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Abstract

Many combinatorial optimization problems have underlying goal functions that are
submodular. The classical goal is to find a good solution for a given submodular func-
tion f under a given set of constraints. In this paper, we investigate the runtime of a
simple single objective evolutionary algorithm called (1+1) EA and a multi-objective
evolutionary algorithm called GSEMO until they have obtained a good approxima-
tion for submodular functions. For the case of monotone submodular functions
and uniform cardinality constraints we show that the GSEMO achieves a (1 — 1/e)-
approximation in expected polynomial time. For the case of monotone functions
where the constraints are given by the intersection of k¥ > 2 matroids, we show
that the (1+1) EA achieves a (1/k + d)-approximation in expected polynomial time
for any constant § > 0. Turning to non-monotone symmetric submodular functions
with & > 1 matroid intersection constraints, we show that the GSEMO achieves a
1/((k + 2)(1 + €))-approximation in expected time O(n* 1% log(n)/e).

1 Introduction

Evolutionary algorithms can efficiently find the minima of convex functions. While this
is known and well studied in the continuous domain, it is not obvious how an equiv-
alent statement for discrete optimization looks like. Let us recall that a differentiable
fitness function f: R — R is called convex if its derivative % f(z) is non-decreasing
in . The bitstring analogue of this is a fitness function f: {0,1}" — R whose discrete
derivative 0;f(z) = f(z + ¢;) — f(x) is non-decreasing in z for all 1 < i < n with e;
being the i-th unit vector. A discrete function satisfying the aforementioned condi-
tion is called submodular. Submodularity is the counterpart of convexity in discrete
settings (Lovéasz, 1983).

For understanding the properties of continuous optimizers it is central to study
their performance for minimizing convex functions. This has been done in detail for
continuous evolutionary algorithms (Beyer and Schwefel, 2002; Hansen, 2006). On the
other hand, there is apparently very little prior work on the performance of discrete
evolutionary algorithms for optimizing submodular functions. The only reference we
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are aware of is Rudolph’s Ph.D. thesis (Rudolph, 1996, Sect. 5.1.2.3). He proves that
there are submodular functions for which the (1+1) EA requires exponential runtime
(see also Bdack et al. (1997, Sec. B2.4.2.5)). We fill this gap and present several approxi-
mation results for simple evolutionary algorithms and submodular functions.

Analogous to the situation for convex functions, there is a significant differ-
ence between minimization and maximization of submodular functions. Submodu-
lar functions can be minimized with a (non-trivial) combinatorial algorithm in poly-
nomial time (Iwata et al., 2001). On the other hand, submodular function maximiza-
tion is NP-hard as it generalizes many NP-hard combinatorial optimization problems,
like maximum cut (Goemans and Williamson, 1995; Feige and Goemans, 1995), maxi-
mum directed cut (Halperin and Zwick, 2001), maximum facility location (Ageev and
Sviridenko, 1999; Cornuejols et al., 1977), and several restricted satisfiability prob-
lems (Hastad, 2001; Feige and Goemans, 1995). As evolutionary algorithms are espe-
cially useful for hard problems, we focus on the maximization of submodular functions.
Note that in general, submodular functions can also not be maximized approximately
better than a constant factor unless P = NP (Feige, 1998).

More formally, we consider the optimization problem max{f(S): S € I}, where
X is an arbitrary ground set, f: 2% 3 R is a fitness function, and Z C 2¥ a collection
of independent sets describing the feasible region of the problem. As usual, we assume
value oracle access to the fitness function; i.e., for a given set S, an algorithm can query
an oracle to find its value f(S5). We also always assume that the fitness function is
normalized, i.e., f(#) = 0, and non-negative, i.e., f(A) > 0 forall A C X. We will study
the following variants of f and Z:

o Submodular functions: A function f is submodular iff f(AUB)+ f(ANB) < f(A)+
f(B)forall A,B C X.

e Monotone functions: A function f is monotone iff f(A4) < f(B) forall A C B.
o Symmetric functions: A function f is symmetric iff f(A) = f(X \ A) forall A C X.

e Matroid: A matroid is a pair (X,Z) composed of a ground set X and a non-empty
collection Z of subsets of X satisfying (1) If A € Z and B C A then B € Z and (2) If
A,B €Tand|A| > |B|then B +z € T for some z € A\ B. The sets in 7 are called
independent, the rank of a matroid is the size of any maximal independent set.

o Uniform matroid: A uniform matroid (X,Z) of rank k£ € IN contains all subsets of
size at most k,i.e, T ={A C X: |A| < k}.

