
Memory-Efficient Database Fragment Allocation for
Robust Load Balancing when Nodes Fail

Stefan Halfpap*
Hasso Plattner Institute, Potsdam, Germany

stefan.halfpap@hpi.de

Rainer Schlosser*
Hasso Plattner Institute, Potsdam, Germany

rainer.schlosser@hpi.de

Abstract—Load balancing queries that access the same data
fragments to the same node improves caching for a memory-
efficient scale-out. However, to suitably allocate fragments to
multiple nodes is a highly challenging problem, particularly when
nodes might fail. The problem is to find a good balance between
memory efficiency and allocating enough fragments to nodes
to obtain robustness through load balancing flexibility. Existing
allocation approaches are either not memory-efficient or result in
load imbalances, both degrading cost/performance. In this paper,
we present an optimal approach and a scalable heuristic, based
on three mutually supportive linear programming models, to
calculate memory-efficient fragment allocations that guarantee
to distribute the workload evenly - even in the case of node
failures. We demonstrate the applicability and the effectiveness
of our three-step approach using numerical as well as end-to-end
evaluations for TPC-H and TPC-DS workloads. We find that our
robust solutions clearly outperform state-of-the-art heuristics by
achieving a better workload distribution with even less memory.

I. INTRODUCTION

Scalability and robustness against node failures are indis-
pensable for database systems running in the cloud. Both can
be achieved with query load balancing and data replication.
Using a naive load balancing approach, queries are distributed
independently of the accessed data. This approach has several
drawbacks. All nodes have to store or potentially load all data.
Further, all nodes must apply all data modifications caused
by inserts, deletes, or updates. Finally, queries are unlikely to
profit from caching effects, because similar queries are not
guaranteed to be assigned to the same replica.

Query-driven workload distribution tackles this problem by
load balancing queries to nodes of a cluster based on the
accessed data. Such an approach is beneficial to optimize
cost/performance [1], e.g., (i) in caching architectures, e.g.,
data marts [2] or mid-tier caches [3], (ii) for operator place-
ment in distributed database systems, and (iii) for partially
replicated database systems [4], [5]. In general, data can be
allocated, i.e., stored or cached, at nodes such that the load can
be evenly balanced, which is crucial for scalability, and data
caching is optimized. However, in the presence of failures, in
which the load of the failed node has to be distributed among
the remaining nodes, memory-efficient data allocations may
result in load imbalances, increased cache misses, or required
reallocations. It is challenging to calculate memory-efficient
allocations that guarantee an even workload distribution in
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failure cases, because we must consider potential failures of
all nodes, at which different subsets of fragments are allocated
and which are, thus, optimized for different subsets of queries.

This paper presents a general approach to calculate memory-
efficient data allocations that guarantee to distribute the work-
load evenly - even in cases of node failures - using linear pro-
gramming (LP). Although the developed allocation concepts
are general, we focus on partial replication as one specific
and thoroughly evaluated use case. The use of LP enables
transferring our approach to versatile allocation problems by
adapting the optimization goals and constraints [6].

Partial replication [4], [5] is a cost- and cache-efficient
implementation of primary replication, which is a common
scale-out option for single-node database systems. All major
relational database systems, e.g., Oracle, IBM DB2, Microsoft
SQL Server, SAP HANA, PostgreSQL, and MySQL, support
replication. Partial replication lowers the memory consumption
and improves caching, but reduces the robustness of a cluster,
e.g., the accessibility of data fragments and executability of
queries in the case of potential node failures.

Our contributions are: We present an optimal model and
a scalable heuristic to calculate memory-efficient and robust
fragment allocations that allow to evenly balance workloads –
particularly in the case of potential node failures. Our heuristic
(see Figure 2) exploits the optimal LP model for decomposed
subproblems and uses minimal data enhancements to guaran-
tee a perfect load balance. We verify the effectiveness of our
models using theoretical and end-to-end evaluations for TPC-
H and TPC-DS. We show that our approach finds allocations
that outperform state-of-the-art approaches, cf. [5], [7], in
both memory consumption and worst-case query throughput
in theory (see Table I and II) and practice (see Figure 3).

