
Inferring Tie Strength in Temporal Networks

(ECML PKDD 2022)

Lutz Oettershagen1, Athanasios L. Konstantinidis2, Giuseppe F. Italiano2

September 19, 2023

1) KTH Royal Institute of Technology, Stockholm, Sweden

lutzo@kth.se

2) Luiss University, Rome, Italy

{akonstantinidis, gitaliano}@luiss.it



Outline

1. Introduction and Motivation

2. Temporal Networks

3. Tie Strength Inference

4. Experiments

5. Conclusions, Future (and Ongoing) Work

1



Outline

1. Introduction and Motivation

2. Temporal Networks

3. Tie Strength Inference

4. Experiments

5. Conclusions, Future (and Ongoing) Work

1



Outline

1. Introduction and Motivation

2. Temporal Networks

3. Tie Strength Inference

4. Experiments

5. Conclusions, Future (and Ongoing) Work

1



Outline

1. Introduction and Motivation

2. Temporal Networks

3. Tie Strength Inference

4. Experiments

5. Conclusions, Future (and Ongoing) Work

1



Outline

1. Introduction and Motivation

2. Temporal Networks

3. Tie Strength Inference

4. Experiments

5. Conclusions, Future (and Ongoing) Work

1



Introduction and Motivation

Social networks are inherently dynamic:1

• 4.76 billion social media users,

ca. 60% of the world’s total population

• Digital’s share of total global ad spend was 73.3% in 2022

• Social media is now the primary vehicle for digital discovery

• 53.9% of users are concerned about misinformation

Temporal network data analyses:

• Insights can lead to huge societal and monetary impacts

• Requires specialized tools and techniques for handling the dynamic nature of the data

1Sources: wearesocial.com, its.ae/social-media-marketing, parse.ly
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Temporal Networks
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Static directed graph G = (V ,E ) with edges (u, v) ∈ E
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Temporal Networks
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Temporal Networks

Real-world examples:

• Social networks

• Communication networks

• Transportation networks

• Biological networks

• Many more...
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The Strength of Weak Ties

Motivation:

• Tie strength inference gained increasing attention since pioneering work of Granovetter2

• People with strong ties share similar information and experiences

• Weak ties provide access to new and different information and experiences

• Automated inference of tie strengths is critical for many applications, e.g., advertisement,

information dissemination, understanding of complex human behavior, etc.

2Granovetter, Mark S. The strength of weak ties. American journal of sociology 78.6 (1973): 1360-1380.
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Strong Triadic Closure (STC)

People are more likely to get acquainted over time when they have something in common

• We have a bias towards the familiar, thus reducing the pure randomness of connections

• Known as Homophily (“Birds of a feather flock together”)

Network connections do not arise independently of each other

• ... they are influenced by previous connections

If A knows B...

• ... and A knows C

• ... then B is more likely to know C (or at least A has an incentive to let B and C know

each other)
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Strong Triadic Closure (STC)

• If for three nodes, A, B, and C , there are strong ties between A and B, as well as A and

C , there has to be a (weak or strong) tie between B and C

A

C

B

(a) Fulfills STC.

A

C

B

(b) Fulfills STC.

A

C

B

(c) Does not fulfill STC.

(An extensive analysis of STC can be found in the book of [Easley and Kleinberg, 2010])
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Problem and Contributions

At a very high level

Given a temporal network (e.g., a dynamically evolving social network, a communication

network, etc... ), we wish to infer the strength of relations between nodes.

• We introduce a weighted version of the strong triadic closure

• Provide efficient streaming algorithm to approximate the tie strength over time

8



Inferring Tie Strength

We wish to label each tie weak or strong, e.g., good friend vs. acquaintance in social network

so as to respect strong triadic closure (STC):

• If for three nodes, A, B, and C , there are strong ties between A and B, as well as between

A and C , there has to be a (weak or strong) tie between B and C

A

C

B

(a) Fulfills STC.

