1.
Risch, J., Alder, N., Hewel, C., Krestel, R.: PatentMatch: A Dataset for Matching Patent Claims & Prior Art. Proceedings of the 2nd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech@SIGIR) (2021).
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier and a dense passage retriever on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch.
2.
Risch, J., Alder, N., Hewel, C., Krestel, R.: PatentMatch: A Dataset for Matching Patent Claims with Prior Art. ArXiv e-prints 2012.13919. (2020).
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch
3.
Risch, J., Garda, S., Krestel, R.: Hierarchical Document Classification as a Sequence Generation Task. Proceedings of the Joint Conference on Digital Libraries (JCDL). pp. 147–155 (2020).
Hierarchical classification schemes are an effective and natural way to organize large document collections. However, complex schemes make the manual classification time-consuming and require domain experts. Current machine learning approaches for hierarchical classification do not exploit all the information contained in the hierarchical schemes. During training, they do not make full use of the inherent parent-child relation of classes. For example, they neglect to tailor document representations, such as embeddings, to each individual hierarchy level. Our model overcomes these problems by addressing hierarchical classification as a sequence generation task. To this end, our neural network transforms a sequence of input words into a sequence of labels, which represents a path through a tree-structured hierarchy scheme. The evaluation uses a patent corpus, which exhibits a complex class hierarchy scheme and high-quality annotations from domain experts and comprises millions of documents. We re-implemented five models from related work and show that our basic model achieves competitive results in comparison with the best approach. A variation of our model that uses the recent Transformer architecture outperforms the other approaches. The error analysis reveals that the encoder of our model has the strongest influence on its classification performance.
4.
Risch, J., Krestel, R.: Domain-specific word embeddings for patent classification. Data Technologies and Applications. 53, 108–122 (2019).
Patent offices and other stakeholders in the patent domain need to classify patent applications according to a standardized classification scheme. To examine the novelty of an application it can then be compared to previously granted patents in the same class. Automatic classification would be highly beneficial, because of the large volume of patents and the domain-specific knowledge needed to accomplish this costly manual task. However, a challenge for the automation is patent-specific language use, such as special vocabulary and phrases. To account for this language use, we present domain-specific pre-trained word embeddings for the patent domain. We train our model on a very large dataset of more than 5 million patents and evaluate it at the task of patent classification. To this end, we propose a deep learning approach based on gated recurrent units for automatic patent classification built on the trained word embeddings. Experiments on a standardized evaluation dataset show that our approach increases average precision for patent classification by 17 percent compared to state-of-the-art approaches. In this paper, we further investigate the model’s strengths and weaknesses. An extensive error analysis reveals that the learned embeddings indeed mirror patent-specific language use. The imbalanced training data and underrepresented classes are the most difficult remaining challenge.
5.
Risch, J., Krestel, R.: Learning Patent Speak: Investigating Domain-Specific Word Embeddings. Proceedings of the Thirteenth International Conference on Digital Information Management (ICDIM). pp. 63–68 (2018).
A patent examiner needs domain-specific knowledge to classify a patent application according to its field of invention. Standardized classification schemes help to compare a patent application to previously granted patents and thereby check its novelty. Due to the large volume of patents, automatic patent classification would be highly beneficial to patent offices and other stakeholders in the patent domain. However, a challenge for the automation of this costly manual task is the patent-specific language use. To facilitate this task, we present domain-specific pre-trained word embeddings for the patent domain. We trained our model on a very large dataset of more than 5 million patents to learn the language use in this domain. We evaluated the quality of the resulting embeddings in the context of patent classification. To this end, we propose a deep learning approach based on gated recurrent units for automatic patent classification built on the trained word embeddings. Experiments on a standardized evaluation dataset show that our approach increases average precision for patent classification by 17 percent compared to state-of-the-art approaches.