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Abstract

Multiple-valued logic allows us to formulate problems by using symbolic variables which are often
more naturally associated with the problem specification than the variables obtained by a binary
encoding. In this paper we present a data structure for representation and manipulation of multiple-
valued functions - Mod-p Decision Diagrams (Mod-p-DDs). Mod-p-DDs differ from conventional
Multiple-Valued Decision Diagrams (MDDs) in that they contain not only branching nodes but also
functional nodes, labeled by addition modulo p operation, p - prime. Mod-p-DDs are potentially
much more space-efficient than MDDs. However, they are not a canonical representation and thus,
the equivalence test of two Mod-p-DDs is more difficult then the test of two MDDs. To overcome
this problem, we design a fast probabilistic equivalence test for Mod-p-DDs that requires time linear
in the number of nodes.

1 Introduction

In the last few years, major advances in integrated circuit technology made feasible fabrication of several
commercial products benefiting from multiple-valued logic, such as 256-Mbit 4-valued flash memory [1]
and 4-Gbit 4-valued DRAM [2]. These products can be seen as first steps toward recognition of the
increasing role of multiple-valued logic in the next generation of electronic systems. However, for further
practical utilization, efficient computer-aided tools for design, testing and verification of multiple-valued
logic circuits are needed. Some existing tools, such as Berkeley’s tool for verification and synthesis VIS
[3], provide a solution for the special case of multiple-valued input binary-valued output functions, but
the general problem is still open.

This paper focuses on the problem of efficient representation and manipulation of multiple-valued
functions. For the case of Boolean functions, Reduced Ordered Binary Decision Diagrams (ROBDDs) [4]
have proved to be well qualified for this purpose. ROBDDs can be extended to discrete case in different
ways, depending on the decomposition applied to the function in the nodes of the diagram. For example,
[5] presented a generalization of ROBDDs into Multiple- Valued Decision Diagrams (MDDs), representing
multiple-valued functions, M™ — M, over a finite set of totally ordered values M = {0,1,...,m — 1}.
For this purpose the conventional ITE-algorithm [6] is extended into the CASE-algorithm, utilizing the
generalized Boole/Shannon decomposition [7]:
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where f|,,=; are the cofactors of f defined by fl..=; = f(z1,...,2i-1,J,Tit1,...,2,) for all ¢ €
{1,2,...,n},j € M,and” +”,”-” denote the multiple-valued operations MAX, MIN, correspondently.
zis a unary operation [literal of z, defined by
i m—1 ifx=i,
= { 0 otherwise. (1)



A similar generalization, defined for the discrete functions, P, x P> X ... P, — M, where P; =
{0,1,...,p; — 1} are sets of values that the variables z; assume, has been presented in [8]. A sur-
vey of different multiple-valued decision diagrams is given in [9].

In this paper we introduce a new type of MDDs, extending the concept of Parity-OBDDs [10] to
the multiple-valued case and representing functions, f : M"* — M, with M = {0,1,...,p— 1}, p -
prime. We call it Mod-p Decision Diagram (Mod-p-DD). Such decision diagrams have a potential of
being more space-efficient than MDDs. However, Mod-p-DDs do not provide a canonical representation
of multiple-valued functions. For non-canonical representations, testing the equivalence of two graphs
is much more difficult than for canonical ones (i.e. NP-complete). The speed of equivalence testing
crucially affects the efficiency of synthesis of decision diagrams.

For the Boolean case, the fastest known deterministic equivalence test for non-canonical Parity-
OBDDs, presented in [11], requires time cubic in the number of nodes. Hence, it doesn’t seem to
be suitable for practical purposes. In [12], a fast probabilistic equivalence test for Parity-OBDDs has
been proposed that requires time at most linear in the number of nodes. In this paper we extend this
algorithm to the multiple-valued case.

The paper is structured as follows. In Section 2, Mod-p-DDs are introduced. Section 3 describes
the algorithm for deciding the equivalence of two Mod-p-DDs probabilistically. Section 4 presents the
reduction and synthesis algorithms for Mod-p-DDs. Section 5 concludes the paper with an outlook of
work to be done.

2 Definition of Mod-p-DDs

In this section we define Mod-p decision diagrams and show some of their properties.

