ+o(1))

=
(
1− o(1)

)
Pr(D∗i ≥ a) .
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Note that if a = t−, we get t− + n < 0, because we assume that Pr(D < t−) =
1/4, which means that t− = −Θ(σ) = −ω(n2).

Pr(D∗i ≥ t− + n) = 1− Pr(D∗i < t− + n) = 1− 1

2
e
√
2 t
−+n
σ

= 1−
(
1 + o(1)

)
e
√
2 t
−
σ =

(
1− o(1)

)
Pr(D∗i ≥ t−) .

This results in

Pr

(
µ∧
i=1

D∗i > D + n

)
≥
(
1− o(1)

)1

4

((
3

4

)µ
+

(
2

4

)µ
+

(
1

4

)µ)
,

which is at least 1/
(
2(µ+ 1)

)
for µ ∈ {1, 2}. Applying Theorem 2 completes the

proof.

We now turn to the more general case.

Theorem 5. Consider optimization of OneMaxD by the (µ+ 1)-EA with µ ≥ 3
and µ bounded from above by a polynomial in n. Suppose σ2 = ω(n2). Then the
optimum will not be evaluated after polynomially many iterations w.h.p.

Proof. This proof follows the ideas of the one of Corollary 6 from [6]. Let a = ω(1)
be such that σ2 ≥ (na)2.

Again, we want to use Theorem 2, thus, let Y be the minimum of µ inde-
pendent copies of D, whereas D is a distribution as defined above. We want
to bound Pr(D + n < Y ). Hence, we choose two points t0 < t1 < 0 such that
Pr(D < t0) = 0.7/µ and Pr(D < t1) = 1.4/µ. Note that Pr(D < t0) < Pr(D <
t1) < 1/2, since µ ≥ 3. Thus, t0 and t1 actually exist.

We define the following two disjoint events that are a subset of the event
D + n < Y :

A: The event that D < t0 − n and t0 < Y .
B: The event that t0 − n < D < t1 − n and t1 < Y .

We first focus on bounding Pr(D < t0−n) and do so showing that t0 ≤ −na/32
holds via contraposition.

Assume that t0 > −na/32 (still t0 < 0). Because we assume σ ≥ na as well,
we get that s := −t0/σ < 1/32. Due to the definition of D we get

Pr(D < t0) = F (t0) =
1

2
e−
√
2s >

1

2
e−
√

2
32 >

0.7

3
.

Since we assume µ ≥ 3, this contradicts the definition of t0. Hence, the bound
t0 ≤ −na/32 holds which is equivalent to t0(1+32/a) ≤ t0−n. Thus, we estimate

Pr(D < t0 − n) ≥ Pr

(
t0

(
1 +

32

a

))
=

1

2
e
√
2
t0(1+ 32

a )
σ =

e−o(1)

2
e
√
2
t0
σ

=
(
1− o(1)

)1

2
e
√
2
t0
σ =

(
1− o(1)

)
Pr(D < t0) .
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Because Pr(D < t0−n) ≤ Pr(D < t0) holds trivially, we have Pr(D < t0−n) =(
1− o(1)

)
Pr(D < t0).

We now bound Pr(t0 − n < D < t1 − n) = Pr(D < t1 − n) − Pr(t0 − n <
D), where we are left with bounding Pr(D < t1 − n). We do so analogously
to the calculations before. This time, we bound t1 ≤ −na/64, since assuming
t1 > −na/64 leads to

Pr(D < t1) >
1

2
e−
√

2
64 >

1.4

3
.

All the remaining calculations can be done as before, and we get Pr(t0 − n <
D < t1 − n) =

(
1− o(1)

)
1.4/µ−

(
1− o(1)

)
0.7/µ =

(
1− o(1)

)
0.7/µ. Overall, we

have

Pr(Y > D + n) ≥ Pr(A) + Pr(B) =
(
1− o(1)

)0.7

µ

((
1− 0.7

µ

)µ
+

(
1− 1.4

µ

)µ)
≥
(
1− o(1)

)2 0.7

µ

(
e−0.7 + e−1.4

)
≥ 1

2µ
≥ 1

2(µ+ 1)
.

Applying Theorem 2 completes the proof.

The statement of Theorem 5 is basically that if the standard deviation of
the noise is asymptotically larger than the greatest OneMax value (n), the noise
will dominate and optimization will fail. The proof idea can be expanded to the
case when Pr(D < t0) = Ω(1) if t0 = −Ω(σ), i.e., there is at least a constant
probability to deviate by at least one standard deviation from the mean. In such
a case the OneMax value is irrelevant, since it will easily be dominated by the
noise.

Overall, we get the following statement regarding graceful scaling.

Corollary 6. The (µ + 1)-EA does not scale gracefully on OneMax with ad-
ditive posterior noise from a distribution with exponential tails as given above
(parametrized in the variance).

