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ABSTRACT

Functional dependencies (FDs) support various tasks for the man-
agement of relational data, such as schema normalization, data
cleaning, and query optimization. However, while existing FD dis-
covery algorithms regard only static datasets, many real-world
datasets are constantly changing — and with them their FDs.
Unfortunately, the computational hardness of FD discovery pro-
hibits a continuous re-execution of those existing algorithms
with every change of the data.

To this end, we propose DyYNFD, the first algorithm to dis-
cover and maintain functional dependencies in dynamic datasets.
Whenever the inspected dataset changes, DYNFD evolves its FDs
rather than recalculating them. For this to work efficiently, we
propose indexed data structures along with novel and efficient
update operations. Our experiments compare DYNFD’s incremen-
tal mode of operation to the repeated re-execution of existing,
static algorithms. They show that DYNFD can maintain the FDs
of dynamic datasets over an order of magnitude faster than its
static counter-parts.

1 FUNCTIONAL DEPENDENCIES

Traditional data profiling algorithms solve the problem of discov-
ering all metadata of type X in dataset Y. However, once those
algorithms finish, the dataset usually keeps evolving, thereby
rendering the discovered metadata outdated. An incremental data
profiling algorithm, on the contrary, acknowledges the dynamic
nature of data by maintaining all metadata of some type. It takes
as input the data and its (statically profiled) metadata and, then,
updates the metadata with every change, i. e., insert, update, and
delete of the data. In this paper, we propose such an incremental
algorithm for functional dependencies.

For an instance r of a relation R, a functional dependency (FD)
X — Aholds iff all records with the same values for the set of
attributes X C R also share the same value for attribute A € R [5].
We say that X functionally determines A.
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Definition 1.1. The functional dependency X — A with X C R
and A € R is valid for instance r of R, iff Vt;,t; € r: t;[X] =
tj[X] = t;[A] = t;[A]. We call X the left-hand side (Lus) and A
the right-hand side (Rus), respectively.

FDs often arise from real-world relationships. Consider, for
example, a relation with information about people including their
ZIP code and city name. In such a dataset, the ZIP codes func-
tionally determine the city names of the records, because ZIP
codes are a more fine-grained localization. The presence or ab-
sence of certain dependencies, in general, helps to understand
complex semantic relationships in data exploration scenarios.
Being able to track the validity of certain dependencies over
time provides even deeper insights. In a product database, for
instance, the FD num_sales — num_shipments might hold only
overnight, because shipments are delayed in daily business. Or
the FD product — price in a pricing database was temporarily
violated at the time of a system migration. Apart from data explo-
ration, further applications for functional dependencies include
schema normalization [4], query optimization [14], data integra-
tion [11], data cleansing [2], and data translation [3]. Given that
the functional dependencies are not only known for a snapshot of
the data but over a longer period of time, it is for any of these use
cases easier to identify robust dependencies. Continuous change
patterns for non-robust dependencies, on the other hand, can be
of interest themselves; and sudden changes of thus far robust FDs
might signal data quality issues, i. e., erroneous updates.

The most interesting FDs for all such applications are minimal,
non-trivial FDs. An FD X — A is non-trivial if A ¢ X, otherwise
it would hold on any instance r of R and, hence, would not
characterize r. An FD is minimal if no generalization, i.e., no
subset of the FD’s Lus also describes a valid FD. More formally,
anFD X’ — Aisa generalization of another FD X — Aif X’ c X.
On the other hand, an FD X”” — A is a specialization of an FD
X — Aif X c X”,i.e, if its LHs is a superset of the other FD’s
Lus. Any valid, minimal FD implies that all of its specializations
are valid as well, which makes them particularly interesting. As
a result, given the complete set of minimal FDs, all other FDs can
be inferred from it. For this reason, it suffices to discover and
maintain only minimal, non-trivial FDs.
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Despite the restriction to minimal FDs, the discovery of all
such dependencies is still expensive: Liu et al. have shown that,
when using nested loops for the dependency validations, the com-

plexity of the discovery is in O (nz (%)2 2’”) for relations with

m attributes and n records [10]. More sophisticated, index-based
algorithms, such as [8] or [13], avoid the quadratic complexity
of the candidate validations (n?), but the algorithms’ complexity
w. 1. t. the number of attributes stays exponential (2"). This is
inevitable due to the potentially exponential number of discov-
ered FDs. The discovery problem becomes even harder when
taking data changes into account. As mentioned above, all state-
of-the-art FD discovery algorithms operate only on static datasets
and one needs to re-execute them after every change of the data
to maintain the FDs on dynamic datasets. Unfortunately, this is
computationally far too expensive in practical situations: It is not
unusual for those algorithms to take minutes or even hours to
complete.

However, the following two observations suggest that this
problem can be solved with a novel, incremental algorithm: First,
most changes affect only a small subset of records and only these
small deltas need to be investigated for causing metadata changes
— the majority of records still support the same FDs as before.
Second, most changes in the FDs are minor, meaning that a close
specialization or generalization of a former minimal FD becomes
a new minimal FD.

On the face of this opportunity, we propose DYNFD, the first
algorithm that maintains the complete and exact set of minimal,
non-trivial FDs on dynamic data. The algorithm monitors data
changes, i. e., inserts, updates, and deletes, and calculates their
effect on the metadata. The changes are grouped into batches
of configurable size so that a user can specify timeliness of the
metadata (at the cost of performance). So rather than frequently
re-computing all FDs, DYNFD continuously deduces FD changes
from the previous set of FDs and the batch of change operations.
In detail, our contributions are the following:

(1) FD maintenance algorithm. We present DYNFD, an algorithm
that incorporates data changes, i. e., inserts, updates, and deletes,
as batches into sets of minimal functional dependencies. While
updates are simply handled as a combination of insert and delete,
the algorithm offers specialized handling strategies for inserts
and deletes (Section 2).

(2) FD maintenance data structures. To update the dependen-
cies efficiently, our DYNFD algorithm needs to maintain several
data structures, such as position list indexes, dictionary-encoded
records, and FD prefix trees, over time. We explain these data
structures and how they need to change w.r. t. newly inserted
or deleted tuples. We also propose a novel cover inversion algo-
rithm to deduce an FD negative cover from an FD positive cover
(Section 3).

(3) FD maintenance pruning rules and techniques. We devise novel
pruning rules and techniques for insert and delete operations that
allow DYNFD to optimize or even skip certain validations. For
validations that cannot be skipped, we propose efficient validation
methods that exploit the incremental nature of the data changes
(Section 4 and Section 5).

(4) Evaluation. We provide an exhaustive evaluation of DYNFD
w. r. t. scalability and speed-up. We investigate the effectiveness
of our pruning and maintenance strategies and compare DYNFD
to HYFD, the state-of-the-art FD discovery algorithm for static
data (Section 6).
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Table 1: An example relation with four initial tuples. A
batch of changes inserts and deletes tuples, as indicated
by the “-” and “+” signs, respectively.

ID | firstname | lastname | zip city
1 Max Jones 14482 | Potsdam
2 Max Miller 14482 | Potsdam
-3 Max Jones 10115 Berlin
4 Anna Scott 13591 Berlin
+5 Marie Scott 14467 | Potsdam
+6 Marie Gray 14469 | Potsdam

2 OVERVIEW OF DYNFD

Before we discuss implementation details, we give an overview
of our proposed algorithm DYNFD. This algorithm operates on a
single relation, such as the one exemplified in Table 1, which may
or may not contain an initial set of tuples (here: tuples 1-4). The
relation is then subject to a series of batches of changes. Each
batch inserts and/or deletes tuples from the relation. For instance,
Table 1 shows a batch that removes tuple 3 and inserts tuples 5
and 6. Note that tuple updates can be expressed by a delete and
an insert operation. Also, note that the size of the batches is at the
discretion of users and their use cases and allows for a trade-off
between granularity and performance of the FD maintenance
process.