A

C

B

(b) Fulfills STC.

A

C

B

(c) Does not fulfill STC.

(Introduced by [Sintos and Tsaparas, 2014])
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Strong Triadic Closure (STC)

More formally:

• Given a (static) graph G = (V ,E ), we can assign one of the labels weak or strong to each

edge in e ∈ E .

• We call such a labeling a strong-weak labeling, and we specify the labeling by a subset

S ⊆ E .

• Each edge e ∈ S is called strong, and e ∈ E \ S weak.

• The strong triadic closure (STC) of a graph G is a strong-weak labeling S ⊆ E such that

for any two strong edges {u, v} ∈ S and {v ,w} ∈ S , there is a (weak or strong) edge

{u,w} ∈ E .

• We say that such a labeling fulfills the strong triadic closure.
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Strong Triadic Closure (STC)

Decision problem for STC is denoted by MaxSTC:

• Given a graph G = (V ,E ) and a non-negative integer k, does there exist S ⊆ E that

fulfills the strong triadic closure and |S | ≥ k?

Equivalently, can define the problem based on weak edges, MinSTC:

• Given a graph G = (V ,E ) and a non-negative integer ℓ, does there exist E ′ ⊆ E that

E \ E ′ fulfills the strong triadic closure and |E ′| ≤ ℓ?

Both MaxSTC and MinSTC are NP-hard [Sintos and Tsaparas, 2014]
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Strong Triadic Closure with Edge Additions (STC+)

For this problem, apart from labeling the edges as strong or weak, one can add new (weak)

edges between non-adjacent nodes.

Denote problem by MinSTC+:

• Given a graph G = (V ,E ) and a non-negative integer ℓ. Does there exist a set

F ⊆
(
V
2

)
\ E such that there is a E ′ ⊆ E that E \ E ′ fulfills the strong triadic closure and

|E ′ ∪ F | ≤ ℓ?

Adding a few edges can improve the labeling hugely

(complete graph with exactly one edge missing, going from (n − 2) weak edges to 1)

MinSTC+ is NP-hard [Sintos and Tsaparas, 2014]
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Strong Triadic Closure (Recap)

Strong Triadic Closure (STC)

• If for three nodes, A, B, and C , there are strong ties between A and B, as well as A and

C , there has to be a (weak or strong) tie between B and C

A

C

B

(a) Fulfills STC.

A

C

B

(b) Fulfills STC.

A

C

B

(c) Does not fulfill STC.

(Optimization problem) Finding edge labelling that fulfils STC with max (resp. min) number of

strong (resp. weak) edges is NP-hard

Approximate minimum number of weak edges [Sintos and Tsaparas, 2014]
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Weighted Strong Triadic Closure

We consider a weighted version of the STC:

• Given an edge-weighted (static) graph G

• Find edge labeling that fulfills the STC with the minimal sum of weak edge weights

A B

C

D
10 1

1 2

(a) Optimal Weighted STC

A B

C

D
0

(b) Optimal Non-weighted STC

Motivation: Use empirical knowledge if it is available, e.g., contact frequencies.

Weights are important: Even though non-weighted solution has more strong edges, weighted

version agrees more with empirical knowledge and intuition. 14
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Weighted Strong Triadic Closure

• Given an edge-weighted (static) graph, find a strong-weak labeling that fulfills the STC

and minimizes the weight of the weak edges is NP-hard

• Can be solved exactly via Integer Linear Programming

• Impractical, especially for large-scale networks

15



Our Contributions

• We show how to use temporal information to infer the edge strengths of the underlying

static graph. In particular, we generalize STC for weighted graphs and apply weighted

STC for determining tie strength in temporal networks.

• We generalize the STC+ variant to weighted graphs that allows addition of new weak

edges (to obtain improved solutions).

• We provide a streaming algorithm framework to efficiently approximate the weighted STC

and STC+ over time with an approximation factor of 2 and 3, respectively.