II. ROBUST FRAGMENT ALLOCATION PROBLEM

A. Problem Description

We study a system with K nodes, where one of them might
fail. We assume a partitioned database with N fragments.

Input: The size of a fragment i is ai, i = 1, ..., N . We
assume K nodes, where data can be replicated. We assume a
set of Q (classes of) queries j, characterized by the accessed
fragments qj ⊆ {1, ..., N}, j = 1, ..., Q. Queries j occur with
frequency fj , j = 1, ..., Q. Query costs cj , j = 1, ..., Q,
are independent of the executing node k. We use the total
workload costs denoted by C :=

∑
j=1,...,Q fj · cj .
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Fig. 1. Robust fragment allocation: compensating potential node failures by enabling different workload distributions. Illustration for K = 6 nodes, a regular
workload limit L∗ = 1/6 and a guaranteed worst-case workload limit (denoted by L

(−)∗
max ) of 1/5. The total replication factor (denoted by W/V ) is 2.8.

Controls: We use the following decision variables to de-
cide (i) at which node to allocate which fragments and (ii)
which query is executed on which node to which extent.
xi,k ∈ {0, 1}, i = 1, ..., N , k = 1, ...,K, is allowed to be zero
or one, indicating whether fragment i is allocated to node k
(1) or not (0). yj,k ∈ {0, 1}, j = 1, ..., Q, k = 1, ...,K, is
allowed to be zero or one, indicating whether query j can
run on node k (1) or not (0). zj,k ∈ [0, 1], j = 1, ..., Q,
k = 1, ...,K, is indicating the workload share of query
j executed on node k. Further, by W/V , we denote the
replication factor, where the total amount of allocated data
W :=

∑
i=1,..,N,k=1,...,K xi,k · ai is normalized by the amount

of relevant data V :=
∑

i∈
⋃

j=1,...,Q:fj>0 {qj}
ai.

Constraints: We have the following constraints: A query j
can only be executed on node k if all relevant fragments are
stored at node k. If all K nodes work, each node’s load has to
be 1/K. If a node fails, it has to be possible to evenly balance
the workload between all active nodes (K − 1).

Objective: We seek to minimize the total amount of allo-
cated data for a feasible workload distribution. Data has to
be placed on multiple nodes such that all queries are still
executable in failure cases without overloading single nodes.

For an example with N=10 fragments and Q=5 queries,
Figure 1 illustrates the solution for K = 6 nodes (lower part).
The table below each node k, k = 1, ..., 6, specifies the query
shares zj,k without a node failure (column ∅) and the query
shares for each single node failure (columns 1 - 6).

B. Robust State-of-the-Art Heuristics

(i) Greedy Approach [5]. For allocations that do not base
on LP, Rabl and Jacobson propose a greedy approach to
complement a risk-neutral solution to a robust one: Queries are
sorted by the size of the fragments they access in descending
order. If a query is already executable by multiple nodes,
nothing has to be done. Otherwise, the query is assigned to
the node with the largest fragment overlap of already assigned
queries, considering only the nodes that cannot already execute
the query. The thereby added load of redundant query assign-
ments in potential failure cases is not taken into account.

The load balancing among nodes may be highly skewed in
failure cases. To an extreme, a single node must take over the
entire workload of the failed node and cannot pass anything
of its regular workload to other nodes.

(ii) Chaining Approach [7]. Allocations that guarantee an
even workload distribution in failure cases can be constructed
by applying the chained declustering strategy to a risk-neutral
solution: Nodes are chained, forming a ring. The successor
of each node is its backup. In addition to the fragments of
the basic allocation, each (backup) node gets assigned all its
predecessor’s fragments. As a result, the backup can take over
the complete assigned regular load of its predecessor and pass
an arbitrary share of its regular workload to its successor.

(iii) Adding Full Replicas. To address cases with up to F
node failures, one can use a basic solution for K − F nodes
and add F full replicas. If the F full replicas fail, the K −
F solution balances the load evenly by definition. Otherwise,
remaining full replicas can take the workload of any failed
partial node. However, full replicas can be memory-expensive.