Definition 1 A Mod-p Decision Diagram (Mod-p-DD) P is a rooted, directed acyclic graph P=(V, E)
with node set V' containing two types of nodes: terminal and non-terminal. A terminal node v has a
value value(v) € M attributed. A non-terminalnode has either a variable index index(v) € {1,2,...,n}
(branching node), or the p-ary operation addition modulo p, p - prime, (®,-node, functional node)
attributed, and p children child;(v) € V,i € M.

Definition 2 A Mod-p-DD is ordered if, for any non-terminal branching node v and for all i € M, if
child;(v) is also non-terminal, then it holds that index(v) < index(child;(v)).

Definition 3 A Mod-p-DD is reduced if it contains no vertex v with child;(v) = child;(v), for any
i,j € M,i # 7, nor does it contain distinct vertices v and v’ such that the subgraphs rooted by v and
v’ are isomorphic.

Definition 4 A Mod-p Decision Diagram P having root node v represents a function f, defined recur-
sively as follows

1. If v is a terminal node carrying the value §; € M, then f, = d;.

2. If v is a non-terminal branching node with index(v) = i, then f, is the function
0 1 p—1
fo(@1,-520) = T fenitdo (o) + i *fenitdr () + -+ Ti fenitd, 1 (v)»

where ” +” and ” - ” denote the multiple-valued operations MAX and MIN, and i‘, 1 € M, is the
literal defined by (1).

3. If v is a @p-node, then f, is the function

Jo(@1, -5 2n) = fenitdo(v) Dp fenitayw) Pp - - Bp fenitd,_1 (v

where ” ®,, ” denotes the operation addition modulo p.



It is easy to see that MDDs are just a special case of Mod-p-DDs, namely Mod-p-DDs without &,-nodes.
Therefore, the size of an optimal Mod-p-DD for a given multiple-valued function f is not greater than
the size of an optimal MDD for f.

But, for a fixed variable order, a function can be represented by several different Mod-p-DDs,
with different @,-node placement. Thus, the new data structure is not canonical. As an illustration,
consider a 3-variable 3-valued function defined by the table in Figure 1. Two different Mod-p-DDs for
this function, for the order <z, z2, 23>, are shown. Functional nodes are represented ” &”. The three
children of non-terminal branching nodes are indicated by the edges labeled by 0,1,2. The Mod-p-DD
on the right does not contain any functional nodes, i.e. it is equivalent to the MDD of the function.
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2 o 1 2|2 2 2|0 0 O

Figure 1: Two different Mod-p-DDs of the function from the example.

3 Probabilistic Equivalence Test for Mod-p-DDs

Since Mod-p-DDs do not provide a canonical representation of multiple-valued functions, testing the
equivalence of two graphs becomes an essential problem. In this section we show that the equivalence of
Mod-p-DDs can be decided probabilistically in linear time, by extending the probabilistic equivalence
test for Parity-OBDDs [12] to the multiple-valued case. Our extension employs the concept of multiple-
valued signatures introduced in [13] for identifying the equivalence of two multiple-valued functions
probabilistically.

The probabilistic equivalence test for Parity-OBDDs proposed in [12] needs only linearly many
arithmetic operations in the number of nodes in the graph. Equivalence of two Parity-OBDDs is
determined by an algebraic transformation of the functions represented by the graphs to polynomials
over a finite field of integers. A detailed description of the transformation is given in [14]. By extending
this test to the multiple-valued case, the equivalence of two Mod-p-DDs is determined by an algebraic
transformation of the Mod-p-DDs in terms of polynomials over a finite field of integers modulo p. This
algebraic transformation was introduced in [13].

Let GF(p*) be a Galois Field with p* elements of characteristic p, p - prime, k& > 0.

Definition 5 Let P be a Mod-p-DD representing a multiple-valued function f : M™ — M. With each
node v € P we associate the polynomial p, : (GF(p*))® — GF(p*) defined in the following way:

1. py = 0;, if v is a terminal node carrying the value §; € M,

p—1
2. py = Z H % * Dehild; (v), if v s a non-terminal branching node with index(v) = i,
Jj=0 \VvreM—{j}

p—1
3. py = Z Dehild;(v), i v i @ ©p-node,
=0



where the operations ” +7”,” —” and ” -7 are carried out in the field GF(p*).