• We propose an efficient dynamic k-approximation for the minimum weighted vertex cover

problem (MWVC) in k-uniform hypergraphs, a key ingredient of our streaming framework.

• Our experiments with real-world temporal networks show that the weighted STC and

STC+ lead to strong edges with higher weights, consistent with the given empirical edge

weights. Furthermore, the experiments show that our streaming algorithm is orders of

magnitude faster than the baseline, while keeping the same solution quality.
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Minimum Vertex Cover

• In graph theory, a vertex cover of

a graph is a set of vertices that

includes at least one endpoint of

every edge of the graph.

• (Trivial vertex cover: take all the

vertices.)

• (Optimization problem)

Minimum vertex cover: Find a

vertex cover of smallest possible

size

17
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Approximation of the STC

Find a strong-weak labeling that fulfills the STC and minimizes the weight of the weak edges

Approximation:

1. Construct vertex weighted wedge graph W (G )

2. Approximate minimum weight vertex cover problem

A B

C

D
10

1

1

2

Wedge: Pair of edges {u, v} and {v ,w} such that {u,w} /∈ E (cannot be both strong)

STC: No pair of strong edges {u, v} and {v ,w} such that {u,w} /∈ E

Vertex cover: for each wedge one edge weak → STC holds

18
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Temporal Networks and Aggregated Graph

Temporal network:

• Set of (static) vertices V and a set of temporal edges E
• Each temporal edge ({u, v}, t) ∈ E exists only at a discrete availability time

Weighted aggregated graph

• Graph A(G) = (V ,E ,w) with E = {{u, v} | ({u, v}, t) ∈ E}
• Edge weighting function w depends on the temporal edges

• Contact frequency or duration of contacts
19
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Temporal Networks and Aggregated Graph

Weighted aggregated graph

• Graph A(G) = (V ,E ,w) with E = {{u, v} | ({u, v}, t) ∈ E}
• Edge weighting function w depends on the temporal edges

• Contact frequency or duration of contacts
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Approach for Temporal Networks

Approximation of tie strength in temporal networks

1. Compute edge-weighted aggregated graph A(G)
2. Construct vertex-weighted wedge graph W (A(G))
3. Approximate minimum weighted vertex cover problem
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Streaming Algorithm

• Sliding time window to approximate changing STC in each time windows

1. Smaller graphs: usually not all nodes have contact in the same time window.

2. Can capture tie strength changes over time – also in possibly infinite edge streams
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Streaming Algorithm

• Move time window forward:

• Step 1: Update At to At+1

• Step 2: Update Wt to Wt+1 according to the changes in A

• Step 3: Dynamically update vertex cover C in Wt+1 s.t. w(C) ≤ 2w(OPT )
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Streaming Algorithm

Move time window forward:

• Algorithm maintains a vertex cover with w(C ) ≤ 2w(OPT )

• Time complexity O(ξ · dA · d2
W )

• ξ is the maximum of number of effective edge insertions or deletions in A in iteration t

• dW (dA) is the maximal degree in W (A, resp.) after iteration t of the streaming algorithm

25



Streaming Algorithm

Move time window forward:

• Algorithm maintains a vertex cover with w(C ) ≤ 2w(OPT )

• Time complexity O(ξ · dA · d2
W )

• ξ is the maximum of number of effective edge insertions or deletions in A in iteration t

• dW (dA) is the maximal degree in W (A, resp.) after iteration t of the streaming algorithm

25



Experiments

Compared the weighted and unweighted STC and STC+ on real-world temporal networks and

evaluated the efficiency of our streaming algorithm.

More specifically, we discuss the following questions:

(Q1) How do the weighted and non-weighted versions of the STC and STC+ compare to each

other?

(Q2) How fast is our streaming algorithm?