As explained in Section 1, each batch can change the set of
minimal FDs in a relation. For instance, while the FD z — ¢
continues to be a minimal FD in Table 1 before and after the
batch has been applied, f — ¢ becomes a new minimal FD and
fc — z ceases to be a (minimal) FD.

To discover these changes, DYNFD comprises three principal
components as can be seen in Figure 1: (i) the data structures,
which are position list indexes and dictionary-encoded records,
concisely model all relevant features of the relation to determine
the currently valid FDs; (ii) the positive cover indexes all mini-
mal FDs and allows to reason on the effect of insert operations;
and (iii) the negative cover with all maximal non-FDs allows to
process delete operations analogously. If the profiled relation
contains initial tuples, we employ the static algorithm HYFD [13]
to bootstrap the data structures and the positive cover. The nega-
tive cover can then be derived from the positive cover via a cover
inversion as we describe in Section 3.2.

Having initialized all necessary data structures, DYNFD be-
gins to monitor changes of the profiled relation. These changes
arrive as a stream that is first transformed and then processed
in batches, i. e., non-overlapping groups of insert, update, and
delete operations. The batches can be, e. g., equally sized groups
of change operations or, alternatively, all operations from within
a tumbling time window. Each batch is processed according to
the following observation: According to Definition 1.1, insert
operations can introduce violations to existing FDs, but never
remove them. As a result, those FDs become invalid. We can effi-
ciently retrace these changes by operating on the positive cover,
i.e., on the existing minimal FDs. Delete operations constitute
the opposite case: Exiting violations may be removed, thereby
introducing new FDs - or in other words, existing non-FDs may
become valid. Here, the negative cover is more appropriate to
efficiently reason on delete operations. For this reason, we handle
insert and delete operations separately, yet with the same basic
principles.



Figure 1: Processing one batch of insert and delete opera-
tions with DynFD.
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Figure 1 depicts the processing pipeline in more detail. In
Step (1) of this process, DYNFD efficiently updates its data struc-
tures according to the changes in the batch (see Section 3.1). In
doing so, DYNFD does not need to perform potentially expensive
read operations on the database. Not accessing the database is
particularly important, also because reads would lead to race
conditions with the changes applied by the database itself, i.e., a
change that is being processed by DYNFD might not have been
(fully) applied by the database, yet, or the database may have
already applied a subsequent change that DYNFD has not yet
seen. In Step (2), DYNFD processes all deletes in the batch by
checking whether they resolve any maximal non-FD in the nega-
tive cover (see Section 5); if a non-FD becomes a valid FD, this
change is also propagated to the positive cover. Then, in Step (3),
the algorithm processes all inserts by checking whether they
introduce a violation to any minimal FD in the positive cover
(see Section 4); in case they do, the positive cover is updated and
the changes are propagated to the negative cover. Hence, due to
the change propagation, Steps (2) and (3) may both affect both
covers. In Step (4), DYNFD finally signals all changed FDs to the
user and is then ready to process the next batch.

The attentive reader may have noticed that we choose to pro-
cess deletes before inserts, although the other way around is also
possible. The decision on which type of operation to process
first is particularly important for the special but common case
of tuple updates, which we split into an insert and a delete. By
processing the delete first, we avoid operating on an interme-
diate relation that contains both the old and the new version
of the updated tuple. Such an almost duplicate tuple would vio-
late many dependencies, in particular key dependencies, for the
time of its existence. Hence, many FDs would change only to
change back when the (almost) duplicate is removed again. So in
short, processing deletes first significantly reduces the number
of temporarily changing FDs.

3 DATA STRUCTURES

Rather than recalculating the FDs of a relation after each batch
of changes, DYNFD creates and maintains several data structures
from which to derive the FDs. For that matter, we discern two
types of data structures, namely those that represent the rela-
tion in a compact format that is suitable to efficiently check the
validity of FD candidates; and the positive and negative cover,
which we use to evolve the set of minimal FDs and maximal
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non-FDs, respectively. In the following, we briefly describe those
data structures and how to update them in incremental scenarios.

3.1 Representing relations compactly

When validating FD candidates against a relation, the actual val-
ues within that relation are irrelevant. Instead, we merely need
to know, which tuple pairs have identical values for which at-
tributes. Therefore, it is sufficient for DYNFD to represent the
relation as compressed records [13]. Consider the example in Ta-
ble 2, which represents the initial state of Table 1, i. e., before the
change. Essentially, the compressed records replace all values of
the original relation with a number that uniquely identifies that
value within its column. For instance, the city name “Potsdam”
is replaced by the value 0 and the city name “Berlin” is replaced
by the value 1. This replacement not only has a small memory
footprint but also allows for more efficient equality comparisons.
This scheme is further optimized by replacing unique values
with the value “~1”. If DYNFD encounters a “—17, it can skip all
comparisons, as by definition all other tuples must have distinct
values for the affected column.

Table 2: The dictionary-encoded example of Table 1.

ID | f 1 z | c
1 0 0 0 0
2 0 -1 0 0
3 0 0 -11]1
4 -1 -1]-11|1

While compressed records are well-suited to compare indi-
vidual tuple pairs to quickly detect FD violations and rule out
some FD candidates, they are not suitable to validate FD can-
didates as a whole. Therefore, DYNFD complements the com-
pressed records with position list indexes (PL1s) [13], also known
as stripped partitions [8]. In few words, a PrI lists the clusters
of tuple IDs that have the same values for a certain attribute.
For our example data from Table 1, we therefore obtain the Piis

= {{1, 2,3}, {4}} for firstname, 7; = {{1, 3} {2}, {4}} for last-
name, 1, = {{1, 2}, {3}, {4}} for zip, and 7, = {{1, 2}, {3, 4}} for
city. The P11 zx for a set of attributes X can be computed via PL1
intersection, i. e., by intersecting all pairs of overlapping clusters
in the Puis ry and 7z with YUZ = X. Hence, nx = my Nz and,
for example, 77, = 7p N7 = {{1, 2}, {3}, {4}}. A functional
dependency X — A holds iff 7x N w4 = mx, i.e., 14 does not
split any cluster in 7x so that all records with equal values in X
have also equal values in A [8]. Calculating wx N 4 can be done
efficiently by using the compressed records: The (well-known)
FD validation algorithm uses the P11 for some attribute A € X as
an index to sets of tuples in the compressed records that are, then,
grouped by same X values and checked against their A values.
For more details and optimizations of this validation algorithm,
we refer the interested reader to [13].

Compressed records and Pris synergize well in validating FD
candidates, which has already been shown for static FD discovery.
In a static setup, however, both data structures identify each
record by its row number, i. e., position in the relational table.
These row numbers, change in the dynamic setting, because the
table grows and shrinks. For this reason, we assign a continuous
number as a surrogate key to each record to identify it. The main
challenge for using compressed records and Pi1s in the dynamic
case is that we need to update these data structures with every
batch of changes. For this, we propose the following:



Insert. A newly inserted record adds an entry to both data struc-
tures: We first add its identifier to all Piis. For every attribute,
we read the attribute’s value from the new record and fetch the
attribute’s PL1 from the list of PL1s. We then need to find the
cluster in the Pi1 that corresponds to the said value and add
the record’s identifier to it. To find that cluster, the algorithm
needs to remember the value of each cluster. It does so by storing
and maintaining an additional inverted index on top of the Piis,
i.e., the inverted index points each value to the P cluster in
which it occurs. Following this mapping, it is easy to find the
clusters were DYNFD needs to add an identifier; if some value
has no cluster in a P11 yet, it creates a new cluster. Given the
cluster numbers of all attributes for the new record, updating
the dictionary-encoded records is done by simply appending the
array of these cluster numbers to the list of dictionary-encoded
records.