The polynomial of P, p(P), is the polynomial associated with the root node of P. It was shown in
[13], that this polynomial is unique for a given function. Let |P| denote the number of nodes of a given
Mod-p-DD P. It is easy to see from Definition 5, that p(P) can be computed with p-|P| many additions,
at most 2p? - | P| many subtractions and at most 2p? - | P| multiplications. If we consider the elements of
GF(p*) as p-ary vectors of length k, then field addition can be performed in constant time by bitwise
addition modulo p. Multiplication and subtraction of two p-ary vectors of length k can be carried out in
[logp]k steps. Therefore, p(P) can be computed in at most p-|P|+2p®-|P|-[logplk+2p?-|P|- [logplk
steps. Since p and k are constants, the complexity of computing p(P) is bounded by O(|P|). Note, that
if the computation of p(P) is performed on a Mod-p-DD bottom-up, then the complexity of computing
the polynomial for a given node takes only constant time, because the polynomials for all its successor
nodes have already been computed.

Now we present a linear time algorithm for probabilistic equivalence test of two Mod-p-DDs:

Input: Mod-p-DDs P; and P representing p-valued functions, M" — M.

Output: If P; and P> are equivalent, then the algorithm always answers ”yes”.

Otherwise the algorithm returns "no” with probability greater than 1/p.

Assumption: GF(p*), p - prime, with more than pn elements.

procedure equivalence( Py, P»);
begin
choose independently and uniformly x1,xs, ..., x, from GF(p*);
compute p(Py) in GF(p*);
compute p(P:) in GF(p*);
if (p(P1) = p(P2))

then
return(”yes”); /+ P and P, are equivalent */
else
return(’no”); [+ P; and P, are not equivalent */
end.

Figure 2: Algorithm for probabilistic equivalence of two Mod-p-DDs.

Next, we give an estimation of the probability of a collision, i.e. the probability that during the
synthesis on Mod-p-DDs the signatures for two nodes representing different multiple-valued functions
are computed to be equal.

Lemma 1 By using s different signatures per node, the probability of collision is at most

- |P|2 .ns
e — 1 1 "
2-|GF(p*)l*

Proof: According to Schwartz-Zippel Theorem [16, p. 165], if the assignments of values of variables
xi,...,%, are taken independently and uniformly at random from a field F' of size |F'|, then the polyno-

mials associated with two different nodes can be distinguished with the probability at least ‘Tn‘ Blum

[15] has shown that with s parallel signatures, the risk of pairwise collision is at most ‘;‘,—‘ Among |P|
2
considered nodes, there are % pairs of nodes, and therefore the chance of having at least one possible
.. . |P2n*
collision among them is less than TIGFGI



The error probability depends on the number of elements in GF(p*), therefore it can be reduced by
enlarging the size of the field. It can also be reduced by using several different signatures per node with
different random assignment from G F (p*).

4 Operations on Mod-p-DDs

4.1 Reduction rules for Mod-p-DDs

Mod-p-DDs can be reduced in the same manner as MDDs [5], [17]. In a Mod-p-DD, a branching node
is redundant if all p of its out-going edges point to the same node. Then, the node can be replaced
by reconnecting all its incoming edges to its child (simple reduction or deletion rule). Identification of
isomorphic subgraphs forms the second reduction rule (algebraic reduction or merging rule).
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Figure 3: Deletion rule and merging rule for &-nodes.

For a @,-node, the merging rule is applied in a similar way as for branching nodes (see Figure 3).
The deletion rule differs in that a @p-node with p of its out-going edges pointing to the same node is
substituted by the 0-terminal node (see Figure 3).

4.2 Synthesis of Mod-p-DDs

For describing the Mod-p-DDs synthesis algorithm we assume that the reader is familiar with standard
BDD synthesis algorithms [6]. We implement all multiple-valued operations, except addition modulo p,
by means of the CASE-® operator, which is an extension of ITE-® operator, used in case of Boolean
Parity-OBDDs [18]. For addition modulo p we directly create a @p-node in the graph.