26
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Algorithms (weighted STC)

Implemented the following algorithms for computing the weighted STC:

1. ExactW and ExactW+ are the weighted exact computation using the ILPs for the weighted

STC and STC+.

2. Pricing and Pricing+ use the non-dynamic pricing approximation in the wedge graph

for the weighted STC and STC+.

3. DynAppr is our dynamic streaming algorithm (dynamization of pricing method).

4. STCtime is a baseline streaming algorithm that recomputes the minimum weight vertex

cover (MWVC) with the pricing method for each time window.

1. and 2. are for quality.

3. and 4. are for performance

27



Algorithms (non-weighted)

Implemented the following algorithms for computing the non-weighted STC:

• ExactNw and ExactNw+ are the exact computations using ILP

(see [Adriaens et al., 2020]).

• Matching is the matching-based approximation of the unweighted vertex cover in the

(non-weighted) wedge graph (see [Sintos and Tsaparas, 2014]).

• Matching+ is the adapted matching-based approximation of the unweighted vertex cover

for the non-weighted wedge hypergraph.

• HighDeg is a O(log n) approximation by iteratively adding the highest degree vertex to the

vertex cover, and removing all incident edges (see [Sintos and Tsaparas, 2014]).
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Data Sets

Several real-world temporal networks from different domains.

1. Human contact networks from the SocioPatterns project at www.sociopatterns.org/.

For these networks, the edges represent human contacts that are recorded using proximity

sensors in 20-second intervals.

2. Online communication and social networks
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Human Contact Networks

• Malawi is a contact network of individuals living in a village in rural Malawi

[Ozella et al., 2021]. The network spans around 13 days.

• Copresence is a contact network representing spatial copresence in a workplace over 11

days [Génois and Barrat, 2018].

• Primary is a contact network among primary school students over two days

[Stehlé et al., 2011].
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Online Communication and Social Networks

• Enron is an email network between employees of a company spanning over 3.6 years

[Klimt and Yang, 2004]. Data set available at www.networkrepository.com/.

• Yahoo is a communication network available at the Network Repository

[Rossi and Ahmed, 2015] (www.networkrepository.com/). The network spans around

28 days.

• StackOverflow is based on the stack exchange website StackOverflow

[Paranjape et al., 2017]. Edges represent answers to comments and questions. The

network spans around 7.6 years. Available at snap.stanford.edu/data/index.html.

• Reddit is based on the Reddit social network [Hessel et al., 2016, Liu et al., 2019]. A

temporal edge ({u, v}, t) means that a user u commented on a post or comment of user v

at time t. The network spans over 10.05 years. We used a subgraph from the data set

provided at www.cs.cornell.edu/~arb/data/temporal-reddit-reply/.
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Data Sets Statistics

Data set
Properties

|V | |E| |T (G)| |V (W )| |E (W )| #Triangles

Malawi 86 102 293 43 438 347 2 254 441

Copresence 219 1 283 194 21 536 16 725 549 449 713 002

Primary 242 125 773 3 100 8 317 337 504 103 760

Enron 87 101 1 147 126 220 312 298 607 45 595 540 1 234 257

Yahoo 100 001 3 179 718 1 498 868 594 989 18 136 435 590 396

StackOverflow 2 601 977 63 497 050 41 484 769 28 183 518 *33 898 217 240 *110 670 755

Reddit 5 279 069 116 029 037 43 067 563 96 659 109 *86 758 743 921 *901 446 625

(*Estimated)

(|T (G)| is the number of different timestamps in the networks)
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Implementations and Hw/Sw Platform

• All algorithms implemented in C++, using GNU CC Compiler 9.3.0 with the flag --O2

and Gurobi 9.5.0 with Python 3 for solving ILPs.

• All experiments ran on a workstation with an AMD EPYC 7402P 24-Core Processor with

3.35 GHz and 256 GB of RAM running Ubuntu 18.04.3 LTS, and with a time limit of

twelve hours.