Delete. To delete a record from the data structures, we follow
a similar, quick look-up strategy: For every attribute, DYNFD
first retrieves the PL1 cluster that corresponds to the attribute’s
value in the deleted record. Then, it removes the identifier of the
deleted record from these clusters; if a cluster becomes empty,
the algorithm deletes the cluster from the P11 entirely. After
the P11 update, DYNFD also removes the record’s compressed
representation from the list of dictionary-encoded records. To
find the record, we use another additional index, the hash index,
that points the identifiers to their dictionary-encoded records.
Alternatively, one could also find the record via binary search
on the list of dictionary-encoded records, but the hash index
has an infinitesimally small memory footprint in comparison
to the other data structures and offers better performance than
binary search. Once the compressed record is determined, DYNFD
deletes it from the list and the hash index.

3.2 Organizing functional dependencies

Let us now describe how DyNFD organizes its discovered FDs and
non-FDs. The FD search space is usually modeled as a powerset
lattice, which is a graph representation of all possible attribute
combinations. Due to the partial order of the power set, every
two elements have a unique supremum and a unique infimum so
that the graph can connect each node X C R to its direct subsets
X \ A and direct supersets X U {B} (with A € X, B € R\X). Every
node in the lattice represents one LHs attribute combination for
a set of FD candidates; each such FD candidate is defined by its
Rus attribute, which can bee seen as annotations at every node.
In this way, all 2™ - m possible FDs are covered by the lattice.
During FD discovery, we classify each annotation and, hence, the
respective LHs — Rus candidate as either valid or invalid FD.

Figure 2 depicts the lattice of FD candidates for the initial state
of our example relation from Table 1 (tuples 1 to 4). The five
minimal FDs | — f,z — f,z — ¢, fc — z,and Ic — z have
been discovered with a static profiling algorithm and we can infer
all non-minimal and invalid FDs from them. To show how valid
and invalid FDs are located in this search space visualization, all
annotations have been color coded: Green cells represent valid
FDs whereas red cells represent invalid FDs or short non-FDs.
Stronger colors denote minimality for FDs and maximality for
non-FDs. Note that a non-FD is maximal if no specialization of
it is also a non-FD. Trivial FDs are shown in grey, because they
are not of interest. So for example, we find the valid, minimal FD
fc — z as the dark green annotation for Rus attribute Z in LS
node FC.
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Figure 2: FD lattice for the data shown in Table 1.
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The complete set of minimal FDs is called the positive cover,
because all non-minimal FDs can be derived from it. The complete
set of maximal non-FDs, in contrast, is called negative cover,
because it defines all existing non-FDs.

DYNFD stores both the negative and the positive cover as FD
prefix trees, which are technically prefix trees with annotations:
Each node in the tree represents a LHs attribute, any path starting
from the root node represents a Lus, and annotations on the nodes
indicate valid Rus attributes for the respective paths [6]. FD prefix
trees are not only a compact data structure for storing FDs, they
also offer efficient look-up functions for FD generalizations and
specializations — functions that are called frequently by DYNFD.

The positive cover, the PLis, and the dictionary compressed
records represent the initial input for DYNFD. By running the
static FD discovery algorithm HYFD first, we can simply obtain
all three data structures directly from that algorithm; otherwise,
if only the set of minimal FDs is given, it is trivial to construct
them in a preprocessing step. What is not trivial is the calculation
of the negative cover, i. e., all maximal non-FDs, from the given
FDs. The process of calculating the positive from the negative
cover is known as cover inversion [6] or dependency induction [13],
but its inverse, the calculation of the negative from the positive
cover, has not been studied before. With Algorithm 1, we hence
present the first inversion algorithm for this step.

We start with an empty FD prefix tree nonFds (line 1). For
every attribute A of a relation R, the algorithm then adds the
most specific non-FD, which states that all other attributes do
not functionally determine A (lines 2-4). Initialized in this way,
the negative cover invalidates all possible FDs and basically states
that there are no FDs in the data. This initialization is probably
not true, but serves as a starting point for successive refinement.
Hence, the algorithm then checks for every valid FD whether it
covers some non-FD by looking up all specializations of that FD
in the negative cover (lines 5-6). This look-up is implemented as
a simple depth-first search in the FD prefix tree. If a non-FD has
been found to be a specialization of a valid FD, it must in fact be
valid. For this reason, Algorithm 1 removes it from the negative
cover (line 8). Then, we need to check all direct generalizations of
the removed non-FD for being maximal non-FDs. The inversion
algorithm creates each of these generalizations by removing one
Lus attribute from the current non-FD’s Lus (lines 9-11). If such
a created non-FD is maximal, i. e., if it has no specialization in the
cover, it is added to the negative cover (lines 12-13); otherwise, if



Algorithm 1: Cover inversion

Algorithm 2: Lattice-based FD validation

Data: relation R, positive cover fds
Result: negative cover nonFds

1 nonFds «— 0;

2 for Ae Rdo

3 initialLhs < R\ {A};

4 nonFds < nonFds U {initialLhs — A};

5 for fd € fdsdo
6 violated «— nonFds.getSpecializations(fd);

7 for nonFd € violated do
8 nonFds < nonFds \ {nonFd};
9 for | € fd.getLhs() do

10

newLhs < nonFd.getLhs() \ {l};

1 gen «— (newLhs — nonFd.getRhs());

12 if —nonFds.containsSpecialization(gen) then

13 L nonFds < nonFds U {gen};

14 return nonFds

it is not maximal, it is simply discarded. Repeating this for every
valid, minimal FD creates the negative cover.

Applied to the example data shown in Table 1, we start with
the assumption that flz — ¢, flc — z, fzc — [, and lzc — f
are maximal non-FDs. Because the non-FD lzc — f is a spe-
cialization of the minimal FD [ — f, it needs to be removed as
a non-FD. We then generalize it to zc — f as a new maximal
non-FD candidate. This non-FD is a specialization of the minimal
FD z — f (that we check next) so we generalize it once more,
to ¢ — f. After also applying the remaining three minimal FDs
to the negative cover, the inversion algorithms yields the final
maximal non-FDs fzc — [, fl - z, fl > ¢,c — f,and ¢ — z.

4 HANDLING INSERTS

Having discussed DYNFD’s principal workflow along with its ba-
sic data structures, we now present a mechanism to maintain FDs
in the light of insert operations (delete operations are discussed
in the following section). Inserts can only render previously valid
FDs invalid. Because the minimal FDs in the positive cover imply
all valid FDs, they are the starting point for our validations. To
process a batch of inserts, we validate all known minimal FDs
and specialize them in case they became invalid. To ensure mini-
mality for newly created specializations, we validate the minimal
FDs from most general to most specific. In this way, we can check
for each new specialization, if there is a valid generalization in
the positive cover; the specialization would then not be minimal,
because its generalization has already been determined to be true
(minimality pruning). We discuss this main validation process,
which is basically a lattice traversal type FD discovery approach,
in Section 4.1.