III. OPTIMAL ROBUST SOLUTION

To solve the problem described in Section II-A, K potential
failure cases and the non-failure case must be considered.

By L, we denote the highest workload share of all nodes
in the regular case without a failure. Note, the limit L is
determined by the allocation (xi,k) and the assigned workload
shares (zj,k), see Section II-A. By L(−), we denote the highest
(worst-case) workload share over all nodes that can occur in
case of potential node failures. To optimize the limit L(−), we
introduce the additional variables z̃j,k(−),k(+) ∈ [0, 1], which
describe the adjusted workload share of query j on a remaining
node k(+) ∈ {1, ...,K}\{k(−)} in case node k(−) = 1, ...,K
fails. In the tables of Figure 1, z̃ refers to the columns 1-6.

To obtain solutions with workload limits L (regular case)
and L(−) (failure case) that are as small as possible, in our LP
model, we use a common penalty approach, where both limits
are penalized via one penalty factor (denoted by α > 0). To
emphasize the failure scenarios, the penalty on L(−) is chosen
much larger (e.g., ×100) than the penalty for L. Our LP for
optimal robust solutions with single node failures reads as:

minimize
xi,k, yj,k ∈ {0, 1}, zj,k, z̃j,k(−),k(+) ∈ [0, 1], L, L(−) ≥ 0,

i = 1, ..., N, j = 1, ..., Q, k, k(−), k(+) = 1, ...,K, k(+) 6= k(−)

1/V ·
∑

i=1,...,N,k=1,...,K
ai · xi,k +α ·L(−) +α/100 ·L (1)

subject to constraints for the regular scenario:



yj,k · |qj | ≤
∑

i∈qj
xi,k, j = 1, ..., Q, k = 1, ...,K (2)

zj,k ≤ yj,k, j = 1, ..., Q, k = 1, ...,K (3)∑
j=1,...,Q

fj · cj/C · zj,k ≤ L, k = 1, ...,K (4)∑
k=1,...,K

zj,k = 1, j = 1, ..., Q (5)

and constraints for the failure scenarios:

z̃j,k(−),k(+) ≤ yj,k(+) ,
j = 1, ..., Q, k(−) = 1, ...,K
k(+) ∈ {1, ...,K}\{k(−)} (6)

∑
j=1,...,Q

fj · cj
C

z̃j,k(−),k(+) ≤ L(−),
1 ≤ k(−), k(+) ≤ K
k(+) 6= k(−)

(7)∑
k(+)={1,...,K}\{k(−)}

z̃j,k(−),k(+) = 1,
j = 1, ..., Q
1 ≤ k(−) ≤ K (8)

Objective (1) minimizes the replication factor W/V and
contains a penalty term for the largest workload shares L and
L(−). (2) guarantees that a query j can only be executed on
node k if all relevant fragments are available, see Section II.
The cardinality term |qj | expresses the number of fragments
used in query j. (3) ensures that a query j can only have a
positive workload share on node k if it can be executed on
node k. If yj,k = 0 then zj,k = 0 follows; if yj,k = 1 the shares
zj,k are not restricted. Note, (3) couples the binary variables y
and the continuous variables z in a linear way. (4) guarantees
that all nodes k do not exceed the workload limit L. (5) ensures
that a query’s workload shares on nodes k sum up to one.

Constraints (6)-(8) ensure admissible allocations in case a
node k(−) = 1, ...,K is not working. The additional variables
z̃j,k(−),k(+) ∈ [0, 1] express the optimal workload share of
query j on the remaining nodes k(+) = {1, ...,K}\{k(−)}
if node k(−) does not work. If the penalty α is sufficiently
large, the solution guarantees the smallest possible emergency
workload limit L(−)∗ = 1/(K − 1), K > 1. As all scenarios
are mutually coupled, they cannot be optimized independently.

We numerically evaluate the model for the TPC-H and
TPC-DS setup described in Section V-A. Table I summarizes
the results of our optimal solution (cf. WR∗) and compares
the memory consumption and worst-case workload shares
against the greedy robust heuristic (cf. WGR) and the chaining
approach (cf. WCR) based on risk-neutral allocations of [5].
To calculate the worst-case workload limits LGR(−)

max , we can
use the LP (1) - (8) with a fixed fragment allocation ~x := ~xGR.
We used the Gurobi solver (version 9.0.0) (single-threaded on
a laptop) with α := 1 000, cf. (1).