e Partition matroid: A partition matroid is a matroid formed from a direct sum of
uniform matroids. If the universe X is partitioned into k parts X;,..., X; and
we have integers d; with 0 < d; < |X;|, then in a partition matroid a set [ is
independent if it contains at most d; elements from each X, i.e., |[I N X;| < d; for
all . (Note that in parts of the literature and in the conference version (Friedrich
and Neumann, 2014) of this paper, it is assumed that d; = 1 for all 4.)

o Intersection of k matroids: Given k matroids M, = (X,Z,), M2 = (X, Ls), ..., My =
(X,Z)) on the same ground set X, the intersection of these matroids is the matroid
(X, I)withT ={ACX: AeZ,1<i<k} Asimpleexample for k = 2is the
family of matchings in a bipartite graph; or in general the family of hypergraph
matchings in a k-partite hypergraph.
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Maximizing submodular functions is not only NP-hard, but also NP-hard to approxi-
mate. We therefore also have to formalize the notion of an approximation algorithm.
We say an algorithm achieves an a-approximation if for all instances of the considered
maximization problem, the output returned by the algorithm is at least « times the opti-
mal value. In the context of evolutionary algorithms, we are interested in the expected
time (usually measured by the number of fitness evaluations) until an evolutionary
algorithm has achieved an a-approximation.

Our results. We study the well-known (1+1) EA (Droste et al., 2002) as well as a multi-
objective approach for optimizing submodular functions. Optimizing single objective
optimization problems by multi-objective approaches such as the global simple evo-
lutionary multiobjective optimizer (GSEMO) has already been shown to be beneficial
for many single-objective optimization problems (Knowles et al., 2001; Jensen, 2004;
Neumann and Wegener, 2006; Handl et al., 2008; Friedrich et al., 2010; Kratsch and
Neumann, 2013). In this article, we prove the following statements.

e Based on the seminal work of Nemhauser et al. (1978), we show that the GSEMO
achieves in polynomial time a (1 — 1/e)-approximation for maximizing monotone
submodular functions under a uniform matroid constraint (Theorem 2). This approxi-
mation factor is optimal in the general setting (Nemhauser and Wolsey, 1978), and
it is optimal even for the special case of Max-r-cover, unless P = NP (Feige, 1998).
Furthermore, we show that there are local optima for the (1+1) EA which require
exponential time to achieve an approximation better than 1/2 + ¢, forany ¢ > 0 a
constant (Theorem 1).

e Based on recent work of Lee et al. (2010) and using the idea of p-exchanges, we
show that the (1+1) EA achieves a (1/(k+1/p+c¢))-approximation for any monotone
submodular function f under k matroid constraints in expected time polynomial in
n®®Pk) and 1/e, where p > 1 is an integer and ¢ > 0 is a real value (Theorem 3).

e Based on the recent work of Lee et al. (2009), we show that the GSEMO achieves in
expected time O(£ - n*T0logn) a 1/((k + 2)(1 + €))-approximation for maximizing
symmetric submodular functions over k matroid constraints where € > 0 is a real value
(Theorem 4). Furthermore, we explore the idea of p-exchanges and show that the

GSEMO obtains (for k > 2,p > 1,and ¢ > 0) a (m)

expected time O(2 - n??(**D+2. k. logn) (Theorem 5). Note that these results even
hold for non-monotone functions.

-approximation in

In the conference version (Friedrich and Neumann, 2014) of this article only the
GSEMO has been studied. This article extends the conference version by providing
lower and upper bounds for the (1+1) EA (Section 3.1 and 4) as well as using the idea
of p-exchanges to prove improved bounds for the GSEMO and the case of symmetric
submodular functions in Section 5.

Outline. The paper is organized as follows. In Section 2, we describe the setting for sub-
modular functions and introduce the algorithm that is subject to our investigations. We
analyze the algorithm on monotone submodular functions with a uniform constraint
in Section 3 and present results for monotone submodular functions under k¥ matroid
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constraints in Section 4. In Section 5, we consider the case of symmetric (but not neces-
sarily monotone) submodular functions under k matroid constraints. Finally, we finish
with a discussion on open problems in Section 6.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of attention in
the classical (non-evolutionary) optimization community. For a detailed exposition, we
refer to the textbooks of Korte and Vygen (2007) and Schrijver (2003).

2.1 Submodular Functions and Matroids

When optimizing a submodular function f: 2%X — R, we will often consider the incre-
mental value of adding a single element. For this, we denote by F4 (i) = f(AU {i}) —
f(A) the marginal value of ¢ with respect to A. Nemhauser et al. (1978, Proposition 2.1)
give seven equivalent definitions for submodular functions. Additionally to the def-
inition stated in the introduction we will also use that a function f is submodular iff
Fi(A) > Fy(B)foral AC BC Xandi€ X \ B.