To identify invalid FDs more quickly, we add an optimization
to the validation process that, if the process becomes inefficient,
progressively searches for FD violations. If a certain amount of
FDs has been found invalid, the lattice traversal starts creating
and checking many new candidates — most of which are usually
invalid. For this situation, related work proposed dependency
induction and sampling techniques that find most such viola-
tions faster than validating all candidates individually [13]. In
Section 4.3, we propose an adapted version of these techniques
for our dynamic setup.
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Data: relational schema R, positive cover fds, negative
cover nonFds
Result: updated fds, nonFds

1 for level € 0...|R| do

2 invalidFds <« 0;

3 for fd € fds.getLevel(level) do

4 if —isValid(fd) then

5 L invalidFds « invalidFds U {fd};

6 for nonFd € invalidFds do

7 fds «— fds\ {nonFd};

8 nonFds.removeGeneralizations(nonFd);

9 nonFds « nonFds U {nonFd};

rhs < nonFd.getRhs(),

for r € R\ (nonFd.getLhs() U {rhs}) do
newLhs < nonFd.getLhs()U {r};

13 spec « (newLhs — rhs);

14 if —fds.containsGeneralization(spec) then

L fds «— fds U {spec};

15

16

if |invalidFds| | |fds.getLevel(level)| > 0.1 then

17 L progressiveViolationSearch(fds, nonFds)

18 return fds, nonFds

Note that whenever either of the two validation strategies,
i.e., the lattice traversal or the dependency induction, discovers
a non-FD, this non-FD must also be added to the negative cover.
The process for updating the negative cover with a new non-FD
covers two simple steps: First, remove all generalizations of the
new non-FD from the cover (they are not maximal any more);
then, add the new non-FD to the negative cover (without a check
for specializations, because the non-FD used to be a valid FD
before and is, therefore, inevitably maximal).

4.1 Incremental FD validation process

Algorithm 2 shows the lattice traversal-based FD validation al-
gorithm that is executed for every batch in the dynamic setting.
We start with the most general FDs in the positive cover and pro-
ceed to ever larger FDs (line 1). On each level of the lattice, the
algorithm validates all minimal FDs and stores the invalid ones
(lines 2-5). The validation function isValid() implements an opti-
mized version of the PiI intersection technique that we touched
on in Section 3.1; we discuss the optimization in Section 4.2. Iter-
ating over all found non-FDs (line 6), the algorithm first removes
each non-FD from the positive cover (line 7). As stated before,
these non-FDs must also be maximal and are, therefore, added to
the negative cover (lines 8-9). Afterwards, Algorithm 2 generates
and adds all specializations of the current non-FD to the positive
cover that are minimal w. r. t. the existing FDs (lines 10-15): To
generate the specializations, we first add each attribute that is
not already part of the LHs or Rus to the new Lus (lines 11-13);
each specialization is checked for generalizations in the positive
cover before it is finally added to the cover (lines 14-15). On the
next level, Algorithm 2 automatically validates these specializa-
tions. However, before moving to the next level, we check which
fraction of validations in the current level has led to non-FDs
(line 16). If this fraction is greater than 10% (see [13] for why this
is a good threshold), then we consider the lattice traversal to be



Figure 3: Lattice after handling inserts in Table 1.
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inefficient and start a progressive search for violations (line 17).
When the search returns, it might yield updated versions of the
positive and negative cover. Algorithm 2 then proceeds to the
next lattice level until all minimal FDs have been checked.

Applying this to our example, we have the initial candidates
z—c¢,z— f,1 - f,lc - z,and fc — z. They are represented
by the dark green cells in Figure 2. We start at the top of the
lattice and work our way to the bottom. When validating the
most general FDs, we find that I — f is not valid anymore and,
hence, a candidate for a maximal non-FD. The only new candidate
islc — f, since Iz — f is not minimal. Validating the now most
general candidates shows that fc — z is also invalid. There are
no new candidates to be added. It also follows that ¢ — z is no
maximal non-FD anymore and needs to be removed from the
negative cover. Because no candidates are left, we are done and
found the minimal FDs holding after inserting the new records.
The corresponding lattice is shown in Figure 3.

4.2 Cluster pruning

To validate the minimal FDs in the positive cover, we build on the
Pri-based validation algorithm presented in [13]: This algorithm
uses the single-column Piis and dictionary-encoded records to
dynamically calculate the PL1 intersection of all Lus attributes; at
the same time, the algorithm checks the resulting clusters against
the Rus attribute clusters. If a check fails, i. e., if it reveals an FD
violation, the algorithm terminates the validation process early.
Furthermore, it performs this check for all FD candidates with
the same LHs simultaneously.

Our DYNFD algorithm enhances this validation strategy: In-
stead of validating the FD against the entire dataset, we validate
it against only the newly added and a few related records. Recall
from Definition 1.1 that an FD is invalidated by a pair of records
with equal values in the LHs attributes but different values in the
Rus attribute. Because for inserts we validate only previously
valid FDs, all pairs of old records still satisfy the FD. Only pairs
of records containing at least one new record might introduce
violations. Thus, the validation step for inserts needs to check
such pairs only.

We integrate this optimization into our validation algorithm as
follows: Given a fixed ordering of attributes by their respective
P11 sizes, the validation starts by iterating the clusters of the
P11 of the first Lus attribute. For each cluster, the algorithm
dynamically calculates the intersection with all other LHs clusters
to check the result against the Rus clusters. At this point, which
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is, before calculating the intersections, DYNFD first checks if the
current cluster of the first LHs attribute contains an identifier of
a new record. This check is very simple, because the identifier
numbers are assigned monotonically increasing (see Section 3.1)
and the identifiers in each cluster are sorted. Hence, DYNFD
simply checks whether the last entry in the cluster is less than
the identifier of the first insert-record in the current batch: If
so, the cluster can be ignored; otherwise, the cluster contains at
least one new record and needs to be checked via dynamically
intersecting the LHs attributes and probing the result against the
Rus attribute clusters.

As aresult, DYNFD’s validation function isValid() (Algorithm 2
line 4) checks only the delta of the current batch for changing an
FD and not the entire dataset. This optimization significantly im-
proves the efficiency of the validation step, as many unnecessary
comparisons are saved.

4.3 Violation search

If the lattice traversal becomes inefficient (Algorithm 2 line 16-17),
DYNFD switches to a strategy that we call violation search. This
strategy is a best effort approach to find violations for formerly
valid FDs via comparing records: Given two records r; and r;
with their dictionary-encoded signature, we can easily compute
the set of attributes X, in which r; and r; hold same values, and
the set of attributes Y, in which r; and r; hold different values. It
follows that X — Y are all non-FDs.

Any newly inserted record can cause violations only with
those partner records that have at least one value with the in-
serted record in common; records that do not share any value
with the inserted record need not be considered. With DYNFD’s
PL1s, we can easily retrieve all those partner records by simply
collecting all Pr1 clusters of the inserted record. Comparing the
inserted record to all records in these clusters would, in fact,
reveal all new violations, but the comparison costs are quadratic
in the number of records, which is usually too expensive. For this
reason, DYNFD compares an inserted or changed record only to
a small, promising subset of partner records.

Related work has shown that record pairs with possibly many
overlapping values are promising candidates for finding new vi-
olations [13]. A sorting approach was demonstrated that moves
pairs with high overlap closer together so that near neighbor-
hoods become promising candidates. These neighborhoods are
then progressively explored by moving ever larger windows over
the sortings. If the violation search becomes inefficient, which
is when less than 10% of the comparisons reveal new violations,
the search ends. DYNFD implements the exact same progressive
search, but it compares only those record pairs that include at
least one inserted (or updated) record.

For every discovered non-FD, DYNFD needs to update both the
positive and the negative cover. Algorithm 3 shows the necessary
steps: It first updates the positive cover (lines 1-9) and then the
negative cover (lines 10-13). To update the positive cover, the
algorithm collects all invalidated FDs and removes them from
the cover (lines 1-3). For each of these invalidated FDs, it also
generates all direct specializations adding the minimal ones to
the positive cover (lines 4-9). To update the negative cover, Algo-
rithm 3 first checks if it contains a specialization (line 10); only if
there is no specialization, the current non-FD is maximal and we
add it to the negative cover (lines 11-12).