The results of Table I show that our solution outperforms
the greedy robust heuristic [5] in both required memory (up
to 24.9% less) and worst-case workload share (up to 42.5%
lower). Note, WGR < WR∗ is only possible, because LGR(−)

max

is worse than the optimal limit L(−)∗, cf. K=4, TPC-H.
Compared to the chained heuristic [7], our solution lowers the
memory consumption more substantially (up to 41.8% less)

TABLE I
OUR OPTIMAL ROBUST SOLUTION (WR∗) VS. THE GREEDY HEURISTIC [5]

(WGR) & THE CHAINED HEURISTIC [7] (WCR): DATA REPLICATION
FACTOR WR∗/V AND WORST-CASE WORKLOAD LIMIT L(−)∗ FOR
DIFFERENT K ; #SOLVED WITH RELAXED OPTIMALITY GAP 10−3 .

K WR∗

V
L(−)∗ timeWR∗

WR∗

WGR
L(−)∗

L
GR(−)
max

WR∗

WCR

3 2.371 0.500 0.2 s - 5.3% + 0.0% -14.8%
4 2.651 0.333 1.5 s + 3.7% -32.4% -15.0%
5 2.886 0.250 5.7 s - 2.3% -16.2% -21.7%
6 3.153 0.200 29.1 s - 5.5% -11.4% -23.3%
7 3.411 0.167 40.3 s - 4.9% -32.9% -26.1%
8 3.708 0.143 3 507 s - 0.9% -42.5% -21.9%
9 3.912 0.125 8 551 s - 2.5% -40.4% -25.1%

(a) TPC-H

K WR∗

V
L(−)∗ timeWR∗

WR∗

WGR
L(−)∗

L
GR(−)
max

WR∗

WCR

3 2.126 0.500 16.9 s - 0.2% -20.9% -22.3%
4 2.204 0.333 94.0 s -20.2% - 8.6% -36.2%
5 2.296 0.250 573 s -17.8% - 4.0% -37.7%
6 2.390 0.200 21 248 s -21.8% -24.5% -41.6%

7# 2.454# 0.167 3 958 s -24.9% - 2.2% -41.8%

(b) TPC-DS

while providing the same worst-case limits. As the complexity
quickly increases, the LP is only applicable to small problems.

Remark 1 Existing robust allocation approaches have
limitations. We find that with allocations of the greedy robust
heuristic [5], the load balance can be uneven if nodes fail.
In contrast, the chained heuristic [7] is memory-expensive. As
the optimal solution does not scale, a heuristic is needed that
combines both reliable robustness and memory efficiency.

IV. HEURISTIC THREE-STEP SOLUTION

We propose a three-step heuristic to solve problem (1)-(8).

A. Step 1: Initial Recursive Chunking

In Step 1, we split the workload iteratively using a risk-
neutral LP approach described in [4], forming a tree of chunks
with similar queries, which access the same fragments. We
specify the assigned workload of a chunk by the (fixed)
parameters x̄i, ȳj ∈ {0, 1}, z̄j ∈ [0, 1], i = 1, ..., N ,
j = 1, ..., Q. We only consider (i) involved fragments i, where
x̄i = 1 and (ii) queries j, where z̄j > 0. The node’s workload
share is denoted by w̄ :=

∑
j=1,...,Q:ȳj=1 fj · cj/C · z̄j . We

split a chunk’s workload share w̄ into B subnodes, where a
subnode b represents nb leaf nodes with a workload share
wb := nb/K,

∑
b=1,..,B wb = w̄, using the LP given in [4],

cf. (1)-(5). Assume the optimal solution of a split is x∗, y∗, and
z∗. Then, for each subnode b, we use the remaining fragments
and workload share as input on the next level and apply the
same LP again. The smaller B is chosen, the faster is the
computation (on each level) but the data redundancy of the
heuristic might raise compared to optimal allocations.