Many common pseudo-Boolean and combinatorial fitness functions are submod-
ular. As we are not aware of any general results for the optimization of submodular
function by evolutionary algorithms, we list a few examples of well-known submodu-
lar functions:

e Linear functions: All linear functions f: 2% — R with f(4) = >_,_ , w; for some
weights w: X — R are submodular. If w; > 0 for all ¢ € X, then f is also mono-
tone. Note that in the latter case, f is both submodular and supermodular and
therefore modular.

e Cut: Given a graph G = (V, E) with nonnegative edge weights w: E — R>(. Let
S C V be a subset of vertices and 6(.5) be the set of all edges that contain a vertex
in S and V \ S. The cut function w(§(5)) is symmetric and submodular but not
monotone.

o Coverage: Let the ground setbe X = {1,2,...,n}. Given a universe U with n sub-
sets A; C U for i € X, and a non-negative weight function w: U — Rx>¢. The
coverage function f: 2% — R with f(S) = |J,c5 4i| and the weighted coverage
function f" with f'(S) = w(U,cq 4i) = Zueu,esfh w(u) are monotone submodu-
lar.

o Rank of a matroid: The rank function r(A) = max{|S|: S C A, S € I} of a matroid
(X, 7) is monotone submodular.

e Hypervolume Indicator: Given a set of points in R¢ in the objective space of a multi-
objective optimization problem, measure the volume of the space dominated by
these points relative to some fixed reference point. The hypervolume is a well-
known quality measure in evolutionary multi-objective optimization and is known
to be monotone submodular (Ulrich and Thiele, 2012).

We defined the most important matroids already in the introduction. Matroid theory
provides a framework in which many problems from combinatorial optimization can
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be studied from a unified perspective. Matroids are a special class of so-called inde-
pendence systems that are given by a finite set X and a family of subsets Z C X such
that 7 is closed under subsets. Being a matroid is considered to be the property of an
independence system which makes greedy algorithms work well. Within evolutionary
computation, linear functions under matroid constraints have been considered in (Re-
ichel and Skutella, 2010).

We assume a finite ground set X = {z1, 2, ..., 2z, } and identify each subset S C X
with a bitstring = € {0,1}" such that the i-thbitof x is 1iff z; € S. Let f: {0,1}" — R>o
be the given submodular function and F' C {0, 1} be the set of feasible solutions. Note,
that f is defined on every element of {0,1}". The constraints determining feasibility
are given by k matroids where k is a parameter. Given k arbitrary matroids M7, ..., M
defined on a ground set X together with their independent systems I,...,I;. We
consider the problem

max{f(a:): r€F = éfj},

where f is a submodular function defined on the ground set X.

Intersections of matroids occur in many settings like edge connectivity (Gabow,
1995), constrained minimum spanning trees (Hassin and Levin, 2004) and degree-
bounded minimum spanning trees (Zenklusen, 2012).

A prominent example for matroid intersection constraints is the maximum weight
matching problem in bipartite graphs: Given a bipartite graph G = (V, E') with bipartition
ViU Vy, let My = (X,Z;) and M, = (X, Z;) be two partition matroids on E with

Iy ={FE' CE:|6(v)NE'|<1veV},
Iy={FE CE:|6(v)NE'|<1,veE TV},

where §(v) is the set of neighbors of v. Then it is easy to see that I € Z; N Z; if and only
if I induces a matching in G.

Colorful spanning trees are an example for intersecting different kinds of matroids.
Let G = (V, E) with edges in E colored with k colors, thatis, E = E; U Ey, U ... U Ey.
Assume we are given integers dy, ds, . .., d; and aim at finding a spanning tree ' C E
of G that has at most d; edges of color 4, i.e., |T' N E;| < d; for all 7. Then this can be
phrased as a matroid intersection problem as it is the combination of a spanning tree
matroid and a partition matroid.

2.2 Algorithms

The theoretical runtime analysis of evolutionary algorithms often considers random-
ized local search (RLS) and the (1 + 1) evolutionary algorithm (EA). We investigate
the (1+1) EA (see Algorithm 1) and consider the fitness function h(z) = (v(x), f(z)),
where v(z) measures the constraint violation of z. Generalizing the fitness function
used by Reichel and Skutella (2010) for the intersection of two matroids, we consider
for problems with k£ matroid constraints Mj, ..., M,
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Algorithm 1: (1+1) EA Algorithm

1 choose = € {0, 1}"™ uniformly at random

2 repeat

3 create z’ by flipping each bit z; of x with probability 1/n
determine h(z’)

if h(z’) > h(zx) then

Lx::z’

o Ul

7 until stop

where r;(x) denotes the rank of x in matroid 1}, i.e.
ri(X) =max{|Y]: Y C XY € I;}
for the set X given by z.