Algorithm 3: Dependency induction from a non-FD

Algorithm 4: Lattice-based non-FD validation

Data: relational schema R, nonFd, positive cover fds,
negative cover nonFds
Result: updated fds, nonFds

1 invalid < fds.getGeneralizations(nonFd);

2 for fd € invalid do

3 fds «— fds\ {fd};

4 rhs « fd.getRhs();

5 for r € R\ (nonFd.getLhs() U {rhs}) do

6 newLhs « fd.getLhs()U {r};

7 spec « (newLhs — rhs);

8 if —fds.containsGeneralization(spec) then
9 L fds «— fds U {spec};

10 if —~nonFds.containsSpecialization(nonFd) then
nonFds.removeGeneralizations(nonFd);

| nonFds < nonFds U {nonFd};

11

12

13 return fds, nonFds

5 HANDLING DELETES

To handle deletes, we propose a lattice traversal approach that
validates the non-FDs in the negative cover level-wise starting
with the most specific non-FDs and successively proceeding to
more general ones. Because the maximal non-FDs imply all other
non-FDs, the validation algorithm checks and, if necessary, gen-
eralizes only maximal non-FDs. Due to the level-wise iteration
of the lattice, we can test any newly derived generalization for
specializations in the negative cover to ensure that only maxi-
mal non-FDs are added back into the negative cover (maximality
pruning). We describe this main validation process of the nega-
tive cover in more detail in Section 5.1 and its optimizations in
Section 5.2 and Section 5.3.

5.1 Incremental non-FD validation process

Algorithm 4 shows the lattice traversal-based non-FD validation
algorithm. This algorithm basically inverts the lattice traversal
algorithm for inserts (see Algorithm 2): It operates on the negative
cover instead of the positive cover (line 3), it traverses the cover
from the most special non-FDs to the most general non-FDs
instead of from most general to most special FDs (line 1), it
transfers updates to the positive cover instead of to the negative
cover (lines 8-9), and it generalizes de-facto-valid non-FDs instead
specializing de-facto-invalid FDs (lines 10-14).

The validation function isValid() (line 4) is the same validation
function that we already introduced for the validation of FDs
in the insert scenario, but we now expect the outcomes to be
mostly non-FDs. For non-FDs, DYNFD adds an additional pruning
technique to the validation that we explain in Section 5.2.

One major difference to the insert scenario, though, is that
deleted records resolve violations and do not introduce them. For
this reason, the progressive violation search, which compares
promising record pairs in the quest for new non-FDs, makes
no sense due to the lack of new non-FDs. Instead, we propose
optimistic depth-first searches if the number of valid FDs exceeds
10% of all validated non-FDs in a current level (lines 15-16). We
explain these optimistic depth-first searches in Section 5.3.

Applying the algorithm to our example, we start with the
initial candidates for maximal non-FDs fzc — [, fl — z, fl — ¢,
fc— 2z, 1 — f,andc — f.They are the dark red cells in Figure 3
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Data: relational schema R, positive cover fds, negative
cover nonFds
Result: updated fds, nonFds

1 for level € |R|...0 do
2 validFds «— 0;
3 for nonFd € nonFds.getLevel(level) do

4 if needsValidation(nonFd) A isValid(nonFd) then
5 L validFds « validFds U {nonFd};

6 for fd € validFds do

7 nonFds < nonFds \ {fd};

8 fds.removeSpecializations(fd);

9 fds «— fdsU {fd};
for r € fd.getLhs() do
newLhs « fd.getLhs()\ {r};
gen « (newLhs — fd.getRhs());
if —nonFds.containsSpecialization(gen) then
L nonFds < nonFds U {gen};

10

11

12

13
14

if |validFds| / |nonFds.getLevel(level)| > 0.1 then
L depthFirstSearch(validFds, fds, nonFds)

15

16

17 return fds, nonFds

and we traverse the lattice from bottom to top. Starting with the
most specific candidate, nothing changes. In the next step, it
turns out that both fI — z and fl — ¢ become valid. Thus,
they are both candidates for new minimal FDs. Furthermore, we
need to add the generalizations f — ¢, — z,and[ — c to
the negative cover. f — z is not maximal and therefore not a
new candidate. Validating the remaining five candidates shows
that also f — c is valid and thus a candidate for a new minimal
FD. fl — c is not a minimal FD anymore. There are no new
candidates for maximal non-FDs and we end up with six minimal
FDs. The corresponding lattice is shown in Figure 4.

5.2 Validation pruning

Most FD candidates that we validate in the delete scenario are
non-FDs and the purpose of validation is to confirm that there is
still at least one violation to each candidate. Although the valida-
tion algorithm terminates as soon as it finds the first violation
to a candidate, in many cases it still checks a lot of matching

Figure 4: Lattice after validating non-FDs
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Algorithm 5: Depth first search for FDs

Algorithm 6: Dependency induction from a FD

Data: fd, positive cover fds, negative cover nonFds
Result: updated fds, nonFds

1 for r € fd getLhs() do
2 newLhs « fd.getLhs()\ {r};

3 newFd «— (newLhs — rhs);
4 if fds.containsGeneralization(newFD) V
isValid(newFd) then

5 L depthFirst(newFd, fds, nonFds);

6 deduceNonFds(fd, fds, nonFds),
7 return fds, nonFds

value combinations, which is expensive. To avoid many of these
checks, DYNFD stores a violating record pair, which is a pair of
two identifiers whose records contradict the FD, as a surrogate
violation for every maximal non-FD in the negative cover. As
long as these two records exist in the data, the algorithm does
not need to check the corresponding non-FD.

So what DYNFD does is the following: Whenever the algorithm
creates a non-FD, it also attaches the record pair that made the FD
invalid to the respective non-FD lattice node. When this lattice
node needs to be validated (see Algorithm 4 line 4), the algorithm
first calls the function needsValidation() to check whether one of
its two attached records was deleted in the current batch. In case
both records are still present, which is usually true, no validation
is needed; otherwise, the algorithm has to run the validation to,
depending on the result, either attach a new violating record pair
or remove the non-FD.

In order to consistently attach violating record pairs to all
non-FDs in the negative cover throughout the dynamic discov-
ery process, we need to consider two procedures in DYNFD that
identify new non-FDs: the candidate validation (isValid() func-
tion) and the sampling (Section 4.3). Both procedures know a
violating record pair whenever an FD candidate is invalidated
so that they can simply attach this record pair to a new non-FD.
Conversely, if records are deleted, they need to be consistently
removed from the non-FDs. For this purpose, we index all non-FD
annotations (recordID — nonFD) and, for every batch of deletes,
remove from the negative cover all record identifiers (and their
respective partner record identifiers) if a batch deletes them. The
initial non-FD annotations in the negative cover are calculated on
the fly with the first batch, because whenever a maximal non-FD
lacks a violation annotation, Algorithm 4 validates it anyway.

5.3 Depth-first searches

If a prior non-FD becomes valid, we successively check all its
generalizations. These checks can continue for many levels in
the lattice and stretch out to an exponential number of candi-
dates (exponential in the number of attributes); this makes the
validation very expensive. The new non-FDs are, however, often
covered by only a few maximal non-FDs. Hence, we propose
optimistic depth-first searches that target maximal non-FDs of
small Lus-arity; these non-FDs prune many candidate non-FDs
from the lattice.