4 Truncated Distributions

In this section we consider truncated distributions; these distributions are a gen-
eralization of uniform distributions, which capture the essence of what our proofs
need to show that the (µ + 1)-EA can scale gracefully. Truncated distributions
are distributions whose density functions vanish above (respectively, below) some
point k and whose mass near that point is bounded from below by some value q.

Definition 7. Let D be a random variable. If there are k, q ∈ R such that

Pr(D > k) = 0 ∧ Pr
(
D ∈ (k − 1, k]

)
≥ q ,

then we call D upper q-truncated. Analogously, we call D lower q-truncated if
there is a k ∈ R with

Pr(D < k) = 0 ∧ Pr
(
D ∈ [k, k + 1)

)
≥ q .
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From [14] we know that the run time of the (µ+1)-EA on OneMax is O(µn+
n log n) when no noise is present. The following theorem looks at the optimization
behavior for truncated noise and gives a slightly weaker run time bound in the
presence of noise which is suitably truncated.

Theorem 8. Let µ ≥ 1 and let D be lower 2 log(nµ)/µ-truncated. Consider
optimization of OneMaxD by the (µ+1)-EA. Then the optimum will be evaluated,
in expectation, after O(µn log n) iterations.

Proof. We argue with drift on the number of 1s in the search point with the most
number of 1s. If the search point with the most number of 1s is never removed
within the first O(µn log n) iterations, then multiplicative drift (Theorem 3) will
give us the result. If any other search point evaluates in the minimal bracket
[k, k+ 1), then the best search point is safe (if there are multiple best, then it is
safe anyway). The probability that none evaluates in the minimal bracket is at
most

Pr
(
D 6∈ [k, k + 1)

)µ ≤ (1− 2 log(nµ)

µ

)µ
≤ exp

(
− 2 log(nµ)

)
≤ O

(
1

(nµ)2

)
.

Thus, the expected number of iterations until the best search point decreases
in number of 1s is ω(µn log n) iterations. Since this holds from any starting
configuration, the result follows from the fact that the optimum can be found
by iteratively increasing the best individual in O(µn log n) iterations.

As a corollary to Theorem 8, we turn the statement of the previous theorem
around and show how large a population is required for efficient optimization in
the presence of truncated noise.

Corollary 9. Let D be lower q-truncated. Then, for all µ ≥ 3q−1 log(nq−1), in
the optimization of OneMaxD by (µ+ 1)-EA, the optimum will be evaluated, in
expectation, after O(µn log n) iterations.

Corollary 10. Let µ, r ≥ 1. Consider optimization of OneMax with reevaluated
additive posterior noise uniformly from [−r, r] by (µ+ 1)-EA without crossover.
Then the optimum

1. will be evaluated within O(µn log n) iterations in expectation if r ≤
µ/
(
4 log(nµ)

)
;

2. will not be evaluated within polynomially many iterations w.h.p. if r ≥
n(µ+ 1).

Proof. Let D be the uniform distribution on [−r, r].
Regarding the first claim, we note that D is lower 1/(2r)-truncated, so the

result follows from Theorem 8.
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For the second claim we want to use Theorem 2. Define

f : [−r, r]→ [−r, r] + n, x 7→

{
x if x ≥ −r + n ;

r + n− x otherwise.

Then we have that D + n and f(D) have the same distribution. Let Y be the
minimum over µ independent copies of D. Due to symmetry, we have Pr(Y >
D) = 1/(µ+ 1). Thus, we have

Pr(Y > D + n) = Pr
(
Y > f(D)

)
≥ Pr(Y > f(D) ∧D > −r + n)

= Pr(Y > D ∧D > −r + n)

≥ Pr(Y > D)− Pr(D ≤ −r + n)

=
1

µ+ 1
− n

2r

≥ 1

2(µ+ 1)
.

The result now follows with Theorem 2.

From this we get the result regarding graceful scaling on uniform noise.

Corollary 11. The (µ+ 1)-EA scales gracefully on OneMax with additive pos-
terior noise from the uniform distribution on [−r, r].

5 Summary

In this work we saw indications that the shape of the distributions plays an im-
portant role in settings with noisy fitness functions. For the case of the uniform
distributions, we can give bounds for when optimization is successful and for
when it is not. The analysis is significantly more complicated for other distribu-
tions, but our results still suggest that more even distributions make optimization
easier.

It seems that further results are hard to come by and probably require a new
way of dealing with diversity of populations (a long standing open problem).
In particular, the only theorem for lower bounds we have is Theorem 2, which
makes significant worst-case assumptions about the diversity of the population.
Similarly, all upper bounds usually make worst-case assumptions on the diversity,
but this time in the other direction (namely that the population is clustered,
while Theorem 2 is based on the assumption that a single good individual works
against many bad individuals). This also explains the gap in the bounds for the
uniform distribution (Corollary 10). An alternative route could be in adapting
drift theorems specifically for populations [11].

It is open whether we need better tools for showing lower or upper bounds; a
useful first step could thus be to conjecture run time bounds based on empirical
evidence and analyzing also the spread of the population carefully in dependence
on the distribution.
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