It is easy to see that v(x) = 0 iff z is a feasible solution and v(z) > 0 otherwise. We
optimize h(x) in lexicographic order, i.e.

h(y) = h(z) holds iff (v(y) < v(z)) V (v(y) = v(x) A f(y) = f(2)).

We also consider a multi-objective approach to optimize submodular functions.
The multi-objective counterpart of RLS and (1+1) EA are the simple evolutionary multi-
objective optimizer (SEMO) (Laumanns et al., 2002) and global SEMO (GSEMO) (Giel,
2003). Both algorithms have been studied in detail, see (Doerr et al., 2013; Giel, 2003;
Giel and Lehre, 2010; Friedrich et al., 2010; Brockhoff et al., 2009). We consider the
GSEMO given in Algorithm 2. For the multi-objective algorithm, we set z(z) = f(x) iff
x € Fand z(z) = —1iff z ¢ F and consider the multi-objective problem

9(x) := (2(2), [z]o),

where |z]p = > (1 — z;) denotes the number of 0-bits in the given bitstring z. We
write g(z) > g(y) iff ((2(z) > 2(y)) A (Jz]o > |ylo)) holds. If g(x) > g(y) holds, we say
that y is dominated by z. The solution y is strictly dominated by solution x iff g(x) >
g(y) and g(z) # g(y). A solution x that is not strictly dominated by any other solution
y € X is called Pareto optimal and the corresponding objective vector g(z) is called
Pareto optimal as well. The Pareto set of a given multi-objective problem consists of
all Pareto optimal solutions and the Pareto front consists of all Pareto optimal objective
vectors. In our studies, we focus on the solution z* = arg max,cp z(z) of the GSEMO
and study the quality of this solution.

We study the expected number of iterations (of the repeat loop) of the (1+1) EA
and the GSEMO until their feasible solution z* is for the first time an a-approximation
of an optimal feasible solution OPT, i.e. f(z*)/OPT > « holds. Here a denotes the
investigated approximation ratio for the considered problem. We call the expected
number of iterations to reach an a-approximation, the expected (run)time to achieve
an c-approximation.

3 Monotone Submodular Functions with a Uniform Constraint

In this section, we investigate submodular functions with one uniform constraint. In
the case of one uniform constraint of size r, a solution x € X is feasible if it has at most
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Algorithm 2: GSEMO Algorithm

1 choose = € {0, 1}"™ uniformly at random
2 determine g(x)

3 P+ {z}

4 repeat

5 choose = € P uniformly at random

6 | create 2’ by flipping each bit z; of x with probability 1/n

7 determine g(z")

8 if 2/ is not strictly dominated by any other search point in P then
9 include 2z’ into P

10 L delete all other solutions z € P with g(z) < g(z') from P

[y

1 until stop

r elements. Hence, we have F = {z: z € X A |z|; < r}.

3.1 Lower bound for the (1+1) EA

We consider the (1+1) EA and show that this approach has to cope with local optima
with a large inferior neighborhood. Getting trapped in these local optima, we show
that the algorithm finds it hard to achieve an approximation ratio greater than 1/2 + ¢
where € > 0 is a constant.

Based on our previously defined fitness function, we have v(z) = max{0, |z, —r}
as we are considering problems with one uniform constraint. To show the upper bound
on the approximation ratio, we consider an instance of the Max-r-Cover problem.

Our instance is obtained from a bipartite graph which has already been investi-
gated in the context of the vertex cover problem (Friedrich et al., 2010). Let G = (V; U
V2, E) be the complete bipartite graph on Vi = {v1,...,ven} and Vo = {vepg1, ..., U0}
where |V1| = en and |V2| = (1 — €)n for € < 0.1. The ground set is given by the set of
edges E and each node v; € V; UV, is identified with the subset of edges adjacent to v;,
ie. B; = {e € E: env; # 0}. Let EV* and E"2 be the set of subsets corresponding to
the nodes of V; and V5, respectively. We consider the (1+1) EA working with bitstrings
of length n where the set E; is choseniff x; = 1,1 <i < n.