If more than 10% of the non-FDs in one level of the negative
cover became true FDs (Algorithm 4 line 15), we start the op-
timistic depth-first search. This subroutine takes the validFds,
which are the former non-FDs that have been found valid, as
input. For a sample of 10% of these seed FDs, DYNFD aggressively
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Data: fd, positive cover fds, negative cover nonFds
Result: updated fds, nonFds

1 valid < nonFds.getSpecializations(fd);
2 for nonFd € valid do

3 nonFds < nonFds \ {nonFd};

4 rhs « nonFd.getRhs();

5 for r € fd.getLhs() do

6 newLhs < nonFd.getLhs() \ {r};

7 gen < (newLhs — rhs);

8 if —nonFds.containsSpecialization(gen) then
9 L nonFds < nonFds U {gen};

if —fds.containsGeneralization(fd) then
fds.removeSpecializations(fd),

| fds < fdsu {fd};

13 return fds, nonFds

10

11

12

searches their generalizations for new maximal non-FDs. We
consider only a sample of the seed FDs, because the depth-first
searches are an optimistic optimization attempt and should not
change the search strategy entirely — most FDs still change only a
bit making breath-first search in general more effective. The 10%
efficiency threshold and the 10% seed sample are hard-coded pa-
rameters that have shown to be efficient settings for most datasets.
The non-FDs discovered in the depth-first searches might be new
overall maximal non-FDs and are, hence, used to update both the
negative cover nonFds and the positive cover fds.

The algorithm that performs an optimistic depth-first search
for one seed FD is depicted in Algorithm 5. It implements a
recursive depth-first traversal of the positive cover starting with
the seed FD fd. Given a valid FD, Algorithm 5 first generates all its
direct generalizations by gradually removing each attribute from
the LHs (lines 1-3). For each generalization, the algorithm then
checks if it has an own generalization in the positive cover. In
that case, the generalization is true and it must not be validated;
otherwise, Algorithm 5 validates the generalization (line 4). For
every valid generalization, we continue the depth-first search
(line 5). After handling all generalizations, the current FD is used
to deduce new non-FDs in the negative cover (line 6). This step
is done at last, because the deduction is expensive and, if some
more general FDs have already been used for deduction in some
recursion, there is less to be deduced for the current FD.

The function deduceNonFds() updates both negative and posi-
tive cover with a new, true FD. It is basically an exact inversion
of the deduction Algorithm 3 for non-FDs as we now specialize
the negative cover and generalize the positive cover accordingly.
Technically, we switch negative and positive cover, and gen-
eralization and specialization, which yields Algorithm 6. This
algorithm starts by retrieving all non-FD specializations of the
known FD from the negative cover (line 1). All these FDs are
valid now. Hence, it then removes each such FD from the negative
cover (lines 2-3). To generalize the new valid FDs into possibly
true non-FDs, the algorithm removes each attribute of the valid
FD’s Lus once (lines 5-7). If such a generalization is maximal, it
is added to the negative cover (lines 8-9). After updating the neg-
ative cover, Algorithm 6 also updates the positive cover with the
known FD by adding the FD to the positive cover and removing
all its specializations (lines 10-12).



6 EVALUATION

We now evaluate the performance of our FD maintenance algo-
rithm DYNFD on multiple real-world datasets. The evaluation
covers a detailed analysis of our proposed pruning rules and tech-
niques and compares DYNFD to the repeated execution of HYFD,
the state-of-the-art FD discovery algorithm for static setups.

To evaluate DYNFD, we need some datasets with a change
history and a special experimental setup. That is what we discuss
first. We then evaluate DYNFD’s batch processing times and its
throughput. Afterwards, we analyze the algorithm’s performance
w. r. t. different batch sizes and, then, compare the batch times to
HYFD’s batch times. As a final set of experiments, we evaluate
our four main pruning strategies: cluster pruning, violation search,
validation pruning, and depth-first searches.

6.1 Datasets and experimental setup

Datasets. For our experiments, we use six real-world datasets
and their change history: The artist relation from the MusicBrainz
database [9], the claims relation from the airport baggage claims
dataset published by Homeland Security [15], and the Wikipedia
infobox relations cpu, disease, actor, and single put together by
Google [7]. The six datasets and their characteristics, i. e., number
of columns, rows, changes, and FDs, are listed in Table 3. The
insert, delete, and update percentage columns refer to the number
of changes that we have for these datasets. For each dataset, we
highlight the characteristics that make the dataset interesting:
The selection contains wide (actor) and long (artist) relations,
ones with insert (single), and update (cpu) heavy changes, and
a dataset with particularly many changes (claims and disease).
Hence, it fairly represents real-world data in general.

Changes. The six datasets are given as a series of dataset dumps
in different versions. Because DYNFD requires the individual
change operations that transformed one version into its successor
version, we extracted all inserts, deletes, and updates from the
change history of each dataset. The first version in each history
serves as the initial dataset and the sequence of changes broken
down into fixed-sized batches constitutes the dynamic input for
the FD maintenance task. In practice, the size of the batches
depends on the change rate, the size of the data, and use case
specific currentness requirements; in our experiments, we test
different batch sizes and their impact on the FD maintenance
performance.

Experiments. Given the initial dataset and the batched sequence
of changes, all experiments process the entire sequence of batches
as fast as possible. This gives us an upper bound for the through-
put performance: If the actual change rate is higher, the mainte-
nance would apply back-pressure and throttle the database. The
research question is, though, what throughput we can achieve.

Hardware. All experiments have been executed on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 2.00 GHz CPUs and
128 GB RAM. This server runs on CentOS 6.4 and uses OpenJDK
64-Bit 1.8.0_111 as Java environment.

6.2 Batch processing performance

In this first experiment, we evaluate the batch processing perfor-
mance of DYNFD on all datasets by fixing the batch size to 100
and measuring the processing time of each such batch. We run
up to 100 batches of each change history, which corresponds to
10,000 changes per dataset; for cpu and actor, we process only
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Figure 5: Runtime per batch (size 100) on single.

1,463 and 5,647 changes respectively, because this is their entire
change history length. The results are shown in Table 4.

The measurements show that both the accumulated runtime
and the throughput are affected by the width (#Column) and the
length (#Rows) of the data: Although single has about three times
more rows than actor, actor’s three times more columns result
in almost half the throughput performance; if the number of
rows is, however, significantly larger as for the artist dataset, the
throughput also drops significantly, i. e, to only 17 changes per
second. Considering the complexity of FD discovery, which is
also the complexity of processing each batch, this observation is
no surprise. Note that the comparably low throughput for cpu
is due to the fact that the dataset is very short (62 rows) so that
every batch (100 changes) basically rewrites the entire dataset.

The average batch times together with the percentile times
show that the batch times have many outliers, i. e., runtime spikes
that differ greatly from the average runtime of a batch. For most
batches, the set of minimal FDs does not change much and our
maintenance strategies do a good job skipping through these
batches; for some batches, however, the FDs do change, some-
times even significantly. Then, DYNFD needs to evolve FDs and
invest some additional effort, which we tried to minimize with
our pruning strategies.

Figure 5 supports this observation by plotting the individual
batch times for the single dataset: The majority of batches is pro-
cessed very quickly while some batches take orders of magnitude
longer. This plot looks similar for the other datasets, namely a
default batch processing time with occasional runtime spikes.

6.3 Batch size scalability

In the previous experiment, we fixed the batch size to 100 changes
per batch. To see the impact of the batch size, we now scale it
from 10 to 1,000 changes per batch. Figure 6 shows the average
runtime of DYNFD per batch w. r. t. the different batch sizes. The
average in this experiment is calculated over the first 10,000
changes per dataset and both axes of the chart are in log-scale.
Most batch processing costs, such as the costs for updating the
data structure and for checking whether the deletes resolved any
violations, scale linearly with the size of the batch. The experi-
mental results in Figure 6, however, show that 100 times more
changes in a batch cause only about 10 times longer batch times
on all datasets. This means that increasing the batch size also
increases the throughput, as the processing costs per change
decrease. This is because some batch activities, such as the ex-
pensive validation of the positive cover, constitute constant costs
per batch regardless of its size (if no FD changes). The number of



Table 3: Characteristics of the datasets used in our evaluation.