• Source code available at gitlab.com/tgpublic/tgstc.
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(Q1) Weighted vs. Unweighted STC

Data set
Weighted Non-weighted

ExactW Pricing ExactNw Matching HighDeg

Malawi 30.83 29.97 37.75 27.38 36.31

Copresence 31.12 21.37 37.95 29.20 35.31

Primary 27.17 21.94 27.83 18.99 27.35

Enron OOT 2.75 OOT 3.28 4.61

Yahoo OOT 9.86 OOT 9.98 14.29

Percentage of strong edges in aggregated graph (OOT—out of time)

• StackOverflow and Reddit too large

• Contact frequency as weighting function

• For exact algs: # strong edges higher for non-weighted (expected, weights > 1)
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(Q1) Weighted vs. Unweighted STC

Weighted Non-weighted

Data set
ExactW Pricing ExactNw Matching HighDeg

Weak Strong Weak Strong Weak Strong Weak Strong Weak Strong

Malawi 23.87 902.46 24.40 926.58 218.08 421.27 255.33 399.48 242.84 385.92

Copresence 20.30 78.32 46.13 189.31 27.22 56.56 58.85 120.07 57.13 112.63

Primary 2.73 20.48 6.58 45.50 3.34 18.49 9.32 39.88 6.19 38.84

Enron OOT OOT 3.69 9.33 OOT OOT 3.77 6.01 3.76 5.50

Yahoo OOT OOT 4.37 14.23 OOT OOT 4.78 10.42 4.60 9.84

Mean edge weights (OOT—out of time)

• Better STC labeling: strong edges with high weights / weak edges with low weights

• Exact methods: Mean weight of strong edges higher for ExactW than ExactNw

• Pricing highest mean edge weight for strong edges

• Suggests effectiveness of our approach: Empirical a priori knowledge given by edge weights

seems successfully captured by weighted STC
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(Q1) Weighted vs. Unweighted STC
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H: set of top-100 highest weight edges, S : set of strong edges

• Precision: p = |H ∩ S |/|S |
• Recall: r = |H ∩ S |/|H| 36



(Q1) Weighted vs. Unweighted STC+

Data set
Weighted Non-weighted

ExactW+ Pricing+ ExactNw+ Matching+

Malawi 31.70 31.12 50.72 34.29

Copresence 83.04 38.00 90.73 57.27

Primary 37.39 26.46 OOT 32.25

Enron OOT 3.66 OOT 5.57

Yahoo OOT 12.35 OOT 14.03

Percentage of strong edges in aggregated graph (newly inserted edges excluded, OOT—out of time)

• Weighting parameter α = 0.5 for newly inserted edges in the weighted version

• More strong edges compared to standard STC, increase strongest for Copresence (by

inserting additional weak edges, number of strong edges can be increased)

• Unweighted Matching+ approximation more strong edges than weighted Pricing+

(Pricing+ tries to minimize weight of weak edges, Matching+ number of weak edges)
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(Q1) Weighted vs. Unweighted STC+

Weighted Non-weighted

Data set
ExactW+ Pricing+ ExactNw+ Matching+

Weak Strong Weak Strong Weak Strong Weak Strong

Malawi 21.33 883.97 18.61 905.97 242.02 343.19 198.56 479.16

Copresence 27.93 86.69 31.17 151.02 38.75 80.60 46.68 99.13

Primary 4.83 32.36 5.35 42.24 OOT OOT 8.52 28.98

Enron OOT OOT 3.63 9.31 OOT OOT 3.77 5.11

Yahoo OOT OOT 4.15 13.68 OOT OOT 4.53 10.21

Mean edge weights (OOT—out of time)

• Compared to STC, mean weights of strong edges lower (more strong edges in solution)

• Except for Copresence: mean weights of strong edges higher for exact solutions

• Similarly to STC, weighted STC+ (ExactW+, Pricing+) leads to higher quality solutions