For the constraint, we set r = (1—2¢+6)-n, where §, 0 < § < ¢, is an arbitrary small
positive constant as an upper bound on the number of sets. Furthermore, we require
en < r which is equivalent to 1 —2¢ 49 < ¢. This implies that EVtisan optimal solution
covering the whole ground set E and can be achieved by setting 1/2 > ¢ > (1 —4)/3.

We consider the solution ¢ where r subsets of E'2 a no subset of E'! is selected.
The value of an optimal solution is OPT = ¢ (1 — ¢)n?/2 and we have f(z*) = r- (en) /2.
The approximation ratio of x¢ is a(z*) = f(z°)/OPT = (1 — 2z + 6)/(1 — ¢). Setting
e=(1-140)/3weget

afzh)

(1—2(1/3—6/3)+4)/(1—1/3+6/3)
(1/3 +56/3)/(2/3 + 6/3)
(1+56)/(2 +0).

Choosing ¢ as a constant arbitrary close to 0, this expression becomes a constant arbi-
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trary close to 1/2.

Theorem 1. There are monotone submodular functions f for which the (1+1) EA under a
uniform matroid constraint may end up in bad local optima. More precisely, there is an in-
stance of the Max-r-Cover problem such that starting with x*, the expected waiting time for the
(1+1) EA to achieve an improvement and therefore a solution with approximation ratio greater
than (1 +56)/(2 + 6) is e?(™),

Proof. The search point z‘ has r chosen elements and inserting any further elements
without removing any other elements is not accepted. Furthermore, removing one or
more elements without inserting any new ones covers less elements, which is therefore
also not accepted. Each selected set of EV2 covers en elements which are not covered
by any other chosen element whereas each set of EV would gain an additional contri-
bution of at most (1 — e — (1 — 2e + §)) = € — ¢ elements.

In order to have a set of EY* included and accepted at least én chosen sets of E"2
have to be removed. Removing dn such elements decreases the fitness by den?/2 and
has to be compensated choosing at least én sets of EV1.

Hence, in order to have a new accepted solution 24n bits have to flip in a mutation
step. The probability for this is at most

en (1—en 1 2om _ -0
on on n N '
This implies an expected waiting time of ¢?(™) and therefore completes the proof. [

We conjecture that the previous theorem may be generalized to initial solutions
chosen uniformly at random by following the analysis of the (1+1) EA for the vertex
cover problem on complete bipartite graphs (Friedrich et al., 2010). We don’t carry out
such a more technical analysis as our purpose in this section is to point out a situation
where the (1+1) EA gets stuck in a local optimum with approximation ratio roughly
1/2 of the Max-r-Cover problem.

3.2 Upper Bound for the GSEMO

We now turn to the GSEMO and show that this approach does not have to cope with
local optima that may prevent the algorithm from achieving an approximation ratio
better than 1/2. The GSEMO has the ability of carrying out local search operations, but
also allows for a greedy behavior which is beneficial in this case. The greedy behavior
of the GSEMO leads to the following result.

Theorem 2. The expected time until the GSEMO has obtained a (1 — 1)-approximation for a
monotone submodular function f under a uniform constraint of size r is O(n? (logn +r)).

Proof. We first study the expected time until the GSEMO has produced the solution 0™
for the first time. This solution is Pareto optimal and will therefore stay in the popu-
lation after it has been produced for the first time. Furthermore, the population size is
upper bounded by n + 1 as it contains for each ¢, 0 < ¢ < n at most one solution having
exactly ¢ 1-bits. The solution 0" is feasible and has the maximum number of 0-bits. This
implies that the population will not include any infeasible solution to the submodular
function f after having included 0™.

8 Evolutionary Computation Volume x, Number x
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For this step, we consider in each iteration the individual y that has the minimum
number of 1-bits among all individuals in the population and denote ¢ = |y|; the num-
ber of 1-bits in this individual. Note, that ¢ can not increase during the run of the
algorithm. For 1 < ¢ < n a solution ' with |y’|; = ¢ — 1 is produced with probability at
least £/(en?) as y' can be produced by selecting y for mutation and flipping one of the
¢ 1-bits. The expected waiting time to include the solution 0™ for the first time into the

population is therefore upper bounded by 37, (-5) = O(n?logn).

For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. (1978). We show that the GSEMO produces in expected
time O(n?k) for each 0 < j < r a solution X; with

JX) = (1 -(1- 1)) - f(orT), (1)

where f(OPT) denotes the value of a feasible optimal solution. Note, that a solution
is feasible iff it has at most r 1-bits. After having included the solution 0" into the
population this is true for j = 0. The proof is done by induction. Assume that the
GSEMO has already obtained a solution fulfilling Equation (1) foreach j,0 < j < i <.
We claim that choosing the solution « € P with |z|; = i for mutation and inserting the
element corresponding to the largest possible increase of f increases the value of f
by at least §;11 > L - (f(OPT) — f(X;)). Let 6,41 be the increase in f that we obtain
when choosing the solution € P with |z|; = ¢ for mutation and inserting the element
corresponding to the largest possible increase.

