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Abstract—Prolonged sitting behavior and postures that cause
strain on the spine and muscles have been reported to increase
the probability of low back pain. To address this issue, many
commercially available sensors already provide feedback about
whether a person is ‘slouching’ or ‘not slouching’. However, they
do not provide information on a person’s posture, which would
give insights into the strain caused by a specific posture. Hence,
in this pilot study, we attempt to find the optimum number
of inertial measurement unit sensors required and the best
locations to place them using six mock postures. Data is collected
from these sensors and features are extracted. The number of
features are reduced and the best features are selected using
the Recursive Feature Elimination method with Cross-Validation.
The reduced number of features is then trained and tested on
Logistic Regression, Support Vector Machine and Hierarchical
Model. Among the three models, the Support Vector Machine
algorithm had the highest accuracy of 93.68%, obtained for the
thoracic, hip and sacral region sensor combinations. While these
findings will be validated in a larger study in an uncontrolled
environment, this pilot study quantitatively highlights the impor-
tance of sensor placement in shaping discriminative performance
in sitting posture classification tasks.

Index Terms—algorithm, classification, inertial measurement
unit, location, recursive feature elimination, sitting posture

I. INTRODUCTION

Prolonged sitting behaviour and spine straining sitting pos-
tures have been reported to act as negative factors affecting
health outcomes and which increases the probability of devel-
oping Low Back Pain (LBP) [1]–[5]. LBP is ranked as one of
the top causes of sick leaves and an economic burden on health
care system [6]. The proportion of people sitting for long hours
during work and in their daily life has increased in recent years
and around 75% of the employees in call centers, software
companies and other industrial jobs spend on an average 90%
of their workday sitting on a chair [1], [7], [8]. However, not all
people spending 90% of their time sitting will develop chronic
LBP. It is important to identify those particular postures or
lifestyles which are associated with the chronification of LBP.
Hence, to avoid it, maintaining a ‘good’ posture while sitting
is essential [9].

Among other factors, treatment of low back pain requires
an understanding of the mechanical factors potentially causing

Fig. 1: Sensor locations on the human body in the Anterior
View (AV) and Posterior View (PV). Abbreviations: T = 12th
Thoracic vertebra, L = 3rd Lumbar vertebra, S= Between 1st
and 2nd sacral vertebrae, H = Right hip, and N = Sternal angle.

the pain, such as spine movement [10], [11]. Hence, we
concentrate on the movements performed by the spine as the
person is sitting. There are different sitting postures considered
to be optimal for a person based on the spinal curvature,
intradiscal pressure, tissue stress and muscle activation [12],
[13]. In order to identify the sitting postures leading to LBP,
Inertial Measurement Unit (IMU) sensors are being used on
the human body. Therefore, in this paper we present a pilot
study to predict the optimum number and the best suited
locations of IMU sensors to study both, the posture and the
spine movement when a person is sitting. The aforementioned
pilot study forms the basis for a larger study, which has
been approved by the ethics commission of the University of
Potsdam. It entails recording the sitting behaviors of subjects
for 6-7 hours in his/her occupational settings, i.e., in an
uncontrolled, real environment, enabling the results presented
in this paper to be subsequently validated.

This work is organized as follows: In Section II, we present
the related work, while in Section III we discuss our method.
In Section IV, we present the results and discussion. Finally,
in Section V we draw conclusions and provide an outlook on
our future work.



II. RELATED WORK

IMU sensors have been placed on the upper and lower part
of the back by Petropoulos et al. [14]. The angles extracted
by each of the sensors were used to continuously monitor
the sitting postures. Here, the authors have not mentioned the
accuracy of the classification, and also the location of each
sensor is randomly chosen in the upper and lower back. Sensor
placement is an important step for the higher classification rate
and lower hardware cost [15]. In order to understand the spine
movement accurately, location of the sensor plays an important
role as upper and lower lumbar spine regions demonstrate
functional independence [16], [17]. The posture correcting
devices commercially available, such as Upright Go [18]
and Opter Pose [19] appear to be good posture correctors.
However, both devices do not measure the movement of the
spine, and only predict weather a person is ‘slouching’ or ‘not
slouching’. Critically, little is known with respect to the correct
location where to place these devices for enhanced accuracy.

III. METHODOLOGY

In the following section, we describe the tested locations
for placement of the sensors, the pre-processing of the data
and how the features were extracted and, the algorithms
used for predicting different postures. The algorithms were
programmed using the scikit-learn library [20].

A. Sensor Locations

We placed the Bonsai IMU sensors at five locations on the
human body as shown in Figure 1. Three of the sensors were
placed on the spine, at the 12th thoracic vertebra (T), 3rd
lumbar vertebra (L), and between 1st and 2nd vertebrae of the
sacral region (S) based on the previous literature [21]. The
4th sensor was placed at the right hip (H) and the fifth at
the sternal angle (N) in order to check if it is convenient to
place them in daily wearable. After positioning the sensors,
the data was collected using the Logger app available on the
iOS mobile application. The collected data were stored on the
sensor modules. The accelerometer and gyroscope data were
retrieved from the sensor module.

Simultaneously, we placed two Kinect depth cameras as
shown in Figure 2 to record the dept images of the upper
and lower part of the body. These cameras were used as gold
standards/labels for the classified data from the algorithms.
Similar measurement setup is being used in the larger study
to be carried out subsequently (already approved by ethics
commission).

B. Study Protocol

Data collection was carried out on six subjects, five male
and one female in the age group of 27-34 years, with weight
and height in the range of 61-91 Kg and 169-180 cm respec-
tively. All subjects signed the consent form to provide their
data.

Initially, the sensors were placed on the subjects as shown
in Figure 1. Then the subjects were made to sit for 3s to 5s. In
order to help in the synchronisation of the data, the subjects

were made to stand up, jump and sit down straight. Thereafter,
the subjects were instructed to sit in four different postures
- forward, backward, lean right and lean left postures. Each
instructed posture was repeated thrice with sitting-straight
posture as the intermittent posture between the repetitions.
Also, the sitting-straight posture was the intermittent posture
during the transition from one posture to the other posture.
The data was collected at a sampling frequency of 100 Hz for
approximately six minutes for each subject.

Fig. 2: The Kinect device set up for two cameras: a. records
the upper body, while b. records the lower body.

C. Pre-processing

The synchronisation of the data from the five sensors was
performed by aligning the peak data caused due to jumping.
We labeled the data by watching the video. The labelling of
transitions was challenging. However, we observed that the
gyroscope data had peaks whenever there was transitions in
the posture. Hence, the transitions were labelled using the
magnitude of the gx, gy and gz direction of the gyroscope
data placed at the 12th thoracic region. The magnitude (M)
was calculated using Equation 1 [22]:

M =
q

g2
x + g2

y + g2
z (1)

If M > 0:7, indicates transition and if M < 0:7 , indicates
no transition.

After the process of labelling, the raw data was first filtered
using a nonlinear median filter. An odd window length of 151
was chosen for the median filter upon experimentation. The
median filter reduced the spikes in the signal [23]. The filtered
signal is windowed for 2s with 50% data overlap [24].

D. Feature Engineering

Based on the observation of the accelerometer data in the
three axes (x, y, z), features were generated and extracted by
finding the mean and standard deviation from each of the win-
dows. We also performed correlations between the windows
of two axes to extract features [24]. Correlation measures the
similarity between two signals. Correlation between the same
signal is called auto-correlation and between two different
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