B. Step 2: Robustness on the Final Level

Assume, on the final decomposition level of Step 1, we end
up with B chunks, where the data allocation for each chunk
b, b = 1, ..., B, with weights w̄b = nb/K is characterized by
(fixed) values x̄i,b, ȳj,b, z̄j,b. In Step 2, we proceed as follows:
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Fig. 2. Robust three-step approach: splitting the workload into chunks in Step 1; compensating potential node failures within chunks in Step 2; optimal
fragment enhancement in Step 3; illustration for K = 6 nodes, B = 2 chunks, a regular workload limit L = 1/6 and a guaranteed worst-case workload limit
of L(−)

max = 1/5. After Step 2, we have WR/V = 2.5; the total replication factor is WR/V = 3.1 (cp. WR∗/V = 2.8 is optimal, see Figure 1).

For each chunk b, b = 1, ..., B, we solve the problem (1)-
(8) for the corresponding (smaller) inputs. Figure 2 shows an
example of Step 2, which splits B=2 chunks in overall K=6
nodes (three nodes per chunk). The table below each node k
specifies the regular workload distribution zj,k (cf. column ∅)
and six individual emergency load distributions z̃j,k(−),k(+) (cf.
columns 1-6) for each potential node failure k(−) = 1, ..., 6.

After Step 2, the allocation is such that the emergency load
distributions are only affected for failures of nodes from the
same chunk (cf. Chunk 1). In such cases (e.g., k(−) = 2),
the workload distribution within the affected Chunk 1 is reor-
ganized by evenly balancing the load between the remaining
two nodes Node 1 and 3 (load 1/4). The other chunk’s nodes
retain their regular workload distribution (load 1/6).

C. Step 3: Optimal Fragment Enhancements
The final Step 3 seeks to enrich the fragment allocation

derived in Step 2 to obtain a perfect load balancing over
all nodes in the case of any node failure. The goal is to
use the minimal amount of additional data to guarantee the
best possible workload limit (L(−)∗ = 1/(K − 1)). Let x(f)

i,k

∈ {0, 1} denote the allocation of Step 2, i.e., whether fragment
i = 1, ..., N is assigned to node k = 1, ...,K. We consider this
allocation as fixed. In the LP (1)-(8), we use the new decision
variables x(e)

i,k ∈ {0, 1} to decide whether to also add fragment
i to node k. This variable x

(e)
i,k is used in the objective (1)

instead of xi,k. Further, we add the constraints

x
(f)
i,k + x

(e)
i,k = xi,k, i = 1, ..., N, k = 1, ...,K (9)

to define the actual fragments as the compound of fixed and
new fragment. Compared to (1)-(8), the modified LP for Step 3
is of much lower complexity, as x(f)

i,k are given parameters, i.e.,
those fragments cannot be removed. Further, the freedom of
the enhancement variables x(e)

i,k = 0 is limited, as (9) implies
x

(e)
i,k = 0 for all x(f)

i,k = 1. The other variables x, y, z, and z̃
are of auxiliary character, as they are governed by x(e)

i,k .

In Step 3, comparably little data has to be assigned in
total, because the allocations x(f)

i,k derived in Step 2 have the
following beneficial properties: Assume an arbitrary solution
of Step 2 with two chunks, say chunk C1 and C2. To obtain a
perfect load balancing if a node of C1 fails, the nodes of C2

have to take additional load of C1. However, as C2 only has to
be able to take some arbitrary load of C1, it is sufficient to look
for arbitrary nodes of C2 that can be efficiently completed in
this regard via additional fragments. Due to this flexibility,
typically only little additional data is necessary. Finally, if one
node of C1 fails, the remaining nodes of C1 as well as the
nodes of C2 can easily/flexibly compensate the additional load,
as within Step 2 all chunks are exactly optimized for such
scenarios. Hence, for multiple chunks, it is sufficient when
each chunk can take and pass enough load to one other chunk,
and all are connected.

In Figure 2, Node 4 is enhanced with three fragments (2-4)
for q1, and three fragments (7-9) for q3 are added to Node 6.
After Step 3, we obtain that, whatever node fails, a perfect
workload distribution can always be achieved (load 1/5). The
final replication factor WR/V = 3.1 is close to the optimal
solution WR∗/V = 2.8 (see Figure 1).