Dataset | #Columns #Rows #Changes #FDs  #FDs  %Inserts %Deletes %Updates
(initial) (initial)  (final)
cpu 15 62 1,463 209 327 4.3 0.2 95.5
disease 13 1,600 361,828 23 29 1.0 0.6 98.4
actor 83 3,655 5,647 347 326 64.9 0.5 34.6
single 26 12,451 12,614 193 248 96.1 0.0 3.9
artist 18 1,122,887 25,470 226 278 61.8 3.7 34.5
claims 8 1054 202,913 32 3 100.0 0.0 0.0
Table 4: Performance of DYNFD on all datasets.
Dataset | runtime throughput avg batch time 99th percentile 95th percentile 90th percentile
[sec] [changes/sec] [ms] [ms] [ms] [ms]
cpu 1.1 1,318.0 74.0 201.4 158.8 116.8
disease 1.5 6,844.6 14.6 62.2 264 19.0
actor 25.9 218.0 454.5 1,375.9 1,132.2 931.0
single 26.8 373.0 268.0 2,715.8 834.1 717.1
artist 577.1 17.3 5,771.0 15,033.1 13,979.2 12,367.9
claims 1.8 5,602.2 17.9 89.6 56.2 44.1
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Figure 6: Average runtime for different batch sizes.

changing FDs per batch does also not increase linearly with the
batch size: Intuitively, if we look at the data less often, we proba-
bly overlook some changes, e. g., if A — B changes to AC — B
and then to ACD — B, we might observe only the change of
A — Bto ACD — B. Hence, we observe that the average batch
processing time increases sub-linearly when increasing the batch
size in DYNFD. It is, furthermore, remarkable that the runtime
increase is similar for all datasets although they differ greatly in
size and change patterns.

6.4 Competitive evaluation

Our next experiment compares the batch processing performance
of DYNFD to repeated executions of the static profiling algorithm
HYFD. For this comparison, it is especially interesting to see
for which batch sizes our dynamic algorithm exhibits superior
performance compared to a static profiling approach. For this
purpose, we now scale it up from small to excessively large. We
also now define the batch size relative to the initial dataset size,
to make the measurements comparable across differently sized
datasets: We start with a batch size containing as many changes
as 1% of the initial dataset length, i. e., 1% of #Rows, and increase
the batch size to 1000% of initial dataset size. Then, we plot the
runtime of DYNFD relative to the runtime of HYFD for each
dataset, e. g., a speedup of 5 indicates that DYNFD was 5 times
faster than HYFD with a particular batch size ratio on a particular
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Figure 7: Speedup of DYNFD relative to the runtime of

HyFD.

dataset; 1 is equally fast and speedups smaller than 1 are slower
than HYFD.

The results depicted in Figure 7 show that DYNFD is more than
an order of magnitude faster than HyFD for small and medium
batch sizes. This superiority decreases as we increase the batch
size — until HYFD becomes faster for most datasets. DYNFD’s
poor performance on artist is due to the fact that a batch size of
1% initial dataset size already covers 11,228 changes — about half
of the entire change history. The first batch in each experiment
is also more expensive than later batches, because this is when
DYNFD collects the initial violation annotations for the negative
cover. Because 10% batch size ratio already covers the entire
change history for artist, the performance does not change after
that measurement. For cpu, we observe the opposite effect: The
dataset is so tiny that simply re-profiling it with every batch is
the best option anyway.

According to the measurements for disease, single, and actor,
the inflection point at which static profiling (with HYFD) tends to
overtake dynamic profiling (with DYNFD) is at about 100% batch
size ratio, i. e, when a batch basically re-writes the entire dataset.



cpu single disease |claims artist actor
- 674.4| 16749.4| 20015.4| 26516.4|459258.0
4.3 545.6| 12790.6| 20585.6| 25732.2(443418.2
5.3 460.6| 15359.2| 19859.0( 26065.2|441666.6| 10717.2
4.2 641.8| 14396.0| 19963.8| 24431.0(408986.0
52 607.0| 20076.0 14298.0| 28156.0(498740.0
4.3+5.3 427.8| 13445.8| 19107.2| 24516.0(395145.6| 10960.8
4.3+5.3+4.2 448.8( 11898.8| 20074.4| 24021.0|361354.6| 8212.8
4.3+5.3+4.2+5.2 387.0( 11699.0| 13957.0| 25018.0(364466.0| 8597.0

Figure 8: Runtime with different sets of pruning strategies
and a fixed batch size of 1,000.

cpu single disease |claims artist actor
-|| 11107.6| 15523.6| 56107.0|218269.8| 47712.6
4.3|| 10618.4| 12080.6| 56588.6|218695.0| 46280.0
5.3| 8779.5| 14456.9| 54894.2|216246.6| 30812.2| 17001.2
4.2 10796.0( 15371.0| 53761.0|179788.0| 45790.0
52| 9752.5( 20060.0| 48473.0|202904.0| 52094.0
4.3+5.3|| 8540.7| 13460.7| 53510.6|180654.4| 28275.2| 17370.8
4.3+5.3+4.2( 8369.8| 10887.4| 55088.4|181156.6| 26608.3| 13188.0
4.3+53+4.2+52| 6466.0| 10315.0( 45130.0(158946.0| 27848.0| 12404.0

Figure 9: Runtime with different sets of pruning strategies
and a relative batch size of 10% initial dataset size.

6.5 In-depth performance analysis

DYNFD proposes an FD maintenance algorithm with four major
pruning strategies. The basic algorithm performs the incremen-
tal data structure updates and the level-wise valuations of the
positive and negative cover; it basically enables the dynamic
evolution of FDs. The four pruning strategies, which are clus-
ter pruning (see Section 4.2), violation search (see Section 4.3),
validation pruning (see Section 5.2), and depth-first searches (see
Section 5.3), aim to reduce the maintenance effort as much as pos-
sible. Let us now evaluate how effective each individual strategy
is and what the performance implications are.

In this final set of experiments, we execute DYNFD with differ-
ent sets of pruning strategies on all datasets. Because the violation
search is so important for the algorithm, i. e., the performance
drops significantly without any form of this strategy, we let the
baseline algorithm run a naive sampling that compares changed
records only to their direct neighbors w.r. t. some sorting. For
each combination of strategies and dataset, we measure the pro-
cessing time for all batches of fixed size 1,000 (Figure 8) and
relative size 10% (Figure 9), respectively.

The measurements for both batch sizes show that the compo-
sition of all pruning strategies performs best in general. It is not
the optimal composition of pruning strategies for all datasets,
but the performance is reliably good throughout all our datasets.
With a few exceptions, every strategy tends to improve the per-
formance a bit. One exception is the violation search (4.3) on the
disease dataset, because a naive version of this strategy is already
in use by the baseline; and the optimized version, which is the
version that runs progressively increasing windows, does not
improve upon this naive strategy. The second exception is the val-
idation pruning (5.2) that performs poorly on claims, single, and
artist: On claims, the batches simply do not contain any deletes
so that the strategy introduces the overhead of labeling non-FDs
with violations without ever needing them. On single and artist,
the annotations did not effectively prevent violations, because
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many of the annotated violations did vanish, i. e., the violations
in these datasets are simply not stable enough to prevent enough
violations that could balance the overhead of maintaining the
violations.