Due to monotonicity and submodularity, we have f(OPT) < f(X; U OPT) <
f(X;) + ;41 which implies 6;41 > £ - (f(OPT) — f(X;)). This leads to

i+1
F(Xer) 2 F(X0) 4 (F(OPT) — £(X0)) (1 ~(1-1) ) - f(OPT).

Fori =1, weget (1-(1-1)") - f(OpT) > (1 - %) f(OPT). The probability for

such a step going from i to i + 1 is lower bounded by —1; and hence the expected time
until a (1 — 1)-approximation has been obtained is at most

O(n?logn) + Z (eiﬂ) ) = O(n? (logn +1)). O
i=0

Max-r-Cover. Let us demonstrate the applicability of Theorem 2 by two examples.
First, reconsider the maximum coverage problem introduced in Section 2. Given a
universe U with subsets A, As, ..., A, C U, we want to maximize a coverage function
f(8) = |U,;cg Ai| such that |S| < r. Theorem 2 immediately implies:

Corollary 1. The expected time until the GSEMO has obtained a (1 — 1/e)-approximation for
the Max-r-Cover problem is O(n? (logn + r)). The achieved approximation factor is optimal,
unless P = NP (Feige, 1998).

Hypervolume indicator. As a second example, we consider a problem from evolu-
tionary multiobjective optimization. As discussed in Section 2, the hypervolume indi-
cator is a monotone submodular function. The hypervolume subset selection problem
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(HYP-SSP), where we are given n points in R? and want to select a subset of size k
with maximal hypervolume, therefore aims at maximizing a monotone submodular
function f: {0,1}" — R>( under a uniform matroid constraint of rank k. HYP-SSP
has recently been addressed by a number of authors (Bringmann et al., 2014a,b; Glas-
machers, 2014; Kuhn et al., 2014; Guerreiro et al., 2015). Theorem 2 has the following
implication for HYP-SSP:

Corollary 2. The expected time until the GSEMO has obtained a (1 — 1/e)-approximation for
HYP-SSP is O(n? (k + logn)).

For dimensions d > 2 this is significantly faster than the best known exact algo-
rithm with runtime O(n*) (Bringmann and Friedrich, 2010). Note that HYP-SSP can be
solved in time O(n (k + logn)) for d = 2 (Bringmann et al., 2014b).

4 Monotone Submodular Functions under Matroid Constraints

The previous section only studied uniform matroid constraints. We now extend this
to general matroids and intersection of £ matroids and study monotone submodular
functions under constraints given by k matroids M, ..., M.

We consider the (1+1) EA and start by analyzing the time until the algorithm has
obtained a feasible solution x with f(x) > OPT/n. This result will later on serve as the
basis for the main result of this section.

Lemma 1. Let f be a monotone submodular function under k > 1 matroid constraints and
OPT be the value of an optimal solution. The expected time until the (1+1) EA has obtained a
feasible solution with f(x) > OPT/n is O(nk*1).

Proof. The (1+1) EA starts with the initial solution chosen uniformly at random. We first
consider the expected time until the algorithm has obtained for the first time a feasible
solution, i.e. a solution z for which v(z) = 0 holds. To do this, we generalize Propo-
sition 10 in (Reichel and Skutella, 2010) to the case of the intersection of k& matroids.
Suppose that z is an infeasible solution with ¢ = v(z). During the optimization process
¢ never increases and there are at least ¢/k distinct elements that can be removed to
decrease ¢. Hence, the probability of decreasing / is at least

1 ( 1)”‘1 ¢
—. (1= > 2
n n ~ ekn

and the expected time until a feasible solution has been produced is upper bounded by

kn
ean = O(kn (logk + logn)).