Note, base allocations x(f)
i,k are a prerequisite for the ap-

plicability of Step 3, as without a suitable (already robust)
backbone solution, the LP (1) - (8) might be too complex.

V. EVALUATION

After a description of our end-to-end evaluation setup, we
compare our approaches against the results of [5] and [7].

A. Setup and Model Input

We set up a replicated PostgreSQL cluster with 16 nodes for
running TPC-H and TPC-DS queries with scale factor 1. In the
following, we describe how we obtained the model inputs. For
TPC-H (Q = 22) and TPC-DS (Q = 99), we modeled query
costs cj as average processing time of query j with random
template parameters, j = 1, ..., Q. We deployed single-column



TABLE II
PERFORMANCE COMPARISON OF ROBUST ALLOCATIONS: OUR

THREE-STEP HEURISTIC (WR) VS. THE ROBUST HEURISTIC BY [5]
(WGR) AND CHAINING [7] (WCR). (2) RESULT AFTER STEP 2.

K chunks WR

V
L

(−)
max timeWR

WR

WGR
L

(−)
max

L
GR(−)
max

WR

WCR

8 4+4 3.947 0.143 5.5 s +5.5% -42.5% -16.9%
9 3+3+3 4.305 0.125 2.5 s +7.2% -40.4% -17.5%
10(2) 5+5 4.481 0.125 14.0 s -0.4% -12.9% -19.5%
10 5+5 4.524 0.111 14.8 s +0.5% -22.6% -18.8%
11 6+5 4.611 0.100 42.7 s -5.5% -30.3% -19.6%
12 6+6 4.982 0.091 27.4 s -3.1% -36.7% -16.9%
13 7+6 5.430 0.083 16.2 s +3.8% -41.9% -13.5%
14 5+5+4 5.396 0.077 12.2 s -7.2% -29.8% -21.7%
15 5+5+5 5.790 0.071 6.9 s -1.0% -28.1% -16.4%
16(2) 8+8 6.027 0.071 139 s -3.7% -28.5% -20.0%
16 8+8 6.105 0.067 151 s -2.5% -32.8% -19.0%

(a) TPC-H

K chunks WR

V
L

(−)
max timeWR

WR

WGR
L

(−)
max

L
GR(−)
max

WR

WCR

5 3+2 2.443 0.250 25.8 s -12.5% - 4.0% -33.8%
6 3+3 2.550 0.200 24.3 s -16.6% -24.5% -37.7%
7 4+3 2.624 0.167 92.8 s -19.7% - 2.2% -37.7%
8 4+4 2.683 0.143 66.6 s -18.7% -5.7% -36.9%
9 3+3+3 3.017 0.125 16.3 s -10.6% -11.9% -30.2%
10 4+3+3 3.102 0.111 14.4 s -11.7% - 6.3% -32.7%
11 4+4+3 3.175 0.100 58.0 s - 8.9% -10.2% -32.2%
12 4+4+4 3.274 0.091 86.2 s -11.8% -31.5% -35.0%
13 4+3+3+3 3.352 0.083 93.3 s -11.9% -27.0% -36.6%
14 4+4+3+3 3.636 0.077 176 s - 8.4% - 7.5% -33.2%
15(2) 4+4+4+3 3.507 0.100 111 s -15.6% +19.7% -38.2%
15(2) 5+5+5 3.430 0.083 895 s -17.5% - 0.3% -39.6%
15 4+4+4+3 3.682 0.071 124 s -11.4% -14.5% -35.2%
16 4+4+4+4 4.044 0.067 209 s - 6.9% -19.8% -30.8%

(b) TPC-DS

indices on all primary key columns. As processing TPC-H
query 17 and 20 exceeded the set timeout of 120 s, we omitted
them in our allocations. Likewise, we omitted the five most
expensive TPC-DS queries, resulting in 94 remaining queries.
We use vertical partitioning with each column as an individual
fragment. Fragment/column sizes ai, i = 1, ..., N , for TPC-H
(N = 61) and TPC-DS (N = 425) are modeled by using the
PostgreSQL function pg_column_size(). In case there
is an index on an attribute, the associated fragment size is
increased by the index size. All model inputs to reproduce the
calculation of all allocations are available online [8].