(higher mean weights for strong edges and lower mean weights for weak edges)
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(Q2) Efficiency of Streaming Algorithm

Data set
∆ = 1 hour ∆ = 1 day ∆ = 1 week

DynAppr STCtime DynAppr STCtime DynAppr STCtime

Enron 264.74 89.18 306.13 1 606.09 352.01 20 870.77

Yahoo 15.99 767.40 91.46 OOT 144.52 OOT

StackOverflow 170.38 2 298.58 971.22 OOT 16 461.53 OOT

Reddit 1 254.66 13 244.84 37 627.79 OOT OOT OOT

Running times (secs) with time window ∆ (OOT—out of time after 12h)

• Our streaming algorithm DynAppr often orders of magnitudes faster than baseline STCtime

• Only exception: Enron and ∆ = 1 hour (on average, computed wedge graphs very small)

• However, even for Enron DynAppr scales well with ∆ (STCtime does not, as size of wedge

graph increases with ∆ – more contacts happen in longer time windows)
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Conclusions

• Generalized STC and STC+ to weighted versions to include a priori knowledge in the form

of edge weights representing empirical tie strength

• Applied our new STC variants to temporal networks and showed that can yield meaningful

results

• Our main contribution is a 2-approximation (resp. 3-approximation) streaming algorithm

that can efficiently compute weighted STC (resp. STC+) in temporal networks over time

• Empirically validated its efficiency in with experimental evaluations

• Introduced a fully dynamic k-approximation of the MWVC problem in hypergraphs with

k-uniform hyperedges that allows efficient updates in our streaming algorithm
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Future Work

• Extend streaming algorithm to further variants of STC and STC+

• E.g., variants with multiple relationship types, or allowing violations

[Sintos and Tsaparas, 2014]
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(Ongoing) Temporal Network Core Decomposition and Community Search

• We introduce new generalization of k-core decomposition for temporal networks.

• We try to respect more temporal dynamics.
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(Ongoing) Temporal Network Core Decomposition and Community Search

(a) Temporal graph G. (b) Underlying multigraph.

(c) G in time-slice representation with (k,∆)-cores.

For ∆ = 2 two (k ,∆)-cores in the temporal graph. In contrast to the static k-cores shown in

(b), our (k ,∆)-cores can identify core structures in time. 43



(Ongoing) Temporal Network Core Decomposition and Community Search

• In contrast to the standard definition and previous core-like decompositions for temporal

graphs, our (k ,∆)-core decomposition is an edge-based decomposition founded on the

new notion of ∆-degree.

• The ∆-degree of an edge is defined as the minimum number of edges incident to one of

its endpoints that have a temporal distance of at most ∆.

• Moreover, we define a new notion of ∆-connectedness leading to an efficiently computable

equivalence relation between connected components of the temporal network.
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(Ongoing) Temporal Network Core Decomposition and Community Search

Example for ∆-degree d∆: d1(e) = 2, d2(e) = 2, and d3(e) = 3.
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(Ongoing) Temporal Network Core Decomposition and Community Search

• We provide efficient algorithms for the (k ,∆)-core decomposition and ∆-connectedness,

• Apply them to solve community search problems, where we are given a query node and

want to find a densely connected community containing the query node.

• Such a community is an edge-induced temporal subgraph representing cohesive and

persistent groups of nodes that interact frequently over time taking the temporal locality

and dynamics of interactions into consideration.
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(Ongoing) Temporal Network Core Decomposition and Community Search

• In our experimental evaluations (Twitter dataset), we found that in a real-world social

network, the inner (k ,∆)-cores contain only the spreading of misinformation and that the

∆-connected components of the cores are highly edge-homophilic, i.e., the majorities of

the edges in the ∆-connected components represent either misinformation or

fact-checking.

• Moreover, we demonstrate how our algorithms for ∆-community search successfully and

efficiently identify informative structures in collaboration networks (such as DBLP).
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