{=1

For the remainder of the proof, we work under the assumption that a feasible solution
has already been obtained. Let x be an arbitrary feasible solution and z* be an optimal
solution. Furthermore let a be the element in z* such that f({a}) > OPT/n. As f is
monotone, we have f(y) > OPT/n for any feasible solution containing the element a.
According to Theorem 2.1 of (Lee et al., 2009), a feasible solution y containing a can
be obtained from any feasible solution « by introducing « and removing at most k
elements from z. The expected waiting time of the (1+1) EA for such a (k + 1)-bit
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flip is O(nk*1). Altogether, the expected time to produce a feasible solution = with
f(z) > OPT/nis O(nk*1) as O(kn (logk + logn)) = O(nk*!) forany k > 1. O

In the previous section, we have shown that there are local optima for submodular
functions with one uniform constraint which only constitute an approximation ratio
of most 1/2 + §. Furthermore, the (1+1) EA requires exponential time to leave these
local optima. The following theorem shows that the (1+1) EA obtains a 1/(k + J)-
approximation for any constant £ > 2 and ¢ in expected polynomial time. For the case
k = 1, this implies a 1/(2 + ¢)-approximation in expected polynomial time as we may
duplicate the single matroid constraining the search space.

Theorem 3. For any integers k > 2, p > 1 and real value € > 0, the expected time until
the (1+1) EA has obtained a (1/(k + 1/p + ¢))-approximation for any monotone submodular
function f under k matroid constraints is O(% - n?P+1+1 . k . logn).

Proof. Due to Lemma 1, a feasible solution z with f(x) > OPT/n is obtained in expected
time O(n**1). In the following, we work under the assumption that the algorithm has
obtained a feasible solution = with f(x) > OPT/n. A p-exchange operation applied
to the current solution z introduces at most 2p new elements and deletes at most 2kp
elements of x. A solution y that can be obtained from x by a p-exchange operation
is called a p-exchange neighbor of x. According to (Lee et al., 2010), every solution x
for which there exists no p-exchange neighbor y with f(y) > (1 + 55) - f(z) is a
(1/(k + 1/p + ¢))-approximation for any monotone submodular function.

The expected waiting time for a specific p-exchange operation is O(n?P(#+1)) as the
probability for a specific p-exchange is Q(n=2?(*+1)). The number of steps producing
from a solution z a solution y with f(y) > (1 + ;557y) - f(2) is at most

orT 1
1Ogl+n(k5+1) OTT/'R = 0(5 n (k + 1) 10g n) .

Altogether, the expected time until the (1+1) EA has obtained a (1/(k + 1/p + ¢))-
approximation is O(L - 2Pkt D+1. k. logn). O

Colorful spanning trees. Recall the example of finding colorful spanning trees
from Section 2, which can be described as a monotone submodular maximization prob-
lem under k& = 2 Matroid constraints. By choosing p > 1/¢ sufficiently large, we get the
following corollary.

Corollary 3. The expected time until the (1+1) EA has obtained a (1/2 — e)-approximation for
colorful spanning trees is O(poly(n)/e) for all € > 0.

5 Symmetric Submodular Functions under Matroid Constraints

We now turn to symmetric submodular functions that are not necessarily monotone.
For our analysis, we make use of the following corollary that can be obtained from (Lee
et al., 2009).

Corollary 4. Let x be a solution such that no solution with fitness at least (1 + 5) - f(x) can
be achieved by deleting one element or by inserting one element and deleting at most k elements.

Then x is a (m)—appmximation.
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Corollary 4 states that there is always the possibility to achieve a certain progress
if no good approximation has been obtained. We use this to show the following results
for the GSEMO. It should be noted that the corresponding Theorem 2 in the conference
version (Friedrich and Neumann, 2014) is accidentally missing the symmetry condi-
tion.

Theorem 4. The expected time until the GSEMO has obtained a <m) -approximation

for any symmetric submodular function under k matroid constraints is O(Ln**¢logn).

Proof. Following previous investigations, the GSEMO introduces the solution 0™ in the
population after an expected number of O(n?logn) steps. This solution is Pareto op-
timal and will from that point on stay in the population. Furthermore, 0" is a feasible
solution and has the largest possible number of 0-bits. Hence, from the time 0" has
been included in the population, the population will never include infeasible solutions.

Selecting 0™ for mutation and inserting the element that leads to the largest in-
crease in the f-value produces a solution y with f(y) > OPT/n. The reason for this is
that the number of elements is limited by n and that f is submodular. Having obtained
a solution of fitness at least OPT/n, we focus in each iteration on the individual having
the largest f-value in P. Due to the selection mechanism of the GSEMO a solution with
the maximal f-value will always stay in the population and the value will not decrease
during the run of the algorithm.

As long as the algorithm has not obtained a solution of the desired quality, it can
produce from its solution « with the highest f-value a feasible offspring y such that
f(y) = (14 %) - f(z). The expected waiting time for this event is O(n*+?) as at most
k + 1 specific bits of = have to be flipped and using the fact that the population size is
atmostn + 1.