The measurements in Figure 10 and Figure 11 present the run-
times of the different strategy compositions for different batch
sizes. The lines show that the composition of all pruning strate-
gies also performs reliably well, i. e., best or close to best, regard-
less of the batch size.

7 RELATED WORK

DyNFD is the first algorithm to maintain FDs under inserts, up-
dates, and deletes in dynamic data. Nonetheless, we identify two
categories of related work, namely (i) the discovery of FDs in
static data and (ii) the maintenance of metadata in dynamic data
in general.

7.1 Discovering FDs in static data

Research has brought up many FD discovery algorithms for static
data, which can be classified into column-based, row-based, and
hybrid algorithms [12]. In the following, we briefly describe one
popular representative of each class.

One of the earliest FD discovery algorithms is the column-
based algorithm TANE that models the search space, i. e., the set
of all candidate FDs, as a powerset lattice of attribute combina-
tions [8]. It traverses this lattice in a level-wise bottom-up fashion
until it arrives at the non-trivial, minimal FDs. Although, DYNFD
adopts the lattice-shaped search space, it traverses it both bottom-
up and top-down in response to data changes. For the candidate
validation, TANE proposed stripped partitions (also: position list
indexes, PL1s) that we also use in DYNFD.



The row-based FDEP algorithm proposes a fundamentally dif-
ferent strategy [6]: It compares all pairs of records in the input
relation to deduce the complete negative cover, i. e., all candidate
FDs that are violated by some tuple pair. The non-trivial, mini-
mal FDs are derived from the negative cover via cover inversion.
DyNFD also maintains a negative cover, but for the purpose of
processing tuple deletions and not to infer the positive cover.

The hybrid algorithm HYFD combines column- and row-based
techniques to avoid possibly many ineffective candidate vali-
dations and tuple comparisons [13]. By interleaving the two
discovery principles and by having them exchange intermediate
results, HYFD significantly outperforms all non-hybrid competi-
tors. In DYNFD, we tailor the hybrid discovery approach to work
on dynamic data. Our experiments show that the proposed ex-
tensions and adjustments have a great, positive impact on the
performance of the approach.

7.2 Maintaining metadata in dynamic data

Arguably, maintaining metadata in dynamic data has received
much less attention than static data profiling. Therefore, this
section widens its scope to maintaining any kind of metadata,
not only FDs.

To the best of our knowledge, the only existing FD main-
tenance algorithm was proposed by Wang et al. in [17]. The
algorithm deals only with tuple deletions and neither inserts nor
updates. Similar to DYNFD, the algorithm uses bottom-up and
top-down approaches as well as indexes to evolve the FDs. Unlike
DYNFD, however, it does not maintain a negative cover of non-
FDs that significantly improves and distinguishes the handling
of deletes from the static case.

The SwaN algorithm by Abedjan et al. is an incremental discov-
ery algorithm for unique column combinations (UCCs), i. e., key
candidates in dynamic datasets [1]. Starting from a pre-calculated
set of UCCs, SwaN actively applies all insertions and deletions
to the current metadata set. The algorithm groups change op-
erations into batches and uses various indexes to optimize the
change calculations — two principles that are also used by DYNFD.
In contrast to SWAN, however, DYNFD operates on both a posi-
tive and a negative cover representation of the metadata, which
enable additional pruning strategies.

Lastly, Shaabani and Meinel proposed an incremental algo-
rithm to maintain inclusion dependencies (INDs) in dynamic
data [16]. The algorithm uses a concept called attribute cluster-
ing that can be used in an incremental setup to evolve INDs
w.r. t. sets of data changes. Besides the fact that this algorithm
also handles both inserts and updates in batches, it has little in
common with DYNFD, because IND discovery is very different
from FD discovery.

8 CONCLUSION

In this paper, we introduced DYNFD, a novel algorithm that main-
tains the functional dependencies of dynamic datasets. To evolve
the set of FDs with every batch of inserts, updates, and deletes, the
algorithm continuously adapts its validation structures as well as
anegative and a positive cover of FDs. With DYNFD, we proposed
anew cover inversion algorithm and four pruning strategies that
stabilize the maintenance performance. Our evaluation shows
that, if the batch size is small, the dynamic algorithm is more
than an order of magnitude faster than repeated executions of a
state-of-the-art, static profiling algorithm.
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Because profiling static data is already a challenging task,
profiling dynamic data is a research direction that has not been
studied much thus far. With DYNFD, we made a first approach
to solve this task for functional dependencies. Our experiments
show that this algorithm greatly improves upon using static data
profiling algorithms in dynamic scenarios, but it leaves several
interesting research questions open:

(1) Devising a measure for interestingness could serve to track only
interesting and, hence, fewer dependencies; this would greatly
improve the maintenance performance.

(2) Incorporating knowledge about existing database constraints
into the maintenance process could help to prune further val-
idations; FDs with a key constraint on their Lus, for instance,
cannot invalidate.

(3) Exploiting the specifics of update operations, such as the fact
that most updates do not alter all attribute values but only a few,
could help to devise further pruning rules.

REFERENCES

[1] Z. Abedjan, J. Quiané-Ruiz, and F. Naumann. Detecting unique column com-
binations on dynamic data. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 1036—-1047, 2014.

P. Bohannon, W. Fan, and F. Geerts. Conditional functional dependencies
for data cleaning. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 746755, 2007.

C.R. Carlson, A. K. Arora, and M. M. Carlson. The application of functional
dependency theory to relational databases. The Computer Journal, 25(1):68-73,
1982.

E.F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377-387, 1970.

E. F. Codd. Further normalization of the data base relational model. IBM
Research Report, San Jose, California, RJ909, 1971.

P. A. Flach and L. Savnik. Database dependency discovery: a machine learning
approach. AI Communications, 12(3):139-160, 1999.

Google. Distributing the Edit History of Wikipedia Infoboxes. https://research.
googleblog.com/2013/05/distributing-edit- history- of-wikipedia.html, 2013.
[Online; accessed 8-October-2018].

Y. Huhtala, J. Kirkkiinen, P. Porkka, and H. Toivonen. TANE: An efficient
algorithm for discovering functional and approximate dependencies. The
Computer Journal, 42(2):100-111, 1999.

Internet Archive. MusicBrainz Data Dumps. https://archive.org/details/
musicbrainzdata, 2018. [Online; accessed 8-October-2018].

[10] J.Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies from data - a review.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 24(2):251-264,
2012.

R.J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, C. T. H. Ho, R. Fagin, and
L. Popa. The Clio project: Managing heterogeneity. SIGMOD Record, 30(1):78-
83, 2001.

T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph, M. Schénberg,
J. Zwiener, and F. Naumann. Functional dependency discovery: An experi-
mental evaluation of seven algorithms. Proceedings of the VLDB Endowment
(PVLDB), 8(10):1082-1093, 2015.

T. Papenbrock and F. Naumann. A hybrid approach to functional dependency
discovery. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 821-833, 2016.

G. N. Paulley. Exploiting Functional Dependence in Query Optimization. PhD
thesis, University of Waterloo, 2000.

H. Security. TSA Claims Data. https://www.dhs.gov/tsa-claims-data, 2018.
[Online; accessed 8-October-2018].

N. Shaabani and C. Meinel. Incremental discovery of inclusion dependen-
cies. In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM), pages 2:1-2:12, 2017.

S.-L. Wang, W.-C. Tsou, J.-H. Lin, and T.-P. Hong. Maintenance of Discov-
ered Functional Dependencies: Incremental Deletion, pages 579-588. Springer,
Heidelberg, 2003.

(2]

[o

(1]

(12]

(14]
(15]

(16]

(17]



	DynFD: Functional Dependency Discovery in Dynamic DatasetsPhilipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, Daniel Neuschäfer-Rube