B. Numerical Evaluation of Step 2 and Step 3

Table II compares the results of our robust heuristic (cf.
WR) against the greedy [5] (cf. WGR) and chaining ap-
proach [7] (cf. WCR). The results verify that also large
problems can be addressed in a reasonable time.

For TPC-H (Table IIa), we find that our worst-case limits
L

(−)
max are clearly better (up to 42.5%) compared to the greedy

approach, although our heuristic requires similar or even less
memory. To illustrate the impact of Step 3, we also include
results obtained after Step 2 (indicated by (2)), cf. K = 10, 16.
We observe that the amount of data enhancements to realize
an optimal load balancing is small. After Step 3, for all
K the limit L(−)

max coincides with the optimal lower bound
L(−)∗ = 1/(K − 1). In contrast, in some settings (e.g., TPC-

H, K = 8, 9, or 13) the limit LGR(−)
max of [5] can be close

to the worst case 2 × L∗ (see, e.g., TPC-H, K = 8 where
L
GR(−)
max = 0.248 and 2×L∗ = 2/K = 0.250), which reflects

the case in which one node has to (i) additionally take the
entire workload of the failure node (1/K) and (ii) cannot pass
some of its regular workload (1/K) to other nodes. Compared
to the chaining approach, our three-step approach requires less
memory (up to 21.7%) for all K ≥ 3, while providing the
same worst-case limits, i.e, L(−)

max = L
CR(−)
max .

For TPC-DS (Table IIb), we observe that our heuristic
constantly requires significantly less memory (up to 19.7%)
than the greedy approach while still obtaining better (optimal)
worst-case limits (up to 31.5%). Again, the data enhancements
and additional runtime of Step 3 are small. Compared to
optimal solutions (cf. Table Ib, K = 5, 6, 7) our heuristic’s
memory consumption is near-optimal and, most importantly,
remains applicable to larger numbers K. Compared to the
chaining approach with the same worst-case limits, our three-
step approach requires 30-38% less memory for all K ≥ 5.

To avoid long runtimes, we can use Step 2 with smaller
chunks (see K=4+4+4+3 vs. K=5+5+5, TPC-DS), which can
be derived significantly faster (111 s vs. 895 s) while the
required memory is only slightly (2%) higher.

Recall, the greedy approach [5] does not optimize the
limit LGR(−)

max , and is, hence, to some extent unforeseeable
regarding its quality (see, e.g., K=7 vs. K=12, TPC-DS). In
contrast, the chaining approach [7] does not focus on memory
efficiency. Chaining entire (and mostly unrelated) nodes wastes
optimization potential compared to both adding robustness per
chunk and more fine granular fragment enhancements (Step 3).

Remark 2 The evaluation shows that our three-step heuris-
tic clearly outperforms both robust approaches [5] and [7]
when comparing (i) memory efficiency (up to 38% better) and
(ii) worst-case workload limits (up to 42% better). Further,
even large problems can be solved in a reasonable time.

The quality of our results is based on the mutually support-
ive interplay of the three LP models, cf. Step 1 - 3: Step 1
reduces the complexity of the initial problem using a memory-
efficient workload decomposition. Exploiting the LP (1) - (8),
Step 2 effectively adds robustness within the final chunks of
Step 1. Finally, based on Step 2’s allocation, Step 3 guarantees
a perfect load balance using optimal data enhancements.

C. End-To-End Evaluation

We evaluate the TPC-H throughput of allocations in a Post-
greSQL cluster. The number of benchmark streams S = 8 ·K
(representing users) depends on the cluster size K. A central
dispatcher maintains a query queue for each replica. For full
replication, queries from stream s are added to the queue
of node k = 1 + (s − 1) mod K. For partial replication,
queries are added to a queue of a node which stores all
relevant fragments to process the query (considering the costs
of queued and currently processed queries). A fixed number of
connections per replica is used to query the database, removing
queries from the according queue. For K=16, there are 8·16 =
128 clients, resulting in 128 active queries at a time. We run an
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Fig. 3. End-to-end TPC-H throughput of allocations in a PostgreSQL cluster.

experiment with each setting for 620 seconds, executing more
than 8 000 TPC-H queries. We started measuring the query
throughput after a 180 seconds warm-up phase.