Starting with a solution of quality at least OPT/n the number of such steps in order
to achieve an optimal solution is upper bounded by

Ort 1 4
log(1+ﬁ) OTT/’{]I —O(en 10gn>

Hence, the expected time to achieve a (m)—approximation is O(In*Clogn).
O

Maximum Cut. As an example, let us consider again the NP-hard Maximum Cut
problem, where for a given graph G = (V, E) with n vertices and nonnegative edge
weights w: E — R>o, we want to maximize the cut function 6(S) over all S C V as de-
fined in Section 2. It is known that the greedy algorithm achieves a 0.5-approximation
while the best known algorithms achieve a 0.87856-approximation (Goemans and
Williamson, 1995). Theorem 4 immediately implies the following.

Corollary 5. The expected time until the GSEMO has obtained a 1/(3 (1 + €))-approximation
for the Maximum Cut problem is O(£n" logn).

Note that this result is presumably not tight. We conjecture that a less general
analysis can show that the GSEMO achieves a 1/2-approximation.

Using the idea of p-exchanges from Theorem 3, we can improve the approximation
result of Theorem 4 with an increasing runtime depending on p.
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Theorem 5. For any integers k > 2, p > 1 and real value € > 0, the expected time until

the GSEMO has obtained a (m)

function under k matroid constraints is O(L - n?F+1+2. k. logn).

-approximation for any symmetric submodular

Proof. The GSEMO produces a feasible solution = with f(z) > OPT/n in expected time
O(n?logn) (see proof of Theorem 4). After the GSEMO has obtained a solution x with
f(z) > OrT/n, we focus on the solution with the largest f-value in the population.

According to Lemma 3.2 of Lee et al. (2010) for £ > 2, we have
(I+e)(k+1/p)- f(S) = fF(CUS)+(k—-1+1/p)f(SNC) = f(SUC)+ f(SNC)

if there is no p-exchange neighbor T with f(T') > (1+ ﬁ) - f(S). As f is symmetric,
we have f(S) = f(X \ S) and adding f(X \ S) to both sides yields

(L+e)(k+1/p+1Df(S) = F(X\S) + f(SUC)+ F(SNC) = f(O),

which implies f(S5)/f(C) > 1/((1 +¢)(k+ 1+ 1/p)). The number of improvements by

a factor (1+ ﬁ) is upper bounded by

n(k+1)

1
log,, - n= O(gn(k:—«—l)logn).

Furthermore, the expected waiting time for such an improvement it O(n?P(k+1)+1)
as the population size is upper bound by n+ 1 and a specific p-exchange has probability
Q(n=2P(*+1) (see proof of Theorem 3). This completes the proof. O

6 Discussion and Open Problems

Maximizing submodular functions under matroid constraints is a very general opti-
mization problem which contains many classical combinatorial optimization problems
like maximum cut (Goemans and Williamson, 1995; Feige and Goemans, 1995), maxi-
mum directed cut (Halperin and Zwick, 2001), maximum facility location (Ageev and
Sviridenko, 1999; Cornuejols et al., 1977), and others. We presented several positive
and negative results for the approximation behavior of the simple evolutionary algo-
rithms in the framework. To the best of our knowledge, this is the first paper on the
analysis of evolutionary algorithms optimizing submodular functions. The only result
on the performance of evolutionary algorithms under matroid constraints is by Reichel
and Skutella (2010). They showed that the (1+1) EA achieves in polynomial time a
1/k-approximation for maximizing a linear function subject to £ matroid constraints.

This paper gives a first set of results, but also raises many new questions. We

briefly name a few:

e We only study the (1+1) EA and SEMO algorithms, but similar results might be
possible for population-based algorithms with appropriate diversity measures.

e Our runtime upper bounds might not be tight. It would be interesting to show
matching lower bounds, especially for comparing different algorithms and func-
tion classes.
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e The proven approximation guarantees hold for very general problem classes.
Much tighter results should be possible for specific problems like Maximum Cut.

e Minimizing submodular functions is in general simpler than maximizing submod-
ular functions. However, it is not obvious what this implies for evolutionary algo-
rithms minimizing submodular functions.

e Our proofs strongly rely on the greedy-like behavior of SEMO. It might either be
possible (i) to prove a general relationship between SEMO and greedy algorithms
or (ii) to give an example where SEMO strictly outperforms a greedy strategy.

o We assume value oracle access to the fitness function f. It might be worth studying
the black box complexity of submodular functions in the sense of Lehre and Witt
(2012).

e We studied submodular fitness functions which are either monotone or symmetric.
Future work should also cover submodular functions which are neither monotone
nor symmetric.
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