The input parameters of the CASE-® operator are, in general, multiple-valued functions given in
the form of Mod-p-DDs. The task is to generate the resultant function h =CASE-®(f, go,91,---,9p—1)
recursively. If f is a variable z, then the function returned by CASE-® corresponds to a branching
node with a top variable z and with children functions go,g1,...,gp—1:

CASE_@ (wag():gl: .. ,gp—l) = (w’g():gl: - -,gp—l)

Moreover, it holds that
CASE-& (f,0,1,...,p—1)=f

If f is an @,-operation, then the function returned by CASE-&® corresponds to a functional node with
children go,91,...,9p—1:

CASE_@ (@7907917 .. ,gp—l) = (@7907917 s ,gp—l)

The above three equations form the terminal cases for our recursive algorithm.

If f is a complex function, then we first recursively compute the CASE of its cofactors, and then
compose them using Boole/Shannon decomposition. To speed up the performance of the CASE-®
operation, we are using a computed table, which is organized as a hash based cache, to store and
recall the results. Before a new node is created, we always refer to a unique table organized as a hash



table, to prevent the creation of already allocated nodes. In both, computed table and unique table,
every reference is made by application of the probabilistic equivalence test to identify the underlying
Mod-p-DDs.

procedure CASE-®(f,90,91,---,9p—1)
begin
transform_to_standard_tuple(f, 9o, 91, .-, 9p—1);
if terminal_case(f, g0,91,...,9p—1,7€S)
then
return res;
reorder_tuple_acc-to_variable_order{(f, go, g1, ..., 9p—1);
if in_computed_table(f, go,91,...,9p—1,7€S)
then
return res;
if f=@p
then
res=new_node(lab=@p ,childy = go, ... ,childp_1 = gp—1);
else
begin
for j=0to (p—1) do
h|y=j =CASE-®(fle=j,g0lz=js--->9p—1la=j);

if signature(h|y=o)=signature(h|y=2)=. .. =signature(h|z=p—1)
then
res = h|g=o0;
else
res=new_node(lab=x,childy = hzp—o,...,childy_1 = hg=p_1);
insert_in_computed_table(f, 9o, 91, ..., 9p—1,7€S);
end;

find_or_add_in_unique_table(res);
return res;
end.

Figure 4: CASE-& algorithm for Mod-p-DDs synthesis.

The pseudo-code of CASE-® is shown in Figure 4. First, the algorithm checks the terminal cases. If
the resulting function has already been computed and stored in the unique table, then it is returned.
Further, if f = ®,, then a new functional node with children go, g1,...,gp—1 is created. If f is a
branching node, then the cofactors h|,—; of the function h are computed by calling CASE-& recursively
with the cofactors flo—j, golz=j, 91le=j,- -+, 9p—1]a=; as its arguments. These are composed by using
Boole/Shannon decomposition as (x, holz=0, P1le=1,- - Pp—1|e=p—1)-

The adoption of the algorithm involves the creation of Mod-p-DDs for cofactors f|;,—;,j € M of
a multiple-valued function f associated with a node. For a branching node v with index(v) = i, the
cofactors are derived by simply returning child;(v) of v. For an &p-node v, creating the cofactors with
respect to a variable z; necessitates the allocation of a new @,-node connected to the cofactors of the
p children of v, if this node does not already exist in the Mod-p-DD (see Figure 5).

5 Conclusion

In this paper, a new data structure for representation and manipulation of multiple-valued logic func-
tions - Mod-p-DDs - is introduced and algorithms for its manipulation are given. Mod-p-DDs have a
potential of being more space-efficient than MDDs. However, they are not canonical. Therefore, we
have given a fast probabilistic equivalence test for Mod-p-DDs that requires time linear in the number of
nodes. An implementation of the Mod-p-DDs package is subject of currently ongoing research. We are
working on two possibilities: (1) direct implementation of Mod-p-DD structure, which necessitates the
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Figure 5: Cofactor creation f|;,—o in Mod-p-DD.

development of a complete new package, or (2) implementing a Mod-p-DD by performing an arbitrary
encoding of the multiple-valued function M™ — M represented by Mod-p-DD into the Boolean func-
tion, Bllegrln _y Bllogr]  Thus, a multi-valued variable z; can be encoded as [logp] binary Boolean
variables ;, , ..., Tj;, .- By manipulating the same ordering between the associated groups of Boolean
variables, we can perform the same operations on the Parity-OBDD as on the Mod-p-DD. This allows
us to implement Mod-p-DDs using the already existing Parity-OBDD package [18].
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