For each number of nodes K and each allocation, we
evaluate K + 1 scenarios: the case with no failure and K
scenarios in which node k failed, i.e., node k is not used
for query processing. Figure 3a shows the query throughput
without a failure (regular) and the measured minimum (worst-
case) performance of all failure scenarios. The end-to-end
results correspond to the numerical results of Table Ia and IIa:
(i) The optimal robust allocations provide the overall best
results, having high throughput despite arbitrary single-node
failures with the lowest memory consumption (see Table Ia).
(ii) Using slightly more data, our three-step approach also
allows calculating allocations for large cluster sizes with the
same throughput properties as the optimal solution. (iii) Our
allocations provide a clearly higher worst-case throughput for
larger K (up to +91% for K=8) than solutions by [5], which
have a similar memory consumption (see Table IIa). (iv) Re-
call, allocations of the chaining approach require significantly
more memory (up to +28% for K=14) than our approach.

Figure 3b visualizes the throughput in all failure cases for
the cluster size K = 13. The chaining and our robust approach
provide high and stable throughput in all failure cases, whereas
the throughput of Rabl and Jacobsen’s allocations may drop
significantly when a specific node (e.g., 4 or 9) fails.

Remark 3 The conducted end-to-end evaluation (Figure 3)
verifies that the theoretically obtained results for our fragment
allocations, i.e., memory efficiency and optimal worst-case
workload limits, also hold in deployed systems.

VI. RELATED WORK

Özsu and Valduriez give an overview of allocation problems
in the context of distributed database systems [6]: Allocation
problems differ in (i) optimization goals, e.g., performance,
costs, and reliability, and (ii) constraints based on the system
assumptions. Because problem formulations are often proven
to be NP-hard, a lot of research tries to find good heuristic so-
lutions. As optimization goals and constraints differ, heuristics
are often tied to specific allocation problems.

Our optimization goal and the constraints are similar to
the work of Rabl and Jacobsen [5]. We maximize throughput
by balancing the load and minimize the cluster’s overall
memory consumption. Rabl and Jacobsen showed that partial
replication does not only reduces the memory consumption

for read-intensive workloads, but also scales better for write-
intensive workloads, because replicas have to modify only
stored fragments. In contrast to the robust extension in [5],
our approach decomposes the problem, adds robustness, and
enhances the solution, using linear programming for all steps.

Archer et al. address a similar (coupled data and query
assignment) problem [9]. They evenly load balance queries
for web search containing multiple terms, which correspond
to the fragments in our model. In contrast to our model, data
of assigned terms (fragments) can be loaded on demand. In
contrast, the allocation problem tackled by Ghosh et al. [10]
has no coupling, which reduces the complexity of the problem
significantly. They replicate fragments according to the access
rate and balance the number of fragments per node. Further,
they focus on a dynamic setting [11], in which fragments and
queries change over time. Allocation problems with uncertain
workloads are heuristically addressed in [12].

VII. CONCLUSIONS

This paper investigated a problem to evenly balance a work-
load among nodes to maximize throughput while minimizing
the cluster’s overall memory consumption. Taking single node
failures into account, data fragments have to be assigned to
nodes such that a given workload can be evenly balanced in
any scenario. Besides an LP-based optimal solution, which is
only applicable to small problems, we presented a scalable
three-step heuristic. We compared our robust approaches with
the state-of-the-art techniques [5] and [7] for the TPC-H and
TPC-DS workload. Using numerical and end-to-end evalua-
tions, we showed that our three-step heuristic calculates close
to optimal allocations and outperforms current techniques by
achieving better combinations of worst-case throughput and
required memory consumption, e.g., increasing the end-to-end
throughput by up to 91% compared to approach [5], and using
up to 38% less memory than approach [7].
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